
| Topock Project I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Executive Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Document Title: Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date of Document: 8/15/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Surface Water Monitoring Report, PG&E Topock Compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Station, Needles, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PG&E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Submitting Agency: DTSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Final Document? Xes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Priority Status: HIGH MED LOW Is this time critical? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Action Required:  Information Only Review & Comment Return to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Type of Document: ☐ Draft ☐ Report ☐ Letter ☐ Memo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other/Explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | By Date: Other/Explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| What does this information pertain to?  Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA)  RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment)  Corrective Measures Study (CMS)/Feasibility Study (FS)  Corrective Measures Implementation (CMI)/Remedial Action  California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR)  Interim Measures  Other/Explain:                                                                                                                        | Is this a Regulatory Requirement?  ☑ Yes ☐ No If no, why is the document needed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| What is the consequence of NOT doing this item? What is the consequence of DOING this item? Report is required to be in compliance with DTSC requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Other Justification/s: Permit Other / Explain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| hydraulic containment system performance based on a set of st Agency, Department of Toxic Substances Control (DTSC). Key its elevations and hydraulic gradient data at compliance well pairs Colorado River and toward the pumping centers onsite, (2) hexa volumes from the IM extraction system, and (4) Groundwater Nactivities and results.  Based on the data and evaluation presented in this report, the I which includes the months of April, May, and June 2014. The av Quarter 2014 was 124.3 gallons per minute. To date, the IM ext (3,610 kilograms) of chromium.  Written by: PG&E | gram, the Groundwater Monitoring Program, and the Surface and chemical monitoring data were collected and used to evaluate IM randards approved by the California Environmental Protection ems included in this report are: (1) measured groundwater that indicate the direction of groundwater flow is away from the evalent chromium data for monitoring wells, (3) pumping rates and Monitoring Program and Surface Water Monitoring Program  M performance standard has been met for Second Quarter 2014, rerage pumping rate for the IM extraction system during the Second |
| Recommendations: This report is for information only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| How is this information related to the Final Remedy or Regulatory Required by DTSC as part of the Interim Measures Perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Other requirements of this information? None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



Version 9



Yvonne J. Meeks Manager

**Environmental Remediation** 

Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257 Fax: 805.773.8281 E-Mail: <u>yjm1@pge.com</u>

August 15, 2014

Mr. Aaron Yue Project Manager California Environmental Protection Agency Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Subject: Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater

and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

(Document ID: PGE20140815A)

Dear Mr. Yue:

Enclosed is the Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California, for PG&E's Interim Measures (IM) Performance Monitoring Program and the Groundwater Monitoring Program and Surface Water Monitoring Program for the Topock project. This report presents the Second Quarter 2014 (April through June 2014) performance monitoring results for the IM hydraulic containment system and summarizes the operations and performance evaluation for the reporting period. In compliance with the requirements for the GMP and RMP directive of April 2005 (DTSC, 2005a), this report also presents groundwater and surface water monitoring activities, results, and analyses related to the Groundwater and Surface Water Monitoring programs during Second Quarter 2014.

The IM quarterly performance monitoring report is submitted in conformance with the reporting requirements in the California Environmental Protection Agency, Department of Toxic Substances Control's (DTSC) IM directive, dated February 14, 2005, and updates and modifications approved by DTSC in letters or emails dated October 12, 2007; July 14, 2008; July 17, 2008; March 3, 2010; April 28, 2010; and July 23, 2010.

Finally, thank you for the June 27, 2014 transmittal of conditional approval for recommendations from the 2013 Annual Report. PG&E anticipates clarification of recommendations in technical discussions and implementation beginning with the third quarter sampling event and report.

Please contact me at (805) 234-2257 if you have any questions on this combined monitoring report.

Sincerely,

Yvonne Meeks

Topock Project Manager

**Enclosure** 

Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report

cc: Chris Guerre/DTSC

Karen Baker/DTSC

Pam Innis/DOI

Susan Young/CA-SLC Bruce Campbell/AZ-SLD

bonne Mceks

# Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

Document ID: PGE20140815A

Prepared for

California Environmental Protection Agency, Department of Toxic Substances Control

On behalf of

Pacific Gas and Electric Company

August 15, 2014

CH2MHILL。

155 Grand Avenue Suite 800 Oakland, CA 94612

# Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report,

## PG&E Topock Compressor Station, Needles, California

**Prepared for** 

California Environmental Protection Agency,
Department of Toxic Substances Control

On behalf of Pacific Gas and Electric Company

August 15, 2014

This report was prepared under the supervision of a California Professional Geologist

Isaac Wood

Project Hydrogeologist, P.G., C.Hg

Wood

STPACARABY
WOOD
No. PG 8747
CERTIFIED
HYDRO
GEOLOGIST
CELLIFOR
CEL

Jay Piper

CH2M HILL Project Manager

# **Contents**

| Section | on      |               |                                                                          | Page |
|---------|---------|---------------|--------------------------------------------------------------------------|------|
| Acror   | nyms an | d Abbreviat   | tions                                                                    | vi   |
| 1.0     | Intro   | duction       |                                                                          | 1-1  |
|         | 1.1     | Site-wide     | e Groundwater and Surface Water Monitoring Program                       | 1-1  |
|         |         | Groundw       | vater Monitoring Program and Surface Water Monitoring Program Monitoring |      |
|         |         | 1             | Networks                                                                 | 1-2  |
|         | 1.2     | Interim N     | Measure Performance Monitoring Program                                   | 1-2  |
|         |         | Performa      | ance Monitoring Program Monitoring Networks                              | 1-3  |
|         | 1.3     | Sustaina      | bility                                                                   | 1-3  |
| 2.0     | Secor   | d Quarter     | 2014 Monitoring Activities                                               | 2-1  |
|         | 2.1     | Groundy       | vater Monitoring Program                                                 | 2-1  |
|         |         | 2.1.1         | Monthly                                                                  | 2-1  |
|         |         | 2.1.2         | Quarterly                                                                | 2-1  |
|         |         | 2.1.3         | Other Monitoring                                                         | 2-1  |
|         |         | 2.1.4 \       | Well Maintenance                                                         | 2-1  |
|         | 2.2     | Surface \     | Water Monitoring Program                                                 | 2-1  |
|         | 2.3     | Performa      | ance Monitoring Program                                                  | 2-2  |
| 3.0     | Resul   | ts for Site-v | wide Groundwater Monitoring and Surface Water Sampling                   | 3-1  |
|         | 3.1     | Groundy       | vater Results for Hexavalent Chromium and Chromium                       | 3-1  |
|         | 3.2     | Other Gr      | oundwater Monitoring Results                                             | 3-1  |
|         |         | 3.2.1         | Chemicals of Potential Concern, In Situ Byproducts, and Other Analytes   | 3-1  |
|         |         |               | Fitle 22 Metals                                                          |      |
|         |         | 3.2.3 A       | Arsenic Sampling in Monitoring Wells                                     | 3-2  |
|         | 3.3     | Surface \     | Water Sampling Results                                                   | 3-2  |
|         | 3.4     | Data Vali     | idation and Completeness                                                 | 3-2  |
| 4.0     | Interi  | m Measure     | Performance Monitoring Program Evaluation                                | 4-1  |
|         | 4.1     | Water Q       | uality Results for Performance Monitoring Program Floodplain Wells       | 4-1  |
|         | 4.2     | Hexavale      | ent Chromium Distribution and Trends in Performance Monitoring Program   |      |
|         |         | Wells         |                                                                          | 4-1  |
|         | 4.3     | Performa      | ance Monitoring Program Contingency Plan Hexavalent Chromium Monitoring  | 4-2  |
|         | 4.4     | Extractio     | on Systems Operations                                                    | 4-2  |
|         | 4.5     | Hydrauli      | c Gradient and River Levels during Quarterly Period                      | 4-3  |
|         | 4.6     | Projecte      | d River Levels during Next Quarter                                       | 4-4  |
|         | 4.7     | Quarterl      | y Performance Monitoring Program Evaluation Summary                      | 4-4  |
| 5.0     | Upco    | ming Opera    | ation and Monitoring Events                                              | 5-1  |
|         | 5.1     | Groundw       | vater Monitoring Program                                                 | 5-1  |
|         |         | 5.1.1         | Quarterly Monitoring                                                     | 5-1  |
|         |         | 5.1.2         | Monthly Monitoring                                                       | 5-1  |
|         |         | 5.1.3         | Well Inspections                                                         | 5-1  |
|         | 5.2     | Surface \     | Water Monitoring Program                                                 | 5-1  |
|         | 5.3     | Performa      | ance Monitoring Program                                                  | 5-1  |
|         |         |               | Extraction                                                               |      |
|         |         | 5.3.2         | Fransducer Download                                                      | 5-1  |

| 6.0     | References                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                  |
| Tables  |                                                                                                                  |
| 1-1     | Topock Monitoring Reporting Schedule                                                                             |
| 3-1     | Groundwater Sampling Results, April 2013 through June 2014                                                       |
| 3-2     | Groundwater COPCs and In Situ Byproducts Sampling Results, Second Quarter 2014                                   |
| 3-3     | Title 22 Metals Results, Second Quarter 2014                                                                     |
| 3-4     | Surface Water Sampling Results, Second Quarter 2014                                                              |
| 3-5     | COPCs, In Situ Byproducts, and Geochemical Indicator Parameters in Surface Water Samples,<br>Second Quarter 2014 |
| 4-1     | Pumping Rate and Extracted Volume for IM System, Second Quarter 2014                                             |
| 4-2     | Analytical Results for Extraction Wells, April 2013 through June 2014                                            |
| 4-3     | Average Hydraulic Gradients Measured at Well Pairs, Second Quarter 2014                                          |
| 4-4     | Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3                     |
| Figures |                                                                                                                  |
| 1-1     | Locations of IM-3 Facilities and Monitoring Locations                                                            |
| 1-2     | Monitoring Locations and Sampling Frequency for GMP                                                              |
| 1-3     | Monitoring Locations and Sampling Frequency for RMP                                                              |
| 1-4     | Locations of Wells and Cross-sections Used for IM Performance Monitoring                                         |
| 3-1a    | Cr(VI) Sampling Results, Shallow Wells in Alluvial Aquifer and Bedrock, Second Quarter 2014                      |
| 3-1b    | Cr(VI) Sampling Results, Mid-depth Wells in Alluvial Aquifer and Bedrock, Second Quarter 2014                    |
| 3-1c    | Cr(VI) Sampling Results, Deep Wells in Alluvial Aquifer and Bedrock, Second Quarter 2014                         |
| 4-1     | Maximum Cr(VI) Concentrations in Alluvial Aquifer and Bedrock, Second Quarter 2014                               |
| 4-2     | Cr(VI) Concentrations Floodplain Cross-section B, Second Quarter 2014                                            |
| 4-3     | Cr(VI) Concentration Trends in Selected Performance Monitoring Wells, April 2005 through June 2014               |
| 4-4a    | Average Groundwater Elevations in Shallow Wells and River Elevations, Second Quarter 2014                        |
| 4-4b    | Average Groundwater Elevations in Mid-depth Wells, Second Quarter 2014                                           |
| 4-4c    | Average Groundwater Elevations in Deep Wells, Second Quarter 2014                                                |
| 4-5     | Average Groundwater Elevations for Wells in Floodplain Cross-section A, Second Quarter 2014                      |
| 4-6     | Measured Hydraulic Gradients, River Elevations, and Pumping Rate, Second Quarter 2014                            |
| 4-7     | Past and Predicted Future River Levels at Topock Compressor Station                                              |
| Appen   | dices                                                                                                            |
| Α       | Well Inspection and Maintenance Log, Second Quarter 2014                                                         |
| В       | Lab Reports, Second Quarter 2014 (Provided on CD-ROM only with hard copy submittal)                              |
| С       | Other Groundwater Monitoring Results                                                                             |
| D       | Groundwater Monitoring Data for GMP and Interim Measures Monitoring Wells                                        |
| E       | Interim Measures Extraction System Operations Log, Second Quarter 2014                                           |
| F       | Hydraulic Data for Interim Measures Reporting Period                                                             |
|         |                                                                                                                  |

6-1

vi ES081414092525BAO

# **Acronyms and Abbreviations**

°C degrees Centigrade

μg/L micrograms per liter

COPC chemical of potential concern

Cr(VI) hexavalent chromium

DTSC California Environmental Protection Agency, Department of Toxic Substances Control

ft/ft feet per foot

GMP Groundwater Monitoring Program

gpm gallons per minute

ID identification

IM Interim Measure

IM-3 Interim Measure Number 3

IMCP Interim Measures Contingency Plan

PG&E Pacific Gas and Electric Company

PMP Performance Monitoring Program

RCRA Resource Conservation and Recovery Act

RMP Surface Water Monitoring Program

RRB Red Rock Bridge

RWQCB California Regional Water Quality Control Board

TDS total dissolved solids

USBR United States Bureau of Reclamation

USEPA United States Environmental Protection Agency

ES081414092525BAO vi

#### **SECTION 1**

# Introduction

Pacific Gas and Electric Company (PG&E) is implementing Interim Measures (IMs) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The Topock Compressor Station is located in eastern San Bernardino County, 15 miles southeast of the city of Needles, California, as shown on Figure 1-1. (Figures are located at the end of the report.) This report presents monitoring data from three PG&E monitoring programs:

- Site-wide Groundwater Monitoring Program (GMP)
- Site-wide Surface Water Monitoring Program (RMP)
- Interim Measure Number 3 (IM-3) Performance Monitoring Program (PMP) (data and evaluations)

This report presents the monitoring data from PG&E's GMP, RMP, and PMP, collected from April 1, 2014 through June 30, 2014 (hereafter referred to as the reporting period). The data collected as part of the GMP and RMP are presented in Section 3. The data collected as part of the PMP are presented in Section 4. This combined PMP and GMP (including RMP) reporting format was approved by the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) in May 2009 (DTSC, 2009). On July 23, 2010, DTSC approved a new sampling event timing and reporting schedule for the PMP, GMP, and RMP programs (DTSC, 2010a). On June 27, 2014, DTSC approved a change to the reporting schedule to add two weeks to the preparation of the third quarter report (DTSC, 2014). Table 1-1 shows the reporting schedule. (Tables are located at the end of the report.)

# 1.1 Site-wide Groundwater and Surface Water Monitoring Program

The Topock GMP and RMP were initiated as part of a Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) facility investigation/remedial investigation groundwater investigation. These programs are being regulated under a Corrective Action Consent Agreement issued by the DTSC in 1996 for the Topock site (United States Environmental Protection Agency [USEPA] ID No. CAT080011729).

Groundwater monitoring data collected between July 1997 and October 2007 are presented in the *Revised Final RCRA Facility Investigation and Remedial Investigation Report, Volume 2 – Hydrogeologic Characterization and Results of Groundwater and Surface Water Investigation, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California, dated February 11, 2009 (CH2M HILL, 2009a).* Select groundwater and surface water monitoring data from November 2007 through September 2008 are presented in the *Final RCRA Facility Investigation/Remedial Investigation Report, Volume 2 Addendum – Hydrogeologic Characterization and Results of Groundwater and Surface Water Investigation, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California, dated June 29, 2009 (CH2M HILL, 2009b).* 

Background information (including well construction details) and descriptions of the current groundwater and surface water sampling, analyses, and monitoring programs are discussed in PG&E's Fourth Quarter 2013 and Annual Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California, dated March 15, 2014 (CH2M HILL, 2014a).

In compliance with the requirements for the GMP and RMP directive of April 2005 (DTSC, 2005a), this document presents the Second Quarter 2014 GMP and RMP report for the monitoring activities from April 1, 2014, through June 30, 2014.

ES081414092525BAO 1-1

# Groundwater Monitoring Program and Surface Water Monitoring Program Monitoring Networks

Figure 1-2 shows the current locations and sampling frequencies of the monitoring wells in the GMP. The complete GMP includes over 100 wells that monitor groundwater in the Alluvial Aquifer and the bedrock and consist of the following:

- One hundred twenty-nine monitoring wells in California, including two normally dry wells and five wells currently sampled under the in situ pilot test program.
- Eight monitoring wells in Arizona.
- Two water supply wells.
- Two active extraction wells.
- Five test wells.

Sampling frequencies for the GMP wells were updated beginning in First Quarter 2010 following the DTSC directive dated March 3, 2010 (DTSC, 2010b), and new frequencies were proposed in the Fourth Quarter and Annual 2013 report (CH2M HILL, 2014a). Figure 1-2 shows the existing sampling frequencies that will be continued until review of the revised frequencies proposed in the Fourth Quarter and Annual 2013 report is completed and formally approved by DTSC before Third Quarter 2014 sampling. Sampling frequencies for the Arizona monitoring wells were previously updated following the April 23, 2010 approval from the Arizona Department of Environmental Quality, 2010) and the April 28, 2010 directive from DTSC (DTSC, 2010c).

Figure 1-3 shows the locations and sampling frequencies of the RMP, which consists of:

- Ten river channel surface water monitoring locations.
- Four shoreline surface water monitoring locations.
- Two other surface water monitoring locations.

# 1.2 Interim Measure Performance Monitoring Program

In compliance with the requirements for IM monitoring and reporting outlined in the DTSC IM performance directive of February 2005 and in subsequent directives from the DTSC in 2007 (DTSC, 2005b, 2007a-c), this document presents the Second Quarter 2014 PMP evaluation report for the IM monitoring activities from April 1, 2014 through June 30, 2014.

The Topock IM project consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as IM-3. The IM monitors only the Alluvial Aquifer. Currently, the IM-3 facilities include a groundwater extraction system (four extraction wells: TW-2D, TW-3D, TW-2S, and PE-1), conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. Extraction wells PE-1 and TW-3D currently operate full time. Figure 1-1 shows the locations of the IM-3 extraction, conveyance, treatment, and injection facilities.

In a letter dated February 14, 2005, DTSC established the criteria for evaluating the performance of the IM (DTSC, 2005c). As defined by DTSC, the performance standard for this IM is to "establish and maintain a net landward hydraulic gradient, both horizontally and vertically, that ensures that hexavalent chromium [Cr(VI)] concentrations at or greater than 20 micrograms per liter [µg/L] in the floodplain are contained for removal and treatment" (DTSC, 2005b). A *Draft Performance Monitoring Plan for Interim Measures in the Floodplain Area, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California* (CH2M HILL, 2005a) was submitted to DTSC on April 15, 2005 (herein referred to as the Performance Monitoring Plan).

1-2 ES081414092525BAO

The February 2005 DTSC directive also defined the monitoring and reporting requirements for the IM (DTSC, 2005b-c). In October 2007, DTSC modified the reporting requirements for the PMP (DTSC, 2007a) to discontinue monthly performance monitoring reports (the quarterly and annual reporting requirements were unchanged). Additional updates and modifications to the PMP were approved by DTSC in letters dated October 12, 2007; July 14, 2008; July 17, 2008; and July 23, 2010 (DTSC, 2007a, 2008a-b, and 2010a).

#### Performance Monitoring Program Monitoring Networks

Figure 1-4 shows the locations of wells used for IM extraction, performance monitoring, and hydraulic gradient measurements. With approval from DTSC, the list of wells included in the PMP was modified beginning August 1, 2008. The performance monitoring wells in service/active during this reporting period are defined as:

- Floodplain wells: monitoring wells on the Colorado River floodplain.
- Intermediate wells: monitoring wells immediately north, west, and southwest of the floodplain.
- Interior wells: monitoring wells upgradient of IM pumping.
- Extraction wells: TW-2D, TW-3D, TW-2S, and PE-1.

Three extraction wells (TW-2D, TW-3D, and TW-2S) are located on the MW-20 bench. Extraction well PE-1 is on the floodplain approximately 450 feet east of extraction well TW-3D, as shown on Figure 1-4. Extraction wells TW-3D and PE-1 operate full time.

Groundwater monitoring wells installed on the Arizona side of the Colorado River are not formally part of the PMP, but some of these wells have been used to collect groundwater elevation data for evaluating the hydraulic gradient on the Arizona side of the river.

The PMP monitors hydrogeologic conditions in the Alluvial Aquifer. The wells screened in the unconsolidated alluvial fan and fluvial deposits, which comprise the Alluvial Aquifer, have been separated into three depth intervals to present groundwater quality and groundwater level data. The depth intervals of the Alluvial Aquifer in the floodplain area—designated upper (shallow wells), middle (mid-depth wells), and lower (deep wells)—are based on grouping the monitoring wells screened at common elevations. These divisions do not correspond to any lithostratigraphic layers within the aquifer. The Alluvial Aquifer is considered to be hydraulically undivided. The subdivision of the aquifer into three depth intervals is an appropriate construct for presenting and evaluating spatial and temporal distribution of groundwater quality data in the floodplain. The three-interval concept is also useful for presenting and evaluating lateral gradients while minimizing effects of vertical gradients and observing the influence of pumping from partially penetrating wells.

# 1.3 Sustainability

The GMP, PMP and RMP monitoring programs increased the use of sustainable practices under the continuous improvement program for Topock Monitoring. This new report section briefly describes some of the sustainability practices now in use.

As approved by the California Regional Water Quality Control Board in 2006 (RWQCB, 2006), groundwater sampling purge water is disposed via the onsite IM-3 treatment and injection process, eliminating offsite transport and disposal of sampling purge water. In 2011, onsite IM-3 staff were trained to take on the role of groundwater sampling support in place of an offsite support contractor. IM-3 staff and the monitoring teams also designed a groundwater sampling truck that was locally fabricated. The sampling truck is a modular skid that is attached to the IM-3 three-quarter-ton flatbed Diesel pickup for monitoring use. The use of local staff and a local sampling truck eliminated mobilizations from the Los Angeles area by the former offsite contractor. Additionally, the RMP boat contractor has always been a local Lake Havasu Citybased business. Benefits of using local resources for sampling support are reduced fuel consumption and greenhouse gas emissions, and increased local business support.

ES081414092525BAO 1-3

To reduce the potential for impacts to floodplain areas with nesting habitat, water level data telemetry systems were installed from 2011-2012 at the five key gradient compliance well locations. The solar-powered data telemetry systems replaced weekly download visits to each well with remote data collection, resulting in monthly or less frequent visits for key well transducer calibrations and maintenance. Using the current three-casing-volume purge sampling methods, pumps and tubing are sized for the optimum purge technique at each monitoring well. Twelve-volt pumps are used at the majority of monitoring wells in place of larger Redi-Flo 2™ pumps, and dedicated tubing is used for most wells. Utility vehicles (for example, Polaris Ranger or Kawasaki Mule) and one quiet electric four-wheel drive utility vehicle rather than the full-size pickup truck (all part of the onsite vehicle pool) are used to access wells on the floodplain and some culturally sensitive well locations. These best practices reduce generator use and decontamination water volume to further decrease the monitoring footprint. The DTSC approved the provisional use of micro-purge sampling on June 27, 2014 (DTSC, 2014) based on results from a sampling technology trial reported in the 2013 annual GMP-PMP report (CH2M HILL, 2014a). Micro-purge (or low flow) sampling will further reduce the volume of purge water and sampling footprint for most wells.

1-4 ES081414092525BAO

# Second Quarter 2014 Monitoring Activities

This section summarizes the monitoring and sampling activities completed during the reporting period.

# 2.1 Groundwater Monitoring Program

#### 2.1.1 Monthly

Groundwater was sampled from the active IM extraction wells (PE-1 and TW-3D) in April, May, and June 2014 and was analyzed for Cr(VI) and chromium.

#### 2.1.2 Quarterly

Per the July 23, 2010 sampling schedule approval (DTSC, 2010a), the Second Quarter 2014 GMP quarterly groundwater monitoring event was conducted from April 9, 2014 through May 14, 2014. Select field parameters recorded during well purging included oxidation-reduction potential and pH. Groundwater samples were analyzed for Cr(VI), chromium, and specific conductance.

During the Second Quarter 2014 sampling event, groundwater samples were collected at select GMP wells and were submitted for laboratory analysis of Cr(VI) and other constituents, including:

- California Code of Regulations Title 22 metals at MW-12 and MW-22 (collected semiannually).
- Chemicals of potential concern (COPCs), including molybdenum, nitrate as nitrogen (referred to as
  nitrate hereafter), selenium, potential in situ byproducts (manganese and arsenic), and other analytes.
   In an email dated March 3, 2010, DTSC directed monitoring of these COPCs, potential in situ byproducts,
  and other analytes at select wells (DTSC, 2010d, 2011).
- Arsenic at select GMP wells screened in alluvial and fluvial sediments and select bedrock monitoring wells.

## 2.1.3 Other Monitoring

In addition, groundwater samples were submitted for laboratory analysis of background metals at selected wells during the Second Quarter 2014 sampling event, as recommended in the background study report (CH2M HILL, 2008), at MW-16 and MW-17.

#### 2.1.4 Well Maintenance

In a letter from DTSC dated January 28, 2013, PG&E was directed to assess conditions at existing wells pursuant to PG&E's *Draft Performance Monitoring Plan for Interim Measures in the Floodplain Area, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California* (CH2M HILL, 2005a) and the *Sampling and Analysis Field Procedures Topock Program Manual, Revision 1, Pacific Gas and Electric Company, Topock Project* (CH2M HILL, 2005b) to ensure that monitoring wells are in compliance with the California Well Standards. Appendix A and Table A-1 provide the quarterly inspection log, field observations, and required mitigation actions for well maintenance.

# 2.2 Surface Water Monitoring Program

Quarterly surface water sampling was conducted May 21, 2014 through May 22, 2014 from the complete RMP monitoring network. Samples were analyzed for Cr(VI), chromium, specific conductance, and pH. Samples were also analyzed for COPCs (molybdenum, nitrate, and selenium), in situ byproducts (manganese, iron, and arsenic), and geochemical indicator parameters to develop baseline concentrations for future remedy performance evaluation.

ES081414092525BAO 2-1

# 2.3 Performance Monitoring Program

Groundwater samples for the PMP were collected during the GMP quarterly sampling event. In addition, PMP pressure transducers, which are used to monitor hydraulic gradients of the Alluvial Aquifer, were downloaded in the first week of every month (April, May and June). The transducers in the key monitoring wells (MW-27-085, MW-31-125, MW-33-150, MW-34-100, and MW-45-095a, shown on Figure 1-4) are downloaded via a cellular telemetry system.

2-2 ES081414092525BAO

# Results for Site-wide Groundwater Monitoring and Surface Water Sampling

# 3.1 Groundwater Results for Hexavalent Chromium and Chromium

Table 3-1 presents the results for Cr(VI), chromium, field oxidation-reduction potential, laboratory-specific conductance, and field pH in groundwater samples collected from the reporting period. During Second Quarter 2014, the maximum detected Cr(VI) concentration was  $10,000 \,\mu\text{g/L}$  at well MW-68-180. The laboratory reports for analytical results from Second Quarter 2014 sampling are presented in Appendix B.

Figures 3-1a through 3-1c present the Cr(VI) results for wells monitoring the shallow (upper depth interval), mid-depth (middle depth interval), and deep (lower depth interval) wells of the Alluvial Aquifer and bedrock, respectively, from Second Quarter 2014. Figures 3-1a through 3-1c each show the approximate outline of Cr(VI) concentration contours greater than 32  $\mu$ g/L for the Alluvial Aquifer and bedrock. These contour outlines are based on results from groundwater sampling events conducted in Second Quarter 2014. The value of 32  $\mu$ g/L is based on the calculated natural background upper tolerance limit for Cr(VI) in groundwater from the background study (CH2M HILL, 2008, 2009a).

The areas where Cr(VI) concentrations are greater than 32  $\mu$ g/L in the shallow, mid-depth, and deep intervals of the Alluvial Aquifer and bedrock wells are generally similar to the previous quarterly monitoring events (CH2M HILL, 2011a-d, 2012a-d, 2013a-d, and 2014a-b).

# 3.2 Other Groundwater Monitoring Results

# 3.2.1 Chemicals of Potential Concern, In Situ Byproducts, and Other Analytes

Table 3-2 presents the COPCs, in situ byproducts, and other analytes results for groundwater monitoring wells sampled in Second Quarter 2014. The wells where maximum concentrations of these analytes were reported are summarized as follows:

- MW-46-175 with a molybdenum concentration of 170 μg/L
- MW-67-185 with a nitrate concentration of 45.4 milligrams per liter
- MW-67-185 with a selenium concentration of 240 μg/L
- MW-22 with a manganese concentration of 2,100 µg/L
- MW-12 with an arsenic concentration of 38.0 μg/L
- MW-33-40 with a fluoride concentration of 9.80 milligrams per liter

#### 3.2.2 Title 22 Metals

Table 3-3 presents the Title 22 metals results for the GMP monitoring wells MW-12 and MW-22 sampled during Second Quarter 2014. The trace metals detected MW-12 and MW-22 are summarized as follows:

- The trace metals detected in MW-12 were chromium, arsenic, barium, molybdenum, selenium, and vanadium. The dissolved concentrations of these trace metals—other than chromium and arsenic—are below the respective California maximum contaminant level drinking water standards.
- The trace metals detected in MW-22 were arsenic, barium, cobalt, molybdenum, nickel, and selenium. The dissolved concentrations of the trace metals—other than arsenic—are below the respective California maximum contaminant level drinking water standards.

ES081414092525BAO 3-1

#### 3.2.3 Arsenic Sampling in Monitoring Wells

Select Alluvial Aquifer and bedrock wells were sampled for arsenic in the Second Quarter 2014 event. These results are presented in Appendix C, Table C-1.

# 3.3 Surface Water Sampling Results

Table 3-4 presents results of Cr(VI), chromium, specific conductance, and lab pH from the surface water sampling event conducted during this reporting period. Neither Cr(VI) nor chromium was detected above reporting limits at any in-channel, shoreline, or other surface water monitoring locations.

Table 3-5 presents results for the COPCs (molybdenum, nitrate, and selenium); in situ byproducts (manganese, iron, and arsenic); and other geochemical indicator parameters for surface water samples. Low arsenic (equal to or less than 3  $\mu$ g/L), low barium (equal to or less than 130  $\mu$ g/L), low molybdenum (less than 5  $\mu$ g/L), low nitrate/nitrite as nitrogen (less than 1 milligram per liter), and low selenium (less than 2  $\mu$ g/L), concentrations were detected at all sampled locations. The dissolved manganese results were also generally low and near or below laboratory reporting limits, with the exception of the samples collected at C-MAR-S, C-MAR-D, and Red Rock Bridge (RRB), where moderate values were reported. The C-MAR-S and C-MAR-D sample locations are near the east side of the Colorado River at the mouth of the Topock Marsh area, and the RRB location is at the mouth of Bat Cave Wash on the west side, as shown on Figure 1-3. Both locations are out of the main river channel and adjacent to areas of naturally reducing geochemical conditions in groundwater. Elevated manganese concentrations are typical of reduced geochemical environments. Dissolved iron results were generally low and near or below laboratory reporting limits.

## 3.4 Data Validation and Completeness

Laboratory analytical data from the Second Quarter 2014 sampling events were reviewed by project chemists to assess data quality and to identify deviations from analytical requirements.

The following bullets summarize the notable analytical qualifications in data reported this quarter:

- Twenty-five Cr(VI) (USEPA Method 218.6) results exhibited a matrix interference issue that required a
  dilution to achieve satisfactory matrix spike recovery, resulting in an elevated reporting limit. No flags
  were applied.
- Three samples had Cr(VI) (USEPA Method 218.6) concentrations that exceeded the dissolved chromium (USEPA Method 6020) concentration by a relative percentage difference of 20 percent or more. Two of the samples were a field duplicate pair. The laboratory performed additional analysis that confirmed the initial results, so the initial results were reported. The sample results were qualified as estimated and flagged "J". As explained in table footnotes, a "J" flag indicates that the concentration as reported is considered to be an estimate.
- Two Cr(VI) (USEPA Method 218.6) samples were associated with an equipment blank that had a
  detection above the reporting limit. The sample results were less than five times the concentration of
  the equipment blank; therefore, the sample results were qualified as "not detected at the reported
  concentration" and no flags were applied.
- Seven samples were associated with matrix spike recoveries that were outside the control limits MW-12 for dissolved copper and dissolved manganese; MW-22 for dissolved copper; MW-57 for dissolved manganese; MW-66-165 (and the associated field duplicate) for dissolved manganese and dissolved selenium (USEPA Method 6020); and MW-33-090 (and the associated field duplicate) for nitrate/nitrite (USEPA Method 353.2). The associated sample results were qualified as estimated and flagged "J".

3-2 ES081414092525BAO

- One field duplicate pair had a relative percentage difference greater than the upper control limit for two
  analytes, dissolved molybdenum and dissolved manganese (USEPA Method 6020). The results were
  qualified as estimated and flagged "J".
- Eight samples were received at the Corvallis laboratory at a temperature greater than 6°C. The sample results for Cr(VI) (USEPA Method 218.6), and conductivity (USEPA Method 120) were qualified as estimated and flagged "J".
- Based on the March 2007 USEPA ruling and reaffirmed in the May 2012 USEPA ruling, pH has a
  15-minute holding time. As a result, all samples analyzed in a certified lab by Method SM4500-HB (pH)
  are analyzed outside the USEPA recommended holding time. Therefore, the pH results for the Second
  Quarter 2014 sampling event analyzed in a certified lab were qualified as estimated and flagged "J".
- An alkalinity sample (USEPA Method SM2320B) collected from TW-03D on June 3 was initially overlooked by the lab. The lab notified the project chemist at 7:30 p.m. on June 30, at which time the project chemist instructed the lab to proceed with the analysis. The sample results were qualified (for exceeding the USEPA recommended holding time) and flagged "J". The project chemist also arranged to have another sample collected that evening and analyzed. The alkalinity results were 134 mg/L from the June 3 sample and 145 mg/L from the sample collected on June 30.

The only other noteworthy issue, identified in the Second Quarter 2014 data, concerned the initial sample results for MW-23-060 and MW-23-080. During the normal quality assurance data review, it was noted that the sample results for the two wells appeared to have been switched (based on historical data). Review of the sample data, container labels, chain-of-custodies and purge forms found the times listed on the sample containers had been switched when compared to the chain-of-custodies and purge forms. The containers are pre-labeled (the label includes the sample identification [ID] and method, but requires the date, time, and sampler's initials to be filled in at the time of sample collection). Based on the available data, the lab was asked to report the sample results based on the sampling time listed on the sample container rather than the sample ID. Additional details are provided in the data validation reports, which are kept in the project file and are available upon request.

ES081414092525BAO 3-3

# Interim Measure Performance Monitoring Program Evaluation

# 4.1 Water Quality Results for Performance Monitoring Program Floodplain Wells

In July 2008, DTSC approved modifications to the PMP IM chemical PMP (DTSC, 2008b). These wells are sampled annually (one well sampled biennially) during the Fourth Quarter sampling events. For the complete annual general chemistry results, see Table F-1 in Appendix F in the *Fourth Quarter 2013 and Annual Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California*, dated March 15, 2014 (CH2M HILL, 2014a). Figure 1-4 shows the locations of the monitoring wells sampled for the performance monitoring parameters. Water samples from the selected performance monitoring locations are analyzed for general chemistry parameters, including total dissolved solids (TDS), chloride, sulfate, nitrate, bromide, calcium, potassium, magnesium, sodium, boron, alkalinity, deuterium, and oxygen-18 to monitor the effects of IM pumping on groundwater chemistry.

# 4.2 Hexavalent Chromium Distribution and Trends in Performance Monitoring Program Wells

The Second Quarter 2014 distribution of Cr(VI) in the upper (shallow wells), middle (mid-depth wells), and lower (deep wells) intervals of the Alluvial Aquifer is shown in plan view and cross-section on Figure 4-1.<sup>1</sup> Figure 4-2 presents the Second Quarter 2014 Cr(VI) results for cross-section B, oriented parallel to the Colorado River. The location of cross-section B is shown on Figure 1-4. The Cr(VI) concentration contours shown for the Alluvial Aquifer on these figures are based on groundwater samples collected in Second Quarter 2014.

Figure 4-3 presents Cr(VI) concentration trend graphs for selected deep monitoring wells in the floodplain area through June 2014. Sampling results are plotted for wells MW-34-100, MW-36-90, MW-36-100, MW-44-115, MW-44-125, and MW-46-175. The locations of the deep wells selected for performance evaluation are shown on Figure 1-4. Appendix D includes Cr(VI) concentration trend graphs for selected monitoring wells through June 2014.

Wells showing marked decreases in concentration are generally in the floodplain area where IM pumping is removing chromium in groundwater. Wells with historical detections near or at reporting limits (for chromium, a typical reporting limit is 0.2 to  $1.0~\mu g/L$ ) remained at these low levels during Second Quarter 2014. A review of Figure 4-3 and Appendix D indicates that Cr(VI) concentrations have remained steady or have decreased in many wells since IM and PE-1 pumping began in 2004 and 2005, respectively.

Key Cr(VI) and chromium trends for PMP groundwater monitoring wells (data in Appendix D; see Figure 1-4 for locations) sampled during Second Quarter 2014 include:

• Concentrations at the MW-20 cluster (located near the TW-3D pumping well) indicate generally stable Cr(VI)concentrations at the shallow well MW-20-070 (since 2010), decreasing concentrations at

ES081414092525BAO 4-1

 $<sup>^{1}</sup>$  On Figures 4-1 and 4-2, the Cr(VI) concentrations are color-coded based on the groundwater background Cr(VI) concentration, which is 32  $\mu$ g/L (CH2M HILL, 2009a). The 20- $\mu$ g/L and 50- $\mu$ g/L Cr(VI) concentration contours presented on Figures 4-1 and 4-2 are shown in accordance with DTSC's 2005 IM directive and are not based on the background Cr(VI) concentration for groundwater.

MW-20-100 (since May 2007), and variable concentrations at MW-20-130 over the past 10 years, with all three either stable or downward over the past 2 years (Appendix D, Figure D-3).

- As presented in Appendix D, Figure D-5, Cr(VI) results for mid-depth well MW-33-90 have been fairly stable since monitoring began (2004), with a decreasing trend developing in 2013/2014. Deep MW-33 well cluster Cr(VI) concentrations have shown stable trends since 2007.
- As shown on Figure 4-3 and on Figure D-6 in Appendix D, Cr(VI) results for MW-34-100 have been variable, but generally declining, since June 2006. In addition to this primary overall downward trend in Cr(VI) concentration, MW-34-100 also shows a consistent but secondary seasonal effect in concentration related to high (spring/summer) and low (winter) Colorado River levels.
- Superimposed on stable or decreasing longer-term trends for Cr(VI), the secondary trend of seasonal fluctuation in Cr(VI) is also seen in monitoring wells MW-35-60 and MW-46-175 (see Appendix D, Figures D-6 and D-11, respectively). River levels are discussed in Section 4.6.
- Cr(VI) results for MW-44-115 have shown a steady declining trend since the well was constructed in 2006, as shown on Figure 4-3 and on Figure D-10 in Appendix D.

# 4.3 Performance Monitoring Program Contingency Plan Hexavalent Chromium Monitoring

The Topock Interim Measures Contingency Plan (IMCP) was developed to detect and control any possible migration of the Cr(VI) plume toward the Colorado River. Currently, the IMCP consists of 24 wells (CH2M HILL, 2005a, 2006; PG&E, 2007, 2008). Appendix D includes Cr(VI) concentration trend graphs for the IMCP wells. The IMCP well Cr(VI) results in Second Quarter 2014 were below the trigger levels requiring contingency actions.

# 4.4 Extraction Systems Operations

Pumping data for the IM-3 groundwater extraction system for the reporting period of April 1 through June 30, 2014 are presented in Table 4-1. From April 1, 2014 through June 30, 2014, the volume of groundwater extracted and treated by the IM-3 system was 16,301,483 gallons. This resulted in the removal of an estimated 89.5 pounds (40.6 kilograms) of chromium from the aquifer during the period from March 1, 2014 through May 31, 2014.<sup>2</sup>To date, the IMs have removed approximately 7,960 pounds of chromium from the floodplain at the Topock site through May 2014.

During Second Quarter 2014, extraction wells TW-3D and PE-1 operated at a combined pumping rate of 124.3 gallons per minute (gpm), including periods of planned and unplanned downtime. The average monthly pumping rates during the reporting period were 117.9 gpm (April), 134.6 gpm (May), and 120.4 gpm (June). Extraction well TW-2S was not operated during Second Quarter 2014. Extraction well TW-2D ran for limited durations on April 4 and 5, 2014 and June 24, 25, 26 and 27, 2014. The operational runtime percentage for the IM extraction system was 92.7 percent during this reporting period. The operations log for the extraction system during Second Quarter 2014, including planned and unplanned downtime, is included in Appendix E.

The concentrate (saline water) from the reverse osmosis system was shipped offsite as nonhazardous waste and was transported to Liquid Environmental Solutions in Phoenix, Arizona, for treatment and disposal. Six containers of solids from the IM-3 facility were disposed of at the U.S. Ecology Chemical Waste Management

4-2 ES081414092525BAO

<sup>&</sup>lt;sup>2</sup> Chromium removed this reporting period includes the period of March 1 through May 31, 2014. On July 23, 2010, DTSC approved a revised reporting schedule for this report that included a revised IM-3 sample collection period from March 1, 2014 through May 31, 2014.

facility in Beatty, Nevada, during Second Quarter 2014. Daily IM-3 inspections included general facility inspections, flow measurements, and site security monitoring. Daily logs with documentation of inspections are maintained onsite.

During the reporting period, Cr(VI) concentrations in TW-3D remained stable or decreasing overall, ranging from a maximum value of 725  $\mu$ g/L in June 2014 to a minimum value of 601  $\mu$ g/L in May, as shown in Table 4-2. TDS concentrations in TW-3D for this reporting period have also remained stable, as shown in Table 4-2.

The Cr(VI) concentrations in the extracted groundwater at well PE-1 on the floodplain ranged from 4.0 to 3.7  $\mu$ g/L during the reporting period, as shown in Table 4-2. TDS concentrations in PE-1 for this reporting period have also remained stable.

# 4.5 Hydraulic Gradient and River Levels during Quarterly Period

During the reporting period, water levels were recorded at intervals of 30 minutes with pressure transducers in more than 50 wells in the Alluvial Aquifer and two river monitoring stations (I-3 and RRB). The data are typically continuous, with only short interruptions for sampling or maintenance. The locations of the wells monitored are shown on Figure 1-4.

Daily average groundwater and river elevations calculated from the pressure transducer data for the reporting period are summarized in Table F-1 in Appendix F. Groundwater elevations (or hydraulic heads) are adjusted for temperature and salinity differences between wells (that is, adjusted to a common freshwater equivalent), as described in the Performance Monitoring Plan. Groundwater elevation hydrographs for the PMP wells during the reporting period are included in Appendix F. The elevation of the Colorado River measured at the I-3 gauge station (shown on Figure 1-4) is also shown on the hydrographs in Appendix F.

Average Second Quarter 2014 groundwater elevations for the shallow, mid-depth, and deep wells are presented and contoured in plan view on Figures 4-4a through 4-4c. Average Second Quarter 2014 groundwater elevations for wells on floodplain cross-section A are presented and contoured on Figure 4-5. Several monitoring wells are significantly deeper than other wells in the lower depth interval. Due to vertical gradients present at the Topock site, water levels in deeper wells tend to be higher than water levels in shallower wells.

Hydraulic gradients were measured during the reporting period for well pairs selected for performance monitoring of the two pumping centers (TW-3D and PE-1). The following well pairs were approved by DTSC on October 12, 2007 (DTSC, 2007a) to define the gradients induced while pumping from two locations:

- MW-31-135 and MW-33-150 (northern gradient pair)
- MW-45-95 and MW-34-100 (central gradient pair)
- MW-45-95 and MW-27-85 (southern gradient pair)

Table 4-3 presents the average monthly hydraulic gradients measured between the gradient well pairs in Second Quarter 2014. Figure 4-6 presents graphs of the hydraulic gradients, monthly average pumping rates, and river levels for the quarterly period. Strong landward gradients were measured each month. The overall average gradients for all well pairs ranged from 0.0040 to 0.0065 feet per foot (ft/ft), which is 4.0 to 6.5 times greater than the required gradient of 0.001 ft/ft. The gradient for the northern well pair ranged from 2.1 to 2.4 times the target gradient of 0.001 ft/ft. For the central well pair, the average landward gradient ranged from 6.8 to 12.8 times the target gradient. The southern well pair gradients averaged 2.7 to 4.5 times the target gradient for the reporting period.

ES081414092525BAO 4-3

# 4.6 Projected River Levels during Next Quarter

The Colorado River stage near the Topock Compressor Station is measured at the I-3 location and is directly influenced by releases from Davis Dam and, to a lesser degree, from Lake Havasu elevations, both of which are controlled by the United States Bureau of Reclamation (USBR). Total releases from Davis Dam follow a predictable annual cycle, with largest monthly releases typically in spring and early summer and smallest monthly releases in late fall/winter (November and December). In addition to this annual cycle is a diurnal cycle determined primarily by daily fluctuations in electric power demand. Releases within a given 24-hour period often fluctuate over a wider range of flows than that of monthly average flows over an entire year.

Figure 4-7 shows river stage measured at I-3 superimposed on the projected I-3 river levels. Projected river levels for future months are based on the USBR projections of Davis Dam discharge and Lake Havasu levels from the preceding month. As an example, the projected river level for July 2014 is based on the June 2014 USBR data of Davis Dam release and Lake Havasu level, not the actual release and level values. The variability between measured and projected river levels is due to the difference between measured and actual Davis Dam release and Lake Havasu levels. The more recent data plotted on Figure 4-7 are summarized in Table 4-4. The future projections shown on Figure 4-7 are based on USBR long-range projections of Davis Dam releases and Lake Havasu levels from June 2014. There is more uncertainty in these projections at longer times in the future because water demand is based on various elements including climatic factors.

Current USBR projections, presented in Table 4-4, show that the average projected Davis Dam release for July 2014 (15,100 cubic feet per second) will be less than the actual release in June 2014 (15,917 cubic feet per second). Based on July 2014 USBR predictions, it is anticipated that the Colorado River level at the I-3 gauge location in July 2014 will be approximately 0.34 foot lower compared to the actual levels in June 2014. Current projections show that the water levels will continue to decrease through the rest of the next quarterly reporting period (July through October), as shown on Figure 4-7.

# 4.7 Quarterly Performance Monitoring Program Evaluation Summary

The groundwater elevation and hydraulic gradient data from April 2014 through June 2014 performance monitoring indicate that the minimum landward gradient target of 0.001 ft/ft was exceeded each month during the quarterly reporting period. The overall average landward gradients during Second Quarter 2014 were 4.0 to 6.5 times the required minimum magnitude. The current gradient well pairs are adequate to define the capture of the Cr(VI) plume while pumping from extraction wells TW-3D and PE-1. Based on the hydraulic and monitoring data and evaluation presented in this report, the IM performance standard has been met for the Second Quarter 2014 reporting period.

A total of 16,301,483 gallons of groundwater was extracted from April through June 2014 by the IM-3 treatment facility. The average pumping rate for the IM extraction system during Second Quarter 2014, including system downtime, was 124.3 gpm. An estimated 89.5 pounds (40.6 kilograms) of chromium were removed and treated between March 1 and May 31, 2014. To date, the IMs have removed approximately 7,960 pounds of chromium from the floodplain at the Topock site through May 2014, as shown on Figure 4-1.

The wells that are monitored to detect trends in Cr(VI) in the IM pumping area (for example, MW-36-100, MW-39-100, MW-44-115, MW-44-125, and MW-46-175) continue to show overall stable or declining Cr(VI) concentrations relative to prior monitoring results, as shown in Appendix D.

4-4 ES081414092525BAO

# **Upcoming Operation and Monitoring Events**

Reporting of the IM extraction and monitoring activities will continue as described in the PMP and under direction from DTSC. Monitoring results, operations, and performance monitoring data will be reported in the Third Quarter 2014 monitoring report, which will be submitted by December 15, 2014.

# 5.1 Groundwater Monitoring Program

#### 5.1.1 Quarterly Monitoring

As described in the July 23, 2010, DTSC sampling schedule approval (DTSC, 2010a), the Third Quarter monitoring event is planned for September 22, 2014, through October 2, 2014.

#### 5.1.2 Monthly Monitoring

Monthly sampling of the two active extraction wells (TW-3D and PE-1) will continue to be performed during the first 2 weeks of each month.

#### 5.1.3 Well Inspections

Inspection of monitoring wells will be completed during each regularly scheduled sampling event but not less than quarterly (DTSC, 2013; CH2M HILL, 2005a-b). Necessary repairs will be done in a timely manner.

# 5.2 Surface Water Monitoring Program

The Third Quarter 2014 surface water monitoring event was conducted at locations in the RMP monitoring network in July 2014. Results will be reported in the Third Quarter 2014 monitoring report.

# 5.3 Performance Monitoring Program

#### 5.3.1 Extraction

Per DTSC direction, PG&E will continue to operate wells TW-3D and PE-1 at a target combined pumping rate of 135 gpm during Third Quarter 2014, except for periods when planned and unplanned downtime occur. Extracted groundwater treated at the IM-3 facility will be discharged into the IM-3 injection wells in accordance with compliance requirements of the waste discharge applicable, relevant, and appropriate requirements. Saline water and solids generated as byproducts of the treatment process will continue to be transported for offsite disposal.

PG&E will balance the pumping rates between wells TW-3D and PE-1 to maintain the target pumping rate and to maintain the DTSC-specified hydraulic gradients across the Alluvial Aquifer. Well TW-2D will serve as a backup to extraction wells TW-3D and PE-1.

#### 5.3.2 Transducer Download

Downloads of the transducers in the key gradient control wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, and MW-45-095) will continue to be conducted via telemetry during Third Quarter 2014. Downloads of the remainder of the transducers will occur during the first week of each month during Third Quarter 2014.

ES081414092525BAO 5-1

#### **SECTION 6**

# References

Arizona Department of Environmental Quality. 2010. Email. "Re: Reminder – sampling frequency modification for Arizona wells proposed with 4Q2009 data submittal." April 23. California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2005a. Letter to PG&E. "Requirements for Groundwater and Surface Water Monitoring Program, Pacific Gas & Electric Company, Topock Compressor Station, Needles, California (EPA ID No. CAT080011729)." April 26. . 2005b. Letter. "Criteria for Evaluating Interim Measures Performance Requirements to Hydraulically Contain Chromium Plume in Floodplain Area, Pacific Gas & Electric Company, Topock Compressor Station." February 14. . 2005c. Letter. "Contingency Plan for Sentry Well Groundwater Monitoring." February 14. . 2007a. Letter. "Approval of Updates and Modifications to the Interim Measures Performance Monitoring Program. Pacific Gas & Electric Company, Topock Compressor Station." October 12. \_. 2007b. Letter. "Updates and Modifications to the PG&E's Topock Interim Measures Performance Monitoring Program. PG&E Topock Compressor Station, Needles, California." July 27. . 2007c. Letter. "Conditional Approval of Updates and Modifications to the Groundwater and Surface Water Monitoring Program, Pacific Gas & Electric Company, Topock Compressor Station." September 28. . 2008a. Letter. "Modifications to Hydraulic Data Collection for the Interim Measures Performance Monitoring Program at Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California." July 14. . 2008b. Letter. "Modifications to Chemical Performance Monitoring and Contingency Plan for the Floodplain Interim Measures Performance Monitoring Program at Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California." July 17. . 2009. Email. "Re: Request for Combined Reporting of Topock GMP and PMP." May 26. \_\_\_\_\_. 2010a. Email. "RE: Topock GMP sampling event timing and reporting schedule." July 23. . 2010b. Email. "Re: Topock GMP Monitoring Frequency Modification." March 3. . 2010c. Letter. "Arizona Monitoring Well Sampling Frequency Modification. Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California." April 28. . 2010d. Email. "Topock GMP Monitoring Frequency Modification, Topock Compressor Station, Needles, California." March 3. . 2011. Email. "RE: Topock GMP COPC sampling plan: topic for weekly tech calls." November 18. . 2013. Letter. "Repairing Wells in Accordance with California Well Standards at Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California (EPA ID No. CAT080011729)." January 28. . 2014. Email from Chris Guerre/DTSC to Yvonne Meeks/PG&E. "PG&E Topock: DTSC response to Section 7 2013 Annual Report Recommendations." June 27. California Regional Water Quality Control Board (RWQCB). 2006. Letter to PG&E. "Request to Treat

ES081414092525BAO 6-1

Groundwater Generated through Groundwater Monitoring and Other Field Activities through the

Interim Measures No. 3 Groundwater Remediation System Facility, PG&E Topock Compressor Station, Needles, California. January 26. CH2M HILL. 2005a. Draft Performance Monitoring Plan for Interim Measures in the Floodplain Area, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California. April 15. . 2005b. Sampling and Analysis Field Procedures Topock Program Manual, Revision 1, Pacific Gas and Electric Company, Topock Project. March 31. \_. 2006. Contingency Plan for IM Performance Monitoring, Revision 1, dated August 2006. August 28 . 2008. Groundwater Background Study, Steps 3 and 4: Final Report of Results, PG&E Topock Compressor Station, Needles, California. July 23. \_. 2009a. Revised Final RCRA Facility Investigation/Remedial Investigation Report, Volume 2— Hydrogeologic Characterization and Results of Groundwater and Surface Water Investigation, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California. February 11. . 2009b. Final RCRA Facility Investigation/Remedial Investigation Report, Volume 2 Addendum— Hydrogeologic Characterization and Results of Groundwater and Surface Water Investigation, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California. June 29. . 2011a. Fourth Quarter 2010 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15. . 2011b. First Quarter 2011 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. April 29. . 2011c. Second Quarter 2011 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. August 15. . 2011d. Third Quarter 2011 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. November 30. . 2012a. Fourth Quarter 2011 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 15. . 2012b. First Quarter 2012 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. April 30. . 2012c. Second Quarter 2012 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. August 15. . 2012d. Third Quarter 2012 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. November 30. . 2013a. Fourth Quarter 2012 and Annual Interim Measures Performance Monitoring and Site-

6-2 ES081414092525BAO

Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station,

Needles, California. March 15.

| 2013b. First Quarter 2013 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. May 15.               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2013c. Second Quarter 2013 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. August 15.           |
| 2013d. Third Quarter 2013 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. November 29.          |
| 2014a. Fourth Quarter 2013 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. March 14. |
| 2014b. First Quarter 2014 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California. April 30.             |
| Pacific Gas and Electric Company (PG&E). 2007. Interim Measures Performance Monitoring Program, PG& Topock Compressor Station, Needles, California. July 27.                                                |
| 2008. Approved Modifications to the Topock IM Performance Monitoring Program PG&E Topock Compressor Station, Needles, California. August 4.                                                                 |
|                                                                                                                                                                                                             |

ES081414092525BAO 6-3

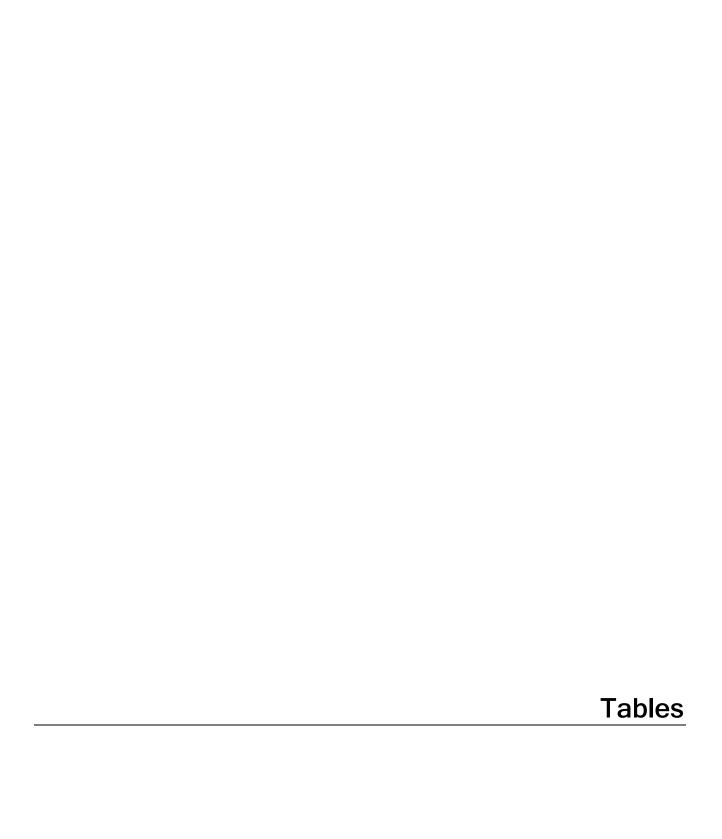



Table 1-1
Topock Monitoring Reporting Schedule
Second Quarter 2014 Interim Measures Performance Monitoring and
Site-wide Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Program                            | First Quarter   | Second Quarter | Third Quarter    | Fourth Quarter      |
|------------------------------------|-----------------|----------------|------------------|---------------------|
| Groundwater Monitoring Program     | January - March | April - June   | July - October   | November - December |
| Surface Water Monitoring Program   | January - March | April - June   | July - October   | November - December |
| Performance Monitoring Program     | January - March | April - June   | July - October   | November - December |
| IM-3 Monitoring (Chromium removed) | January - March | April - June   | July - September | October - December  |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 | Sample<br>Date |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone |                | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| MW-9           | SA              | 09-Dec-13      | 240                              | 236                             | 2,600                              | 31           | 7.5           |
| MW-10          | SA              | 14-May-13      | 267                              | 269                             | 10,000                             | 240          | 7.4           |
|                |                 | 12-Dec-13      | 380                              | 367                             | 2,500                              | -26          | 7.5           |
|                |                 | 14-May-14      | 260                              | 250                             | 2,400                              | 57           | 7.2           |
|                |                 | 14-May-14 FD   | 260                              | 260                             | 2,400                              | FD           | FD            |
| MW-12          | SA              | 09-May-13      | 2,440                            | 2,620                           | 6,300                              | 210          | 8.2           |
|                |                 | 25-Sep-13      | 2,260                            | 2,590                           | 6,700                              | 200          | 8.1           |
|                |                 | 10-Dec-13      | 2,440                            | 2,350                           | 7,000                              | -18          | 8.2           |
|                |                 | 25-Feb-14      | 2,560                            | 2,480                           | 7,000                              | 84           | 8.0           |
|                |                 | 01-May-14      | 2,400                            | 2,200                           | 6,000                              | -19          | 8.1           |
| MW-13          | SA              | 13-Nov-13      | 19.4                             | 16.9                            | 2,000                              | 140          | 7.5           |
| MW-14          | SA              | 19-Dec-13      | 17.2                             | 17.3                            | 1,700                              | 5.0          | 7.5           |
| MW-15          | SA              | 11-Nov-13      | 10.7                             | 10.3                            | 1,400                              | 280          | 7.7           |
| MW-16          | SA              | 24-Apr-13      | 10.6                             | 10.4                            | 1,100                              | 200          | 8.0           |
|                |                 | 06-Nov-13      | 8.5                              | 8.3                             | 920                                | 150          | 8.1           |
|                |                 | 22-Apr-14      | 9.9                              | 9.7                             |                                    | 44           | 7.6           |
| MW-17          | SA              | 24-Apr-13      | 12.9                             | 11.8                            | 1,500                              | 220          | 7.9           |
|                |                 | 11-Nov-13      | 11.8                             | 11.6                            | 1,200                              | 260          | 8.0           |
|                |                 | 23-Apr-14      | 12.0                             | 12.0                            |                                    | 36           | 7.9           |
| MW-18          | SA              | 11-Nov-13      | 18.6                             | 17.5                            | 1,200                              | 230          | 7.6           |
| MW-19          | SA              | 02-May-13      | 335                              | 331                             | 2,000                              | 240          | 7.4           |
|                |                 | 02-May-13 FD   | 336                              | 341                             | 1,900                              | FD           | FD            |
|                |                 | 05-Dec-13      | 522                              | 487                             | 2,100                              | 190          | 7.6           |
|                |                 | 28-Apr-14      | 550                              | 520                             |                                    | 77           | 7.3           |
| MW-20-70       | SA              | 09-May-13      | 2,800                            | 3,040                           | 2,000                              | 240          | 7.7           |
|                |                 | 11-Dec-13      | 2,140                            | 2,520                           | 1,900                              | 16           | 7.6           |
|                |                 | 07-May-14      | 2,200                            | 2,400                           | 1,600                              | -7           | 7.5           |
| MW-20-100      | MA              | 09-May-13      | 3,340                            | 3,780                           | 2,600                              | 270          | 7.3           |
|                |                 | 11-Dec-13      | 2,140                            | 2,080                           | 2,500                              | 23           | 7.2           |
|                |                 | 07-May-14      | 2,900                            | 2,900                           | 2,400                              | -40          | 7.2           |
| MW-20-130      | DA              | 14-May-13      | 9,120                            | 10,500                          | 10,000                             | 190          | 7.4           |
|                |                 | 17-Dec-13      | 9,370                            | 9,620                           | 11,000                             | -64          | 7.4           |
|                |                 | 17-Dec-13 FD   | 9,370                            | 10,700                          | 11,000                             | FD           | FD            |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| MW-20-130      | DA              | 12-May-14      | 9,100                            | 9,000                           | 9,900                              | -85          | 7.5           |
| MW-21          | SA              | 24-Apr-13      | 1.5                              | 1.9                             | 11,000                             | 210          | 7.1           |
|                |                 | 10-Sep-13      | ND (1.0)                         | 1.5                             | 10,000                             | 120          | 7.1           |
|                |                 | 05-Nov-13      | 1.5                              | 2.8                             | 8,900                              | 190          | 5.7           |
|                |                 | 19-Feb-14      | 2.6                              | 3.5                             |                                    | 8.0          | 7.1           |
|                |                 | 22-Apr-14      | 1.9                              | 1.8                             | 8,300                              | -190         | 7.2           |
| MW-22          | SA              | 15-May-13      | ND (1.0)                         | ND (1.0)                        | 13,000                             | -91          | 6.9           |
|                |                 | 14-Nov-13      | ND (1.0)                         | ND (1.0)                        | 20,000                             | -36          | 6.6           |
|                |                 | 30-Apr-14      | ND (1.0)                         | ND (1.0)                        |                                    | -160         | 6.8           |
| MW-23-060      | BR              | 23-Apr-13      | 34.3                             | 38.3                            | 19,000                             | 100          | 9.4           |
|                |                 | 17-Sep-13      | 36.9                             | 38.4                            | 15,000                             | 120          | 9.4           |
|                |                 | 11-Nov-13      | 35.9                             | 34.9                            | 15,000                             | 160          | 9.3           |
|                |                 | 13-Feb-14      | 34.9                             | 38.0                            |                                    | 70           | 9.4           |
|                |                 | 22-Apr-14      | 39.0                             | 34.0                            |                                    | 21           | 9.2           |
| MW-23-080      | BR              | 23-Apr-13      | 14.0                             | 15.0                            | 20,000                             | 63           | 10.3          |
|                |                 | 17-Sep-13      | 13.7                             | 14.3                            | 15,000                             | 140          | 9.9           |
|                |                 | 11-Nov-13      | 11.0                             | 11.2                            | 15,000                             | 81           | 10.2          |
|                |                 | 13-Feb-14      | 8.4                              | 9.0                             |                                    | 16           | 10.2          |
|                |                 | 22-Apr-14      | 15.0                             | 13.0                            |                                    | -60          | 10.1          |
| MW-24BR        | BR              | 07-May-13      | ND (1.0)                         | ND (1.0)                        | 14,000                             | -190         | 7.8           |
|                |                 | 10-Sep-13      | ND (1.0)                         | ND (1.0)                        | 14,000                             | -180         | 8.1           |
|                |                 | 03-Dec-13      | ND (0.2)                         | ND (1.0)                        | 14,000                             | -230         | 8.0           |
|                |                 | 20-Feb-14      | ND (1.0)                         | ND (1.0)                        |                                    | -250         | 8.0           |
|                |                 | 29-Apr-14      | ND (1.0)                         | ND (1.0)                        |                                    | -250         | 8.0           |
| MW-25          | SA              | 09-Dec-13      | 191                              | 188                             | 1,600                              | -4           | 7.4           |
| MW-26          | SA              | 07-May-13      | 1,790                            | 1,870                           | 3,900                              | 240          | 7.3           |
|                |                 | 04-Dec-13      | 1,970                            | 2,000                           | 3,800                              | 45           | 7.3           |
|                |                 | 05-May-14      | 2,200                            | 2,200                           | 3,600                              | -8           | 7.3           |
| MW-27-20       | SA              | 15-Apr-13      | ND (0.2)                         | ND (1.0)                        | 1,000                              | -70          | 7.4           |
|                |                 | 04-Nov-13      | ND (0.2)                         | ND (1.0)                        | 900                                | 19           | 7.4           |
|                |                 | 14-Apr-14      | ND (0.2)                         | ND (1.0)                        | 1,000                              | 4.0          | 7.5           |
| MW-27-60       | MA              | 15-Apr-13      | ND (0.2)                         | ND (1.0)                        | 1,100                              | -96          | 7.6           |
|                |                 | 02-Oct-13      | ND (0.2)                         | ND (1.0)                        | 760                                | -86          | 7.4           |
|                |                 | 04-Nov-13      | ND (0.2)                         | ND (1.0)                        | 950                                | -78          | 7.6           |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |   |                                  |                                 |                                    | Selected Field Parameters |             |  |
|----------------|-----------------|----------------|---|----------------------------------|---------------------------------|------------------------------------|---------------------------|-------------|--|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date |   | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)               | Field<br>pH |  |
| MW-27-60       | MA              | 10-Feb-14      |   | ND (0.2)                         | ND (1.0)                        | 860                                | -180                      | 7.6         |  |
|                |                 | 14-Apr-14      |   | ND (0.2)                         | ND (1.0)                        | 920                                | -190                      | 7.6         |  |
|                |                 | 14-Apr-14 F    | D | ND (0.2)                         | ND (1.0)                        | 900                                | FD                        | FD          |  |
| MW-27-85       | DA              | 15-Apr-13      |   | ND (1.0)                         | ND (1.0)                        | 13,000                             | -42                       | 7.4         |  |
|                |                 | 15-Apr-13 F    | D | ND (1.0)                         | ND (1.0)                        | 13,000                             | FD                        | FD          |  |
|                |                 | 02-Oct-13      |   | ND (1.0)                         | ND (1.0)                        | 9,000                              | -38                       | 7.2         |  |
|                |                 | 04-Nov-13      |   | ND (0.2)                         | ND (1.0)                        | 9,800                              | -16                       | 7.3         |  |
|                |                 | 10-Feb-14      |   | ND (1.0)                         | ND (1.0)                        | 9,600                              | -280                      | 7.3         |  |
|                |                 | 14-Apr-14      |   | ND (1.0)                         | ND (1.0)                        | 11,000                             | -230                      | 7.3         |  |
| MW-28-25       | SA              | 18-Apr-13      | Ì | ND (0.2)                         | ND (1.0)                        | 1,000                              | 58                        | 7.4         |  |
|                |                 | 05-Nov-13      |   | ND (0.2)                         | ND (1.0)                        | 6,700                              | 200                       | 7.2         |  |
|                |                 | 15-Apr-14      |   | ND (0.2)                         | ND (1.0)                        | 910                                | -240                      | 7.3         |  |
| MW-28-90       | DA              | 18-Apr-13      |   | ND (0.2)                         | ND (1.0)                        | 7,400                              | -79                       | 7.2         |  |
|                |                 | 11-Sep-13      |   | ND (0.2)                         | ND (1.0)                        | 6,600                              | -56                       | 7.1         |  |
|                |                 | 05-Nov-13      |   | ND (0.2)                         | ND (1.0)                        | 6,700                              | 190                       | 7.3         |  |
|                |                 | 12-Feb-14      |   | ND (0.2)                         | ND (1.0)                        | 7,000                              | -54                       | 7.3         |  |
|                |                 | 15-Apr-14      |   | ND (0.2)                         | ND (1.0)                        | 6,700                              | -220                      | 7.2         |  |
|                |                 | 15-Apr-14 F    | D | ND (0.2)                         | ND (1.0)                        | 6,600                              | FD                        | FD          |  |
| MW-29          | SA              | 18-Apr-13      |   | ND (0.2)                         | ND (1.0)                        | 2,100                              | -110                      | 7.3         |  |
|                |                 | 05-Nov-13      |   | ND (0.2)                         | ND (1.0)                        | 1,800 J                            | -74                       | 7.2         |  |
|                |                 | 05-Nov-13 F    | D | ND (0.2)                         | ND (1.0)                        | 2,300 J                            | FD                        | FD          |  |
|                |                 | 16-Apr-14      |   | ND (0.2)                         | ND (1.0)                        | 2,300                              | -170                      | 7.3         |  |
| MW-30-30       | SA              | 15-Apr-13      |   | ND (0.2)                         | ND (1.0)                        | 9,000                              | -150                      | 7.7         |  |
|                |                 | 15-Apr-13 F    | D | ND (0.2)                         | ND (1.0)                        | 8,800                              | FD                        | FD          |  |
|                |                 | 04-Nov-13      |   | ND (0.2)                         | ND (1.0)                        | 5,300                              | -190                      | 7.8         |  |
|                |                 | 14-Apr-14      |   | 0.21                             | ND (1.0)                        | 6,800                              | -260                      | 7.8         |  |
| MW-30-50       | MA              | 04-Nov-13      | Ī | ND (0.2)                         | ND (1.0)                        | 1,100                              | -120                      | 7.6         |  |
| MW-31-60       | SA              | 07-May-13      | ĺ | 275                              | 271                             | 3,600                              | 130                       | 7.5         |  |
|                |                 | 03-Dec-13      |   | 422                              | 383                             | 3,100                              | 20                        | 7.5         |  |
|                |                 | 12-May-14      |   | 270                              | 270                             |                                    | -30                       | 7.5         |  |
| MW-31-135      | DA              | 07-Nov-13      | j | 11.5                             | 11.3                            | 12,000                             | -110                      | 7.7         |  |
| MW-32-20       | SA              | 16-Dec-13      |   | ND (1.0)                         | ND (1.0)                        | 40,000                             | -100                      | 6.7         |  |
| MW-32-35       | SA              | 17-Apr-13      | Ī | ND (1.0)                         | ND (1.0)                        | 16,000                             | -150                      | 7.1         |  |
|                |                 | 17-Apr-13 F    | D | ND (1.0)                         | ND (1.0)                        | 15,000                             | FD                        | FD          |  |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |    |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date |    | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| MW-32-35       | SA              | 06-Nov-13      |    | ND (1.0)                         | ND (1.0)                        | 12,000                             | -79          | 7.2           |
|                |                 | 16-Apr-14      |    | ND (1.0)                         | ND (1.0)                        |                                    | -190         | 7.1           |
| MW-33-40       | SA              | 22-Apr-13      |    | ND (0.2)                         | ND (1.0)                        | 7,000                              | 82           | 8.1           |
|                |                 | 16-Sep-13      |    | ND (1.0)                         | ND (1.0)                        | 10,000                             | 180          | 7.7           |
|                |                 | 03-Dec-13      |    | ND (1.0)                         | ND (1.0)                        | 9,600                              | 110          | 7.9           |
|                |                 | 12-Feb-14      |    | 0.28                             | ND (1.0)                        | 7,100                              | 120          | 8.0           |
|                |                 | 17-Apr-14      |    | ND (0.2)                         | ND (1.0)                        | 5,600                              | -170         | 8.1           |
| MW-33-90       | MA              | 22-Apr-13      |    | 15.4                             | 15.7                            | 11,000                             | 210          | 7.3           |
|                |                 | 16-Sep-13      |    | 13.6                             | 13.6                            | 8,800                              | 230          | 7.4           |
|                |                 | 03-Dec-13      |    | 13.1                             | 12.6                            | 9,600                              | 120          | 7.4           |
|                |                 | 12-Feb-14      |    | 13.3                             | 15.5                            | 9,900                              | 140          | 7.4           |
|                |                 | 21-Apr-14      |    | 11.0                             | 10.0                            | 8,800                              | -230         | 7.2           |
|                |                 | 21-Apr-14      | FD | 12.0 J                           | 9.8 J                           | 8,700                              | FD           | FD            |
| MW-33-150      | DA              | 22-Apr-13      |    | 11.2                             | 11.8                            | 19,000                             | 260          | 7.5           |
|                |                 | 16-Sep-13      |    | 10.6                             | 10.9                            | 15,000                             | 160          | 7.4           |
|                |                 | 03-Dec-13      |    | 10.7                             | 11.0                            | 16,000                             | 140          | 7.5           |
|                |                 | 12-Feb-14      |    | 9.7                              | 10.6                            | 16,000                             | 170          | 7.5           |
|                |                 | 12-Feb-14      | FD | 9.4                              | 10.8                            | 16,000                             | FD           | FD            |
|                |                 | 17-Apr-14      |    | 12.0 J                           | 9.6 J                           | 14,000                             | -290         | 7.5           |
| MW-33-210      | DA              | 23-Apr-13      |    | 10.2                             | 10.6                            | 23,000                             | 200          | 7.3           |
|                |                 | 12-Sep-13      |    | 12.5                             | 13.0                            | 17,000                             | 110          | 7.3           |
|                |                 | 03-Dec-13      |    | 12.5                             | 13.2                            | 18,000                             | 140          | 7.4           |
|                |                 | 03-Dec-13      | FD | 12.9                             | 13.0                            | 18,000                             | FD           | FD            |
|                |                 | 12-Feb-14      |    | 11.6                             | 13.5                            | 18,000                             | 130          | 7.4           |
|                |                 | 21-Apr-14      |    | 10.0                             | 8.4                             | 17,000                             | -300         | 7.3           |
| MW-34-55       | MA              | 20-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 780                                | -65          | 7.7           |
| MW-34-80       | DA              | 16-Apr-13      |    | ND (0.2)                         | ND (1.0)                        | 7,800                              | -12          | 7.2           |
|                |                 | 02-Oct-13      |    | ND (1.0)                         | ND (1.0)                        | 6,600                              | -37          | 7.4           |
|                |                 | 20-Nov-13      |    | ND (1.0)                         | ND (1.0)                        | 7,300                              | 14           | 7.4           |
|                |                 | 20-Nov-13      | FD | ND (1.0)                         | ND (1.0)                        | 7,300                              | FD           | FD            |
|                |                 | 10-Feb-14      |    | ND (0.2)                         | ND (1.0)                        |                                    | -290         | 7.4           |
|                |                 | 17-Apr-14      |    | ND (0.2)                         | ND (1.0)                        |                                    | -280         | 7.3           |
| MW-34-100      | DA              | 16-Apr-13      |    | 15.0                             | 15.9                            | 18,000                             | 140          | 7.0           |
|                |                 | 16-Apr-13      | FD | 15.0                             | 15.5                            | 18,000                             | FD           | FD            |
|                |                 | 02-Oct-13      |    | 82.6                             | 79.5                            | 15,000                             | 80           | 7.6           |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 | Sample<br>Date |    |                                  |                                 |                                    | Selected Field Parameters |             |
|----------------|-----------------|----------------|----|----------------------------------|---------------------------------|------------------------------------|---------------------------|-------------|
| Location<br>ID | Aquifer<br>Zone |                |    | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)               | Field<br>pH |
| MW-34-100      | DA              | 02-Oct-13      | FD | 81.5                             | 84.5                            | 15,000                             | FD                        | FD          |
|                |                 | 20-Nov-13      |    | 143                              | 136                             | 18,000                             | -120                      | 7.7         |
|                |                 | 20-Nov-13      | FD | 137                              | 141                             | 18,000                             | FD                        | FD          |
|                |                 | 16-Dec-13      |    | 246                              | 268                             |                                    | -130                      | 7.6         |
|                |                 | 22-Jan-14      |    | 263                              | 270                             |                                    | -220                      | 6.8         |
|                |                 | 10-Feb-14      |    | 159                              | 170                             |                                    | -160                      | 7.7         |
|                |                 | 17-Apr-14      |    | 3.0                              | 3.5                             |                                    | -220                      | 7.5         |
| MW-35-60       | SA              | 23-Apr-13      |    | 25.4                             | 24.4                            | 7,000                              | 260                       | 7.5         |
|                |                 | 10-Sep-13      |    | 21.9                             | 21.2                            | 7,000                              | 200                       | 7.2         |
|                |                 | 12-Nov-13      |    | 20.5                             | 17.2                            | 6,600                              | -11                       | 7.4         |
|                |                 | 17-Feb-14      |    | 21.1                             | 21.8                            | 6,200                              | 98                        | 6.9         |
|                |                 | 17-Feb-14      | FD | 21.4                             | 20.4                            | 6,400                              | FD                        | FD          |
|                |                 | 24-Apr-14      |    | 25.0                             | 24.0                            | 5,600                              | 0.0                       | 7.4         |
|                |                 | 24-Apr-14      | FD | 25.0                             | 22.0                            | 5,700                              | FD                        | FD          |
| MW-35-135      | DA              | 23-Apr-13      |    | 27.4                             | 28.9                            | 12,000                             | 140                       | 7.6         |
|                |                 | 12-Nov-13      |    | 29.9                             | 27.5                            | 9,200                              | 58                        | 7.8         |
|                |                 | 24-Apr-14      |    | 29.0                             | 25.0                            |                                    | -86                       | 7.5         |
| MW-36-20       | SA              | 11-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 5,500                              | -150                      | 7.7         |
|                |                 | 11-Nov-13      | FD | ND (0.2)                         | ND (1.0)                        | 5,400                              | FD                        | FD          |
| MW-36-40       | SA              | 11-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 1,300                              | -280                      | 7.8         |
| MW-36-50       | MA              | 11-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 920                                | -57                       | 7.3         |
| MW-36-70       | MA              | 11-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 930                                | -17                       | 7.9         |
| MW-36-90       | DA              | 15-May-13      |    | ND (0.2)                         | ND (1.0)                        | 980                                | 210                       | 8.3         |
|                |                 | 11-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 1,000                              | -90                       | 8.3         |
|                |                 | 17-Apr-14      |    | ND (0.2)                         | ND (1.0)                        |                                    | -310                      | 8.2         |
| MW-36-100      | DA              | 24-Apr-13      |    | 56.5                             | 52.6                            | 9,900                              | -9                        | 7.2         |
|                |                 | 16-Dec-13      |    | 53.8                             | 59.5                            | 7,800                              | -140                      | 7.2         |
|                |                 | 17-Apr-14      |    | 48.0                             | 47.0                            | 7,000                              | -360                      | 7.3         |
| MW-37S         | MA              | 06-Nov-13      |    | 9.8                              | 9.3                             | 5,000                              | 140                       | 7.7         |
| MW-37D         | DA              | 30-Apr-13      |    | 108                              | 120                             | 15,000                             | 170                       | 7.5         |
|                |                 | 02-Dec-13      |    | 12.0                             | 13.0                            | 13,000                             | -180                      | 7.7         |
|                |                 | 10-Apr-14      |    | 110                              | 99.0                            | 15,000                             | -190                      | 7.6         |
| MW-38S         | SA              | 24-Sep-13      |    | 3.2                              | 6.8                             | 1,700                              | -170                      | 7.6         |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Field Parameters |             |  |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|---------------------------|-------------|--|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)               | Field<br>pH |  |
| MW-38S         | SA              | 03-Dec-13      | 0.59                             | 2.4                             |                                    | -240                      | 7.9         |  |
|                |                 | 14-May-14      | 1.5                              | 2.1                             |                                    | -260                      | 7.6         |  |
| MW-38D         | DA              | 17-Sep-13      | 7.5                              | 8.1                             | 20,000                             | -79                       | 8.1         |  |
|                |                 | 13-Nov-13      | 9.1                              | 10.2                            |                                    | 19                        | 8.1         |  |
|                |                 | 14-May-14      | 17.0                             | 14.0                            |                                    | -310                      | 8.0         |  |
| MW-39-40       | SA              | 12-Nov-13      | ND (0.2)                         | ND (1.0)                        | 1,100                              | -150                      | 8.0         |  |
| MW-39-50       | MA              | 12-Nov-13      | ND (0.2)                         | ND (1.0)                        | 1,100                              | -34                       | 7.8         |  |
| MW-39-60       | MA              | 12-Nov-13      | ND (0.2)                         | ND (1.0)                        | 1,500                              | 30                        | 7.9         |  |
| MW-39-70       | MA              | 12-Nov-13      | ND (0.2)                         | ND (1.0)                        | 1,800                              | 200                       | 7.6         |  |
| MW-39-80       | DA              | 12-Nov-13      | ND (0.2)                         | ND (1.0)                        | 5,600                              | 27                        | 7.3         |  |
| MW-39-100      | DA              | 04-Dec-13      | 52.2                             | 53.9                            | 14,000                             | 110                       | 6.7         |  |
|                |                 | 04-Dec-13 FD   | 52.2                             | 51.4                            | 14,000                             | FD                        | FD          |  |
| MW-40S         | SA              | 11-Nov-13      | 8.2                              | 8.1                             | 1,300                              | 270                       | 7.7         |  |
| MW-40D         | DA              | 01-May-13      | 134                              | 137                             | 14,000                             | 250                       | 7.4         |  |
|                |                 | 02-Dec-13      | 153                              | 148                             | 14,000                             | 240                       | 7.4         |  |
|                |                 | 24-Apr-14      | 130                              | 110                             | 13,000                             | -13                       | 7.4         |  |
| MW-41S         | SA              | 04-Nov-13      | 17.4                             | 15.3                            | 4,900                              | 180                       | 7.9         |  |
| MW-41M         | DA              | 04-Nov-13      | 9.7                              | 9.6                             | 14,000                             | 210                       | 7.7         |  |
| MW-41D         | DA              | 23-Apr-13      | 2.9                              | 3.0                             | 26,000                             | 210                       | 7.6         |  |
|                |                 | 04-Nov-13      | 3.8                              | 4.3                             | 20,000                             | 250                       | 7.6         |  |
|                |                 | 10-Apr-14      | 2.6                              | 2.4                             |                                    | -210                      | 7.6         |  |
| MW-42-30       | SA              | 05-Nov-13      | ND (0.2)                         | ND (1.0)                        | 2,600                              | -160                      | 7.8         |  |
| MW-42-55       | MA              | 16-Apr-13      | ND (0.2)                         | 1.2                             | 2,500                              | -97                       | 7.9         |  |
|                |                 | 11-Sep-13      | ND (0.2)                         | 2.8                             | 1,700                              | -110                      | 8.0         |  |
|                |                 | 05-Nov-13      | ND (0.2)                         | 2.3                             | 2,600                              | -150                      | 7.9         |  |
|                |                 | 11-Feb-14      | ND (0.2)                         | 2.3                             |                                    | -290                      | 8.1         |  |
|                |                 | 14-Apr-14      | 0.23                             | 1.6                             |                                    | -210                      | 8.0         |  |
| MW-42-65       | MA              | 17-Apr-13      | ND (0.2)                         | ND (1.0)                        | 8,000                              | -36                       | 7.3         |  |
|                |                 | 11-Sep-13      | ND (0.2)                         | ND (1.0)                        | 6,800                              | -28                       | 7.2         |  |
|                |                 | 05-Nov-13      | ND (0.2)                         | ND (1.0)                        | 7,100                              | -34                       | 7.3         |  |
|                |                 | 11-Feb-14      | ND (0.2)                         | ND (1.0)                        |                                    | -350                      | 7.3         |  |
|                |                 | 14-Apr-14      | ND (0.2)                         | ND (1.0)                        |                                    | -220                      | 7.3         |  |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(μg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| MW-43-25       | SA              | 17-Apr-13      | ND (0.2)                         | ND (1.0)                        | 1,400                              | -160         | 7.5           |
|                |                 | 06-Nov-13      | ND (0.2)                         | ND (1.0)                        | 1,100                              | -120         | 7.3           |
|                |                 | 15-Apr-14      | ND (0.2)                         | ND (1.0)                        |                                    | -170         | 7.2           |
| MW-43-75       | DA              | 06-Nov-13      | ND (1.0)                         | ND (1.0)                        | 9,700                              | -110         | 7.1           |
| MW-43-90       | DA              | 17-Apr-13      | ND (1.0)                         | ND (1.0)                        | 18,000                             | -80          | 6.9           |
|                |                 | 06-Nov-13      | ND (0.2)                         | ND (1.0)                        | 16,000                             | -80          | 6.9           |
|                |                 | 15-Apr-14      | ND (1.0)                         | ND (1.0)                        |                                    | -160         | 6.9           |
| MW-44-70       | MA              | 22-Apr-13      | ND (0.2)                         | ND (1.0)                        | 2,400                              | -86          | 7.5           |
|                |                 | 02-Dec-13      | ND (0.2)                         | ND (1.0)                        | 2,000                              | -97          | 7.7           |
|                |                 | 16-Apr-14      | ND (0.2)                         | ND (1.0)                        |                                    | -290         | 7.4           |
| MW-44-115      | DA              | 24-Apr-13      | 64.5                             | 65.4                            | 13,000                             | 180          | 7.9           |
|                |                 | 12-Sep-13      | 47.1                             | 46.0                            | 10,000                             | 190          | 7.4           |
|                |                 | 02-Dec-13      | 39.5                             | 43.1                            | 10,000                             | -190         | 8.0           |
|                |                 | 11-Feb-14      | 41.6                             | 42.9                            | 11,000                             | -370         | 7.9           |
|                |                 | 16-Apr-14      | 40.0                             | 37.0                            | 11,000                             | -300         | 7.8           |
| MW-44-125      | DA              | 18-Apr-13      | ND (1.0)                         | 5.3                             | 9,400                              | -160         | 7.7           |
|                |                 | 18-Apr-13 FD   | ND (1.0)                         | 5.3                             | 9,700                              | FD           | FD            |
|                |                 | 12-Sep-13      | ND (1.0)                         | 4.9                             | 8,600                              | -160         | 7.6           |
|                |                 | 12-Sep-13 FD   | ND (0.2)                         | 4.7                             | 8,600                              | FD           | FD            |
|                |                 | 02-Dec-13      | ND (0.2)                         | 4.1                             | 10,000                             | -160         | 7.7           |
|                |                 | 02-Dec-13 FD   | ND (0.2)                         | 4.8                             | 11,000                             | FD           | FD            |
|                |                 | 11-Feb-14      | ND (1.0)                         | 5.5                             | 11,000                             | -150         | 7.8           |
|                |                 | 11-Feb-14 FD   | ND (1.0)                         | 5.6                             | 11,000                             | FD           | FD            |
|                |                 | 16-Apr-14      | ND (0.2)                         | 5.5                             | 9,200                              | -230         | 7.5           |
|                |                 | 16-Apr-14 FD   | ND (0.2)                         | 5.1                             | 9,200                              | FD           | FD            |
| MW-45-095a     | DA              | 02-Dec-13      | 13.7                             | 14.2                            | 8,400                              | -58          | 7.6           |
| MW-46-175      | DA              | 24-Apr-13      | 26.4                             | 26.3                            | 23,000                             | 57           | 8.1           |
|                |                 | 11-Sep-13      | 29.5                             | 29.6                            | 17,000                             | 130          | 8.0           |
|                |                 | 20-Nov-13      | 34.2                             | 33.8                            | 19,000                             | 220          | 8.4           |
|                |                 | 16-Dec-13      | 50.0                             | 52.5                            |                                    | -180         | 8.3           |
|                |                 | 22-Jan-14      | 46.3                             | 46.1                            |                                    | -150         | 7.8           |
|                |                 | 11-Feb-14      | 35.6                             | 38.0                            | 18,000                             | -400         | 8.3           |
|                |                 | 11-Feb-14 FD   | 35.4                             | 39.7                            | 18,000                             | FD           | FD            |
|                |                 | 15-Apr-14      | 21.0                             | 19.0                            | 19,000                             | -330         | 8.2           |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Location<br>ID | Aquifer<br>Zone |                |    |                                  |                                 |                                    | Selected Field Parameters |             |
|----------------|-----------------|----------------|----|----------------------------------|---------------------------------|------------------------------------|---------------------------|-------------|
|                |                 | Sample<br>Date |    | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)               | Field<br>pH |
| MW-46-205      | DA              | 24-Apr-13      |    | 5.6                              | 5.4                             | 28,000                             | 63                        | 8.2         |
|                |                 | 20-Nov-13      |    | 6.0                              | 5.1                             | 23,000                             | 210                       | 8.4         |
|                |                 | 15-Apr-14      |    | 5.5                              | 4.8                             |                                    | -420                      | 8.3         |
| MW-47-55       | SA              | 24-Apr-13      |    | 16.4                             | 14.3                            | 5,200                              | 220                       | 7.5         |
|                |                 | 12-Nov-13      |    | 17.2                             | 16.4                            | 4,500                              | 160                       | 7.6         |
|                |                 | 23-Apr-14      |    | 16.0                             | 14.0                            |                                    | -11                       | 7.4         |
| MW-47-115      | DA              | 24-Apr-13      |    | 23.7                             | 21.1                            | 16,000                             | 240                       | 7.5         |
|                |                 | 12-Nov-13      |    | 17.4                             | 14.3                            | 12,000                             | 170                       | 7.6         |
|                |                 | 23-Apr-14      |    | 23.0                             | 20.0                            |                                    | -180                      | 7.5         |
|                |                 | 23-Apr-14 F    | -D | 24.0                             | 20.0                            |                                    | FD                        | FD          |
| MW-48          | BR              | 25-Apr-13      |    | ND (1.0)                         | ND (1.0)                        | 23,000                             | 250                       | 7.2         |
|                |                 | 11-Sep-13      |    | ND (1.0)                         | ND (1.0)                        | 16,000                             | 24                        | 7.4         |
|                |                 | 06-Nov-13      |    | ND (1.0)                         | ND (1.0)                        | 17,000                             | 140                       | 7.8         |
|                |                 | 20-Feb-14      |    | ND (1.0)                         | ND (1.0)                        |                                    | 130                       | 7.5         |
|                |                 | 23-Apr-14      |    | ND (1.0)                         | ND (1.0)                        |                                    | -200                      | 6.6         |
| MW-49-135      | DA              | 06-Nov-13      |    | 1.3                              | 2.0                             | 12,000                             | 24                        | 7.6         |
| MW-49-275      | DA              | 06-Nov-13      |    | 2.0                              | 2.9                             | 24,000                             | 100                       | 7.8         |
| MW-49-365      | DA              | 07-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 40,000                             | -150                      | 7.8         |
| MW-50-095      | MA              | 24-Apr-13      |    | 13.6                             | 12.4                            | 5,800                              | 230                       | 7.6         |
|                |                 | 24-Apr-13 F    | -D | 13.4                             | 12.3                            | 5,700                              | FD                        | FD          |
|                |                 | 06-Nov-13      |    | 12.3                             | 11.5                            | 4,800                              | 140                       | 7.9         |
|                |                 | 23-Apr-14      |    | 13.0                             | 12.0                            |                                    | -10                       | 7.7         |
| MW-50-200      | DA              | 14-May-13      |    | 7,630                            | 8,670                           | 19,000                             | 210                       | 7.6         |
|                |                 | 26-Sep-13      |    | 7,060                            | 6,760                           | 19,000                             | 160                       | 7.6         |
|                |                 | 17-Dec-13      |    | 6,600                            | 7,110                           | 20,000                             | -32                       | 7.6         |
|                |                 | 26-Feb-14      |    | 7,010                            | 6,940                           |                                    | -70                       | 7.3         |
|                |                 | 12-May-14      |    | 7,400                            | 7,200                           |                                    | -7                        | 7.7         |
| MW-51          | MA              | 13-May-13      |    | 4,170                            | 4,950                           | 9,300                              | 210                       | 7.4         |
|                |                 | 11-Dec-13      |    | 4,520 J                          | 4,550                           | 9,800                              | 13                        | 7.4         |
|                |                 | 12-May-14      |    | 4,800                            | 4,700                           | 9,900                              | -50                       | 7.5         |
| MW-52S         | MA              | 16-May-13      |    | ND (0.2)                         | ND (1.0)                        | 8,400                              | -120                      | 6.9         |
|                |                 | 13-Nov-13      |    | ND (0.2)                         | ND (1.0)                        | 7,800                              | -100                      | 6.8         |
|                |                 | 30-Apr-14      |    | ND (0.2)                         | ND (1.0)                        |                                    | -200                      | 6.8         |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Location<br>ID | Aquifer<br>Zone |                | Hexavalent<br>Chromium<br>(µg/L) |                                 | Specific<br>Conductance<br>(µS/cm) | Selected Field Parameters |             |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|---------------------------|-------------|
|                |                 | Sample<br>Date |                                  | Dissolved<br>Chromium<br>(µg/L) |                                    | ORP<br>(mV)               | Field<br>pH |
| MW-52M         | DA              | 16-May-13      | ND (1.0)                         | ND (1.0)                        | 14,000                             | -140                      | 7.6         |
|                |                 | 13-Nov-13      | ND (1.0)                         | ND (1.0)                        | 15,000                             | -140                      | 7.5         |
|                |                 | 13-Nov-13 FD   | ND (1.0)                         | ND (1.0)                        | 13,000                             | FD                        | FD          |
|                |                 | 30-Apr-14      | ND (1.0)                         | ND (1.0)                        |                                    | -280                      | 7.4         |
| MW-52D         | DA              | 16-May-13      | ND (1.0)                         | ND (1.0)                        | 20,000                             | -190                      | 8.0         |
|                |                 | 13-Nov-13      | ND (1.0)                         | ND (1.0)                        | 20,000                             | -150                      | 7.6         |
|                |                 | 30-Apr-14      | ND (1.0)                         | ND (1.0)                        |                                    | -260                      | 7.7         |
| MW-53M         | DA              | 16-May-13      | ND (1.0)                         | ND (1.0)                        | 19,000                             | -180                      | 8.1         |
|                |                 | 13-Nov-13      | ND (1.0)                         | ND (1.0)                        | 16,000                             | -190                      | 8.0         |
|                |                 | 30-Apr-14      | ND (1.0)                         | ND (1.0)                        |                                    | -240                      | 7.9         |
| MW-53D         | DA              | 16-May-13      | ND (1.0)                         | ND (1.0)                        | 24,000                             | -220                      | 8.3         |
|                |                 | 13-Nov-13      | ND (1.0)                         | ND (1.0)                        | 22,000                             | -180                      | 8.1         |
|                |                 | 30-Apr-14      | ND (1.0)                         | ND (1.0)                        |                                    | -260                      | 8.2         |
| MW-54-85       | DA              | 25-Apr-13      | ND (0.2) J                       | 1.3                             | 9,170                              | -90                       | 7.6         |
|                |                 | 21-Nov-13      | ND (1.0)                         | ND (1.0)                        | 9,750                              | 12                        | 7.6         |
|                |                 | 09-Apr-14      | ND (1.0) J                       | ND (1.0)                        | 9,230 J                            | -220                      | 7.6         |
| MW-54-140      | DA              | 25-Apr-13      | ND (0.2) J                       | ND (1.0)                        | 11,800                             | -26                       | 7.7         |
|                |                 | 21-Nov-13      | ND (1.0)                         | ND (1.0)                        | 12,100                             | 15                        | 7.7         |
|                |                 | 09-Apr-14      | ND (1.0) J                       | ND (1.0)                        | 12,300 J                           | -230                      | 7.7         |
|                |                 | 09-Apr-14 FD   | ND (1.0) J                       | ND (1.0)                        | 12,200 J                           | FD                        | FD          |
| MW-54-195      | DA              | 25-Apr-13      | ND (1.0) J                       | ND (1.0)                        | 18,300                             | 56                        | 8.1         |
|                |                 | 25-Apr-13 FD   | ND (1.0) J                       | ND (1.0)                        | 18,200                             | FD                        | FD          |
|                |                 | 21-Nov-13      | ND (1.0)                         | ND (1.0)                        | 18,000                             | -110                      | 8.1         |
|                |                 | 09-Apr-14      | ND (1.0) J                       | ND (1.0)                        | 18,300 J                           | -240                      | 8.0         |
| MW-55-45       | MA              | 21-Nov-13      | ND (0.2)                         | ND (1.0)                        | 1,450                              | 30                        | 7.8         |
| MW-55-120      | DA              | 21-Nov-13      | 7.2                              | 7.6                             | 8,220                              | -2                        | 7.9         |
|                |                 | 21-Nov-13 FD   | 7.3                              | 7.6                             | 8,280                              | FD                        | FD          |
| MW-56S         | SA              | 15-May-13      | ND (0.2) J                       | 1.4                             | 6,000                              | -130                      | 7.0         |
|                |                 | 14-Nov-13      | ND (0.2)                         | 2.6                             | 6,160                              | -110                      | 7.0         |
|                |                 | 10-Apr-14      | ND (1.0) J                       | 5.3                             | 6,390 J                            | -230                      | 7.0         |
| MW-56M         | DA              | 15-May-13      | ND (1.0) J                       | 1.1 J                           | 13,800                             | -120                      | 7.1         |
|                |                 | 14-Nov-13      | ND (1.0)                         | ND (1.0)                        | 18,700                             | -110                      | 7.3         |
|                |                 | 10-Apr-14      | ND (1.0) J                       | 1.8                             | 14,400 J                           | -250                      | 7.3         |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |    |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date |    | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| MW-56D         | DA              | 15-May-13      |    | ND (1.0) J                       | ND (1.0)                        | 19,800                             | -150         | 7.7           |
|                |                 | 14-Nov-13      |    | ND (1.0)                         | 1.6 J                           | 13,700                             | -130         | 7.7           |
|                |                 | 10-Apr-14      |    | ND (1.0) J                       | ND (1.0)                        | 19,800 J                           | -260         | 7.7           |
| MW-57-070      | BR              | 06-May-13      |    | 611                              | 696                             | 2,100                              | 260          | 7.1           |
|                |                 | 23-Sep-13      |    | 554                              | 561                             | 2,000                              | 210          | 7.2           |
|                |                 | 12-Dec-13      |    | 461                              | 512                             | 2,200                              | -36          | 7.2           |
|                |                 | 24-Feb-14      |    | 394                              | 409                             |                                    | 61           | 7.2           |
|                |                 | 28-Apr-14      |    | 430                              | 460                             |                                    | 86           | 7.0           |
| MW-57-185      | BR              | 23-Apr-13      |    | 10.2                             | 9.8                             | 23,000                             | 150          | 9.0           |
|                |                 | 10-Sep-13      |    | 10.1                             | 10.1                            | 18,000                             | 150          | 8.0           |
|                |                 | 07-Nov-13      |    | 9.5                              | 9.4                             | 19,000                             | -300         | 8.3           |
|                |                 | 07-Nov-13 F    | -D | 9.7                              | 9.4                             | 19,000                             | FD           | FD            |
|                |                 | 13-Feb-14      |    | 9.2                              | 10.5                            | 18,000                             | 11           | 8.8           |
|                |                 | 22-Apr-14      |    | 8.8                              | 7.8                             | 17,000                             | -81          | 8.8           |
| MW-58BR        | BR              | 30-Apr-13      | İ  | ND (1.0)                         | ND (1.0)                        | 8,400                              | -61          | 7.5           |
|                |                 | 19-Sep-13      |    | 0.73                             | ND (1.0)                        | 8,400                              | 110          | 7.6           |
|                |                 | 17-Dec-13      |    | 1.1                              | 1.5                             | 8,600                              | -170         | 7.5           |
|                |                 | 25-Feb-14      |    | 2.3                              | 3.1                             |                                    | -160         | 7.5           |
|                |                 | 06-May-14      |    | 0.87                             | ND (1.0)                        |                                    | -270         | 7.6           |
| MW-59-100      | SA              | 13-May-13      |    | 4,110                            | 4,150                           | 8,800                              | 150          | 6.8           |
|                |                 | 25-Sep-13      |    | 4,180                            | 4,120                           | 9,800                              | 320          | 6.8           |
|                |                 | 10-Dec-13      |    | 3,860                            | 3,960                           | 9,100                              | 28           | 6.9           |
|                |                 | 25-Feb-14      |    | 3,740                            | 3,780                           | 9,900                              | 36           | 6.4           |
|                |                 | 07-May-14      |    | 4,000                            | 4,000                           | 9,600                              | -10          | 7.0           |
| MW-60-125      | BR              | 06-May-13      |    | 988                              | 959                             | 8,600                              | 210          | 7.4           |
|                |                 | 24-Sep-13      |    | 1,120                            | 1,050                           | 8,600                              | 110          | 7.3           |
|                |                 | 24-Sep-13 F    | -D | 1,100                            | 1,020                           | 8,400                              | FD           | FD            |
|                |                 | 04-Dec-13      |    | 1,100                            | 1,070                           | 8,100                              | 34           | 7.3           |
|                |                 | 25-Feb-14      |    | 1,030                            | 1,070                           | 9,100                              |              |               |
|                |                 | 01-May-14      |    | 1,200                            | 1,100                           | 7,700                              | -42          | 7.5           |
| MW-60BR-245    | BR              | 07-May-13      |    | 46.6                             | 49.7                            | 18,000                             | -310         | 8.2           |
|                |                 | 17-Sep-13      |    | ND (1.0)                         | 2.6                             | 16,000                             | -140         | 8.3           |
|                |                 | 04-Dec-13      |    | ND (1.0)                         | ND (1.0)                        | 16,000                             | -220         | 8.1           |
|                |                 | 19-Feb-14      |    | ND (1.0)                         | 2.0                             | 17,000                             | -260         | 8.1           |
|                |                 | 29-Apr-14      |    | ND (1.0)                         | 1.2                             | 16,000                             | -76          | 8.1           |

TABLE 3-1 Groundwater Sampling Results, April 2013 through June 2014 Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Field Parameter |             |  |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|--------------------------|-------------|--|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)              | Field<br>pH |  |
| MW-61-110      | BR              | 02-May-13      | 518                              | 574                             | 14,000                             | 76                       | 7.4         |  |
|                |                 | 23-Sep-13      | 576                              | 616                             | 14,000                             | 60                       | 7.4         |  |
|                |                 | 05-Dec-13      | 565                              | 563                             | 14,000                             | 76                       | 7.4         |  |
|                |                 | 05-Dec-13 FD   | 601                              | 581                             | 15,000                             | FD                       | FD          |  |
|                |                 | 19-Feb-14      | 588                              | 619                             | 15,000                             | -76                      | 7.2         |  |
|                |                 | 29-Apr-14      | 470                              | 460                             | 15,000                             | -160                     | 7.5         |  |
| MW-62-065      | BR              | 25-Apr-13      | 589                              | 607                             | 7,300                              | 130                      | 7.4         |  |
|                |                 | 23-Sep-13      | 500                              | 518                             | 5,800                              | 180                      | 7.4         |  |
|                |                 | 11-Dec-13      | 471                              | 476                             | 5,800                              | -6                       | 7.4         |  |
|                |                 | 20-Feb-14      | 469                              | 474                             |                                    | 63                       | 7.3         |  |
|                |                 | 29-Apr-14      | 550                              | 550                             |                                    | -1                       | 7.4         |  |
| MW-62-110      | BR              | 08-May-13      | 733                              | 782                             | 7,800                              | 170                      | 7.1         |  |
|                |                 | 18-Sep-13      | 808                              | 857                             | 8,100                              | 220                      | 7.3         |  |
|                |                 | 13-Nov-13      | 910                              | 1,040                           | 7,600                              | 190                      | 7.5         |  |
|                |                 | 19-Feb-14      | 976                              | 927                             | 8,600                              | 110                      | 7.6         |  |
|                |                 | 07-May-14      | 910                              | 940                             | 8,000                              | 30                       | 7.1         |  |
| MW-62-190      | BR              | 08-May-13      | ND (1.0)                         | ND (1.0)                        | 1,600                              | -30                      | 7.5         |  |
|                |                 | 18-Sep-13      | ND (1.0)                         | ND (1.0)                        | 16,000                             | -3                       | 7.6         |  |
|                |                 | 13-Nov-13      | ND (1.0)                         | ND (1.0)                        | 15,000                             | 0.0                      | 7.7         |  |
|                |                 | 19-Feb-14      | ND (1.0)                         | ND (1.0)                        | 17,000                             | -82                      | 7.1         |  |
|                |                 | 07-May-14      | ND (1.0)                         | ND (1.0)                        | 16,000                             | -65                      | 7.2         |  |
| MW-63-065      | BR              | 25-Apr-13      | 1.3                              | 1.5                             | 8,100                              | 140                      | 7.1         |  |
|                |                 | 09-Sep-13      | 1.9                              | 1.8                             | 7,000                              | 110                      | 7.2         |  |
|                |                 | 04-Dec-13      | 1.6                              | 1.9                             | 6,800                              | 120                      | 7.1         |  |
|                |                 | 12-Feb-14      | 1.2                              | 1.5                             | 6,700                              | 130                      | 7.2         |  |
|                |                 | 09-Apr-14      | 1.4                              | 1.1                             | 6,600                              | -1                       | 7.1         |  |
| /W-64BR        | BR              | 01-May-13      | ND (1.0)                         | ND (1.0)                        | 12,000                             | 48                       | 7.3         |  |
|                |                 | 17-Sep-13      | ND (1.0)                         | ND (1.0)                        | 13,000                             | 40                       | 7.4         |  |
|                |                 | 16-Dec-13      | ND (1.0)                         | ND (1.0)                        | 13,000                             | 18                       | 7.4         |  |
|                |                 | 26-Feb-14      | ND (1.0)                         | ND (1.0)                        |                                    | 16                       | 7.4         |  |
|                |                 | 06-May-14      | ND (1.0)                         | ND (1.0)                        |                                    | -200                     | 7.5         |  |
| MW-65-160      | SA              | 01-May-13      | 111                              | 112                             | 3,600                              | 230                      | 7.3         |  |
|                |                 | 19-Sep-13      | 113                              | 115                             | 3,800                              | 270                      | 7.3         |  |
|                |                 | 02-Dec-13      | 96.8                             | 102                             | 3,700                              | 240                      | 7.5         |  |
|                |                 | 19-Feb-14      | 125                              | 126                             | 4,000                              | 11                       | 7.0         |  |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| MW-65-160      | SA              | 24-Apr-14      | 110                              | 95.0                            | 3,600                              | -17          | 7.1           |
| MW-65-225      | DA              | 02-May-13      | 534                              | 549                             | 10,000                             | 250          | 7.2           |
|                |                 | 02-May-13 FD   | 548                              | 572                             | 10,000                             | FD           | FD            |
|                |                 | 23-Sep-13      | 583                              | 613                             | 9,800                              | 150          | 7.2           |
|                |                 | 23-Sep-13 FD   | 579                              | 580                             | 9,600                              | FD           | FD            |
|                |                 | 02-Dec-13      | 551                              | 580                             | 10,000                             | -59          | 7.2           |
|                |                 | 19-Feb-14      | 513                              | 529                             | 11,000                             | -59          | 7.1           |
|                |                 | 29-Apr-14      | 460                              | 450                             | 12,000                             | -57          | 7.3           |
| MW-66-165      | SA              | 02-May-13      | 737                              | 695                             | 4,100                              | 230          | 7.1           |
|                |                 | 23-Sep-13      | 631                              | 694                             | 4,200                              | 200          | 7.3           |
|                |                 | 03-Dec-13      | 595                              | 622                             | 4,200                              | 8.0          | 7.2           |
|                |                 | 19-Feb-14      | 594                              | 638                             | 4,400                              | 70           | 7.0           |
|                |                 | 01-May-14      | 750                              | 720                             | 3,800                              | 110          | 7.2           |
|                |                 | 01-May-14 FD   | 720                              | 750                             | 3,800                              | FD           | FD            |
| MW-66-230      | DA              | 13-May-13      | 6,520                            | 7,280                           | 17,000                             | 220          | 7.9           |
|                |                 | 25-Sep-13      | 5,120                            | 6,030                           | 17,000                             | 300          | 7.9           |
|                |                 | 12-Dec-13      | 6,630 J                          | 6,850                           | 19,000                             | -33          | 7.1           |
|                |                 | 26-Feb-14      | 5,730                            | 6,570                           | 20,000                             | 67           | 7.6           |
|                |                 | 07-May-14      | 6,700                            | 6,700                           | 17,000                             | -130         | 8.0           |
| MW-66BR-270    | BR              | 18-Jun-13      | ND (1.0)                         | ND (1.0)                        | 17,000                             | -170         | 10.3          |
|                |                 | 23-Sep-13      | ND (1.0)                         | ND (1.0)                        | 16,000                             | -230         | 9.6           |
|                |                 | 17-Dec-13      | ND (1.0)                         | ND (1.0)                        | 18,000                             | 56           | 9.9           |
|                |                 | 26-Feb-14      | ND (1.0)                         | ND (1.0)                        | 18,000                             | -120         | 9.7           |
|                |                 | 13-May-14      | ND (1.0)                         | ND (1.0)                        | 15,000                             | -350         | 9.6           |
| MW-67-185      | SA              | 09-May-13      | 2,400                            | 2,550                           | 4,500                              | 290          | 7.2           |
|                |                 | 25-Sep-13      | 2,280                            | 2,220                           | 5,000                              | 200          | 7.2           |
|                |                 | 04-Dec-13      | 2,180                            | 2,260                           | 5,100                              | 17           | 7.2           |
|                |                 | 24-Feb-14      | 1,960                            | 2,150                           | 5,600                              | 150          | 7.2           |
|                |                 | 05-May-14      | 2,300                            | 2,500                           | 5,000                              | -32          | 7.2           |
| MW-67-225      | MA              | 09-May-13      | 3,140                            | 3,280                           | 6,800                              | 150          | 7.4           |
|                |                 | 25-Sep-13      | 3,100                            | 2,920                           | 6,800                              | 310          | 7.5           |
|                |                 | 09-Dec-13      | 3,070                            | 3,010                           | 7,000                              | 43           | 7.4           |
|                |                 | 24-Feb-14      | 2,890                            | 3,120                           | 7,500                              | 120          | 7.3           |
|                |                 | 06-May-14      | 3,200                            | 3,300                           | 6,300                              | -81          | 7.4           |
| MW-67-260      | DA              | 09-May-13      | 2,120                            | 2,220                           | 16,000                             | 120          | 8.1           |

TABLE 3-1 Groundwater Sampling Results, April 2013 through June 2014 Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Field Parameters |             |  |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|---------------------------|-------------|--|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)               | Field<br>pH |  |
| MW-67-260      | DA              | 09-May-13 FD   | 2,140                            | 2,250                           | 16,000                             | FD                        | FD          |  |
|                |                 | 25-Sep-13      | 2,040                            | 1,980                           | 16,000                             | 120                       | 8.1         |  |
|                |                 | 25-Sep-13 FD   | 2,050                            | 1,920                           | 16,000                             | FD                        | FD          |  |
|                |                 | 09-Dec-13      | 1,980                            | 1,820                           | 17,000                             | -97                       | 8.0         |  |
|                |                 | 24-Feb-14      | 1,940                            | 2,010                           | 18,000                             | -90                       | 7.9         |  |
|                |                 | 05-May-14      | 2,000                            | 1,900                           | 15,000                             | -250                      | 8.5         |  |
| MW-68-180      | SA              | 13-May-13      | 5,010                            | 5,590                           | 2,800                              | 64                        | 6.7         |  |
|                |                 | 26-Sep-13      | 19,200                           | 20,700                          | 3,800                              | 200                       | 7.2         |  |
|                |                 | 12-Dec-13      | 21,100                           | 25,600                          | 4,200                              | 32                        | 7.4         |  |
|                |                 | 12-Dec-13 FD   | 20,900                           | 23,900                          | 4,200                              | FD                        | FD          |  |
|                |                 | 27-Feb-14      | 22,900                           | 23,800                          | 4,300                              | 28                        | 7.3         |  |
|                |                 | 12-May-14      | 10,000                           | 11,000                          | 3,000                              | 34                        | 7.3         |  |
| MW-68-240      | DA              | 08-May-13      | 2,050                            | 2,160                           | 14,000                             | 66                        | 7.3         |  |
|                |                 | 24-Sep-13      | 2,120                            | 1,920                           | 15,000                             | 160                       | 7.4         |  |
|                |                 | 04-Dec-13      | 1,960                            | 2,110                           | 15,000                             | -79                       | 7.3         |  |
|                |                 | 25-Feb-14      | 2,020                            | 2,050                           | 17,000                             | -40                       | 7.1         |  |
|                |                 | 06-May-14      | 2,200                            | 2,100                           | 14,000                             | -190                      | 7.3         |  |
|                |                 | 06-May-14 FD   | 2,200                            | 2,100                           | 14,000                             | FD                        | FD          |  |
| MW-68BR-280    | BR              | 08-May-13      | ND (1.0)                         | ND (1.0)                        | 19,000                             | -62                       | 8.5         |  |
|                |                 | 18-Sep-13      | ND (1.0)                         | ND (1.0)                        | 19,000                             | -79                       | 8.4         |  |
|                |                 | 18-Dec-13      | ND (1.0)                         | ND (1.0)                        | 20,000                             | -170                      | 8.6         |  |
|                |                 | 27-Feb-14      | ND (1.0)                         | ND (1.0)                        | 22,000                             | -120                      | 8.5         |  |
|                |                 | 13-May-14      | ND (1.0)                         | ND (1.0)                        | 19,000                             | -200                      | 8.3         |  |
| MW-69-195      | BR              | 06-May-13      | 919                              | 868                             | 3,600                              | 230                       | 6.9         |  |
|                |                 | 24-Sep-13      | 938                              | 963                             | 3,500                              | 120                       | 7.1         |  |
|                |                 | 03-Dec-13      | 932                              | 952                             | 3,500                              | -25                       | 6.9         |  |
|                |                 | 19-Feb-14      | 893                              | 905                             | 3,500                              | 67                        | 7.2         |  |
|                |                 | 01-May-14      | 1,000                            | 1,000                           | 3,100                              | 53                        | 7.1         |  |
| MW-70-105      | BR              | 25-Apr-13      | 198                              | 201                             | 3,800                              | 37                        | 7.8         |  |
|                |                 | 23-Sep-13      | 122                              | 123                             | 3,300                              | 35                        | 7.8         |  |
|                |                 | 04-Dec-13      | 163                              | 164                             | 3,400                              | 11                        | 7.8         |  |
|                |                 | 17-Feb-14      | 145                              | 136                             | 3,500                              | -180                      | 7.9         |  |
|                |                 | 28-Apr-14      | 75.0                             | 70.0                            | 3,200                              | -130                      | 7.8         |  |
| MW-70BR-225    | BR              | 07-May-13      | 2,000                            | 2,070                           | 13,000                             | 170                       | 7.3         |  |
|                |                 | 24-Sep-13      | 2,170                            | 2,040                           | 13,000                             | 100                       | 7.4         |  |

TABLE 3-1 Groundwater Sampling Results, April 2013 through June 2014 Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

|                |                 |                |    |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date |    | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| MW-70BR-225    | BR              | 10-Dec-13      |    | 1,950                            | 1,910                           | 13,000                             | -9           | 7.3           |
|                |                 | 25-Feb-14      |    | 1,900                            | 2,080                           | 14,000                             | -90          | 7.1           |
|                |                 | 05-May-14      |    | 2,400                            | 2,500                           | 12,000                             | -160         | 7.3           |
| MW-71-035      | SA              | 30-Apr-13      |    | 0.44                             | ND (1.0)                        | 7,800                              | 220          | 7.3           |
|                |                 | 10-Sep-13      |    | ND (1.0)                         | ND (1.0)                        | 7,900                              | 120          | 7.3           |
|                |                 | 11-Dec-13      |    | 0.47                             | ND (1.0)                        | 8,000                              | 98           | 7.3           |
|                |                 | 18-Feb-14      |    | 0.32                             | ND (1.0)                        | 8,400                              | -28          | 8.7           |
|                |                 | 24-Apr-14      |    | 1.0                              | 1.0                             | 7,700                              |              |               |
| MW-72-080      | BR              | 25-Apr-13      |    | 116                              | 124                             | 20,000                             | 130          | 7.7           |
|                |                 | 19-Sep-13      |    | 139                              | 141                             | 15,000                             | 110          | 7.8           |
|                |                 | 19-Sep-13      | FD | 138                              | 140                             | 15,000                             | FD           | FD            |
|                |                 | 04-Dec-13      |    | 137                              | 136                             | 15,000                             | 110          | 7.7           |
|                |                 | 18-Feb-14      |    | 121                              | 125                             | 16,000                             | 14           | 7.7           |
|                |                 | 24-Apr-14      |    | 100                              | 82.0                            | 16,000                             | -12          | 7.5           |
| MW-72BR-200    | BR              | 29-Apr-13      |    | 4.9                              | 5.7                             | 16,000                             | 86           | 8.2           |
|                |                 | 19-Sep-13      |    | 5.7                              | 6.2                             | 15,000                             | -11          | 8.2           |
|                |                 | 05-Nov-13      |    | 5.4                              | 5.6                             | 16,000                             | 19           | 8.3           |
|                |                 | 05-Nov-13      | FD | 5.6                              | 5.8                             | 16,000                             | FD           | FD            |
|                |                 | 17-Feb-14      |    | 7.1                              | 7.5                             | 15,000                             | -95          | 8.2           |
|                |                 | 17-Feb-14      | FD | 7.1                              | 7.0                             | 15,000                             | FD           | FD            |
|                |                 | 21-Apr-14      |    | 6.2 J                            | 4.7 J                           | 14,000                             | 26           | 8.4           |
| MW-73-080      | BR              | 01-May-13      |    | 31.8                             | 32.8                            | 9,200                              | 270          | 7.4           |
|                |                 | 11-Sep-13      |    | 31.6                             | 30.9                            | 9,700                              | 300          | 7.2           |
|                |                 | 05-Dec-13      |    | 32.3                             | 34.9                            | 10,000                             | 120          | 7.4           |
|                |                 | 18-Feb-14      |    | 48.5                             | 49.2                            | 11,000                             | 4.0          | 7.2           |
|                |                 | 29-Apr-14      |    | 53.0                             | 48.0                            | 11,000                             | 89           | 7.1           |
| MW-74-240      | BR              | 02-May-13      |    | ND (0.2)                         | ND (1.0)                        | 810                                | -32          | 8.7           |
|                |                 | 18-Sep-13      |    | ND (0.2)                         | ND (1.0)                        | 780                                | 19           | 8.9           |
|                |                 | 05-Dec-13      |    | ND (0.2)                         | ND (1.0)                        | 710                                | -44          | 8.8           |
|                |                 | 26-Feb-14      |    | ND (0.2)                         | ND (1.0)                        | 880                                | -81          | 8.6           |
|                |                 | 01-May-14      |    | ND (0.2)                         | ND (1.0)                        | 800                                | -160         | 8.1           |
| OW-3S          | SA              | 13-Nov-13      |    | 22.3                             | 22.5                            | 1,400                              | 160          | 7.7           |
| OW-3M          | MA              | 13-Nov-13      |    | 15.0                             | 14.0                            | 5,400                              | 130          | 7.9           |
| OW-3D          | DA              | 05-Nov-13      |    | 8.6                              | 8.3                             | 9,000                              | 49           | 7.9           |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| PE-1           | DA              | 01-Apr-13      | 5.6                              | 5.6                             | 4,540                              |              |               |
|                |                 | 01-May-13      | 5.0                              | 5.8                             | 4,540                              |              |               |
|                |                 | 04-Jun-13      | 5.1                              | 5.6                             | 4,350                              |              |               |
|                |                 | 02-Jul-13      | 4.7                              | 5.3                             | 4,130                              |              |               |
|                |                 | 06-Aug-13      | 5.0                              | 5.7                             | 4,200                              |              |               |
|                |                 | 03-Sep-13      | 5.1                              | 5.4                             | 4,330                              |              |               |
|                |                 | 01-Oct-13      | 5.2                              | 5.1                             | 4,160                              |              |               |
|                |                 | 05-Nov-13      | 5.2 J                            | 5.0                             | 4,160 J                            |              |               |
|                |                 | 03-Dec-13      | 5.5                              | 6.0                             | 3,950                              |              |               |
|                |                 | 07-Jan-14      | 5.5                              | 5.6                             | 3,960                              |              |               |
|                |                 | 04-Feb-14      | 5.6                              | 6.0                             | 3,820                              |              |               |
|                |                 | 04-Mar-14      | 4.8                              | 4.8                             | 3,680                              |              |               |
|                |                 | 08-Apr-14      | 4.0                              | 4.2                             | 4,150                              |              |               |
|                |                 | 06-May-14      | 3.9                              | 4.3                             | 4,540                              |              |               |
|                |                 | 03-Jun-14      | 3.7                              | 4.1                             | 4,480                              |              |               |
| PGE-7BR        | BR              | 10-Dec-13      | ND (1.0)                         | ND (1.0)                        | 16,000                             | -170         | 7.1           |
| PGE-8          | BR              | 18-Dec-13      | ND (1.0)                         | ND (1.0)                        | 18,000                             | -300         | 8.1           |
| Park Moabi-3   | MA              | 19-Dec-13      | 4.1                              | 7.9 UF                          | 1,200                              | -61          | 7.7           |
| Park Moabi-4   | MA              | 19-Dec-13      | 12.6                             | 18.0 UF                         | 2,000                              | -64          | 7.5           |
| TCS-4          |                 | 25-Mar-14      | ND (0.4)                         | 61.0 JUF                        |                                    |              |               |
|                |                 | 20-May-14      | ND (0.2)                         | ND (1.0)                        |                                    | -250         | 7.3           |
| TW-1           | SA-MA-DA        | 14-May-13      | 2,830                            | 3,160                           | 6,500                              | 320          | 7.1           |
|                |                 | 26-Sep-13      | 2,770                            | 2,600                           | 6,900                              | 160          | 7.1           |
|                |                 | 17-Dec-13      | 2,770                            | 2,880                           | 7,300                              | -91          | 7.2           |
|                |                 | 20-Feb-14      | 2,500                            | 2,620                           | 7,200                              | 72           | 7.1           |
|                |                 | 13-May-14      | 2,800                            | 2,700                           | 6,000                              | -140         | 7.3           |
| TW-2S          | SA-MA           | 19-Dec-13      | 545                              | 492                             | 5,400                              | -40          | 7.7           |
| TW-2D          | DA              | 19-Dec-13      | 162                              | 156                             | 8,000                              | -38          | 7.3           |
| TW-3D          | DA              | 01-Apr-13      | 836                              | 766                             | 8,110                              |              |               |
|                |                 | 01-May-13      | 746                              | 881                             | 8,040                              |              |               |
|                |                 | 04-Jun-13      | 846                              | 847                             | 7,630                              |              |               |
|                |                 | 02-Jul-13      | 934                              | 828                             | 7,400                              |              |               |
|                |                 | 06-Aug-13      | 816                              | 892                             | 7,530                              |              |               |
|                |                 | 03-Sep-13      | 728                              | 832                             | 7,770                              |              |               |

TABLE 3-1
Groundwater Sampling Results, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                |                 |                |                                  |                                 |                                    | Selected Fie | ld Parameters |
|----------------|-----------------|----------------|----------------------------------|---------------------------------|------------------------------------|--------------|---------------|
| Location<br>ID | Aquifer<br>Zone | Sample<br>Date | Hexavalent<br>Chromium<br>(µg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | ORP<br>(mV)  | Field<br>pH   |
| TW-3D          | DA              | 01-Oct-13      | 846                              | 720                             | 7,620                              |              |               |
|                |                 | 05-Nov-13      | 816 J                            | 817                             | 7,550 J                            |              |               |
|                |                 | 03-Dec-13      | 934                              | 832                             | 7,410                              |              |               |
|                |                 | 07-Jan-14      | 905                              | 761                             | 7,290                              |              |               |
|                |                 | 04-Feb-14      | 816                              | 804                             | 7,570                              |              |               |
|                |                 | 04-Mar-14      | 816                              | 752                             | 7,980                              |              |               |
|                |                 | 08-Apr-14      | 662                              | 772                             | 7,810                              |              |               |
|                |                 | 06-May-14      | 601                              | 742                             | 8,270                              |              |               |
|                |                 | 03-Jun-14      | 725                              | 737                             | 8,090                              |              |               |
| TW-4           | DA              | 12-Nov-13      | 7.4                              | 6.5                             | 19,000                             | 130          | 7.6           |
| TW-5           | DA              | 06-Nov-13      | 10.3                             | 11.3                            | 13,000                             | 160          | 7.8           |
| <del></del>    |                 |                | -                                |                                 |                                    |              |               |

#### Notes:

(---) = data not collected, available, rejected, or field instrument malfunction.

FD = field duplicate sample.

J = concentration or reporting limit (RL) estimated by laboratory or data validation.

mV = millivolts.

ND = not detected at listed RL.

ORP = oxidation-reduction potential.

RL = reporting limit.

UF = unfiltered

 $\mu$ g/L = micrograms per liter.

µS/cm = microSiemens per centimeter.

Beginning February 1, 2008, hexavalent chromium samples are field-filtered per DTSC-approved change from analysis Method SW7199 to E218.6.

The RLs for certain hexavalent chromium results from Method E218.6 analyses have been elevated above the standard RL of 0.2 µg/L due to required sample dilution to accommodate matrix interferences.

Monitoring wells MW-11, MW-24A, and MW-24B are currently sampled as part of the upland in situ pilot test monitoring. Results from these wells are presented in the in situ pilot test reports (ARCADIS, 2013) and are not included in this table.

ORP is reported to two significant figures. Specific conductance is reported to three significant figures.

Wells are assigned to separate aquifer zones for results reporting:

SA: shallow interval of Alluvial Aquifer.

MA: mid-depth interval of Alluvial Aquifer.

DA: deep interval of Alluvial Aquifer.

BR: well completed in bedrock (Miocene Conglomerate or pre-Tertiary crystalline rock).

ARCADIS. 2013. 2013 Annual Monitoring Report for the Upland Reductive Zone In-Situ Pilot Test. October 11.

TABLE 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, Second Quarter 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID   | Aquifer<br>Zone | Sample<br>Date          | Arsenic<br>Dissolved<br>(µg/L) | Fluoride<br>Dissolved<br>(mg/L) | Molybdenum<br>Dissolved<br>(µg/L) | Selenium<br>Dissolved<br>(µg/L) | Manganese<br>Dissolved<br>(μg/L) | Nitrate<br>as N<br>(mg/L) |
|-----------|-----------------|-------------------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------|
| MW-10     | SA              | 14-May-14               |                                | 4.50                            | 28.0                              | 5.9                             |                                  | 11.2                      |
|           |                 | 14-May-14 <sub>FD</sub> |                                | 4.50                            | 28.0                              | 6.4                             |                                  | 10.6                      |
| MW-12     | SA              | 01-May-14               | 38.0                           |                                 | 11.0                              | 16.0                            | ND (0.5) J                       | 13.9                      |
| MW-16     | SA              | 22-Apr-14               | 10.0                           |                                 | 13.0                              | 1.8                             | ND (0.5)                         |                           |
| MW-17     | SA              | 23-Apr-14               | 1.4                            |                                 | 16.0                              | 8.6                             | ND (0.5)                         |                           |
| MW-20-70  | SA              | 07-May-14               |                                |                                 | 51.0                              | 5.0                             |                                  | 7.15                      |
| MW-20-100 | MA              | 07-May-14               |                                |                                 | 4.1                               | 6.6                             |                                  | 11.1                      |
| MW-20-130 | DA              | 12-May-14               | 5.0                            |                                 | 41.0                              | 27.0                            | ND (0.5)                         | 12.9                      |
| MW-21     | SA              | 22-Apr-14               |                                |                                 | 69.0                              | 27.0                            |                                  | 3.32                      |
| MW-22     | SA              | 30-Apr-14               | 12.0                           |                                 | 38.0                              | 0.55                            | 2100                             |                           |
| MW-23-060 | BR              | 22-Apr-14               | 2.6                            |                                 |                                   |                                 | ND (0.5)                         |                           |
| MW-23-080 | BR              | 22-Apr-14               | 2.7                            |                                 |                                   |                                 | ND (0.5)                         |                           |
| MW-26     | SA              | 05-May-14               | 1.7                            |                                 | 30.0                              | 49.0                            | ND (0.5)                         | 20.4                      |
| MW-27-20  | SA              | 14-Apr-14               | 0.84                           |                                 | 3.4                               | 12.0                            | 21.0                             | 0.265                     |
| MW-27-60  | MA              | 14-Apr-14               | 6.9                            | 0.73                            | 4.1                               | ND (0.5)                        | 200                              | ND (0.01)                 |
|           |                 | 14-Apr-14 <sub>FD</sub> | 7.2                            | 0.80                            | 4.2                               | ND (0.5)                        | 190                              | ND (0.01)                 |
| MW-27-85  | DA              | 14-Apr-14               | 0.18                           | ND (0.5)                        | 2.2                               | ND (0.5)                        | 6.3                              |                           |
| MW-28-25  | SA              | 15-Apr-14               | 1.8                            |                                 | 4.5                               | ND (0.5)                        | 15.0                             | ND (0.01)                 |
| MW-28-90  | DA              | 15-Apr-14               | 1.8                            | ND (0.5)                        | 22.0                              | ND (0.5)                        | 130                              | ND (0.01)                 |
|           |                 | 15-Apr-14 <sub>FD</sub> | 1.8                            | ND (0.5)                        | 21.0                              | ND (0.5)                        | 120                              | ND (0.01)                 |
| MW-29     | SA              | 16-Apr-14               | 5.7                            |                                 | 19.0                              | 9.5                             | 270                              | 0.198                     |
| MW-30-30  | SA              | 14-Apr-14               |                                |                                 | 22.0                              | ND (0.5)                        |                                  | 0.0153                    |
| MW-32-35  | SA              | 16-Apr-14               | 27.0                           |                                 |                                   |                                 | 1200                             |                           |
| MW-33-40  | SA              | 17-Apr-14               | 14.0                           | 9.80                            | 130                               | ND (0.5)                        | ND (0.5)                         | ND (0.01)                 |
| MW-33-90  | MA              | 21-Apr-14               | 1.3                            | ND (0.5)                        | 15.0                              | ND (0.5)                        | ND (0.5)                         | 1.43 J                    |
|           |                 | 21-Apr-14 <sub>FD</sub> | 1.3                            | ND (0.5)                        | 15.0                              | ND (0.5)                        | ND (0.5)                         | 1.38 J                    |
| MW-33-150 | DA              | 17-Apr-14               | 1.1                            | ND (0.5)                        | 24.0                              | ND (2.5)                        | ND (0.5)                         | 1.63                      |
| MW-33-210 | DA              | 21-Apr-14               | 0.94                           | ND (0.5)                        | 17.0                              | ND (2.5)                        | ND (0.5)                         | 1.58                      |
| MW-34-80  | DA              | 17-Apr-14               | 1.4                            |                                 |                                   |                                 | 8.0                              |                           |
| MW-34-100 | DA              | 17-Apr-14               | 1.3                            |                                 |                                   |                                 |                                  |                           |
| MW-35-60  | SA              | 24-Apr-14               | 1.0                            |                                 | 9.8 J                             | 1.1                             | 1.8 J                            | 2.39                      |
|           |                 | 24-Apr-14 <sub>FD</sub> | 1.0                            |                                 | 11.0 J                            | 0.98                            | ND (0.5) J                       | 2.33                      |
| MW-36-90  | DA              | 17-Apr-14               | 19.0                           |                                 |                                   |                                 |                                  |                           |
| MW-36-100 | DA              | 17-Apr-14               | 8.5                            |                                 | 35.0                              | ND (0.5)                        | 17.0                             | 0.0768                    |
| MW-37D    | DA              | 10-Apr-14               |                                |                                 | 47.0                              | ND (0.5)                        |                                  | 0.311                     |

Date Printed: 7/30/2014

TABLE 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, Second Quarter 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID     | Aquifer<br>Zone | Sample<br>Date          | Arsenic<br>Dissolved<br>(µg/L) | Fluoride<br>Dissolved<br>(mg/L) | Molybdenum<br>Dissolved<br>(µg/L) | Selenium<br>Dissolved<br>(µg/L) | Manganese<br>Dissolved<br>(μg/L) | Nitrate<br>as N<br>(mg/L) |
|-------------|-----------------|-------------------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------|
| MW-38D      | DA              | 14-May-14               | 6.5                            |                                 | 85.0                              | ND (2.5)                        | 160                              | 0.087                     |
| MW-38S      | SA              | 14-May-14               | 11.0                           |                                 | 40.0                              | ND (0.5)                        | 220                              | 0.57                      |
| MW-40D      | DA              | 24-Apr-14               | 3.9                            |                                 | 48.0                              | 1.6                             | ND (0.5)                         | 3.37                      |
| MW-42-55    | MA              | 14-Apr-14               | 11.0                           |                                 |                                   |                                 |                                  |                           |
| MW-42-65    | MA              | 14-Apr-14               | 3.0                            |                                 |                                   |                                 | 710                              |                           |
| MW-43-25    | SA              | 15-Apr-14               | 16.0                           |                                 |                                   |                                 | 320                              |                           |
| MW-43-90    | DA              | 15-Apr-14               | 3.1                            |                                 |                                   |                                 | 930                              |                           |
| MW-44-70    | MA              | 16-Apr-14               | 4.2                            |                                 |                                   |                                 |                                  |                           |
| MW-44-115   | DA              | 16-Apr-14               | 5.8                            |                                 | 84.0                              | ND (0.5)                        | ND (0.5)                         | 0.198                     |
| MW-44-125   | DA              | 16-Apr-14               | 2.7                            |                                 | 98.0                              | ND (0.5)                        | 620                              | 0.26                      |
|             |                 | 16-Apr-14 <sub>FD</sub> | 3.2                            |                                 | 110                               | ND (2.5)                        | 620                              | 0.263                     |
| MW-46-175   | DA              | 15-Apr-14               |                                |                                 | 170                               | ND (2.5)                        |                                  | 1.18                      |
| MW-51       | MA              | 12-May-14               | 3.9                            |                                 | 44.0                              | 16.0                            | ND (0.5)                         | 11.3                      |
| MW-52D      | DA              | 30-Apr-14               | 3.3                            |                                 |                                   |                                 | 140                              |                           |
| MW-52M      | DA              | 30-Apr-14               | 1.4                            |                                 |                                   |                                 |                                  |                           |
| MW-52S      | MA              | 30-Apr-14               | 0.21                           |                                 |                                   |                                 |                                  |                           |
| MW-53D      | DA              | 30-Apr-14               | 3.4                            |                                 |                                   |                                 | 1300                             |                           |
| MW-53M      | DA              | 30-Apr-14               | 0.84                           |                                 |                                   |                                 | 280                              |                           |
| MW-54-85    | DA              | 09-Apr-14               | 3.5                            |                                 |                                   |                                 | 760                              |                           |
| MW-54-140   | DA              | 09-Apr-14               | 2.6                            |                                 |                                   |                                 | 144                              |                           |
|             |                 | 09-Apr-14 <sub>FD</sub> | 1.4                            |                                 |                                   |                                 | 140                              |                           |
| MW-54-195   | DA              | 09-Apr-14               | 0.23                           |                                 |                                   |                                 | 537                              |                           |
| MW-57-185   | BR              | 22-Apr-14               | 13.0                           |                                 | 89.0                              | ND (2.5)                        | 280 J                            | ND (0.01)                 |
| MW-58BR     | BR              | 06-May-14               | 1.0                            |                                 |                                   |                                 |                                  |                           |
| MW-59-100   | SA              | 07-May-14               | 2.1                            |                                 | 5.4                               | 4.0                             | ND (0.5)                         | 3.57                      |
| MW-60-125   | BR              | 01-May-14               | 1.5                            |                                 | 18.0                              | 5.7                             | ND (0.5)                         | 4.02                      |
| MW-60BR-245 | BR              | 29-Apr-14               | 6.8                            |                                 | 68.0                              | ND (2.5)                        | ND (0.5)                         | 0.148                     |
| MW-61-110   | BR              | 29-Apr-14               | 3.1                            |                                 | 25.0                              | ND (2.5)                        | 89.0                             | 0.65                      |
| MW-62-110   | BR              | 07-May-14               | 6.0                            |                                 | 48.0                              | 3.1                             | 71.0                             | 3.74                      |
| MW-62-190   | BR              | 07-May-14               | 3.6                            |                                 | 61.0                              | ND (2.5)                        | 440                              | 0.0209                    |
| MW-63-065   | BR              | 09-Apr-14               | 1.5                            |                                 | 20.0                              | 0.81                            | ND (0.5)                         | 0.851                     |
| MW-64BR     | BR              | 06-May-14               | 2.9                            |                                 |                                   |                                 |                                  |                           |
| MW-65-160   | SA              | 24-Apr-14               | 0.72                           |                                 | 27.0                              | 8.2                             | ND (0.5)                         | 12.3                      |
| MW-65-225   | DA              | 29-Apr-14               | 2.2                            |                                 | 39.0                              | 5.2                             | ND (0.5)                         | 6.89                      |
| MW-66-165   | SA              | 01-May-14               | 1.2                            |                                 | 5.6                               | 34.0 J                          | ND (0.5) J                       | 33.4                      |

Date Printed: 7/30/2014

TABLE 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, Second Quarter 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID     | Aquifer<br>Zone | Sample<br>Date          | Arsenic<br>Dissolved<br>(µg/L) | Fluoride<br>Dissolved<br>(mg/L) | Molybdenum<br>Dissolved<br>(µg/L) | Selenium<br>Dissolved<br>(µg/L) | Manganese<br>Dissolved<br>(µg/L) | Nitrate<br>as N<br>(mg/L) |
|-------------|-----------------|-------------------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------|
| MW-66-165   | SA              | 01-May-14 <sub>FD</sub> | 1.3                            |                                 | 5.8                               | 35.0 J                          | ND (0.5) J                       | 34.1                      |
| MW-66-230   | DA              | 07-May-14               | 8.5                            |                                 | 81.0                              | 11.0                            | ND (0.5)                         | 13.5                      |
| MW-66BR-270 | BR              | 13-May-14               | ND (0.5)                       |                                 | 13.0                              | ND (12)                         | ND (0.5)                         | ND (0.01)                 |
| MW-67-185   | SA              | 05-May-14               | 1.5                            |                                 | 8.9                               | 240                             | ND (0.5)                         | 45.4                      |
| MW-67-225   | MA              | 06-May-14               | 3.1                            |                                 | 37.0                              | 75.0                            | ND (0.5)                         | 23.5                      |
| MW-67-260   | DA              | 05-May-14               | 11.0                           |                                 | 72.0                              | ND (2.5)                        | 58.0                             | 1.21                      |
| MW-68-180   | SA              | 12-May-14               | 2.9                            |                                 | 39.0                              | 13.0                            | ND (0.5)                         | 14.9                      |
| MW-68-240   | DA              | 06-May-14               | 1.9                            |                                 | 20.0                              | 4.3                             | ND (0.5)                         | 4.66                      |
|             |                 | 06-May-14 <sub>FD</sub> | 1.8                            |                                 | 20.0                              | 5.1                             | ND (0.5)                         | 4.50                      |
| MW-68BR-280 | BR              | 13-May-14               | 1.3                            |                                 | 73.0                              | ND (2.5)                        | 39.0                             | ND (0.01)                 |
| MW-69-195   | BR              | 01-May-14               | 2.3                            |                                 | 84.0                              | 12.0                            | ND (0.5)                         | 19.3                      |
| MW-70-105   | BR              | 28-Apr-14               | 4.6                            |                                 | 100                               | 3.1                             | 130                              | 3.22                      |
| MW-70BR-225 | BR              | 05-May-14               | 1.9                            |                                 | 17.0                              | 2.5                             | ND (0.5)                         | 3.98                      |
| MW-71-035   | SA              | 24-Apr-14               | 1.3                            |                                 | 59.0                              | 3.7                             | ND (0.5)                         | 2.19                      |
| MW-72-080   | BR              | 24-Apr-14               | 10.0                           |                                 | 76.0                              | ND (2.5)                        | ND (0.5)                         | 0.991                     |
| MW-72BR-200 | BR              | 21-Apr-14               | 14.0                           |                                 | 75.0                              | ND (2.5)                        | ND (0.5)                         | 0.103                     |
| MW-73-080   | BR              | 29-Apr-14               | 1.4                            |                                 | 22.0                              | 4.7                             | ND (0.5)                         | 4.95                      |
| MW-74-240   | BR              | 01-May-14               | 12.0                           |                                 | 48.0                              | 1.9                             | ND (0.5)                         | 0.514                     |
| PE-1        | DA              | 08-Apr-14               |                                |                                 |                                   |                                 | 66.3                             | ND (0.5)                  |
|             |                 | 06-May-14               |                                |                                 |                                   |                                 | 72.2                             | ND (0.5)                  |
|             |                 | 03-Jun-14               |                                |                                 |                                   |                                 | 68.7                             | ND (0.5)                  |
| TW-1        | SA-MA-DA        | 13-May-14               |                                |                                 | 15.0                              | 17.0                            |                                  | 19.5                      |
| TW-3D       | DA              | 08-Apr-14               |                                |                                 |                                   |                                 | 7.0                              | 3.27                      |
|             |                 | 06-May-14               |                                |                                 |                                   |                                 | 8.9                              | 3.33                      |
|             |                 | 03-Jun-14               |                                |                                 |                                   |                                 | 7.9                              | 3.28                      |

Date Printed: 7/30/2014

#### TABLE 3-2

Groundwater COPCs and In Situ Byproducts Sampling Results, Second Quarter 2014 Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

#### Notes:

(---) = data not collected, available, rejected, or field instrument malfunction.

COPC = contaminants of potential concern.

FD = field duplicate sample.

J = concentration or reporting limit estimated by laboratory or data validation.

mg/L = milligrams per liter.

ND = not detected at listed reporting limit.

 $\mu$ g/L = micrograms per liter.

Nitrate samples were analyzed using USEPA Method 353.2, except for TW-3D and PE-1, which were analyzed using USEPA Method 300.0. USEPA Method 353.2 reports a combination of nitrate and nitrite as nitrogen. The contribution of nitrite to the reported result of nitrate plus nitrite as nitrogen is expected to be negligible; therefore, sample results for USEPA Method 353.2 are expected to be essentially the same as previous samples analyzed using USEPA Method 300.0 and reported as nitrate as nitrogen.

The background study upper tolerance limit (UTL) for arsenic is 24.3 µg/L.

The USEPA and California maximum contaminant level (MCL) for arsenic is 10 µg/L.

The background study UTL for molybdenum is 36.3  $\mu$ g/L.

There is no USEPA or California MCL for molybdenum.

The background study UTL for selenium is 10.3 µg/L.

The USEPA and California MCL for selenium is 50.0 µg/L.

The secondary USEPA and California MCL for manganese is 50 ug/L.

The background study UTL for nitrate as nitrogen is 5.03 mg/L.

The USEPA and California MCL for nitrate as nitrogen is 10 mg/L.

The background study UTL for fluoride is 7.1 mg/L.

The USEPA MCL for fluoride is 4 mg/L, and the California MCL for fluoride is 2 mg/L.

Wells are assigned to separate aquifer zones for results reporting:

SA = shallow interval of Alluvial Aquifer.

MA = mid-depth interval of Alluvial Aquifer.

DA = deep interval of Alluvial Aquifer.

PA = perched aguifer (unsaturated zone).

BR = well completed in bedrock (Miocene Conglomerate or pre-Tertiary crystalline rock).

#### TABLE 3-3

Title 22 Metals Results, Second Quarter 2014

Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

|         | California MCL: | 6        | 10      | 1,000  | 4         | 5        | NE       | 50       | 1,000 <b>a</b> | 15       | 2        | NE         | 100      | 50       | 100a     | 2        | NE       | 5,000 <b>a</b> |
|---------|-----------------|----------|---------|--------|-----------|----------|----------|----------|----------------|----------|----------|------------|----------|----------|----------|----------|----------|----------------|
| Well ID | Sample Date     | Antimony | Arsenic | Barium | Beryllium | Cadmium  | Cobalt   | Chromium | Copper         | Lead     | Mercury  | Molybdenum | Nickel   | Selenium | Silver   | Thallium | Vanadium | Zinc           |
| MW-12   | 05/01/2014      | ND (0.5) | 38.0    | 54.0   | ND (0.5)  | ND (0.5) | ND (0.5) | 2,200    | ND (1.0) J     | ND (1.0) | ND (0.2) | 11.0       | ND (1.0) | 16.0     | ND (0.5) | ND (0.5) | 16.0     | ND (10)        |
| MW-22   | 04/30/2014      | ND (2.5) | 12.0    | 53.0   | ND (2.5)  | ND (2.5) | 1.1      | ND (1.0) | ND (1.0) J     | ND (5.0) | ND (0.2) | 38.0       | 2.8      | 0.55     | ND (2.5) | ND (2.5) | ND (1.0) | ND (10)        |

#### Notes:

a = Secondary USEPA MCL.

J = concentration or reporting limit estimated by laboratory or data validation.

MCL = maximum contaminant level.

ND = not detected at listed reporting limit.

NE = not established.

USEPA = United States Environmental Protection Agency.

 $\mu$ g/L = micrograms per liter.

Title 22 metals are the metals listed in California Code of Regulations, Title 22, Section 66261.24(a)(2)(A).

The MCLs listed, in micrograms per liter (µg/L), are the California primary drinking water standards, except where noted.

All results are dissolved metals concentrations in  $\mu g/L$  from field-filtered samples.

Metals analyzed by USEPA Methods SW6020A or SW7470A.

Page 1 of 1

TABLE 3-4
Surface Water Sampling Results, Second Quarter 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Location      | Sample<br>Date      | Hexavalent<br>Chromium<br>(μg/L) | Dissolved<br>Chromium<br>(µg/L) | Specific<br>Conductance<br>(µS/cm) | Lab<br>pH |
|---------------|---------------------|----------------------------------|---------------------------------|------------------------------------|-----------|
| In-channel Lo | cations             |                                  |                                 |                                    |           |
| C-BNS-D       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 860                                | 8.2 J     |
| C-CON-S       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 880                                | 8.3 J     |
| C-CON-D       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 890                                | 8.3 J     |
| C-I-3-S       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 580                                | 8.3 J     |
| C-I-3-D       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 860                                | 8.3 J     |
| C-MAR-S       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 920                                | 7.8 J     |
| C-MAR-D       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 920                                | 7.9 J     |
| C-NR1-S       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 890                                | 8.3 J     |
| C-NR1-D       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 880                                | 8.3 J     |
| C-NR3-S       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 880                                | 8.3 J     |
| C-NR3-D       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 890                                | 8.3 J     |
| C-NR4-S       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 890                                | 8.3 J     |
| C-NR4-D       | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 880                                | 8.3 J     |
| C-R22a-S      | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 870                                | 8.3 J     |
| C-R22a-D      | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 870                                | 8.3 J     |
| C-R27-S       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 870                                | 8.3 J     |
| C-R27-D       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 870                                | 8.3 J     |
| C-TAZ-S       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 890                                | 8.3 J     |
| C-TAZ-D       | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 880                                | 8.3 J     |
| Shoreline San | nples               |                                  |                                 |                                    |           |
| R-19          | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 880                                | 8.3 J     |
| R-28          | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 890                                | 8.3 J     |
| R63           | 05/21/2014          | ND (0.2)                         | ND (1.0)                        | 880                                | 8.3 J     |
| RRB           | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 900                                | 8.2 J     |
| Other Surface | Water Monitoring Lo | cations                          |                                 |                                    |           |
| SW1           | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 900                                | 8.0 J     |
| SW2           | 05/22/2014          | ND (0.2)                         | ND (1.0)                        | 900                                | 8.2 J     |

#### TABLE 3-4

Surface Water Sampling Results, Second Quarter 2014 Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

#### Notes:

J = concentration or reporting limit estimated by laboratory or data validation. ND = not detected at listed reporting limit.  $\mu$ g/L = micrograms per liter. μS/cm = microSiemens per centimeter.

Hexavalent chromium analytical Method USEPA 218.6 (reporting limit 0.2 µg/L for undiluted samples).

Other analytical methods: dissolved chromium - Method SW6020A; specific conductance - USEPA 120.1; pH -SM4500-HB.

pH is reported to two significant figures.

# TABLE 3-5 COPCs, In Situ Byproducts, and Geochemical Indicator Parameters in Surface Water Samples, Second Quarter 2014 Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report,

|                |                | Arsenic,  | Barium,   | Iron, Total | Iron, dissolved | Manganese, | Molybdenum, | Nitrate/Nitrite as | Selenium, | Total               |      |  |
|----------------|----------------|-----------|-----------|-------------|-----------------|------------|-------------|--------------------|-----------|---------------------|------|--|
| Location       | Sample<br>Date | dissolved | dissolved |             |                 | dissolved  | dissolved   | Nitrogen           | dissolved | suspended<br>solids |      |  |
|                | Date           | Date      | μg/L      | μg/L        | μg/L            | μg/L       | μg/L        | μg/L               | mg/L      | μg/L                | mg/L |  |
| In-channel Loc | cations        |           |           |             |                 |            |             |                    |           |                     |      |  |
| C-BNS-D        | 05/21/2014     | 2.5       | 130       | 31.0        | ND (20.0)       | ND (0.50)  | 4.5         | 0.310              | 1.5       | ND (10.0)           |      |  |
| C-CON-S        | 05/22/2014     | 2.4       | 120       | ND (20.0)   | 23.0            | ND (0.50)  | 4.4         | 0.320              | 1.4       | ND (10.0)           |      |  |
| C-CON-D        | 05/22/2014     | 2.4       | 120       | 52.0        | ND (20.0)       | ND (0.50)  | 4.4         | 0.180              | 1.6       | ND (10.0)           |      |  |
| C-I-3-S        | 05/21/2014     | 2.4       | 120       | ND (20.0)   | ND (20.0)       | ND (0.50)  | 4.4         | 0.280              | 1.5       | ND (10.0)           |      |  |
| C-I-3-D        | 05/21/2014     | 2.5       | 120       | 45.0        | ND (20.0)       | ND (0.50)  | 4.5         | 0.300              | 1.5       | ND (10.0)           |      |  |
| C-MAR-S        | 05/21/2014     | 2.1       | 120       | 490         | ND (20.0)       | 35.0       | 4.5         | 0.200              | 1.5       | 62.0                |      |  |
| C-MAR-D        | 05/21/2014     | 2.1       | 120       | 2900        | ND (20.0)       | 33.0       | 4.5         | 0.210              | 1.5       | 70.0                |      |  |
| C-NR1-S        | 05/22/2014     | 2.5       | 120       | ND (20.0)   | ND (20.0)       | ND (0.50)  | 4.6         | 0.270              | 1.4       | ND (10.0)           |      |  |
| C-NR1-D        | 05/22/2014     | 2.4       | 120       | 30.0        | 25.0            | ND (0.50)  | 4.6         | 0.240              | 1.6       | ND (10.0)           |      |  |
| C-NR3-S        | 05/22/2014     | 2.4       | 120       | ND (20.0)   | ND (20.0)       | ND (0.50)  | 4.5         | 0.310              | 1.7       | ND (10.0)           |      |  |
| C-NR3-D        | 05/22/2014     | 2.4       | 120       | 41.0        | 30.0            | ND (0.50)  | 4.4         | 0.220              | 1.4       | ND (10.0)           |      |  |
| C-NR4-S        | 05/22/2014     | 2.4       | 120       | ND (20.0)   | ND (20.0)       | ND (0.50)  | 4.4         | 0.190              | 1.4       | ND (10.0)           |      |  |
| C-NR4-D        | 05/22/2014     | 2.5       | 120       | ND (20.0)   | 24.0            | ND (0.50)  | 4.4         | 0.260              | 1.5       | ND (10.0)           |      |  |
| C-R22a-S       | 05/21/2014     | 2.4       | 110       | 37.0        | ND (20.0)       | ND (0.50)  | 4.3         | 0.290              | 1.3       | ND (10.0)           |      |  |
| C-R22a-D       | 05/21/2014     | 2.4       | 120       | 26.0        | ND (20.0)       | ND (0.50)  | 4.3         | 0.220              | 1.5       | ND (10.0)           |      |  |
| C-R27-S        | 05/21/2014     | 2.5       | 120       | 27.0        | 21.0            | ND (0.50)  | 4.5         | 0.230              | 1.5       | ND (10.0)           |      |  |
| C-R27-D        | 05/21/2014     | 2.3       | 110       | 53.0        | 23.0            | ND (0.50)  | 4.4         | 0.470              | 1.5       | ND (10.0)           |      |  |
| C-TAZ-S        | 05/21/2014     | 2.4       | 120       | 660         | ND (20.0)       | ND (0.50)  | 4.5         | 0.250              | 1.4       | ND (10.0)           |      |  |
| C-TAZ-D        | 05/21/2014     | 2.3       | 110       | 25.0        | ND (20.0)       | ND (0.50)  | 4.4         | 0.240              | 1.4       | ND (10.0)           |      |  |
| Shoreline Sam  | ıples          |           |           |             |                 |            |             |                    |           |                     |      |  |
| R-19           | 05/22/2014     | 2.3       | 120       | 23.0        | ND (20.0)       | ND (0.50)  | 4.4         | 0.220              | 1.4       | ND (10.0)           |      |  |
| R-28           | 05/22/2014     | 2.4       | 120       | 27.0        | ND (20.0)       | ND (0.50)  | 4.7         | 0.270              | 1.5       | ND (10.0)           |      |  |
| R63            | 05/21/2014     | 2.4       | 120       | 68.0        | ND (20.0)       | ND (0.50)  | 4.3         | 0.270              | 1.4       | ND (10.0)           |      |  |
| RRB            | 05/22/2014     | 2.2       | 120       | 400         | ND (20.0)       | 7.3        | 4.4         | 0.490              | 1.3       | 18.0                |      |  |

#### Notes:

COPC = contaminants of potential concern (molybdenum, selenium, and nitrate).

mg/L = milligrams per liter.

ND = not detected at listed reporting limit.

PG&E Topock Compressor Station, Needles, California

TSS = total suspended solids.

μg/L = micrograms per liter.

USEPA = United States Environmental Protection Agency.

Geochemical indicator parameters (TSS and alkalinity). In situ byproducts (arsenic, iron and manganese).

USEPA Methods: Alkalinity - SM2320B. Metals - SW6010B/SW6020A. Nitrate - USEPA 300.0. Total Suspended Solids - SM2540D.

TABLE 4-1
Pumping Rate and Extracted Volume for IM System, Second Quarter 2014
Second Quarter 2014 Interim Measure Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                       | April 2014                                    |                           | May 2014                                      |                           | June 2014                                     |                           | Second Quarter 2014                           |                           |
|-----------------------|-----------------------------------------------|---------------------------|-----------------------------------------------|---------------------------|-----------------------------------------------|---------------------------|-----------------------------------------------|---------------------------|
| Extraction<br>Well ID | Average Pumping<br>Rate <sup>a</sup><br>(gpm) | Volume<br>Pumped<br>(gal) |
| TW-02S                | 0.00                                          | 0                         | 0.00                                          | 0                         | 0.00                                          | 0                         | 0.00                                          | 0                         |
| TW-02D                | 2.93                                          | 126,759                   | 0.00                                          | 0                         | 2.15                                          | 92,891                    | 1.69                                          | 219,650                   |
| TW-03D                | 92.63                                         | 4,001,723                 | 105.91                                        | 4,728,042                 | 90.98                                         | 3,930,353                 | 96.51                                         | 12,660,117                |
| PE-01                 | 22.35                                         | 965,666                   | 28.64                                         | 1,278,543                 | 27.26                                         | 1,177,507                 | 26.08                                         | 3,421,715                 |
| TOTAL                 | 117.9                                         | 5,094,148                 | 134.6                                         | 6,006,584                 | 120.4                                         | 5,200,751                 | 124.3                                         | 16,301,483                |

Chromium Removed This Quarter (kg) 40.6
Chromium Removed Project to Date (kg) 3610
Chromium Removed This Quarter (lb) 89.5
Chromium Removed Project to Date (lb) 7960

#### Notes:

DTSC = Department of Toxic Substances Control.

gal = gallons.

gpm = gallons per minute.

IM = Interim Measures.

kg = kilograms.

lb = pounds.

Chromium removed includes the period from March 1, 2014 through May 31, 2014. On July 23, 2010 DTSC approved a revised reporting schedule for this report that included a revised IM-3 sample collection period from March 1, 2013 through May 31, 2014.

<sup>&</sup>lt;sup>a</sup> The "Average Pumping Rate" is the overall average during the reporting period, including system downtime, based on flow meter readings.

TABLE 4-2
Analytical Results for Extraction Wells, April 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID | Sample<br>Date | Dissolved<br>Chromium<br>(µg/L) | Hexavalent<br>Chromium<br>(µg/L) | Total Dissolved<br>Solids<br>(mg/L) | рН    |
|---------|----------------|---------------------------------|----------------------------------|-------------------------------------|-------|
| TW-3D   | 01-Apr-13      | 766 LF                          | 836                              | 5,140                               | 7.2 J |
|         | 01-May-13      | 881 LF                          | 746                              | 4,990                               | 7.2 J |
|         | 04-Jun-13      | 847 LF                          | 846                              | 5,030                               | 7.2 J |
|         | 02-Jul-13      | 828 LF                          | 934                              | 4,920                               | 7.5 J |
|         | 06-Aug-13      | 892 LF                          | 816                              | 4,560                               | 7.5 J |
|         | 03-Sep-13      | 832 LF                          | 728                              | 4,630                               | 7.5 J |
|         | 01-Oct-13      | 720 LF                          | 846                              | 5,010                               | 7.5 J |
|         | 05-Nov-13      | 817 LF                          | 816 J                            | 4,990 J                             | 7.7 J |
|         | 03-Dec-13      | 832 LF                          | 934                              | 4,860                               | 7.4 J |
|         | 07-Jan-14      | 761 LF                          | 905                              | 5,140                               | 7.4 J |
|         | 04-Feb-14      | 804 LF                          | 816                              | 5,190                               | 7.6 J |
|         | 04-Mar-14      | 752 LF                          | 816                              | 5,050                               | 7.5 J |
|         | 08-Apr-14      | 772 LF                          | 662                              | 5,210                               | 7.4 J |
|         | 06-May-14      | 742 LF                          | 601                              | 4,820                               | 7.3 J |
|         | 03-Jun-14      | 737 LF                          | 725                              | 4,750                               | 7.4 J |
| PE-1    | 01-Apr-13      | 5.6 LF                          | 5.6                              | 2,780                               | 7.5 J |
|         | 01-May-13      | 5.8 LF                          | 5.0                              | 2,760                               | 7.4 J |
|         | 04-Jun-13      | 5.6 LF                          | 5.1                              | 2,650                               | 7.5 J |
|         | 02-Jul-13      | 5.3 LF                          | 4.7                              | 2,620                               | 7.5 J |
|         | 06-Aug-13      | 5.7 LF                          | 5.0                              | 2,700                               | 7.5 J |
|         | 03-Sep-13      | 5.4 LF                          | 5.1                              | 2,700                               | 7.6 J |
|         | 01-Oct-13      | 5.1 LF                          | 5.2                              | 2,600                               | 7.6 J |
|         | 05-Nov-13      | 5.0 LF                          | 5.2 J                            | 2,580 J                             | 7.7 J |
|         | 03-Dec-13      | 6.0 LF                          | 5.5                              | 2,560                               | 7.5 J |
|         | 07-Jan-14      | 5.6 LF                          | 5.5                              | 2,680                               | 7.4 J |
|         | 04-Feb-14      | 6.0 LF                          | 5.6                              | 2,630                               | 7.6 J |
|         | 04-Mar-14      | 4.8 LF                          | 4.8                              | 2,510                               | 7.5 J |
|         | 08-Apr-14      | 4.2 LF                          | 4.0                              | 2,700                               | 7.5 J |
|         | 06-May-14      | 4.3 LF                          | 3.9                              | 2,680                               | 7.4 J |
|         | 03-Jun-14      | 4.1 LF                          | 3.7                              | 2,610                               | 7.5 J |

#### Notes:

J = concentration or reporting limit estimated by laboratory or data validation.

LF = lab filtered.

mg/L = milligrams per liter.

 $\mu$ g/L = micrograms per liter.

Groundwater samples from active extraction wells are taken at sample taps in Valve Vault 1 on the MW-20 bench.

Dissolved chromium was analyzed by Method SW6020A or USEPA200.8 or USEPA200.7, hexavalent chromium analyzed by Method SM3500-CrB or USEPA218.6, and total dissolved solids were analyzed by Method SM2540C.

TABLE 4-3
Average Hydraulic Gradients Measured at Well Pairs, Second Quarter 2014
Second Quarter 2014 and Annual Interim Measure Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well Pair <sup>a</sup> | Reporting<br>Period | Mean Landward <sup>b</sup><br>Hydraulic Gradient<br>(feet/foot) | Days in <sup>c</sup><br>Monthly<br>Average |  |
|------------------------|---------------------|-----------------------------------------------------------------|--------------------------------------------|--|
|                        | April               | 0.0040                                                          | NA                                         |  |
| Overall Average        | May                 | 0.0065                                                          | NA                                         |  |
|                        | June                | 0.0057                                                          | NA                                         |  |
| Northern Gradient Pair | April               | 0.0024                                                          | 30 / 30                                    |  |
| MW-31-135 / MW-33-150  | May                 | 0.0023                                                          | 31 / 31                                    |  |
|                        | June                | 0.0021                                                          | 30 / 30                                    |  |
| Central Gradient Pair  | April               | 0.0068                                                          | 30 / 30                                    |  |
| MW-45-95 / MW-34-100   | May                 | 0.0128                                                          | 31 / 31                                    |  |
|                        | June                | 0.0110                                                          | 30 / 30                                    |  |
| Southern Gradient Pair | April               | 0.0027                                                          | 30 / 30                                    |  |
| MW-45-95 / MW-27-85    | May                 | 0.0045                                                          | 31 / 31                                    |  |
|                        | June                | 0.0041                                                          | 30 / 30                                    |  |

#### Notes:

NA = All available data used in calculating overall average except where noted.

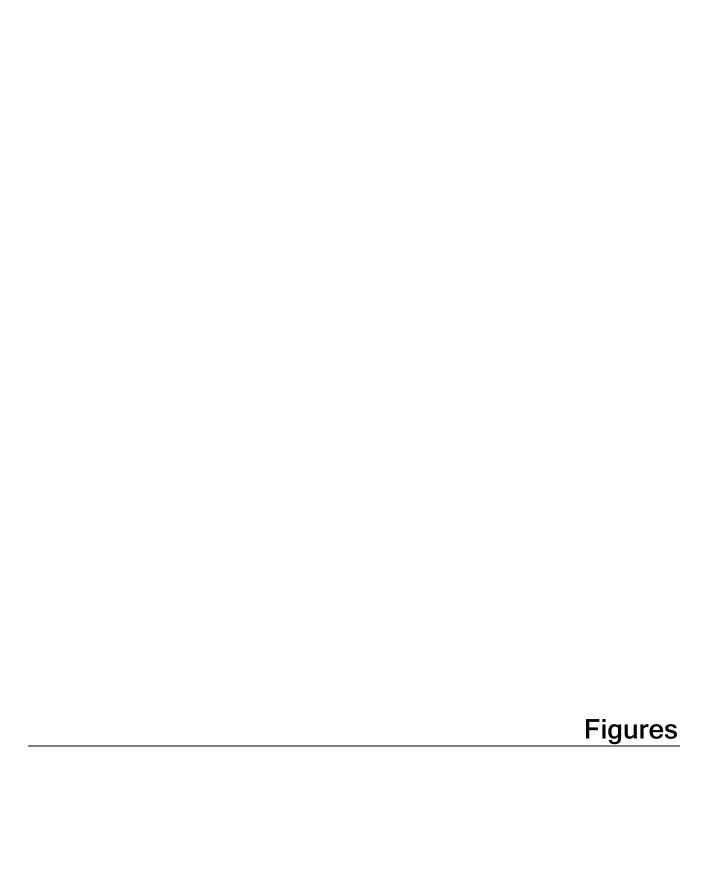
- a Refer to Figure 1-4 for location of well pairs.
- b For IM pumping, the target landward gradient for the selected well pairs is 0.001 feet/foot.
- c Number of days transducers in both wells were operating correctly / total number of days in month.

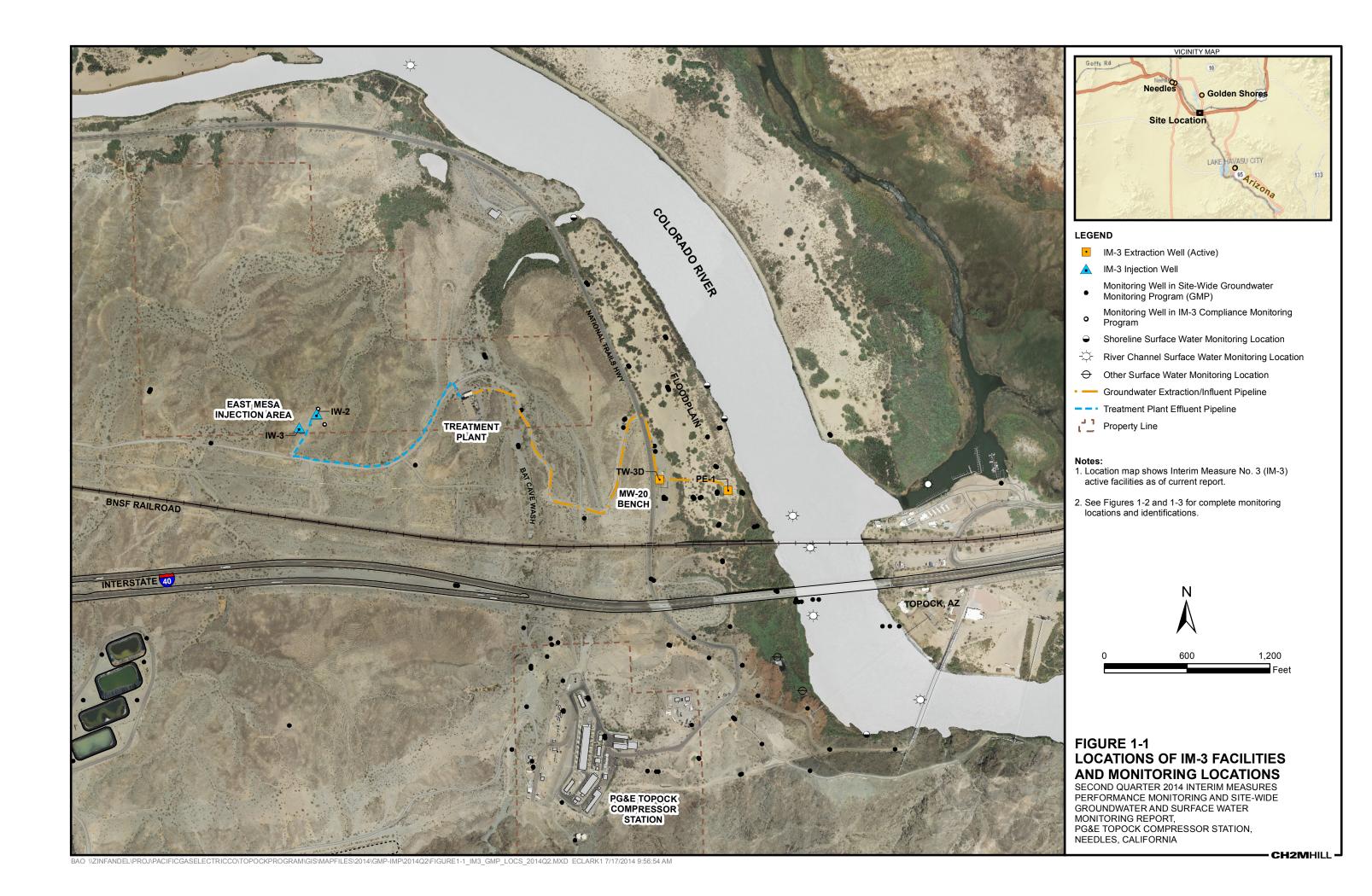
Date Printed: 7/18/2014

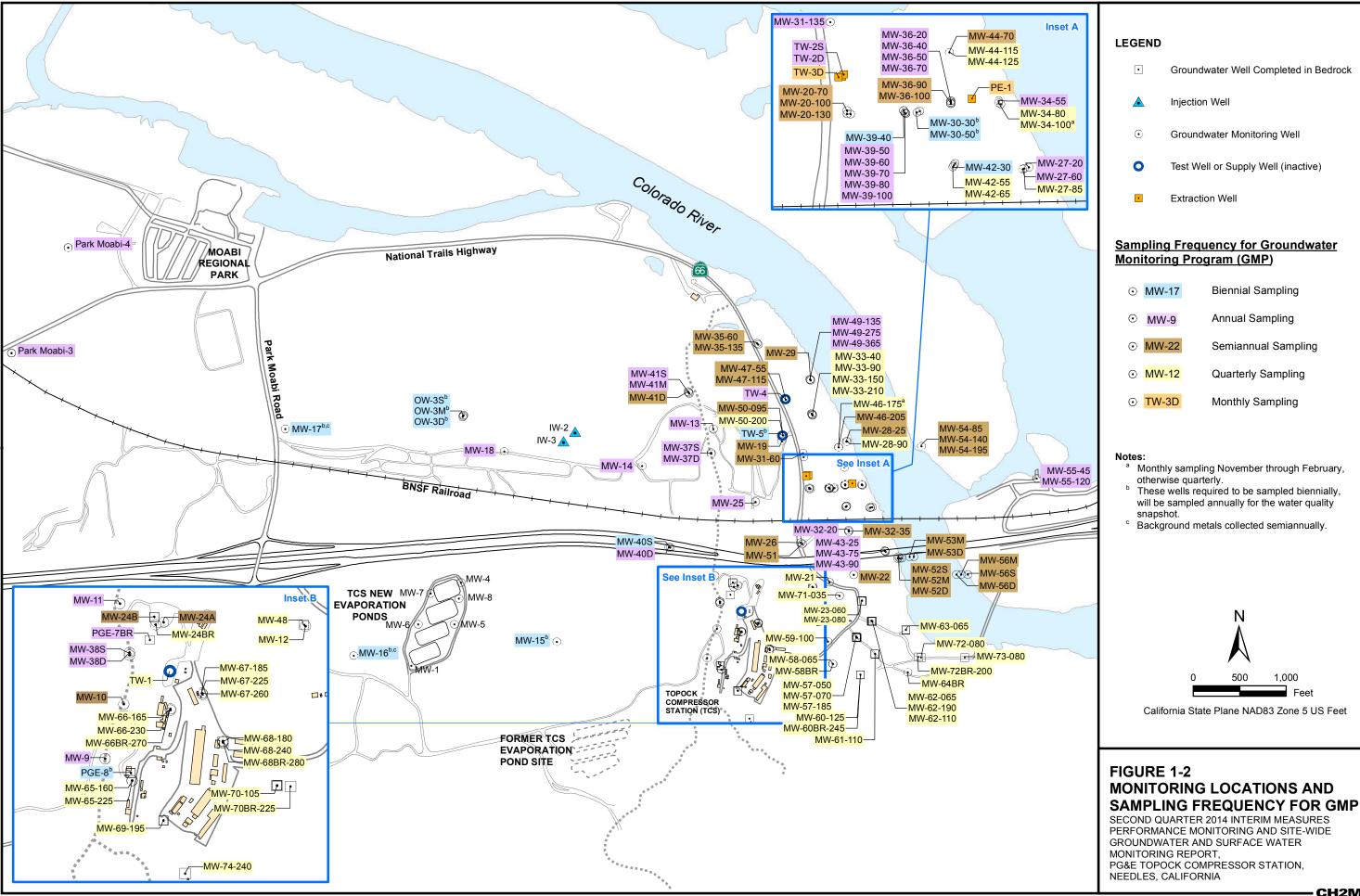
**Table 4-4**Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3
Second Quarter 2014 Interim Measures Performance Monitoring and
Site-wide Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

|                | D               | avis Dam Rele | ease                | Colora              | ado River Eleva     | ation at I-3      |
|----------------|-----------------|---------------|---------------------|---------------------|---------------------|-------------------|
| Month          | Projected (cfs) | Actual (cfs)  | Difference<br>(cfs) | Predicted (ft amsl) | Actual<br>(ft amsl) | Difference (feet) |
| January 2012   | 9,800           | 10,378        | -578                | 453.7               | 453.99              | 0.3               |
| February 2012  | 12,300          | 12,614        | -314                | 454.8               | 455.25              | 0.4               |
| March 2012     | 14,800          | 15,134        | -334                | 455.8               | 455.88              | 0.1               |
| April 2012     | 18,300          | 18,330        | -30                 | 457.1               | 457.33              | 0.2               |
| May 2012       | 15,900          | 15,938        | -38                 | 456.4               | 456.63              | 0.2               |
| June 2012      | 15,900          | 15,996        | -96                 | 456.4               | 456.59              | 0.2               |
| July 2012      | 14,500          | 13,087        | 1,413               | 456.0               | 455.72              | -0.3              |
| August 2012    | 12,200          | 12,104        | 96                  | 455.2               | 455.45              | 0.3               |
| September 2012 | 13,000          | 12,147        | 853                 | 455.2               | 455.31              | 0.1               |
| October 2012   | 8,400           | 9,037         | -637                | 453.6               | 453.95              | 0.3               |
| November 2012  | 8,500           | 8,390         | 110                 | 453.6               | NA                  | NA                |
| December 2012  | 6,300           | 6,427         | -127                | 452.6               | 452.17              | -0.4              |
| January 2013   | 8,300           | 8,299         | 1                   | 453.2               | 453.28              | 0.04              |
| February 2013  | 10,600          | 10,972        | -372                | 454.3               | 454.63              | 0.4               |
| March 2013     | 15,200          | 15,545        | -345                | 456.0               | 456.29              | 0.3               |
| April 2013     | 17,600          | 17,090        | 510                 | 456.9               | 456.74              | -0.1              |
| May 2013       | 15,800          | 15,592        | 208                 | 456.4               | 456.44              | 0.0               |
| June 2013      | 15,700          | 15,588        | 112                 | 456.5               | 456.47              | 0.0               |
| July 2013      | 14,400          | 13,165        | 1,235               | 456.0               | 455.79              | -0.2              |
| August 2013    | 13,100          | 12,185        | 915                 | 455.4               | 455.43              | 0.0               |
| September 2013 | 11,700          | 11,446        | 254                 | 454.8               | 455.02              | 0.2               |
| October 2013   | 12,300          | 12,497        | -197                | 454.9               | 455.09              | 0.2               |
| November 2013  | 9,700           | 8,918         | 782                 | 454.0               | 453.98              | 0.0               |
| December 2013  | 6,400           | 7,636         | -1,236              | 452.4               | 452.81              | 0.4               |
| January 2014   | 8,300           | 8,970         | -670                | 452.8               | 453.27              | 0.5               |
| February 2014  | 11,600          | 11,850        | -250                | 454.3               | 454.67              | 0.3               |
| March 2014     | 16,600          | 17,473        | -873                | 456.4               | 456.70              | 0.3               |
| April 2014     | 18,200          | 17,718        | 482                 | 457.1               | 457.08              | 0.0               |
| May 2014       | 16,700          | 16,622        | 78                  | 456.8               | 456.68              | -0.1              |
| June 2014      | 15,900          | 15,917        | -17                 | 456.6               | 456.64              | 0.1               |
| July 2014      | 15,100          |               |                     | 456.3               |                     |                   |

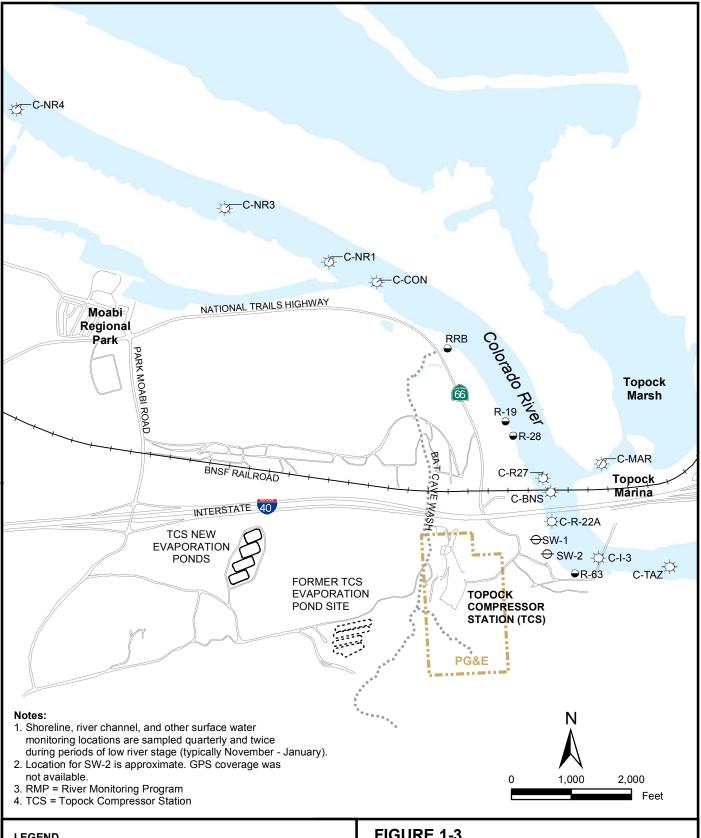
#### NOTES


cfs = cubic feet per second; ft amsl = feet above mean sea level.


NA = Data unavailable during this time period.


Projected river level for each month in the past is calculated based on the preceding months United State Bureau of Reclamation (USBR) projections of Davis Dam release and stage in Lake Havasu. Future projections of river level at I-3 are based upon July 2014 USBR projections. These data are reported monthly by the US Department of Interior, at http://www.usbr.gov/lc/region/g4000/24mo.pdf.

The difference in I-3 elevation is the difference between the I-3 elevation predicted and the actual elevation measured at I-3. The source of this difference is differences between BOR projections and actual dam releases/Havasu reservoir levels, rather than the multiple regression error.

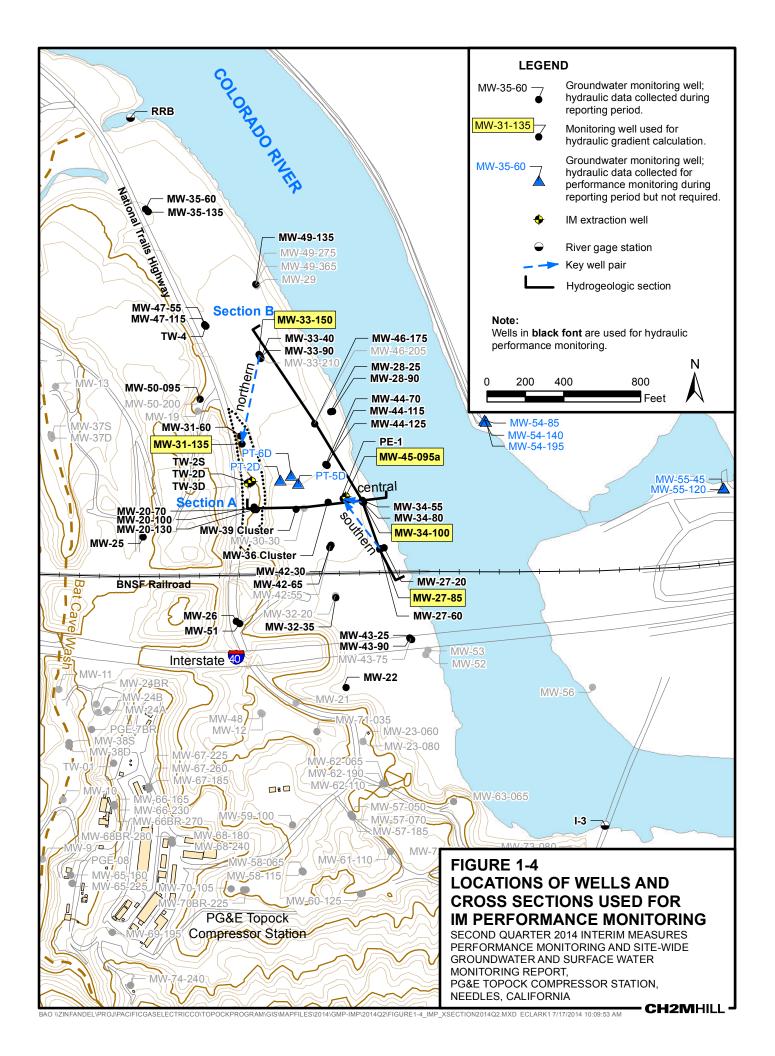

For data prior to 2012, please see Fourth Quarter 2013 and Annual Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California (CH2MHILL, 2014a).

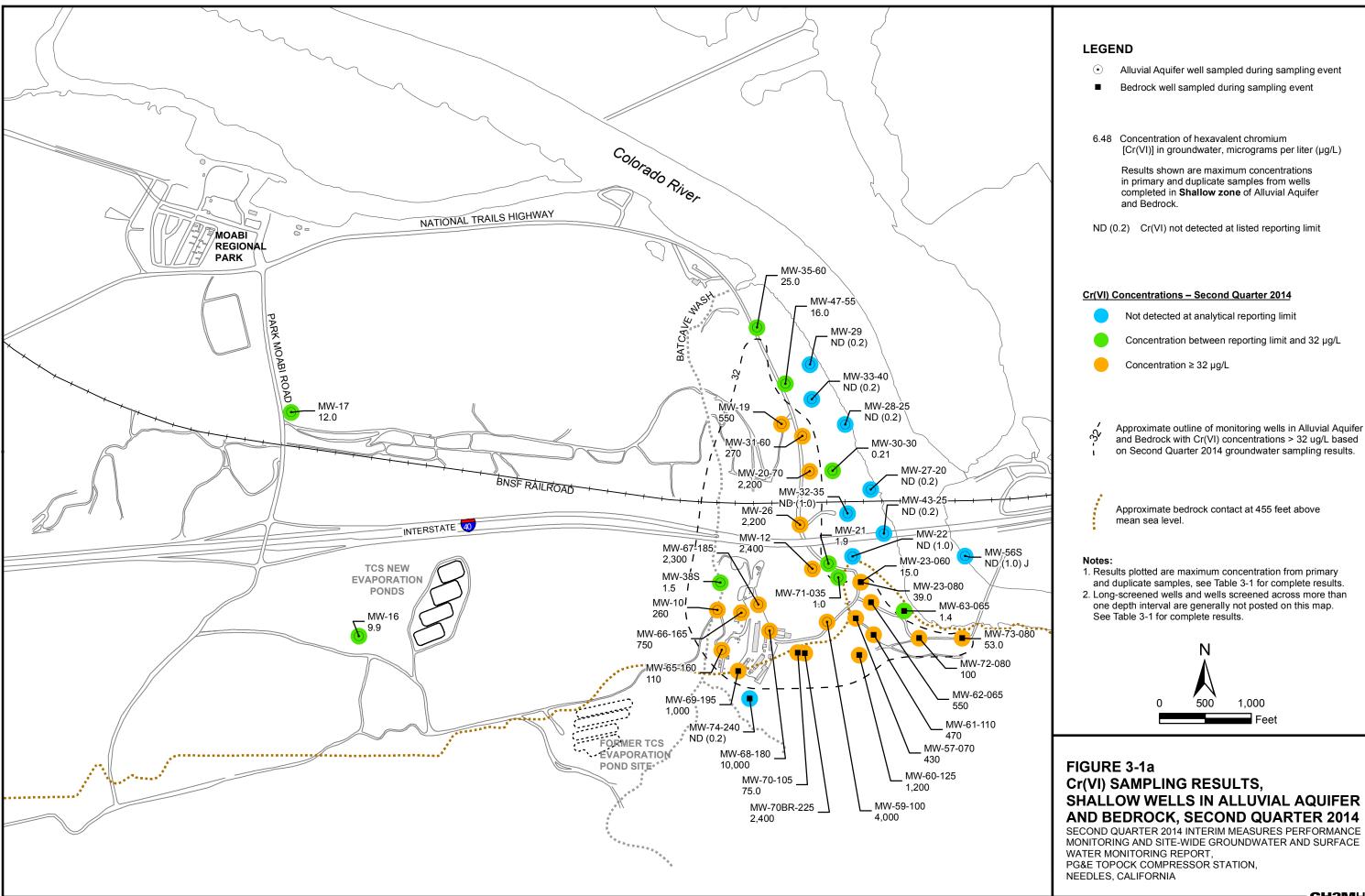




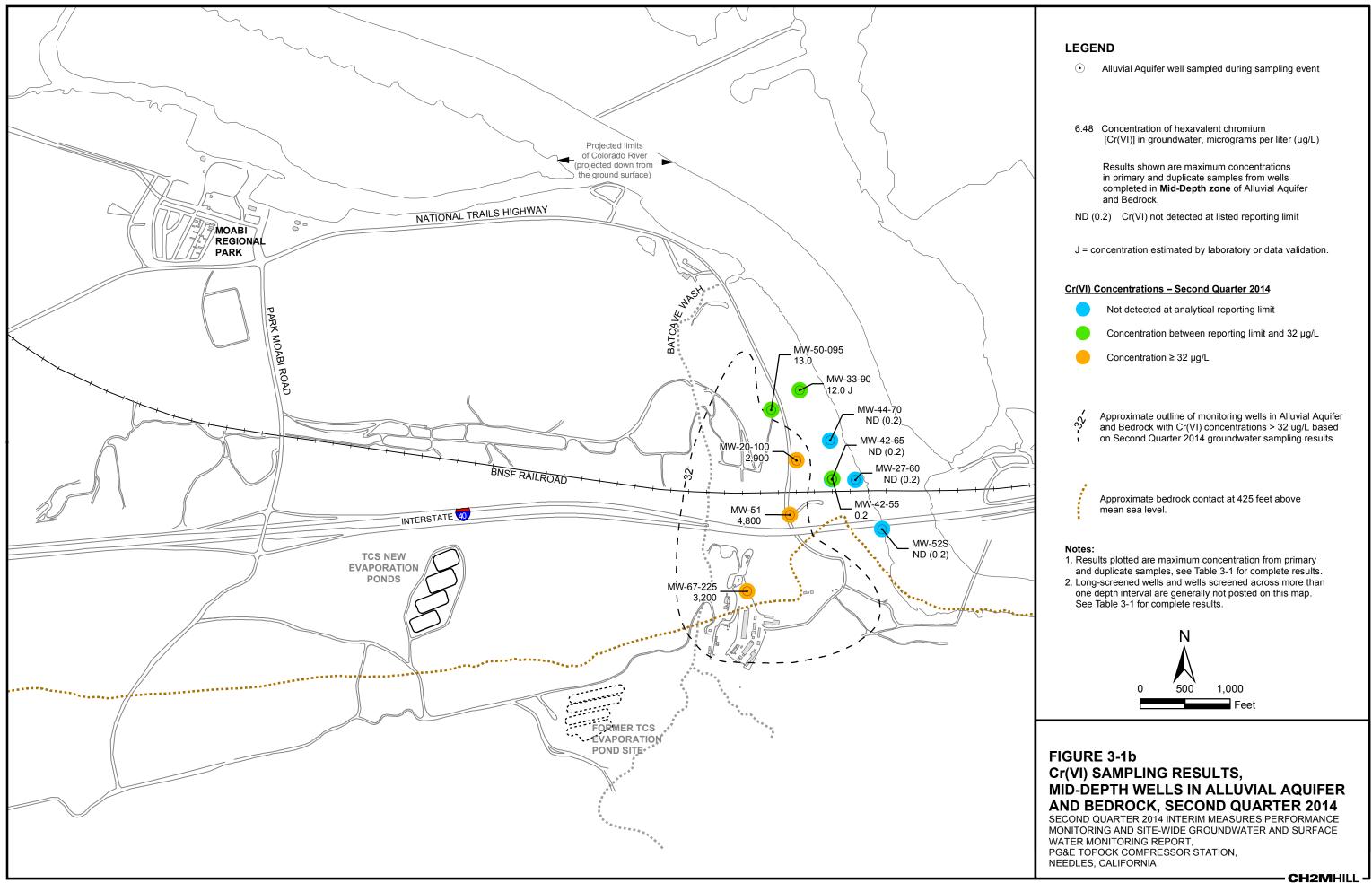


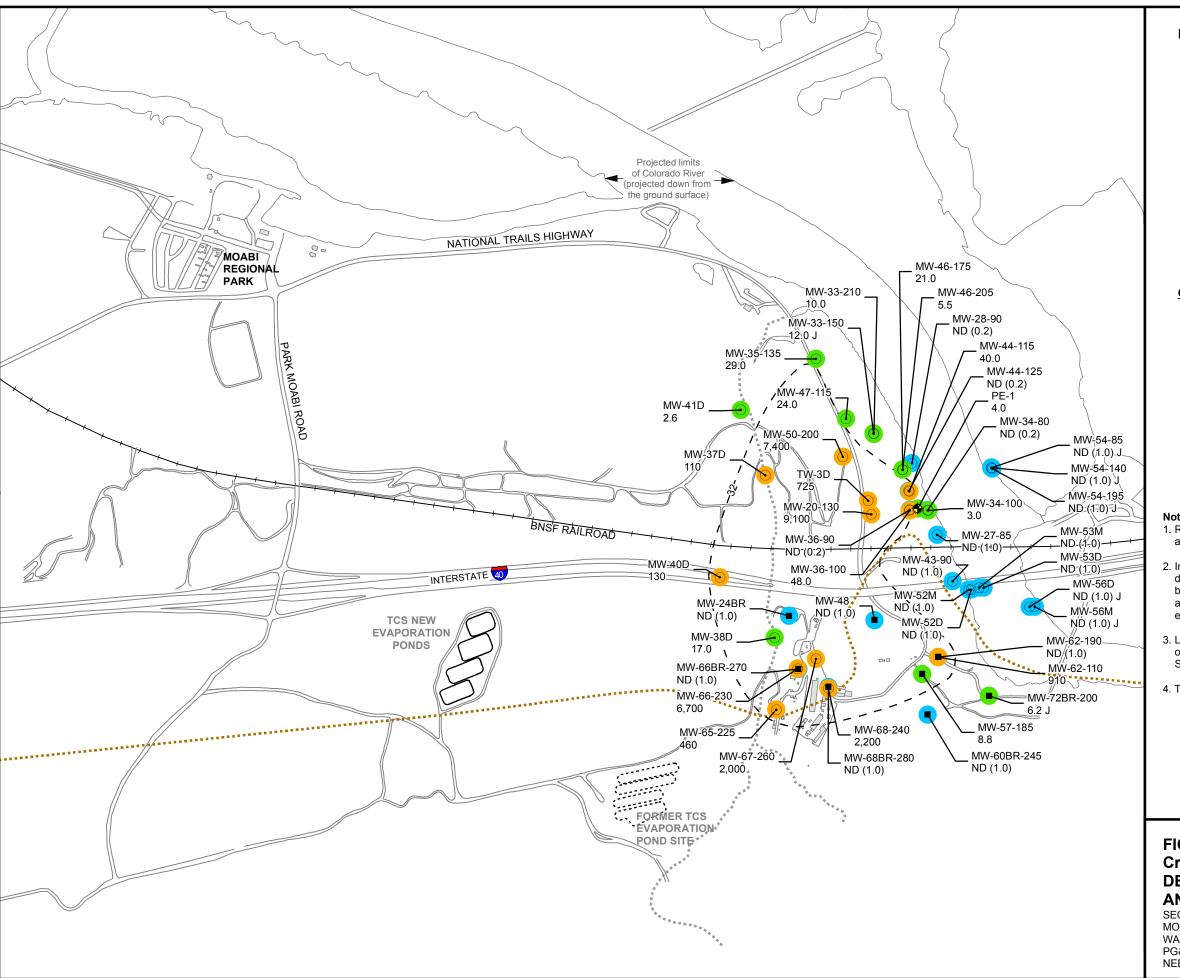
CH2MHILL





#### **LEGEND**

- Shoreline Surface Water Monitoring Location
- River Channel Surface Water Monitoring Location
- Other Surface Water Monitoring Location


## FIGURE 1-3 MONITORING LOCATIONS AND SAMPLING FREQUENCY FOR RMP


SECOND QUARTER 2014 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA AO (\ZINFANDEL\PROJPACIFICGASELECTRICCO\TOPOCKPROGRAM\GIS\MAPFILES\2014\GMP-IMP\2014QZIFIGURE1-3\_GMP\_RIVER\_SWLOCS\_2014Q2.MXD\_ECLARK1 7/17/2014 10:01:29 AMCH2MHILL





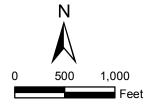
CH2MHILL





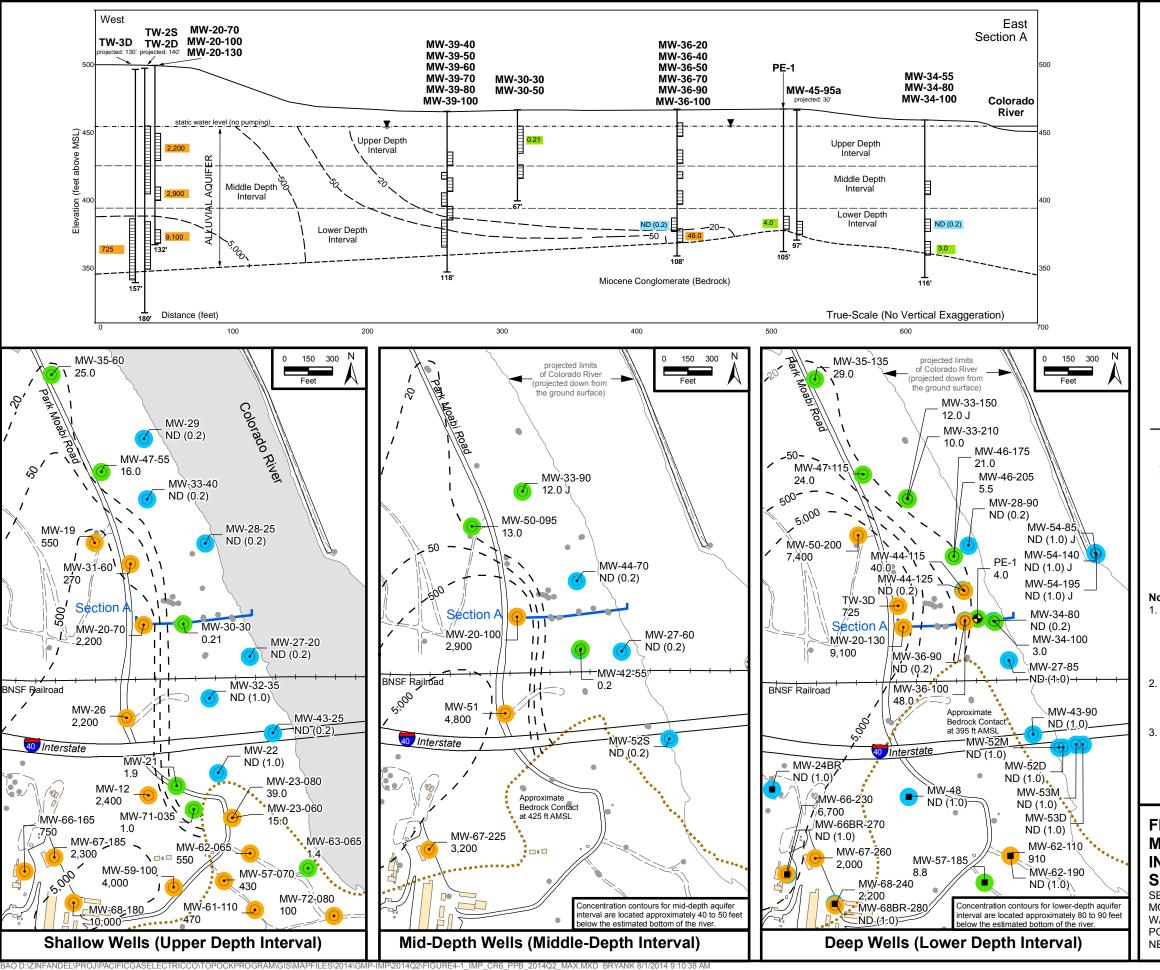
#### **LEGEND**

- Alluvial Aquifer well sampled during sampling event
- Bedrock well sampled during sampling event
- Extraction well sampled during sampling event
- 6.48 Concentration of hexavalent chromium [Cr(VI)] in groundwater, micrograms per liter (µg/L) Results shown are maximum concentrations in primary and duplicate samples from wells completed in **Deep zone** of Alluvial Aquifer and Bedrock


ND (0.2) Cr(VI) not detected at listed reporting limit

J = concentration estimated by laboratory or data validation.

#### Cr(VI) Concentrations - Second Quarter 2014


- Not detected at analytical reporting limit
- Concentration between reporting limit and 32 µg/L
- Concentration ≥ 32 µg/L
  - Approximate outline of monitoring wells in Alluvial Aquifer and Bedrock with Cr(VI) concentrations > 32 ug/L based on Second Quarter 2014 groundwater sampling results.
  - Approximate bedrock contact at 395 feet above mean sea level.

- 1. Results plotted are maximum concentration from primary and duplicate samples, see Table 3-1 for complete results.
- 2. In the floodplain area, the 32µg/L line for Cr(VI) in deep zone (80-90 feet below Colorado River) is estimated based on available groundwater sampling, hydrogeologic and geochemical data. There are no data confirming the existence of Cr(VI) under the Colorado River.
- 3. Long-screened wells and wells screened across more than one depth interval are generally not posted on this map. See Table 3-1 for complete results.
- 4. TCS Topock Compressor Station



## FIGURE 3-1c Cr(VI) SAMPLING RESULTS, **DEEP WELLS IN ALLUVIAL AQUIFER AND BEDROCK, SECOND QUARTER 2014**

SECOND QUARTER 2014 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION. NEEDLES, CALIFORNIA



#### **LEGEND**

- Alluvial Aquifer well sampled during sampling event
- Bedrock well sampled during sampling event
- Extraction well sampled during sampling event
- Well not sampled during sampling event
- 6.48 Concentration of hexavalent chromium [Cr(VI)] in groundwater, micrograms per liter (µg/L). Results posted are maximum Cr(VI) concentrations.

ND (0.2) Cr(VI) not detected at listed reporting limit

J = concentration or reporting limit (RL) estimated by laboratory or data validation.

#### Cr(VI) Concentrations - Second Quarter 2014

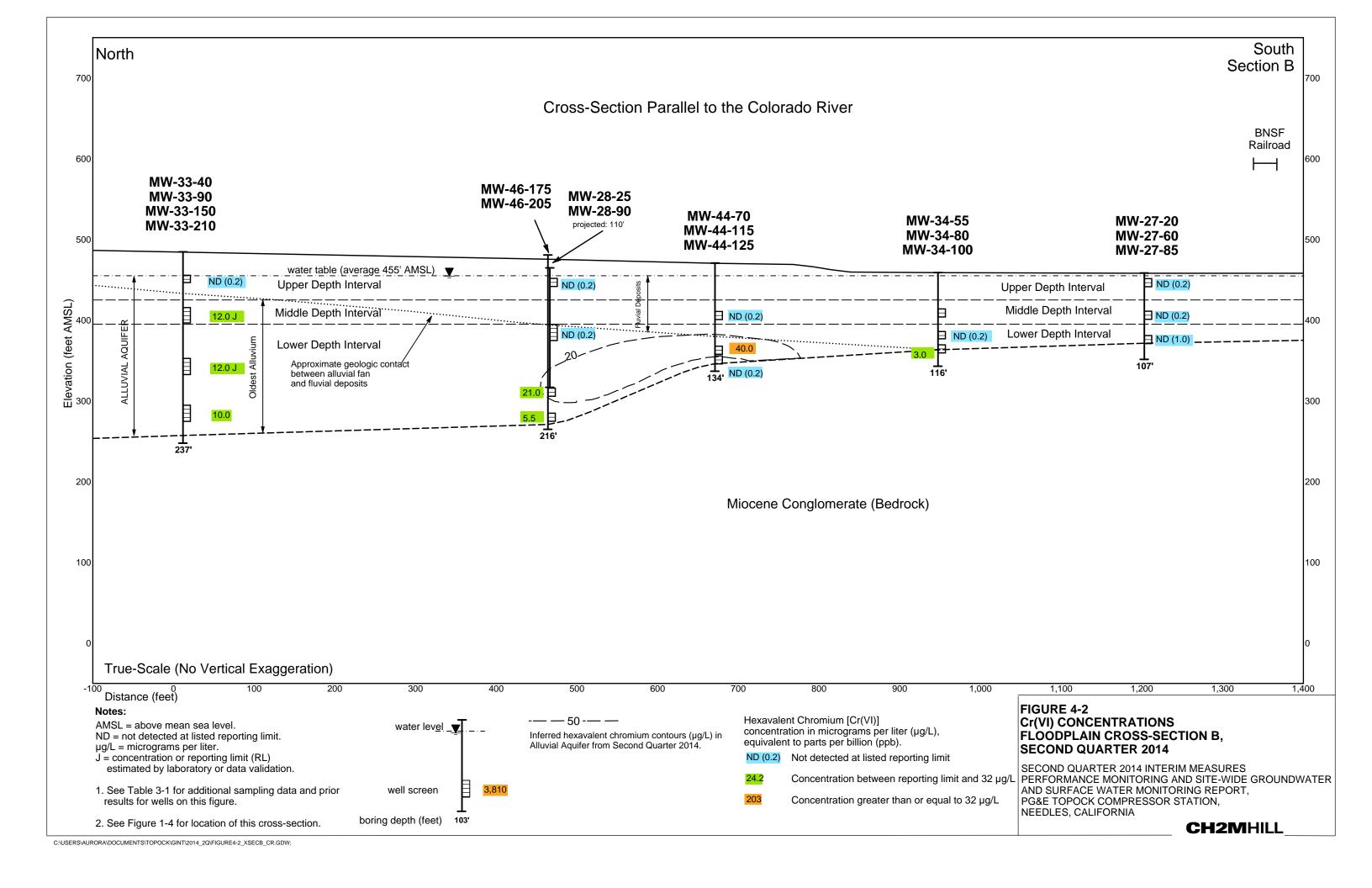
Not detected at analytical reporting limit

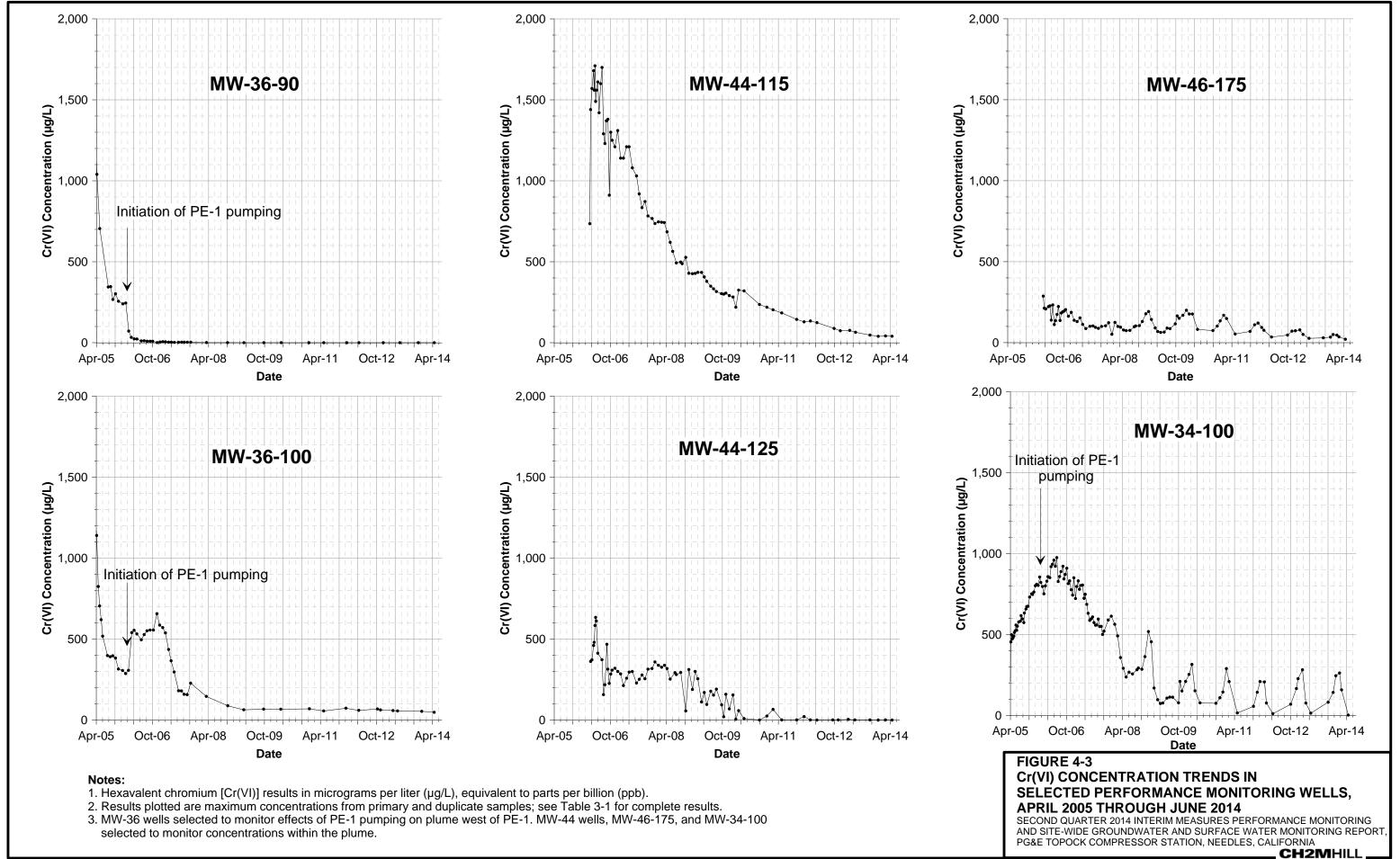
Concentration between reporting limit and 32 µg/L

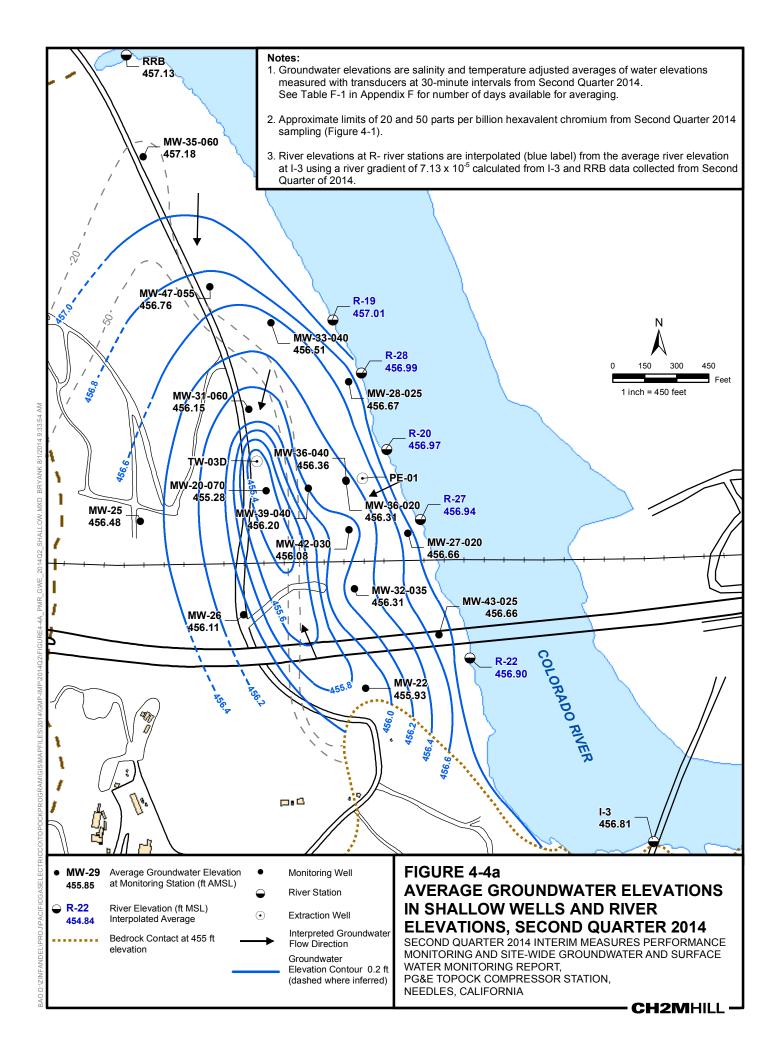
Concentration ≥ 32 µg/L

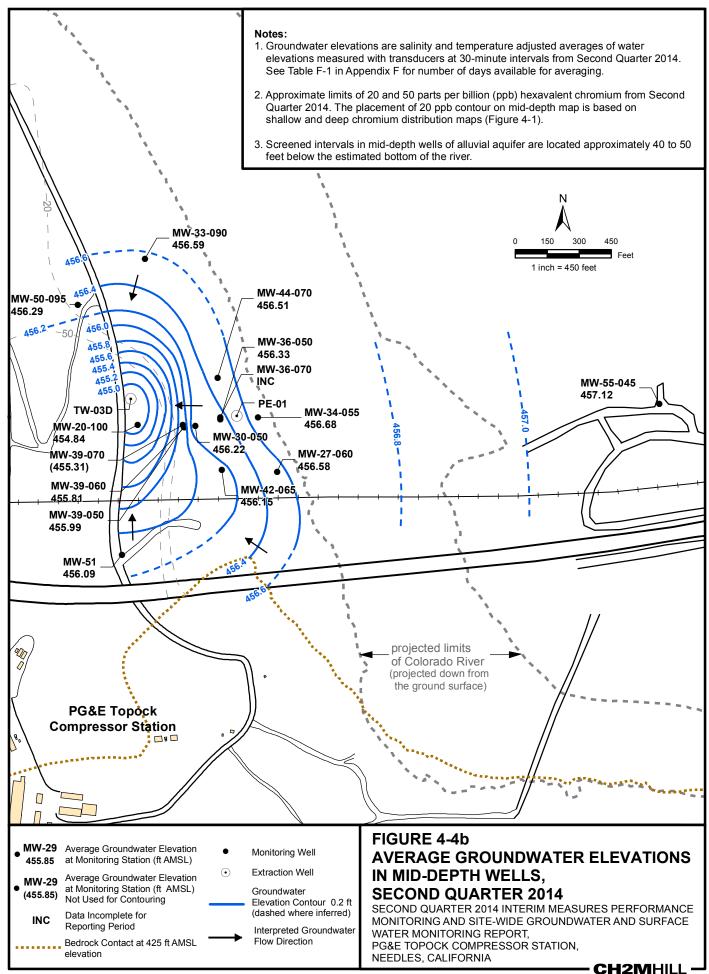
Inferred Cr(VI) concentration contour within the -50 — - Alluvial Aquifer depth interval based on Second Quarter 2014 groundwater sampling results.

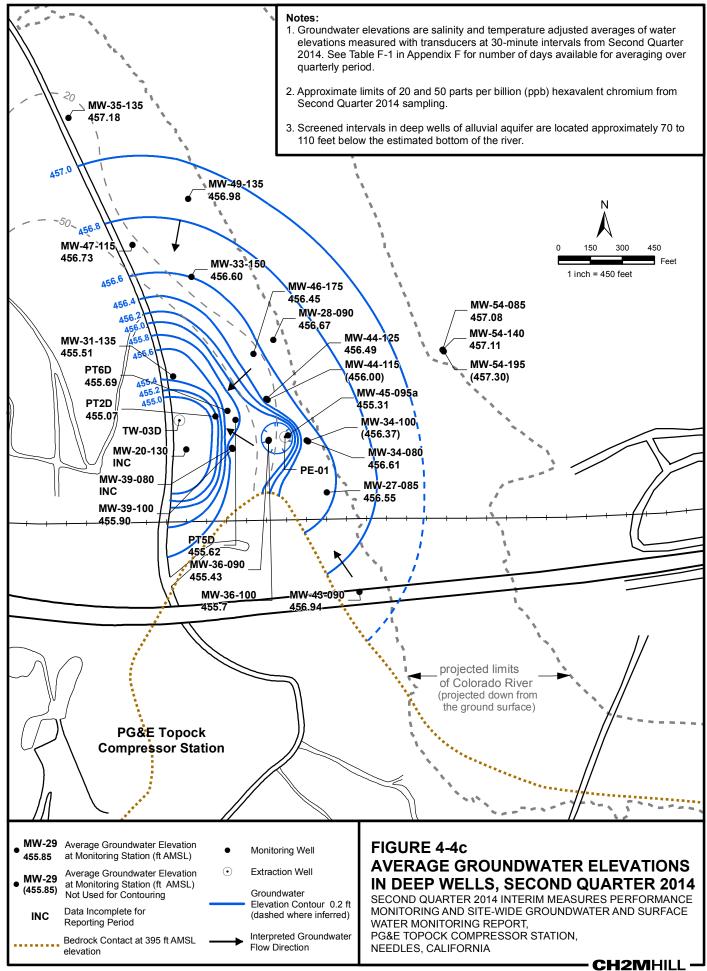
Hydrogeologic Section A

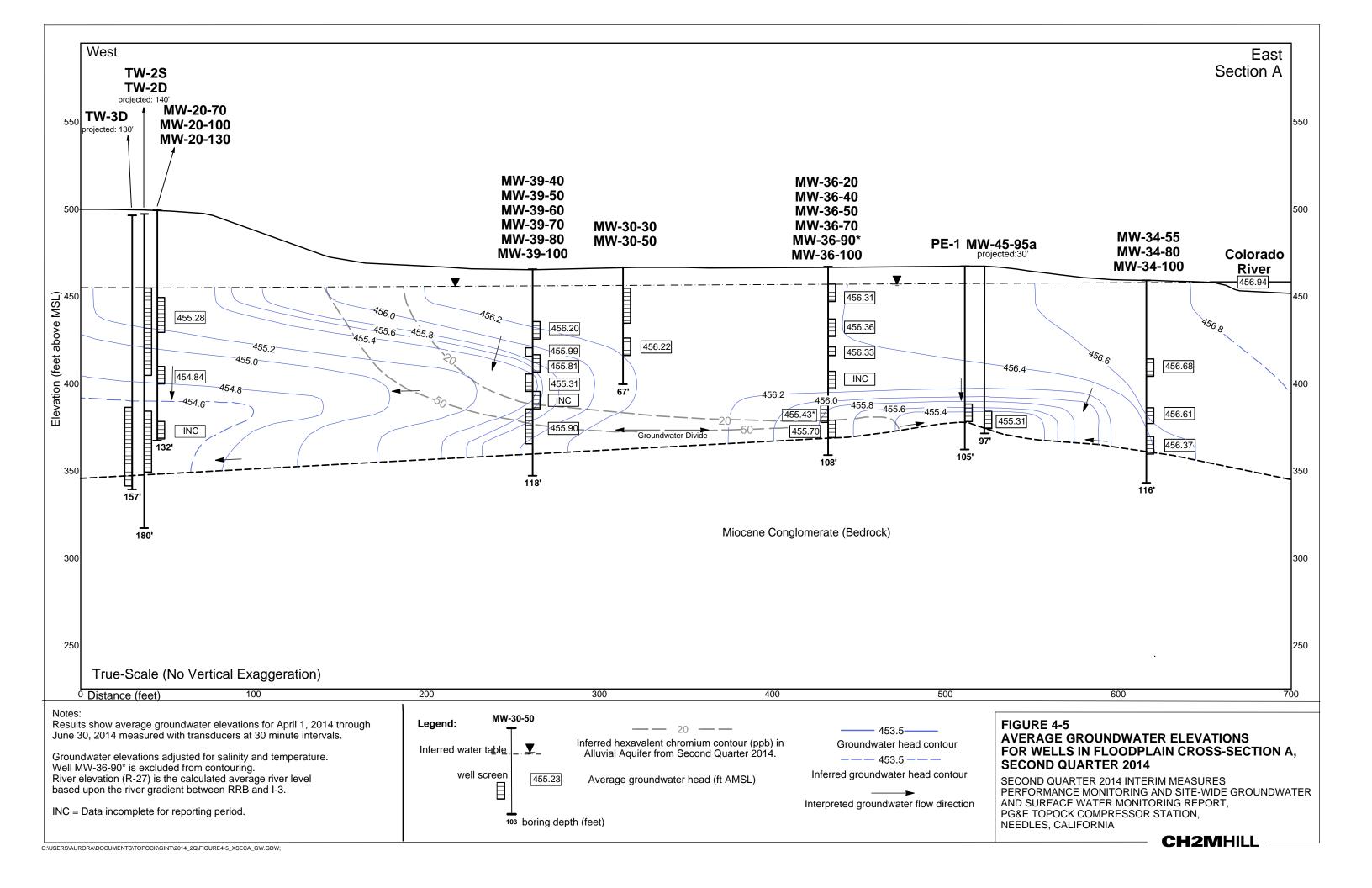

Approximate bedrock contact

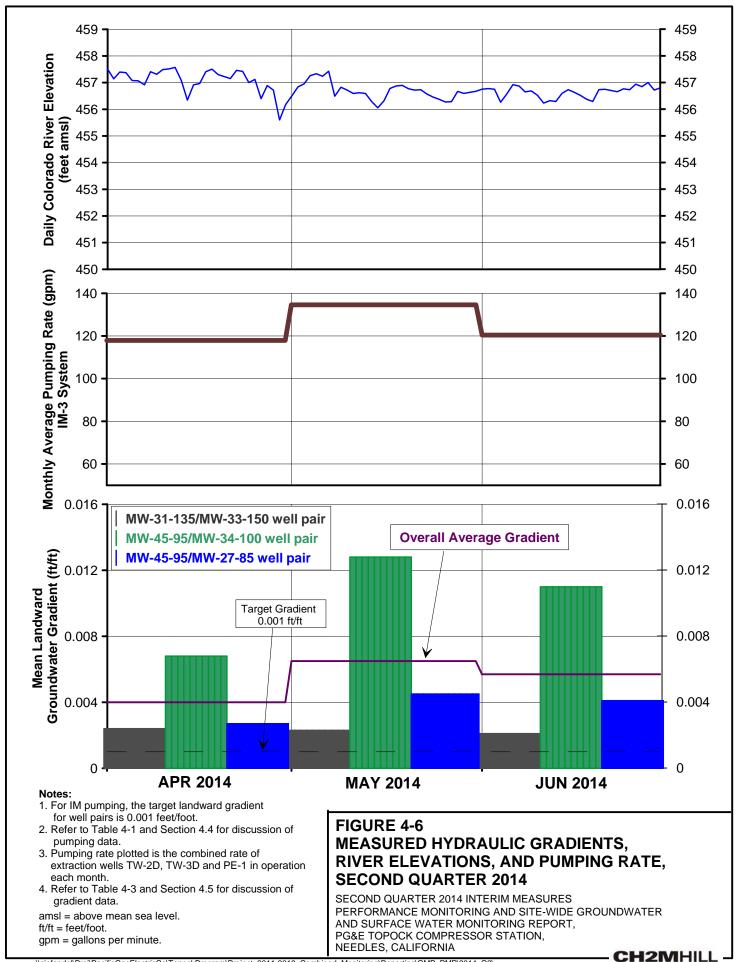

- 1. The Cr(VI) concentration contours of 20 and 50 µg/L are shown in accordance with DTSC's 2005 IM performance monitoring directive. The IM performance standard was established for containment of Cr(VI) concentrations greater than 20 ug/L in the floodplain portion of the Alluvial Aguifer.
- 2. Extraction wells PE-01, TW-2S, TW-2D, and TW-3D are not included in contouring. These wells draw water from a larger area and do not represent Cr(VI) concentrations at their specific locations.
- 3. Long-screened wells and wells screened across more than one depth interval are generally not posted on this map. See Table 3-1 for complete results.

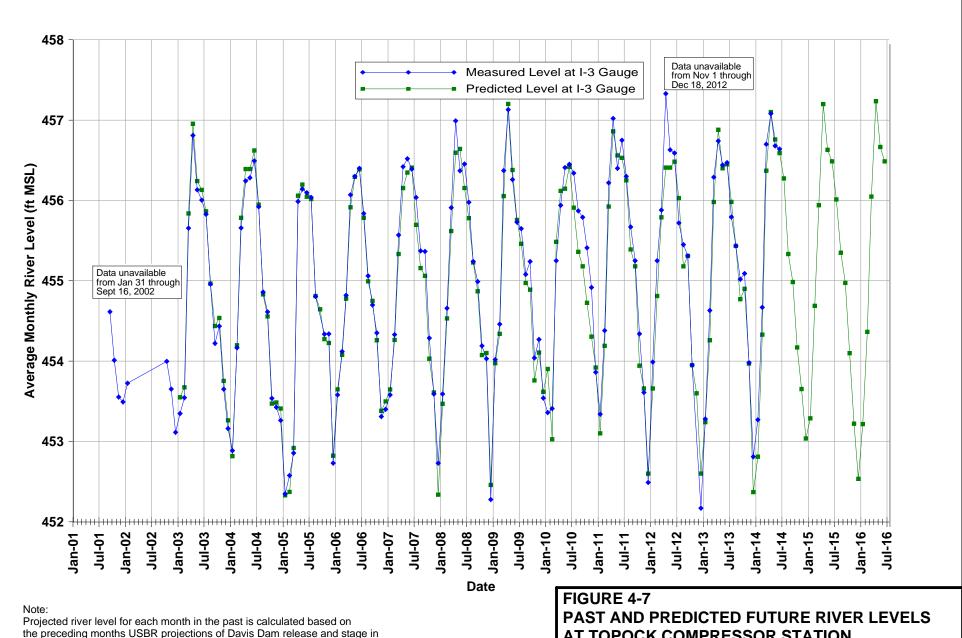

#### FIGURE 4-1 MAXIMUM Cr(VI) CONCENTRATIONS IN ALLUVIAL AQUIFER AND BEDROCK, **SECOND QUARTER 2014**


SECOND QUARTER 2014 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION,


NEEDLES, CALIFORNIA














the preceding months USBR projections of Davis Dam release and stage in Lake Havasu. Future projections of river level at I-3 are based upon July 2014 USBR projections. These data are reported monthly by the US Department of Interior, at http://www.usbr.gov/lc/region/g4000/24mo.pdf

## AT TOPOCK COMPRESSOR STATION

SECOND QUARTER 2014 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA

**CH2MHILL** 

Appendix A Well Inspection and Maintenance Log, Second Quarter 2014

Table A-1 Well Inspection Log, Second Quarter 2014

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

| PG&E TOPOCK CON  | inpressor statio   | ni, iveedies,                       | Canjornia                                |         |                                             | Well |       |                                  |        |   |          |                                           |        |                         |                                                                                                                                         |                  |                               |                             |
|------------------|--------------------|-------------------------------------|------------------------------------------|---------|---------------------------------------------|------|-------|----------------------------------|--------|---|----------|-------------------------------------------|--------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|-----------------------------|
| Well/ Piezometer | Inspection<br>Date | Survey<br>Mark<br>Present?<br>(Y/N) | Standing<br>or Ponded<br>Water?<br>(Y/N) | Lock in | Evidence of<br>Well<br>Subsidence?<br>(Y/N) |      | Poles | Concrete<br>Pad Intact?<br>(Y/N) | Around | _ | Present? | Standing<br>Water in<br>Annulus?<br>(Y/N) | Casing | Photo on file?<br>(Y/N) | Notes                                                                                                                                   | Required Actions | Action<br>Completed?<br>(Y/N) | Action<br>Completed<br>Date |
| CW-1D            | 06/05/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Y      | NA                      |                                                                                                                                         |                  |                               |                             |
| CW-1M            | 06/05/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| CW-2D            | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| CW-2M            | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| CW-3D            | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| CW-3M            | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| CW-4D            | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Y                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| CW-4M            | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-01            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-03            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-04            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-05            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-06            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-07            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-08            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Y                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-09            | 05/28/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | y a   | Υ                                | N      | Υ | Υ        | N                                         | Υ      |                         | One traffic pole is bent over. Recompletion with flood-<br>resistant surface monument is scheduled for mid-July; will<br>need resurvey. |                  |                               |                             |
| MW-10            | 05/28/14           | N*                                  | N                                        | Υ       | N                                           | Υ    | Υ     | Y                                | N      | Υ | Υ        | N                                         | Υ      |                         | Recompletion with flood-resistant surface monument is scheduled for mid-July; will need resurvey.                                       |                  |                               |                             |
| MW-11            | 05/28/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-12            | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | а                                | a<br>N | Υ | Υ        | N                                         | Υ      | NA                      | Pad buried by soil deposition. No change.                                                                                               |                  |                               |                             |
| MW-13            | 06/17/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-14            | 06/17/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         |                  |                               |                             |
| MW-15            | 05/27/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                                | N      | Υ | Υ        | N                                         | Υ      | NA                      |                                                                                                                                         | -                |                               |                             |

Date Printed: 8/15/2014

Table A-1 Well Inspection Log, Second Quarter 2014

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

| FG&L TOPOCK COIL       |                    | on, recures,                        | Canjorma                                 |         |                                             | Well |       |                            |    |   |            |                                           |        |                         |                        |                  |                               |                             |
|------------------------|--------------------|-------------------------------------|------------------------------------------|---------|---------------------------------------------|------|-------|----------------------------|----|---|------------|-------------------------------------------|--------|-------------------------|------------------------|------------------|-------------------------------|-----------------------------|
| Well/ Piezometer       | Inspection<br>Date | Survey<br>Mark<br>Present?<br>(Y/N) | Standing<br>or Ponded<br>Water?<br>(Y/N) | Lock in | Evidence of<br>Well<br>Subsidence?<br>(Y/N) |      | Poles | Concrete Pad Intact? (Y/N) |    | _ | -          | Standing<br>Water in<br>Annulus?<br>(Y/N) | Casing | Photo on file?<br>(Y/N) | Notes                  | Required Actions | Action<br>Completed?<br>(Y/N) | Action<br>Completed<br>Date |
| Welly Plezoffleter     |                    | (1714)<br>Y                         | N N                                      | Υ       | N N                                         | γ    | Υ     | γ                          | N  | Y | (17N)<br>Y | N                                         | Υ      | NA                      | Notes                  | Required Actions | (1714)                        | Date                        |
| MW-16                  | 05/27/14           | '                                   | 14                                       | '       |                                             | '    |       | '                          | 14 |   | '          | IN .                                      | '      | IVA                     |                        |                  |                               |                             |
| MW-17                  | 05/27/14           | Y                                   | N                                        | Υ       | N                                           | Υ    | Y     | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-18                  | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-19                  | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-20-070              | 06/16/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-20-100              | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-20-130              | 06/16/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-21                  | 06/16/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-22                  | 06/05/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-23-060<br>MW-23-080 | 06/16/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-24 BR               | 05/28/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-24A                 | 05/28/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               | _                           |
| MW-24B                 | 05/28/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-25                  | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-26                  | 06/16/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-27-020              | 06/03/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-27-060              | 06/03/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-27-085              | 06/03/14           | Y                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-28-025              | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-28-090              | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |
| MW-29                  | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Y      | NA                      |                        |                  |                               |                             |
| MW-30-030              | 06/03/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N* | Υ | Y          | N                                         | Y      | NA                      | Sand deposited on pad. |                  |                               |                             |
| MW-30-050              | 06/03/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N  | Υ | Υ          | N                                         | Υ      | NA                      |                        |                  |                               |                             |

Date Printed: 8/15/2014

Table A-1
Well Inspection Log, Second Quarter 2014

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

| T GUL TOPOCK COM       | Inspection | Survey<br>Mark<br>Present? | Standing<br>or Ponded<br>Water? | Lock in Place? | Well<br>Subsidence? | Casing or Pad? | Poles<br>Intact? | Concrete Pad Intact? | Wellhead? | Intact? | Present? |       | Casing Intact? | Photo on file? |                             |                  | Action<br>Completed? | Action<br>Completed |
|------------------------|------------|----------------------------|---------------------------------|----------------|---------------------|----------------|------------------|----------------------|-----------|---------|----------|-------|----------------|----------------|-----------------------------|------------------|----------------------|---------------------|
| Well/ Piezometer       | Date       | (Y/N)                      | (Y/N)                           | (Y/N)          | (Y/N)               | (Y/N)          | (Y/N)            | (Y/N)                | (Y/N)     | (Y/N)   | (Y/N)    | (Y/N) | (Y/N)          | (Y/N)          | Notes                       | Required Actions | (Y/N)                | Date                |
| MW-31-060              | 06/16/14   | Y                          | N                               | Y              | N                   | Y              | NA               | Y                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-31-135              | 06/16/14   | Y                          | N                               | Υ              | N                   | Y              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-32-020              | 06/05/14   | Υ                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-32-035              | 06/05/14   | Y                          | N                               | Y              | N                   | Y              | NA               | Y                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-33-150              | 06/16/14   | Y                          | N                               | Υ              | N                   | Y              | NA               | Y                    | N         | Y       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-33-210              | 06/16/14   | Y                          | N                               | Υ              | N                   | Y              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-33-40               | 06/16/14   | Υ                          | N                               | Y              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-33-90               | 06/16/14   | Υ                          | N                               | Y              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-34-055              | 06/03/14   | Υ                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-34-080              | 06/03/14   | Y                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-34-100              | 06/03/14   | Y                          | N                               | Y              | N                   | Y              | NA               | Υ                    | N         | Υ       | Υ        | N     | Υ              | NA             |                             |                  |                      |                     |
| MW-35-135              | 06/16/14   | Y                          | N                               | Y              | N                   | Υ              | Υ                | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-35-60               | 06/16/14   | Y                          | N                               | Υ              | N                   | Υ              | Υ                | Υ                    | N         | Υ       | Υ        | N     | Υ              | NA             |                             |                  |                      |                     |
| MW-36-020<br>MW-36-070 | 06/03/14   | Υ                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-36-090<br>MW-36-040 | 06/03/14   | Υ                          | N                               | Y              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Υ              | NA             |                             |                  |                      |                     |
| MW-36-050<br>MW-36-100 | 06/03/14   | Y                          | N                               | Y              | N                   | Y              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-37D                 | 05/28/14   | Υ                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             | Only 2 bollards. No change. |                  |                      |                     |
| MW-37S                 | 05/28/14   | Υ                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-38S                 | 05/28/14   | Y                          | N                               | Υ              | N                   | Y              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-38D                 | 05/28/14   | Y                          | N                               | Υ              | N                   | Y              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-39-040<br>MW-39-070 | 06/03/14   | Y                          | N                               | Υ              | N                   | Y              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-39-050<br>MW-39-080 | 06/03/14   | Y                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Y              | NA             |                             |                  |                      |                     |
| MW-39-060<br>MW-39-100 | 06/03/14   | Υ                          | N                               | Υ              | N                   | Υ              | NA               | Υ                    | N         | Υ       | Υ        | N     | Υ              | NA             |                             |                  |                      |                     |

Page 3 of 8 Date Printed: 8/15/2014

Table A-1
Well Inspection Log, Second Quarter 2014

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

|                                     |            | Survey           | Standing            |        | Evidence of | Well<br>Labeled on | Traffic |       | Erosion          | Steel   |          | Standing |         |                |                                          |                  |                   |                     |
|-------------------------------------|------------|------------------|---------------------|--------|-------------|--------------------|---------|-------|------------------|---------|----------|----------|---------|----------------|------------------------------------------|------------------|-------------------|---------------------|
|                                     | Inspection | Mark<br>Present? | or Ponded<br>Water? | Place? | Subsidence? | Casing or<br>Pad?  |         |       | Around Wellhead? | Intact? | Present? |          | Intact? | Photo on file? |                                          |                  | Action Completed? | Action<br>Completed |
| Well/ Piezometer                    | Date       | (Y/N)            | (Y/N)               | (Y/N)  | (Y/N)       | (Y/N)              | (Y/N)   | (Y/N) | (Y/N)            | (Y/N)   | (Y/N)    | (Y/N)    | (Y/N)   | (Y/N)          | Notes                                    | Required Actions | (Y/N)             | Date                |
| MW-40D                              | 05/27/14   | Υ                | N                   | NA     | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-40S                              | 05/27/14   | Υ                | N                   | NA     | N           | Υ                  | NA      | Y     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-41D                              | 05/28/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | y a              | Υ       | Υ        | N        | Υ       | NA             | Slight erosion under pad, 1"; no change. |                  |                   |                     |
| MW-41M                              | 05/28/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | y a<br>Y         | Υ       | Υ        | N        | Υ       | NA             | Slight erosion under pad, 1"; no change. |                  |                   |                     |
| MW-41S                              | 05/28/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-42-030                           | 06/03/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-42-055                           | 06/03/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-42-065                           | 06/03/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-43-025                           | 06/05/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-43-075                           | 06/05/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-43-090                           | 06/05/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-44-125<br>MW-44-070              | 06/03/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-44-115                           | 06/03/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-45-095a<br>MW-45-095b            | 06/03/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-46-175<br>MW-46-205              | 06/16/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Y     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-47-055<br>MW-47-115              | 06/16/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Y     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-48                               | 06/16/14   | Υ                | N                   | Υ      | N           | Υ                  | Υ       | Υ     | a<br>N           | Υ       | Υ        | N        | Υ       | NA             | Soil deposition on pad. No change.       |                  |                   |                     |
| MW-49-135<br>MW-49-275<br>MW-49-365 | 06/16/14   | Υ                | N                   | Y      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Y       | NA             |                                          |                  |                   |                     |
| MW-50-095<br>MW-50-200              | 06/16/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Y     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-51                               | 06/16/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Y     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-52                               | 06/05/14   | Υ                | N                   | Υ      | N           | Υ                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |
| MW-53                               | 06/05/14   | Υ                | N                   | Υ      | N           | Y                  | NA      | Υ     | N                | Υ       | Υ        | N        | Υ       | NA             |                                          |                  |                   |                     |

Page 4 of 8 Date Printed: 8/15/2014

Table A-1
Well Inspection Log, Second Quarter 2014

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

| PGAE TOPOCK COIL        | Inpressor static   | ii, ivecuies,                       | Canjorna                                 |         |                                             | Well | I     |                            | 1 |                                     |    |                                           | I      |                         |                                                 | -                |                               |                     |
|-------------------------|--------------------|-------------------------------------|------------------------------------------|---------|---------------------------------------------|------|-------|----------------------------|---|-------------------------------------|----|-------------------------------------------|--------|-------------------------|-------------------------------------------------|------------------|-------------------------------|---------------------|
| Well/ Piezometer        | Inspection<br>Date | Survey<br>Mark<br>Present?<br>(Y/N) | Standing<br>or Ponded<br>Water?<br>(Y/N) | Lock in | Evidence of<br>Well<br>Subsidence?<br>(Y/N) |      | Poles | Concrete Pad Intact? (Y/N) |   | Steel<br>Casing<br>Intact?<br>(Y/N) | -  | Standing<br>Water in<br>Annulus?<br>(Y/N) | Casing | Photo on file?<br>(Y/N) | Notes                                           | Required Actions | Action<br>Completed?<br>(Y/N) | Action<br>Completed |
| MW-54-085               | Date               |                                     |                                          |         |                                             |      |       |                            |   |                                     |    |                                           |        |                         | Notes                                           | Required Actions | (Y/N)                         | Date                |
| MW-54-140               | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Y                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-54-195               | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-55-045 MW-<br>55-120 | 06/16/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-56<br>D/S/M          | 06/16/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | Υ     | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-57-050               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-57-070               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-57-185               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-58BR                 | 06/17/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-58-065               | 06/17/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-60-125               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Y    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-60BR-245             | 06/17/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-61-110               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-59-100               | 06/17/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Y  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-62-110<br>MW-62-190  | 06/17/14           | N a                                 | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | NA | N                                         | Y      | NA                      | Static water level not measured in flute wells. |                  |                               |                     |
| MW-62-065               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |
| MW-63-065               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-64-BR                | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-65-160<br>MW-65-225  | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-66-165<br>MW-66-230  | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-66BR-270             | 06/17/14           | Υ                                   | N                                        | Y       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-67-185               | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-67-225<br>MW-67-260  | 06/17/14           | Υ                                   | N                                        | NA      | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Y      | NA                      |                                                 |                  |                               |                     |
| MW-68BR                 | 06/17/14           | Υ                                   | N                                        | Υ       | N                                           | Υ    | NA    | Υ                          | N | Υ                                   | Υ  | N                                         | Υ      | NA                      |                                                 |                  |                               |                     |

Page 5 of 8 Date Printed: 8/15/2014

Table A-1
Well Inspection Log, Second Quarter 2014

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

| FG&L TOPOCK COIL        |                    | Survey            | Standing        |                 | Evidence of          | Well          | Traffic          |                      | Erosion            | Steel            |                   | Standing          | Well             |                         |                                    |                  |                     |                   |
|-------------------------|--------------------|-------------------|-----------------|-----------------|----------------------|---------------|------------------|----------------------|--------------------|------------------|-------------------|-------------------|------------------|-------------------------|------------------------------------|------------------|---------------------|-------------------|
|                         |                    | Mark              | or Ponded       |                 | Well                 | Casing or     | Poles            | Concrete             | Around             | Casing           | -                 | Water in          | Casing           |                         |                                    |                  | Action              | Action            |
| Well/ Piezometer        | Inspection<br>Date | Present?<br>(Y/N) | Water?<br>(Y/N) | Place?<br>(Y/N) | Subsidence?<br>(Y/N) | Pad?<br>(Y/N) | Intact?<br>(Y/N) | Pad Intact?<br>(Y/N) | Wellhead?<br>(Y/N) | Intact?<br>(Y/N) | Present?<br>(Y/N) | Annulus?<br>(Y/N) | Intact?<br>(Y/N) | Photo on file?<br>(Y/N) | Notes                              | Required Actions | Completed?<br>(Y/N) | Completed<br>Date |
| MW-68-180 MW-<br>68-290 | 06/17/14           | Υ                 | N               | NA              | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
|                         |                    | Y                 | N               | NA              | N                    | Υ             | NA               | Υ                    | N                  | Y                | Υ                 | N                 | Y                | NA                      |                                    |                  |                     |                   |
| MW-69-195               | 06/17/14           |                   |                 |                 |                      | .,            |                  |                      |                    | .,               | .,                |                   | .,               |                         |                                    |                  |                     |                   |
| MW-70BR-225             | 06/17/14           | Y                 | N               | Υ               | N                    | Y             | NA               | Υ                    | N                  | Υ                | Y                 | N                 | Y                | NA                      |                                    |                  |                     |                   |
| MW-70-105               | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Y                | NA                      |                                    |                  |                     |                   |
| MW-71-035               | 06/17/14           | Υ                 | N               | NA              | N                    | Υ             | NA               | Υ                    | N                  | Y                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| MW-72-080               | 06/17/14           | Υ                 | N               | NA              | N                    | Υ             | NA               | Υ                    | a<br>N             | Υ                | Υ                 | N                 | Υ                | NA                      | Soil deposition on pad. No change. |                  |                     |                   |
| MW-72BR-200             | 06/17/14           | Υ                 | N               | NA              | N                    | Υ             | NA               | Υ                    | a<br>N             | Υ                | Υ                 | N                 | Υ                | NA                      | Soil deposition on pad. No change. |                  |                     |                   |
| MW-73-080               | 06/17/14           | Υ                 | N               | NA              | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| MW-74-240               | 06/17/14           | Υ                 | N               | NA              | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| MWP-08                  | 05/27/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Y                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| MWP-10                  | 05/27/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Y                | NA                      |                                    |                  |                     |                   |
| OW-1D                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-1M                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-1S                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-2D                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-2M                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Y                | NA                      |                                    |                  |                     |                   |
| OW-2S                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-3D                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-3M                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Y                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-3S                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-5D                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |
| OW-5M                   | 06/17/14           | Υ                 | N               | Υ               | N                    | Υ             | NA               | Υ                    | N                  | Υ                | Υ                 | N                 | Υ                | NA                      |                                    |                  |                     |                   |

Page 6 of 8 Date Printed: 8/15/2014

Table A-1 Well Inspection Log, Second Quarter 2014

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

| PG&E TOPOCK CON    | inpressor static | ii, iveedies,                       | Cunjornia                       | Ī              |                                             | Well           |       |                                  |     |         |       | Ī                                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                      |                  | l I                           |                     |
|--------------------|------------------|-------------------------------------|---------------------------------|----------------|---------------------------------------------|----------------|-------|----------------------------------|-----|---------|-------|-------------------------------------------|--------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|---------------------|
| Well/ Piezometer   | Inspection       | Survey<br>Mark<br>Present?<br>(Y/N) | Standing<br>or Ponded<br>Water? | Lock in Place? | Evidence of<br>Well<br>Subsidence?<br>(Y/N) |                | Poles | Concrete<br>Pad Intact?<br>(Y/N) |     | Intact? | _     | Standing<br>Water in<br>Annulus?<br>(Y/N) | Casing | Photo on file?<br>(Y/N) | Notes                                                                                                                                                                                                                                                                                                                                                                                | Dogwiyad Astions | Action<br>Completed?<br>(Y/N) | Action<br>Completed |
| Well/ Plezoffleter | Date             |                                     | (Y/N)                           | (Y/N)          |                                             |                |       |                                  |     | (Y/N)   | (1/N) |                                           |        |                         | Notes                                                                                                                                                                                                                                                                                                                                                                                | Required Actions | (1/14)                        | Date                |
| OW-5S              | 06/17/14         | Υ                                   | N                               | Υ              | N                                           | Y              | NA    | Y                                | N   | Υ       | Υ     | N                                         | Y      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| <u>P2</u>          | 05/27/14         | Υ                                   | N                               | Y              | N                                           | γ <sup>a</sup> | NA    | Y                                | N   | Υ       | Y     | N                                         | Y      | NA                      | There is a different well labeled P2 on the steel casing at the quarry but PVC case inside says MWP-12. This inspected well is at the new ponds near MW-4. It is labeled PX-2 on the lid and P3 on the steel casing, but shows up as P2 on the map. Since the quarry well is located near the "old ponds" area, there is a chance that the well is actually an MWP designation well. |                  |                               |                     |
| PG&E-8             | 06/17/14         | Υ                                   | N                               | Υ              | N                                           | Υ              | Υ     | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PGE-7              | 05/28/14         | a<br>N                              | N                               | Υ              | N                                           | Y              | NA    | Y                                | N   | Υ       | Υ     | N                                         | Y      | NA                      | New surface completion. Needs survey.                                                                                                                                                                                                                                                                                                                                                |                  |                               |                     |
| PT-1 3             | 06/05/44         | Υ                                   | N                               | Υ              | N                                           | Υ              | NA    | Υ                                | y a | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| WELLS<br>PT-2 3    | 06/05/14         |                                     |                                 |                |                                             |                |       |                                  |     |         |       |                                           |        |                         | Very slight erosion under pad. No change.                                                                                                                                                                                                                                                                                                                                            |                  |                               |                     |
| WELLS              | 06/05/14         | Y                                   | N                               | Y              | N                                           | Y              | NA    | Y                                | N   | Υ       | Υ     | N                                         | Y      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-3<br>3 WELLS    | 06/05/14         | Υ                                   | N                               | Υ              | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Y      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-4<br>3 WELLS    | 06/05/14         | Υ                                   | N                               | Υ              | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-5<br>3 WELLS    | 06/05/14         | Υ                                   | N                               | Υ              | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               | -                   |
| PT-6               | 00/03/14         | Y                                   | N                               | Υ              | N                                           | v              | NA    | Υ                                | N   | Y       | v     | N                                         | Y      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| 3 WELLS            | 06/05/14         | '                                   | IN                              | ľ              | IN                                          | T T            | IVA   | '                                | IN  | 1       | '     | IN                                        | '      | IVA                     |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-7 S/D           | 05/28/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-7M              | 05/28/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Y      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-8 S/D           | 05/28/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-8M              | 05/28/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Y                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-9 S/D           | 05/28/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PT-9M              | 05/28/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PTI-1D             | 06/05/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PTI-1M             | 06/05/14         | Υ                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| PTI-1S             | 06/05/14         | Υ                                   | N                               | Υ              | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |
| TW-01              | 05/28/14         | N                                   | N                               | NA             | N                                           | Υ              | NA    | Υ                                | N   | Υ       | Υ     | N                                         | Υ      | NA                      |                                                                                                                                                                                                                                                                                                                                                                                      |                  |                               |                     |

Date Printed: 8/15/2014

#### Table A-1

#### Well Inspection Log, Second Quarter 2014

Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide

Groundwater and Surface Water Monitoring Report,

PG&E Topock Compressor Station, Needles, California

|                  |            |          |           |         |             | Well       |         |             |           |         |          |          |         |                |       |                  |            |           |
|------------------|------------|----------|-----------|---------|-------------|------------|---------|-------------|-----------|---------|----------|----------|---------|----------------|-------|------------------|------------|-----------|
|                  |            | Survey   | Standing  |         | Evidence of | Labeled on | Traffic |             | Erosion   | Steel   |          | Standing | Well    |                |       |                  |            |           |
|                  |            | Mark     | or Ponded | Lock in | Well        | Casing or  | Poles   | Concrete    | Around    | Casing  | PVC Cap  | Water in | Casing  |                |       |                  | Action     | Action    |
|                  | Inspection | Present? | Water?    | Place?  | Subsidence? | Pad?       | Intact? | Pad Intact? | Wellhead? | Intact? | Present? | Annulus? | Intact? | Photo on file? |       |                  | Completed? | Completed |
| Well/ Piezometer | Date       | (Y/N)    | (Y/N)     | (Y/N)   | (Y/N)       | (Y/N)      | (Y/N)   | (Y/N)       | (Y/N)     | (Y/N)   | (Y/N)    | (Y/N)    | (Y/N)   | (Y/N)          | Notes | Required Actions | (Y/N)      | Date      |
| TW-04            | 06/16/14   | Y        | N         | Υ       | N           | Υ          | NA      | Υ           | N         | Υ       | Υ        | N        | Υ       | NA             |       |                  |            |           |
| TW-05            | 06/16/14   | Υ        | N         | Υ       | N           | Υ          | NA      | Υ           | N         | Υ       | Υ        | N        | Υ       | NA             |       |                  |            |           |

#### Notes:

NA = Not applicable

PVC = polyvinyl chloride

Page 8 of 8 Date Printed: 8/15/2014

a There is a note with more information on this parameter.

Appendix B Lab Reports, Second Quarter 2014 (Provided on CD-ROM only with hard copy submittal)

## TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



Established 1931

April 24, 2014

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-EW-217, GROUNDWATER MONITORING PROJECT, TLI NO.: 812969

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-EW-217 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, wet chemistry raw data, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on April 8, 2014, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Samples for pH analysis by SM 4500-H B were received past the method specified holding time. Mr. Duffy approved the analysis of the samples.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to / Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

## TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

**Attention:** Shawn Duffy **Sample:** Two (2) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 428648.IM.CS.EX.AC

Date: April 24, 2014 Collected: April 8, 2014

Received: April 8, 2014

#### **ANALYST LIST**

| METHOD      | PARAMETER              | ANALYST                          |
|-------------|------------------------|----------------------------------|
| EPA 120.1   | Specific Conductivity  | Jenny Tankunakom                 |
| SM 4500-H B | рН                     | Himani Vaishnav / Felipe Mendoza |
| SM 2540C    | Total Dissolved Solids | Jenny Tankunakorn                |
| SM 2320B    | Total Alkalinity       | Himani Vaishnav                  |
| EPA 300.0   | Anions                 | Giawad Ghenniwa                  |
| EPA 200.7   | Metals by ICP          | Ethel Suico                      |
| EPA 200.8   | Metals by ICP/MS       | Ethel Suico                      |
| EPA 218.6   | Hexavalent Chromium    | Naheed Eidinejad                 |
| SM 3500-CrB | Hexavalent Chromium    | Jenny Tankunakorn                |



14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 428648.IM.CS.EX.AC P.O. No.: PGEIM11111001 Laboratory No.: 812969 Date Received: April 8, 2014

## **Analytical Results Summary**

| Lab Sample II | D Field ID | Analysis<br>Method | Extraction<br>Method | Sample<br>Date | Sample<br>Time | Parameter                          | Result | Units    | RL    |
|---------------|------------|--------------------|----------------------|----------------|----------------|------------------------------------|--------|----------|-------|
| 812969-001    | PE-01-217  | E120.1             | NONE                 | 4/8/2014       | 14:15          | EC                                 | 4150   | umhos/cm | 2.00  |
| 812969-001    | PE-01-217  | E200.7             | LABFLT               | 4/8/2014       | 14:15          | Calcium                            | 119000 | ug/L     | 25000 |
| 812969-001    | PE-01-217  | E200.7             | LABFLT               | 4/8/2014       | 14:15          | iron                               | ND     | ug/L     | 20.0  |
| 812969-001    | PE-01-217  | E200.7             | LABFLT               | 4/8/2014       | 14:15          | Magnesium                          | 24200  | ug/L     | 2000  |
| 812969-001    | PE-01-217  | E200.7             | LABFLT               | 4/8/2014       | 14:15          | Sodium                             | 817000 | ug/L     | 25000 |
| 812969-001    | PE-01-217  | E200.8             | LABFLT               | 4/8/2014       | 14:15          | Chromium                           | 4.2    | ug/L     | 1.0   |
| 812969-001    | PE-01-217  | E200.8             | LABFLT               | 4/8/2014       | 14:15          | Manganese                          | 66.3   | ug/L     | 1.0   |
| 812969-001    | PE-01-217  | E218.6             | LABFLT               | 4/8/2014       | 14:15          | Chromium, Hexavalent               | 4.0    | ug/L     | 0.20  |
| 812969-001    | PE-01-217  | E300               | NONE                 | 4/8/2014       | 14:15          | Chloride                           | 1050   | mg/L     | 50.0  |
| 812969-001    | PE-01-217  | E300               | NONE                 | 4/8/2014       | 14:15          | Nitrate as N                       | ND     | mg/L     | 0.500 |
| 812969-001    | PE-01-217  | E300               | NONE                 | 4/8/2014       | 14:15          | Sulfate                            | 376    | mg/L     | 25.0  |
| 812969-001    | PE-01-217  | SM2320B            | NONE                 | 4/8/2014       | 14:15          | Alkalinity                         | 218    | mg/L     | 5.00  |
| 812969-001    | PE-01-217  | SM2320B            | NONE                 | 4/8/2014       | 14:15          | Alkalinity, Bicarbonate (As CaCO3) | 218    | mg/L     | 5.00  |
| 812969-001    | PE-01-217  | SM2320B            | NONE                 | 4/8/2014       | 14:15          | Alkalinity, Carbonate (As CaCO3)   | ND     | mg/L     | 5.00  |
| 812969-001    | PE-01-217  | SM2540C            | NONE                 | 4/8/2014       | 14:15          | Total Dissolved Solids             | 2700   | mg/L     | 125   |
| 812969-001    | PE-01-217  | SM4500HB           | NONE                 | 4/8/2014       | 14:15          | PH                                 | 7.51 J | рH       | 4.00  |



| Lab Sample II | ) Field ID | Analysis<br>Method | Extraction<br>Method | Sample<br>Date | Sample<br>Time | Parameter                          | Result  | Units    | RL     |
|---------------|------------|--------------------|----------------------|----------------|----------------|------------------------------------|---------|----------|--------|
| 812969-002    | TW-03D-217 | E120.1             | NONE                 | 4/8/2014       | 14:15          | EC                                 | 7810    | umhos/cm | 2.000  |
| 812969-002    | TW-03D-217 | E200.7             | LABFLT               | 4/8/2014       | 14:15          | Calcium                            | 235000  | ug/L     | 50000  |
| 812969-002    | TW-03D-217 | E200.7             | LABFLT               | 4/8/2014       | 14:15          | Iron                               | ND      | ug/L     | 20.0   |
| 812969-002    | TW-03D-217 | E200.7             | LABFLT               | 4/8/2014       | 14:15          | Magnesium                          | 35700   | ug/L     | 10000  |
| 812969-002    | TW-03D-217 | E200.7             | LABFLT               | 4/8/2014       | 14:15          | Sodium                             | 1490000 | ug/L     | 250000 |
| 812969-002    | TW-03D-217 | E200.8             | LABFLT               | 4/8/2014       | 14:15          | Chromium                           | 772     | ug/L     | 5.0    |
| 812969-002    | TW-03D-217 | E200.8             | LABFLT               | 4/8/2014       | 14:15          | Manganese                          | 7.0     | ug/L     | 1.0    |
| 812969-002    | TW-03D-217 | E300               | NONE                 | 4/8/2014       | 14:15          | Chloride                           | 2440    | mg/L     | 50.0   |
| 812969-002    | TW-03D-217 | E300               | NONE                 | 4/8/2014       | 14:15          | Nitrate as N                       | 3.27    | mg/L     | 0.500  |
| 812969-002    | TW-03D-217 | E300               | NONE                 | 4/8/2014       | 14:15          | Sulfate                            | 528     | mg/L     | 25.0   |
| 812969-002    | TW-03D-217 | SM2320B            | NONE                 | 4/8/2014       | 14:15          | Alkalinity                         | 145     | mg/L     | 5.00   |
| 812969-002    | TW-03D-217 | SM2320B            | NONE                 | 4/8/2014       | 14:15          | Alkalinity, Bicarbonate (As CaCO3) | 145     | mg/L     | 5.00   |
| 812969-002    | TW-03D-217 | SM2320B            | NONE                 | 4/8/2014       | 14:15          | Alkalinity, Carbonate (As CaCO3)   | ND      | mg/L     | 5.00   |
| 812969-002    | TW-03D-217 | SM2540C            | NONE                 | 4/8/2014       | 14:15          | Total Dissolved Solids             | 5210    | mg/L     | 250    |
| 812969-002    | TW-03D-217 | SM3500-CrB         | LABFLT               | 4/8/2014       | 14:15          | Chromium, Hexavalent               | 662     | ug/L     | 250    |
| 812969-002    | TW-03D-217 | SM4500HB           | NONE                 | 4/8/2014       | 14:15          | PH                                 | 7.39 J  | pН       | 4.00   |

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures, Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

### TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

Page 1 of 19

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 4/24/2014

Laboratory No. 812969

#### REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 428648.IM.CS.EX.AC
P.O. Number: PGEIM11111001

Release Number:

Nitrate as Nitrogen

Samples Received on 4/8/2014 8:05:00 PM

Field ID Lab ID Collected Matrix PE-01-217 812969-001 04/08/2014 14:15 Water TW-03D-217 812969-002 04/08/2014 14:15 Water Anions By I.C. - EPA 300.0 Batch 04AN14H Unit DF Parameter Analyzed MDL RL Result 50.0 812969-001 Chloride 04/09/2014 13:09 500 mg/L 17.4 1050 04/09/2014 10:53 5.00 Nitrate as Nitrogen mg/L 0.0415 0.500 ND Sulfate mg/L 04/09/2014 12:32 50.0 1.54 25.0 376 812969-002 Chloride mg/L 04/09/2014 13:22 500 17.4 50.0 2440 5.00 Nitrate as Nitrogen 04/09/2014 11:05 mg/L 0.0415 0.500 3.27 Sulfate 04/09/2014 12:44 mg/L 50.0 1.54 25.0 528 Method Blank DF Parameter Unit Result Chloride mg/L 1.00 ND Fluoride 1.00 ND mq/L Sulfate mg/L 1.00 ND Nitrate as Nitrogen 1.00 ND mq/L Lab ID = 812942-004 Duplicate Parameter DF **RPD** Unit Result Expected Acceptance Range Chloride mg/L 25.0 84.2 86.2 2.37 0 - 20Lab ID = 812966-002 Duplicate Parameter Unit DF Result Expected **RPD** Acceptance Range Fluoride mg/L 5.00 2.27 2.30 1.44 0 - 20Sulfate 100 523 0 - 20mg/L 511 2.28

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

2.53

0.237

0 - 20

2.52

5.00

mg/L



Chloride

Parameter

Parameter

Parameter

Parameter

Chloride

Chloride

Chloride

Chloride

MRCVS - Primary

MRCVS - Primary

MRCVS - Primary

MRCVS - Primary

Report Continued

Project Name: PG&E Topock Project Page 2 of 19 Client: E2 Consulting Engineers, Inc. Project Number: 428648.IM.CS.EX.AC Printed 4/24/2014 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range Chloride mg/L 1.00 3.84 4.00 96.1 90 - 110 Fluoride mg/L 1.00 3.97 4.00 99.2 90 - 110 Sulfate mq/L 1.00 19.3 20.0 96.4 90 - 110 1.00 3.84 4.00 96.1 90 - 110 Nitrate as Nitrogen mg/L Lab ID = 812942-004 Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Range 25.0 185 98.9 Chloride mg/L 186(100) 85 - 115 Lab ID = 812966-002 Matrix Spike Unit DF Result Expected/Added Parameter Recovery Acceptance Range Fluoride mg/L 5.00 21.8 22.3(20.0) 97.4 85 - 115 Sulfate 100 1480 1520(1000) 95.4 85 - 115 mg/L 5.00 22.0 97.3 85 - 115 Nitrate as Nitrogen ma/L 22.5(20.0) MRCCS - Secondary DF Parameter Unit Result Recovery Expected Acceptance Range Chloride mg/L 1.00 4.02 4.00 100 90 - 110 Fluoride mg/L 1.00 4.14 4.00 103 90 - 110 Sulfate mq/L 1.00 20.0 20.0 100 90 - 110 4.00 Nitrate as Nitrogen mg/L 1.00 4.03 101 90 - 110 MRCVS - Primary Unit DF Parameter Result Expected Recovery Acceptance Range

2.87

Result

3.26

Result

3.12

Result

2.99

Result

3.03

1.00

DF

1.00

DF

1.00

DF

1.00

DF

1.00

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

3.00

3.00

3.00

3.00

3.00

Expected

Expected

Expected

Expected

95.7

Recovery

Recovery

Recovery

99.7

Recovery

101

104

108

90 - 110

90 - 110

90 - 110

90 - 110

90 - 110

Acceptance Range

Acceptance Range

Acceptance Range

Acceptance Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

012



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 5 of 19

Project Number: 428648.IM.CS.EX.AC

Printed 4/24/2014

| Alkalinity by SM 2320B      | }          |      | Batch  | 04ALK14B      |      |          |          |            |
|-----------------------------|------------|------|--------|---------------|------|----------|----------|------------|
| Parameter                   |            | Unit | Ana    | lyzed I       | )F   | MDL      | RL       | Result     |
| 812969-001 Alkalinity as Ca | aCO3       | mg/L | 04/09  | /2014 1       | .00  | 1.68     | 5.00     | 218        |
| Bicarbonate (C              | (alculated | mg/L | 04/09  | /2014 1       | .00  | 1.68     | 5.00     | 218        |
| Carbonate (Ca               | lculated)  | mg/L | 04/09  | /2014 1       | .00  | 1.68     | 5.00     | ND         |
| 812969-002 Alkalinity as Ca | aCO3       | mg/L | 04/09  | /2014 1       | .00  | 1.68     | 5.00     | 145        |
| Bicarbonate (C              | (alculated | mg/L | 04/09  | /2014 1       | .00  | 1.68     | 5.00     | 145        |
| Carbonate (Ca               | lculated)  | mg/L | 04/09  | /2014 1       | .00  | 1.68     | 5.00     | ND         |
| Method Blank                |            |      |        |               |      |          |          |            |
| Parameter                   | Unit       | DF   | Result |               |      |          |          |            |
| Alkalinity as CaCO3         | mg/L       | 1.00 | ND     |               |      |          |          |            |
| Duplicate                   |            |      |        |               |      |          | Lab ID = | 812969-002 |
| Parameter                   | Unit       | DF   | Result | Expected      | R    | PD.      | Accepta  | nce Range  |
| Alkalinity as CaCO3         | mg/L       | 1.00 | 146    | 145           |      | 0.687    | 0 - 20   |            |
| Lab Control Sample          |            |      |        |               |      |          |          |            |
| Parameter                   | Unit       | DF   | Result | Expected      | R    | Recovery | Accepta  | nce Range  |
| Alkalinity as CaCO3         | mg/L       | 1.00 | 99.0   | 100           |      | 99.0     | 90 - 110 | )          |
| Lab Control Sample          | Duplicate  |      |        |               |      |          |          |            |
| Parameter                   | Unit       | DF   | Result | Expected      | R    | Recovery | Accepta  | nce Range  |
| Alkalinity as CaCO3         | mg/L       | 1.00 | 99.0   | 100           |      | 99.0     | 90 - 110 | )          |
| Matrix Spike                |            |      |        |               |      |          | Lab ID = | 812969-001 |
| Parameter                   | Unit       | DF   | Result | Expected/Adde | ed R | Recovery | Accepta  | nce Range  |
| Alkalinity as CaCO3         | mg/L       | 1.00 | 310    | 318(100)      |      | 92.0     | 75 - 125 | ;          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 6 of 19 Printed 4/24/2014

Project Number: 428648.IM.CS.EX.AC

| Specific Conductivity - E                          | PA 120.1      |            | Batch               | 04EC14B           |                                         |                  |                        |                 |
|----------------------------------------------------|---------------|------------|---------------------|-------------------|-----------------------------------------|------------------|------------------------|-----------------|
| Parameter                                          |               | Unit       | Ana                 | lyzed             | DF                                      | MDL              | RL                     | Result          |
| 812969-001 Specific Conducti                       | vity          | umhos/cn   | umhos/cm 04/11/2014 |                   | 1.00                                    | 0.606            | 2.00                   | 4150            |
| 812969-002 Specific Conducti                       | vity          | umhos/cn   | n 04/11             | /2014             | 1.00                                    | 0.606            | 2.00                   | 7810            |
| Method Blank                                       |               |            |                     |                   |                                         |                  |                        |                 |
| Parameter Specific Conductivity Duplicate          | Unit<br>umhos | DF<br>1.00 | Result<br>ND        |                   |                                         |                  | ารห์(∩≟                | 812966-003      |
| Parameter Specific Conductivity Lab Control Sample | Unit<br>umhos | DF<br>1.00 | Result<br>35800     | Expected<br>35900 | - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | RPD<br>0.279     | Market Tilly Librarian | ance Range      |
| Parameter Specific Conductivity MRCCS - Secondary  | Unit<br>umhos | DF<br>1.00 | Result<br>703       | Expected<br>706   | F                                       | Recovery<br>99.6 | Accepta<br>90 - 110    | ance Range<br>) |
| Parameter Specific Conductivity MRCVS - Primary    | Unit<br>umhos | DF<br>1.00 | Result<br>693       | Expected<br>706   | - 중화됐었                                  | Recovery<br>98.2 | Accepta<br>90 - 110    | ance Range )    |
| Parameter Specific Conductivity MRCVS - Primary    | Unit<br>umhos | DF<br>1.00 | Result<br>1000      | Expected<br>1000  | F                                       | Recovery<br>100  | Accepta<br>90 - 110    | ance Range<br>) |
| Parameter Specific Conductivity                    | Unit<br>umhos | DF<br>1.00 | Result<br>1010      | Expected<br>1000  | F                                       | Recovery<br>101  | Accepta<br>90 - 110    | ance Range      |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 7 of 19

Printed 4/24/2014

Project Number: 428648.IM.CS.EX.AC

| Chrome VI by EPA 218.    | 6            |                                | Batch          | 04CrH14 A     |        | . ASS      |          |            |
|--------------------------|--------------|--------------------------------|----------------|---------------|--------|------------|----------|------------|
| Parameter                |              | Unit                           | Ana            | lyzed         | DF     | MDL        | RL       | Result     |
| 812969-001 Chromium, Hex | avalent      | ug/L                           | 04/10          | /2014 15:15 1 | .00    | 0.00600    | 0.20     | 4.0        |
| Method Blank             |              |                                | and young (EA) |               |        |            |          | Taraja sa  |
| Parameter                | Unit         | DF                             | Result         |               |        |            |          |            |
| Chromium, Hexavalent     | ug/L         | 1.00                           | ND             |               |        |            |          |            |
| Duplicate                |              |                                |                |               |        |            | Lab ID = | 812967-015 |
| Parameter                | Unit         | DF                             | Result         | Expected      | F      | RPD        | Accepta  | nce Range  |
| Chromium, Hexavalent     | ug/L         | 1.00                           | 19.8           | 19.8          |        | 0.00707    | 0 - 20   |            |
| Low Level Calibration    | Verification | <b>r</b> kija <sub>jar</sub> a |                |               |        |            |          |            |
| Parameter                | Unit         | DF                             | Result         | Expected      | F      | Recovery   | Accepta  | nce Range  |
| Chromium, Hexavalent     | ug/L         | 1.00                           | 0.198          | 0.200         |        | 99.2       | 70 - 130 | )          |
| Lab Control Sample       |              |                                | Milio Pari     |               |        |            |          |            |
| Parameter                | Unit         | DF                             | Result         | Expected      | F      | Recovery   | Accepta  | nce Range  |
| Chromium, Hexavalent     | ug/L         | 1.00                           | 5.04           | 5.00          |        | 101        | 90 - 110 | )          |
| Matrix Spike             |              |                                |                |               |        |            | Lab ID = | 812966-001 |
| Parameter                | Unit         | DF                             | Result         | Expected/Adde | ed F   | Recovery   | Accepta  | nce Range  |
| Chromium, Hexavalent     | ug/L         | 5.00                           | 5.35           | 5.10(5.00)    |        | 105        | 90 - 110 | )          |
| Matrix Spike             |              |                                |                |               |        |            | Lab ID = | 812966-001 |
| Parameter                | Unit         | DF                             | Result         | Expected/Adde | ed F   | Recovery   | Accepta  | ance Range |
| Chromium, Hexavalent     | ug/L         | 1.00                           | 1.17           | 1.12(1.00)    |        | 105        | 90 - 110 | )          |
| Matrix Spike             |              | 48 hay                         | Widtenson      |               |        |            | Lab ID = | 812966-002 |
| Parameter                | Unit         | DF                             | Result         | Expected/Adde | ed F   | Recovery   | Accepta  | ance Range |
| Chromium, Hexavalent     | ug/L         | 25.0                           | 1260           | 1240(625)     |        | 104        | 90 - 110 | )          |
| Matrix Spike             |              |                                |                | MINOLENIE IN  | #/.Kn  |            | Lab ID = | 812966-003 |
| Parameter                | Unit         | DF                             | Result         | Expected/Adde | ed F   | Recovery   | Accepta  | ance Range |
| Chromium, Hexavalent     | ug/L         | 1.00                           | ND -           | 1.00(1.00)    | . ** - |            | 90 - 110 | )          |
| Matrix Spike             |              | 和學樣語                           |                |               |        |            | Lab ID = | 812966-003 |
| Parameter                | Unit         | DF                             | Result         | Expected/Adde | ed F   | Recovery   | Accepta  | ance Range |
| Chromium, Hexavalent     | ug/L         | 5.00                           | 5.86           | 5.96(5.00)    |        | 98.1       | 90 - 110 | )          |
| Matrix Spike             |              |                                |                |               |        | 745 p.o.56 | Lab ID = | 812966-003 |
| Parameter                | Unit         | DF                             | Result         | Expected/Adde | ed F   | Recovery   | Accepta  | ance Range |
| Chromium, Hexavalent     | ug/L         | 10.0                           | 11.6           | 10.8(10.0)    |        | 107        | 90 - 110 | )          |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

017



| Client: E2 Consulting Eng                                      | Client: E2 Consulting Engineers, Inc. |            |                | Project Name: PG&E Topock Project<br>Project Number: 428648.IM.CS.EX.AC |                  |                                                     |  |  |  |
|----------------------------------------------------------------|---------------------------------------|------------|----------------|-------------------------------------------------------------------------|------------------|-----------------------------------------------------|--|--|--|
| Matrix Spike                                                   |                                       |            |                |                                                                         |                  | Lab ID = 812967-015                                 |  |  |  |
| Parameter Chromium, Hexavalent Matrix Spike                    | Unit<br>ug/L                          | DF<br>1.00 | Result<br>39.7 | Expected/Added 39.8(20.0)                                               | Recovery<br>99.6 | Acceptance Range<br>90 - 110<br>Lab ID = 812969-001 |  |  |  |
| Parameter Chromium, Hexavalent MRCCS - Secondary               | Unit<br>ug/L                          | DF<br>1.00 | Result<br>9.10 | Expected/Added 9.02(5.00)                                               | Recovery<br>102  | Acceptance Range<br>90 - 110                        |  |  |  |
| Parameter Chromium, Hexavalent MRCVS - Primary                 | Unit<br>ug/L                          | DF<br>1.00 | Result<br>5.04 | Expected 5.00                                                           | Recovery<br>101  | Acceptance Range<br>90 - 110                        |  |  |  |
| Parameter Chromium, Hexavalent MRCVS - Primary                 | Unit                                  | DF         | Result         | Expected                                                                | Recovery         | Acceptance Range                                    |  |  |  |
|                                                                | ug/L                                  | 1.00       | 10.2           | 10.0                                                                    | 102              | 95 - 105                                            |  |  |  |
| Parameter Chromium, Hexavalent MRCVS - Primary                 | Unit                                  | DF         | Result         | Expected                                                                | Recovery         | Acceptance Range                                    |  |  |  |
|                                                                | ug/L                                  | 1.00       | 10.2           | 10.0                                                                    | 102              | 95 - 105                                            |  |  |  |
| Parameter Chromium, Hexavalent MRCVS - Primary                 | Unit                                  | DF         | Result         | Expected                                                                | Recovery         | Acceptance Range                                    |  |  |  |
|                                                                | ug/L                                  | 1.00       | 10.1           | 10.0                                                                    | 101              | 95 - 105                                            |  |  |  |
| Parameter Chromium, Hexavalent MRCVS - Primary                 | Unit                                  | DF         | Result         | Expected                                                                | Recovery         | Acceptance Range                                    |  |  |  |
|                                                                | ug/L                                  | 1.00       | 10.1           | 10.0                                                                    | 101              | 95 - 105                                            |  |  |  |
| Parameter                                                      | Unit                                  | DF         | Result         | Expected                                                                | Recovery         | Acceptance Range                                    |  |  |  |
| Chromium, Hexavalent                                           | ug/L                                  | 1.00       | 10.1           | 10.0                                                                    | 101              | 95 - 105                                            |  |  |  |
| MRCVS - Primary Parameter Chromium, Hexavalent MRCVS - Primary | Unit                                  | DF         | Result         | Expected                                                                | Recovery         | Acceptance Range                                    |  |  |  |
|                                                                | ug/L                                  | 1.00       | 10.1           | 10.0                                                                    | 101              | 95 - 105                                            |  |  |  |
| Parameter Chromium, Hexavalent                                 | Unit                                  | DF         | Result         | Expected                                                                | Recovery         | Acceptance Range                                    |  |  |  |
|                                                                | ug/L                                  | 1.00       | 10.1           | 10.0                                                                    | 101              | 95 - 105                                            |  |  |  |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 11 of 19

Project Number: 428648.IM.CS.EX.AC

Printed 4/24/2014

| Chromium, Hexavalent     | by SM 350 | 00-Cr B        | Batch            | 04CrH14A       |          |           |                 |
|--------------------------|-----------|----------------|------------------|----------------|----------|-----------|-----------------|
| Parameter                |           | Unit           | Analyzed         |                | F MDL    | RL        | Result          |
| 812969-002 Chromium, Hex | avalent   | ug/L           | 04/16/2014 17:39 |                | 5.0 110  | 250       | 662             |
| Method Blank             |           | Park Schleiber |                  |                |          | Dark Gran | yayay yarrafi.  |
| Parameter                | Unit      | DF             | Result           |                |          |           |                 |
| Chromium, Hexavalent     | ug/L      | 1.00           | ND               |                |          |           |                 |
| Duplicate                |           |                |                  |                |          | Lab ID =  | 812969-002      |
| Parameter                | Unit      | DF             | Result           | Expected       | RPD      | Accepta   | ance Range      |
| Chromium, Hexavalent     | ug/L      | 25.0           | 632              | 662            | 4.72     | 0 - 20    |                 |
| Lab Control Sample       |           | . Phartes      |                  |                |          |           |                 |
| Parameter                | Unit      | DF             | Result           | Expected       | Recovery | Accepta   | ance Range      |
| Chromium, Hexavalent     | ug/L      | 1.00           | 99.0             | 100            | 99.0     | 90 - 110  | )               |
| Matrix Spike             |           | B. Marayat     | William de la co |                |          | Lab ID =  | 812969-002      |
| Parameter                | Unit      | DF             | Result           | Expected/Added | Recovery | Accepta   | ance Range      |
| Chromium, Hexavalent     | ug/L      | 25.0           | 3110             | 3160(2500)     | 97.9     | 85 - 11   | 5               |
| MRCCS - Secondary        |           |                |                  |                |          |           | jilda, diki e   |
| Parameter                | Unit      | DF             | Result           | Expected       | Recovery | Accepta   | ance Range      |
| Chromium, Hexavalent     | ug/L      | 1.00           | 99.0             | 100            | 99.0     | 90 - 110  | )               |
| MRCVS - Primary          |           |                | Hida xa.         |                |          |           | Otikuusen ekst. |
| Parameter                | Unit      | DF             | Result           | Expected       | Recovery | Accepta   | ance Range      |
| Chromium, Hexavalent     | ug/L      | 1.00           | 96.6             | 100            | 96.6     | 90 - 110  | )               |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 12 of 19 Printed 4/24/2014

Project Number: 428648.IM.CS.EX.AC

| Parameter                                                                                                                                                                                                                                                             |                                                   | Unit                        | Ana                                                | lyzed                                                     | DF           | MDL                         | RL                                                          | Result                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|----------------------------------------------------|-----------------------------------------------------------|--------------|-----------------------------|-------------------------------------------------------------|-------------------------------------|
| 812969-001 pH                                                                                                                                                                                                                                                         |                                                   | рН                          | ***************************************            | /2014 11:02                                               | 1.00         | 0.0250                      | 4.00                                                        | 7.51                                |
| 812969-002 pH                                                                                                                                                                                                                                                         |                                                   | pН                          |                                                    | /2014 11:04                                               | 1.00         | 0.0250                      | 4.00                                                        | 7.39                                |
| Duplicate                                                                                                                                                                                                                                                             |                                                   |                             |                                                    | i di di kacamatan di kacamatan                            |              |                             |                                                             | 812969-002                          |
| Parameter                                                                                                                                                                                                                                                             | Unit                                              | DF                          | Result                                             | Expected                                                  |              | :PD                         | Accepta                                                     | ance Range                          |
| pH                                                                                                                                                                                                                                                                    | рН                                                | 1.00                        | 7.41                                               | 7.39                                                      | ·            | 0.270                       | 0 - 20                                                      | g                                   |
| Lab Control Sample                                                                                                                                                                                                                                                    | Harana 💮                                          |                             |                                                    |                                                           | F91141       |                             |                                                             | Veiklaneni.                         |
| Parameter                                                                                                                                                                                                                                                             | Unit                                              | DF                          | Result                                             | Expected                                                  | F            | ecovery                     | Accepta                                                     | ance Range                          |
| pH                                                                                                                                                                                                                                                                    | рН                                                | 1.00                        | 7.05                                               | 7.00                                                      |              | 101                         | 90 - 110                                                    | )                                   |
| Lab Control Sample                                                                                                                                                                                                                                                    | Duplicate                                         |                             |                                                    |                                                           |              |                             |                                                             |                                     |
| Parameter                                                                                                                                                                                                                                                             | Unit                                              | DF                          | Result                                             | Expected                                                  | F            | Recovery                    | Accepta                                                     | ance Range                          |
| pН                                                                                                                                                                                                                                                                    | рН                                                | 1.00                        | 7.10                                               | 7.00                                                      |              | 101                         | 90 - 110                                                    | )                                   |
| MRCVS - Primary                                                                                                                                                                                                                                                       |                                                   | ati gasi                    |                                                    |                                                           |              |                             |                                                             |                                     |
| Parameter                                                                                                                                                                                                                                                             | Unit                                              | DF                          | Result                                             | Expected                                                  | F            | Recovery                    | Accepta                                                     | ance Range                          |
| pН                                                                                                                                                                                                                                                                    | pН                                                | 1.00                        | 7.08                                               | 7.00                                                      |              | 101                         | 90 - 110                                                    | 1                                   |
|                                                                                                                                                                                                                                                                       |                                                   |                             |                                                    | 04TDS14C                                                  |              | 101                         | 90 - 110                                                    |                                     |
| Total Dissolved Solids                                                                                                                                                                                                                                                |                                                   |                             | Batch                                              |                                                           | DF           | MDL                         | 90 - FR                                                     | Result                              |
| Total Dissolved Solids<br>Parameter                                                                                                                                                                                                                                   | by SM 254                                         | 0 C                         | Batch<br>Ana                                       | 04TDS14C                                                  | DF<br>1.00   |                             |                                                             |                                     |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved                                                                                                                                                                                                           | by SM 254                                         | 0 <b>C</b><br>Unit          | Batch<br>Ana<br>04/14                              | 04TDS14C<br>lyzed                                         |              | MDL                         | RL                                                          | Result                              |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved                                                                                                                                                                                                           | by SM 254                                         | O C<br>Unit<br>mg/L         | Batch<br>Ana<br>04/14                              | 04TDS14C<br>lyzed<br>./2014                               | 1.00         | MDL<br>1.76                 | RL<br>125                                                   | Result<br>2700                      |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved                                                                                                                                                                                | by SM 254                                         | O C<br>Unit<br>mg/L         | Batch<br>Ana<br>04/14                              | 04TDS14C<br>lyzed<br>./2014                               | 1.00         | MDL<br>1.76                 | RL<br>125                                                   | Result<br>2700                      |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank                                                                                                                                                                   | by SM 254                                         | Unit<br>mg/L<br>mg/L        | Batch<br>Ana<br>04/14<br>04/14                     | 04TDS14C<br>lyzed<br>./2014                               | 1.00         | MDL<br>1.76                 | RL<br>125                                                   | Result<br>2700                      |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter                                                                                                                                                         | by SM 254                                         | O C<br>Unit<br>mg/L<br>mg/L | Batch Ana 04/14 04/14 Result                       | 04TDS14C<br>lyzed<br>./2014                               | 1.00         | MDL<br>1.76                 | RL<br>125<br>250                                            | Result<br>2700                      |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter Total Dissolved Solids                                                                                                                                  | by SM 254                                         | O C<br>Unit<br>mg/L<br>mg/L | Batch Ana 04/14 04/14 Result                       | 04TDS14C<br>lyzed<br>./2014                               | 1.00<br>1.00 | MDL<br>1.76                 | RL<br>125<br>250<br>Lab ID =                                | Result<br>2700<br>5210              |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter Total Dissolved Solids Duplicate                                                                                                                        | by SM 254<br>d Solids<br>d Solids<br>Unit<br>mg/L | Unit mg/L mg/L DF 1.00      | Batch Ana 04/14 04/14 Result ND                    | 04TDS14C<br>lyzed<br>./2014<br>./2014                     | 1.00<br>1.00 | MDL<br>1.76<br>1.76         | RL<br>125<br>250<br>Lab ID =                                | Result<br>2700<br>5210<br>812966-00 |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter Total Dissolved Solids Duplicate Parameter                                                                                                              | by SM 254                                         | Unit mg/L mg/L DF 1.00      | Batch Ana 04/14 04/14 Result ND Result             | 04TDS14C<br>lyzed<br>./2014<br>./2014                     | 1.00<br>1.00 | MDL<br>1.76<br>1.76         | RL<br>125<br>250<br>Lab ID =<br>Accepta<br>0 - 10           | Result<br>2700<br>5210<br>812966-00 |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter Total Dissolved Solids Duplicate Parameter Total Dissolved Solids                                                                                       | by SM 254                                         | Unit mg/L mg/L DF 1.00      | Batch Ana 04/14 04/14 Result ND Result             | 04TDS14C<br>lyzed<br>./2014<br>./2014<br>Expected<br>4440 | 1.00<br>1.00 | MDL<br>1.76<br>1.76         | RL 125 250  Lab ID = Accepta 0 - 10 Lab ID =                | Result<br>2700<br>5210<br>812966-00 |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter Total Dissolved Solids Duplicate Parameter Total Dissolved Solids Duplicate Duplicate                                                                   | by SM 254                                         | DF<br>1.00                  | Batch Ana 04/14 04/14 Result ND Result 4330        | 04TDS14C<br>lyzed<br>./2014<br>./2014<br>Expected<br>4440 | 1.00<br>1.00 | MDL<br>1.76<br>1.76         | RL 125 250  Lab ID = Accepta 0 - 10 Lab ID =                | Result<br>2700<br>5210<br>812966-00 |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter Total Dissolved Solids Duplicate Parameter Total Dissolved Solids Duplicate Parameter Parameter Total Dissolved Solids Duplicate Parameter              | by SM 254                                         | DF<br>1.00<br>DF            | Batch Ana 04/14 04/14 Result ND Result 4330 Result | 04TDS14C<br>lyzed<br>./2014<br>./2014<br>Expected<br>4440 | 1.00<br>1.00 | MDL<br>1.76<br>1.76<br>2.51 | RL 125 250  Lab ID = Accepta 0 - 10 Lab ID = Accepta        | Result<br>2700<br>5210<br>812966-00 |
| Total Dissolved Solids Parameter 312969-001 Total Dissolved 312969-002 Total Dissolved Method Blank Parameter Total Dissolved Solids Duplicate Parameter Total Dissolved Solids Duplicate Parameter Total Dissolved Solids Duplicate Parameter Total Dissolved Solids | by SM 254                                         | DF<br>1.00<br>DF            | Batch Ana 04/14 04/14 Result ND Result 4330 Result | 04TDS14C<br>lyzed<br>./2014<br>./2014<br>Expected<br>4440 | 1.00<br>1.00 | MDL<br>1.76<br>1.76<br>2.51 | RL 125 250  Lab ID = Accepta 0 - 10 Lab ID = Accepta 0 - 10 | Result<br>2700<br>5210<br>812966-00 |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 022



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Printed 4/24/2014

Page 13 of 19

Project Number: 428648.IM.CS.EX.AC

Batch 040914A-1 Metals by EPA 200.8, Dissolved Parameter Unit Analyzed DF MDL RL Result 04/09/2014 23:26 2.00 0.142 1.0 4.2 812969-001 Chromium uq/L Manganese ua/L 04/09/2014 23:26 2.00 0.120 1.0 66.3 5.0 772 812969-002 Chromium ug/L 04/09/2014 23:58 10.0 0.710 Manganese ug/L 04/09/2014 23:52 2.00 0.120 1.0 7.0 Method Blank **Parameter** Unit DF Result ND Chromium ug/L 1.00 Manganese ug/L 1.00 ND Lab ID = 812969-001 Duplicate DF **RPD** Parameter Unit Result Expected Acceptance Range Chromium ug/L 2.00 3.90 4.25 8.46 0 - 20ug/L 2.00 63.0 66.3 5.05 0 - 20 Manganese Low Level Calibration Verification Parameter Unit DF Result Expected Recovery Acceptance Range 0.532 0.500 70 - 130 Chromium ug/L 1.00 106 70 - 130 ug/L 1.00 0.383 0.500 76.6 Manganese Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Range 2.00 50.0 50.0 100 Chromium ug/L 85 - 115 Manganese ug/L 2.00 48.1 50.0 96.2 85 - 115 Lab ID = 812969-001 Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Range 51.5 54.2(50.0) 94.5 75 - 125 Chromium ug/L 2.00 92.0 ug/L 2.00 112 116(50.0) 75 - 125 Manganese Matrix Spike Duplicate Lab ID = 812969-001 Parameter Unit DF Result Expected/Added Recovery Acceptance Range 2.00 52.7 54.2(50.0) 96.9 Chromium ug/L 75 - 125 2.00 112 90.6 75 - 125 Manganese ug/L 116(50.0) MRCCS - Secondary DF Parameter Unit Result Expected Recovery Acceptance Range Chromium ug/L 1.00 19.0 20.0 95.2 90 - 110 Manganese ug/L 1.00 19.1 20.0 95.5 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 16 of 19

Project Number: 428648.IM.CS.EX.AC


Printed 4/24/2014

| Metals by 200.7, Dissolve | ed   |      |         |               |            |            |           |
|---------------------------|------|------|---------|---------------|------------|------------|-----------|
| Parameter                 |      | Unit | Analy   | zed [         | OF MDL     | RL         | Result    |
| 812969-001 Calcium        |      | ug/L | 04/15/2 | 2014 15:58 5  | 0.0 850    | 25000      | 119000    |
| Iron                      |      | ug/L | 04/15/2 | 2014 18:21 2  | .00 6.00   | 20.0       | ND        |
| Magnesium                 |      | ug/L | 04/15/2 | 2014 18:21 2  | .00 936    | 2000       | 24200     |
| Sodium                    |      | ug/L | 04/15/2 | 2014 15:58 5  | 0.0 2990   | 25000      | 817000    |
| 812969-002 Calcium        |      | ug/L | 04/15/2 | 2014 16:33    | 00 1700    | 50000      | 235000    |
| Iron                      |      | ug/L | 04/15/2 | 2014 17:50 2  | .00 6.00   | 20.0       | ND        |
| Magnesium                 |      | ug/L | 04/15/2 | 2014 16:58 1  | 0.0 4680   | 10000      | 35700     |
| Sodium                    |      | ug/L | 04/15/2 | 2014 15:33 5  | 00 29900   | 250000     | 1490000   |
| Method Blank              |      |      |         |               |            |            | Arra I    |
| Parameter                 | Unit | DF   | Result  |               |            |            |           |
| Calcium                   | ug/L | 1.00 | ND      |               |            |            |           |
| Iron                      | ug/L | 1.00 | ND      |               |            |            |           |
| Sodium                    | ug/L | 1.00 | ND      |               |            |            |           |
| Magnesium                 | ug/L | 1.00 | ND      |               |            |            |           |
| Duplicate                 |      |      |         |               |            | Lab ID = 8 | 12969-002 |
| Parameter                 | Unit | DF   | Result  | Expected      | RPD        | Acceptar   | ce Range  |
| Calcium                   | ug/L | 100  | 234000  | 235000        | 0.640      | 0 - 20     |           |
| Iron                      | ug/L | 2.00 | ND      | 0             | 0          | 0 - 20     |           |
| Sodium                    | ug/L | 500  | 1530000 | 1490000       | 2.45       | 0 - 20     |           |
| Magnesium                 | ug/L | 10.0 | 35300   | 35700         | 1.18       | 0 - 20     |           |
| Lab Control Sample        |      |      |         |               |            | orii wala  |           |
| Parameter                 | Unit | DF   | Result  | Expected      | Recovery   | Acceptar   | ice Range |
| Calcium                   | ug/L | 1.00 | 2070    | 2000          | 104        | 85 - 115   |           |
| Iron                      | ug/L | 1.00 | 2140    | 2000          | 107        | 85 - 115   |           |
| Sodium                    | ug/L | 1.00 | 1890    | 2000          | 94.6       | 85 - 115   |           |
| Magnesium                 | ug/L | 1.00 | 2140    | 2000          | 107        | 85 - 115   |           |
| Matrix Spike              |      |      |         |               |            | Lab ID = 8 | 12969-002 |
| Parameter                 | Unit | DF   | Result  | Expected/Adde | d Recovery | Acceptar   | ice Range |
| Calcium                   | ug/L | 100  | 446000  | 435000(200000 | 0) 105     | 75 - 125   |           |
| Iron                      | ug/L | 2.00 | 2010    | 2000(2000)    | 100        | 75 - 125   |           |
| <b>_</b>                  | /1   | 500  | 250000  | 2490000(10000 | OC 109     | 75 - 125   |           |
| Sodium                    | ug/L | 500  | 2580000 | 2490000(10000 | )C 103     | 10 - 120   |           |

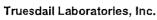


| Client: E2 Consulting Engineers, Inc. |              |            | Project Name:<br>Project Number: | Page 17 of 19<br>Printed 4/24/2014 |                      |                              |
|---------------------------------------|--------------|------------|----------------------------------|------------------------------------|----------------------|------------------------------|
| Matrix Spike Duplicate                |              |            |                                  |                                    | ing<br>1800 - Europe | Lab ID = 812969-002          |
| Parameter<br>Iron                     | Unit<br>ug/L | DF<br>2.00 | Result<br>1940                   | Expected/Added 2000(2000)          | Recovery<br>96.8     | Acceptance Range<br>75 - 125 |
| MRCCS - Secondary                     |              |            | - 2000 may ni                    | Property of the s                  | r Kydrifyer          |                              |
| Parameter<br>Calcium                  | Unit<br>ug/L | DF<br>1.00 | Result<br>5100                   | Expected<br>5000                   | Recovery<br>102      | Acceptance Range<br>95 - 105 |
| Iron                                  | ug/L         | 1.00       | 5150                             | 5000                               | 103                  | 95 - 105                     |
| Sodium                                | ug/L         | 1.00       | 4920                             | 5000                               | 98.5                 | 95 - 105                     |
| Magnesium                             | ug/L         | 1.00       | 5080                             | 5000                               | 102                  | 95 - 105                     |
| MRCVS - Primary                       |              |            |                                  |                                    | ka kacama            | statutationi, kyleinyminen m |
| Parameter<br>Calcium                  | Unit<br>ug/L | DF<br>1.00 | Result<br>5150                   | Expected<br>5000                   | Recovery<br>103      | Acceptance Range<br>90 - 110 |
| MRCVS - Primary                       |              |            |                                  |                                    |                      |                              |
| Parameter Calcium MRCVS - Primary     | Unit<br>ug/L | DF<br>1.00 | Result<br>5020                   | Expected<br>5000                   | Recovery<br>100      | Acceptance Range<br>90 - 110 |
| Parameter<br>Calcium                  | Unit<br>ug/L | DF<br>1.00 | Result<br>5230                   | Expected<br>5000                   | Recovery<br>105      | Acceptance Range<br>90 - 110 |
| MRCVS - Primary                       | a Alba Basik |            | erodőkül Arrodkű                 |                                    |                      |                              |
| Parameter<br>Iron                     | Unit<br>ug/L | DF<br>1.00 | Result<br>5200                   | Expected 5000                      | Recovery<br>104      | Acceptance Range<br>90 - 110 |
| MRCVS - Primary                       | although     |            |                                  |                                    | Bara,                |                              |
| Parameter<br>Iron                     | Unit<br>ug/L | DF<br>1.00 | Result<br>5290                   | Expected<br>5000                   | Recovery<br>106      | Acceptance Range<br>90 - 110 |
| MRCVS - Primary                       |              |            | out (PELog Karl)                 |                                    |                      | Altoria de la caron          |
| Parameter<br>Iron                     | Unit<br>ug/L | DF<br>1.00 | Result<br>5290                   | Expected<br>5000                   | Recovery<br>106      | Acceptance Range<br>90 - 110 |
| Sodium                                | ug/L         | 1.00       | 5290                             | 5000                               | 106                  | 90 - 110                     |
| MRCVS - Primary                       |              |            |                                  |                                    |                      |                              |
| Parameter<br>Sodium                   | Unit<br>ug/L | DF<br>1.00 | Result<br>4940                   | Expected 5000                      | Recovery<br>98.9     | Acceptance Range<br>90 - 110 |
| MRCVS - Primary                       |              |            |                                  |                                    |                      |                              |
| Parameter<br>Sodium                   | Unit<br>ug/L | DF<br>1.00 |                                  | Expected<br>5000                   | Recovery<br>99.5     | Acceptance Range<br>90 - 110 |
| Magnesium                             | ug/L         | 1.00       | 5110                             | 5000                               | 102                  | 90 - 110                     |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



| Client: E2 Consulting E               | ngineers, Inc               |                    | Project Name:<br>Project Number: | PG&E Topock<br>428648.IM.CS | •                       | Page 19 of 19<br>Printed 4/24/2014       |
|---------------------------------------|-----------------------------|--------------------|----------------------------------|-----------------------------|-------------------------|------------------------------------------|
| Interference Check                    | Standard AB                 |                    |                                  |                             |                         |                                          |
| Parameter<br>Iron                     | Unit<br>ug/L                | DF<br>1.00         | Result<br>2190                   | Expected 2000               | Recovery<br>110         | Acceptance Range<br>80 - 120             |
| Interference Check S                  | Standard AB                 |                    |                                  |                             |                         |                                          |
| Parameter Iron Interference Check 5   | Unit<br>ug/L<br>Standard AB | DF<br>1.00         | Result<br>2120                   | Expected<br>2000            | Recovery<br>106         | Acceptance Range<br>80 - 120             |
| Parameter Sodium Interference Check S | Unit<br>ug/L                | DF<br>1.00         | Result<br>2050                   | Expected<br>2000            | Recovery<br>103         | Acceptance Range<br>80 - 120             |
| Parameter<br>Sodium<br>Magnesium      | Unit<br>ug/L<br>ug/L        | DF<br>1.00<br>1.00 | Result<br>1830<br>2010           | Expected<br>2000<br>2000    | Recovery<br>91.6<br>100 | Acceptance Range<br>80 - 120<br>80 - 120 |
| Interference Check S                  | Standard AB                 |                    |                                  |                             |                         |                                          |
| Parameter<br>Magnesium                | Unit<br>ug/L                | DF<br>1.00         | Result<br>1950                   | Expected 2000               | Recovery<br>97.7        | Acceptance Range<br>80 - 120             |


Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

£ - Mona Nassimi

Manager, Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.





3

#### Total Dissolved Solids by SM 2540 C

#### Calculations

Batch: 04TDS14C Date Analyzed: 4/14/2014

| Laboratory<br>Number | Sample<br>volume,<br>mL | Initial<br>weight, g | 1st<br>Final<br>weight, g | 2nd<br>Final<br>weight, g | Weight<br>Difference,<br>g | Exceeds<br>0.5mg?<br>Yes/No | Residue<br>weight, g | Filterable<br>residue,<br>ppm | RL,<br>ppm | Reported<br>Value,<br>ppm | DF |
|----------------------|-------------------------|----------------------|---------------------------|---------------------------|----------------------------|-----------------------------|----------------------|-------------------------------|------------|---------------------------|----|
| Blank                | 100                     | 79.0554              | 79.0556                   | 79.0555                   | 0.0001                     | No                          | 0.0001               | 1.0                           | 25,0       | ND                        | 1  |
| 812966-1             | 20                      | 28.8877              | 28.9770                   | 28.9766                   | 0,0004                     | No                          | 0,0889               | 4445.0                        | 125.0      | 4445.0                    | 1  |
| 812966-2             | 20                      | 30,5001              | 30.5926                   | 30,5925                   | 0.0001                     | No                          | 0.0924               | 4620.0                        | 125.0      | 4620.0                    | 1  |
| 812966-3             | 3                       | 29.2834              | 29.3661                   | 29,3660                   | 0,0001                     | No                          | 0.0826               | 27533.3                       | 833.3      | 27533.3                   | 1  |
| 812967-1             | 20                      | 28.8149              | 28.9058                   | 28.9053                   | 0.0005                     | No                          | 0.0904               | 4520.0                        | 125.0      | 4520.0                    | 1  |
| 812967-2             | 20                      | 28.5920              | 28.6805                   | 28.6801                   | 0.0004                     | No                          | 0.0881               | 4405.0                        | 125.0      | 4405.0                    | 1  |
| 812967-3             | 20                      | 28.8540              | 28.9420                   | 28.9418                   | 0,0002                     | No                          | 0.0878               | 4390.0                        | 125.0      | 4390.0                    | 1  |
| 812967-4             | 20                      | 29.3961              | 29.4832                   | 29.4830                   | 0.0002                     | No                          | 0.0869               | 4345.0                        | 125.0      | 4345.0                    | 1  |
| 812967-5             | 20                      | 28.4726              | 28.5611                   | 28.5607                   | 0.0004                     | No                          | 0.0881               | 4405.0                        | 125.0      | 4405.0                    | 11 |
| 812967-6             | 20                      | 29.3281              | 29.4189                   | 29.4189                   | 0.0000                     | No                          | 0.0908               | 4540.0                        | 125.0      | 4540.0                    | 1  |
| 812967-7             | 20                      | 28.8877              | 28.9826                   | 28.9826                   | 0.0000                     | No                          | 0.0949               | 4745.0                        | 125.0      | 4745.0                    | 1  |
| 812966-1 Dup         | 20                      | 29.3764              | 29.4633                   | 29,4630                   | 0.0003                     | No                          | 0.0866               | 4330.0                        | 125.0      | 4330.0                    | 1  |
| LCS                  | 100                     | 69.7928              | 69.8431                   | 69.8427                   | 0.0004                     | No                          | 0.0499               | 499.0                         | 25.0       | 499.0                     | 1  |
| 812967-8             | 20                      | 28.6296              | 28.7122                   | 28.7120                   | 0.0002                     | No                          | 0.0824               | 4120.0                        | 125.0      | 4120.0                    | 1  |
| 812967-9             | 20                      | 29.5519              | 29.6368                   | 29.6368                   | 0.0000                     | No                          | 0.0849               | 4245.0                        | 125.0      | 4245.0                    | 11 |
| 812967-10            | 50                      | 51.9142              | 51.9715                   | 51.9712                   | 0.0003                     | No                          | 0.0570               | 1140.0                        | 50.0       | 1140.0                    | 1  |
| 812967-11            | 50                      | 50.4824              | 50.6119                   | 50.6118                   | 0.0001                     | No                          | 0.1294               | 2588.0                        | 50.0       | 2588.0                    | 11 |
| 812967-14            | 10                      | 30.4193              | 30.4737                   | 30.4735                   | 0.0002                     | No                          | 0.0542               | 5420.0                        | 250.0      | 5420.0                    | 1  |
| 812967-15            | 50                      | 51.4982              | 51.5572                   | 51.5569                   | 0.0003                     | No                          | 0.0587               | 1174.0                        | 50.0       | 1174.0                    | 11 |
| 812969-1             | 20                      | 28.7834              | 28.8373                   | 28.8373                   | 0.0000                     | No                          | 0.0539               | 2695.0                        | 125.0      | 2695.0                    | 1  |
| 812969-2             | 10                      | 30.1415              | 30.1936                   | 30.1936                   | 0.0000                     | No                          | 0.0521               | 5210.0                        | 250.0      | 5210.0                    | 1  |
| 813001-1             | 100                     | 66.7875              | 66.8365                   | 66.8362                   | 0.0003                     | No                          | 0.0487               | 487.0                         | 25.0       | 487.0                     | 11 |
| 813001-2             | 100                     | 79.4964              | 79.5455                   | 79.5453                   | 0.0002                     | No                          | 0.0489               | 489.0                         | 25.0       | 489.0                     | 1  |
| 812966-3 Dup         | 3                       | 30.4361              | 30.5197                   | 30,5197                   | 0.0000                     | No                          | 0.0836               | 27866.7                       | 833.3      | 27866.7                   | 11 |

Calculation as follows:

Filterable residue (TDS), mg/L =

 $\left(\frac{A-B}{C}\right) \times 10^6$ 

Where:

A = weight of dish + residue in grams. B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

| QC Std<br>I.D. | Measurd<br>Value, ppm | Theoretical<br>Value, ppm | Percent Rec | Acceptance<br>Limit | QC Within<br>Control? |
|----------------|-----------------------|---------------------------|-------------|---------------------|-----------------------|
| LCS            | 499.0                 | 500                       | 99.8%       | 90-110%             | Yes                   |
| LCSD           |                       |                           |             |                     |                       |

**Duplicate Determinations Difference Summary** 

| Lab<br>Númber | Sample<br>Welght, g | Sample Dup<br>Weight, g | % RPD | Acceptance<br>Limit | QC Within<br>Control? |
|---------------|---------------------|-------------------------|-------|---------------------|-----------------------|
| 812966-1      | 0.0889              | 0.0866                  | 1.3%  | ≤5%                 | Yes                   |
| 812966-3      | 0.0826              | 0.0836                  | 0.6%  | ≤5%                 | Yes                   |

$$P = \left(\frac{LC}{LT}\right) \times 10^{-10}$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

**Duplicate Determination Difference** 

% Difference = 
$$\frac{|A \text{ or } B - C|}{C} \times 100$$

where  $C = \frac{A+B}{2}$ 

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

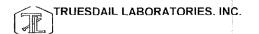
Maksim G.

Reviewer Printed Name

Jenny T.

Analyst Printed Name

#### Total Dissolved Solids by SM 2540 C


#### TDS/EC CHECK

Batch: 04TDS14C Date Analyzed: 4/14/2014

| Laboratory Number | EC    | TDS/EC Ratio:<br>0.55-0.90 | Calculated<br>TDS<br>(EC*0.65) | Measured<br>TDS / Calc<br>TDS <1.3 |
|-------------------|-------|----------------------------|--------------------------------|------------------------------------|
|                   |       |                            |                                |                                    |
| 812966-1          | 6850  | 0.65                       | 4452.5                         | 1.00                               |
| 812966-2          | 6910  | 0.67                       | 4491.5                         | 1.03                               |
| 812966-3          | 35900 | 0.77                       | 23335                          | 1.18                               |
| 812967-1          | 6850  | 0.66                       | 4452.5                         | 1.02                               |
| 812967-2          | 6680  | 0.66                       | 4342                           | 1.01                               |
| 812967-3          | 6810  | 0.64                       | 4426.5                         | 0.99                               |
| 812967-4          | 6810  | 0.64                       | 4426.5                         | 0.98                               |
| 812967-5          | 6910  | 0.64                       | 4491.5                         | 0.98                               |
| 812967-6          | 8220  | 0.55                       | 5343                           | 0.85                               |
| 812967-7          | 6800  | 0.70                       | 4420                           | 1.07                               |
| 812966-1 Dup      | 6850  | 0.63                       | 4452.5                         | 0.97                               |
| LCS               |       |                            |                                |                                    |
| 812967-8          | 6510  | 0.63                       | 4231.5                         | 0.97                               |
| 812967-9          | 5810  | 0.73                       | 3776.5                         | 1.12                               |
| 812967-10         | 2050  | 0.56                       | 1332.5                         | 0.86                               |
| 812967-11         | 3890  | 0.67                       | 2528.5                         | 1.02                               |
| 812967-14         | 8260  | 0.66                       | 5369                           | 1.01                               |
| 812967-15         | 2050  | 0.57                       | 1332.5                         | 0.88                               |
| 812969-1          | 4150  | 0.65                       | 2697.5                         | 1.00                               |
| 812969-2          | 7810  | 0.67                       | 5076.5                         | 1.03                               |
| 813001-1          | 885   | 0.55                       | 575.25                         | 0.85                               |
| 813001-2          | 827   | 0.59                       | 537.55                         | 0.91                               |
| 812966-3 Dup      | 35900 | 0.78                       | 23335                          | 1.19                               |







## Alkalinity by SM 2320B

Analytical Batch: 04ALK14B
Matrix: WATER
Date of Analysis: 4/9/2014

| Lab ID                | Sample<br>pH | Sample<br>Volume<br>(ml) | N of<br>HCL | Titrant<br>Volume<br>to reach<br>pH 8.3 | P<br>Alkalinity as<br>CaCO3 | Titrant<br>Volume to<br>reach pH 4.5 | Total mL<br>tilrant to<br>reach pH 0.3<br>unit lower | Total<br>Alkalinity as<br>CaCO3 | RL,<br>ppm | Total<br>Alkalinity<br>Reported<br>Value | HCO3 Conc.<br>as CaCO <sub>3</sub><br>(ppm) | CO3 Alkalinity<br>as CaCO <sub>3</sub><br>(ppm) | OH Alkalinity<br>as CaCO <sub>3</sub><br>(ppm) | Low Alkalinity as CaCO <sub>3</sub> |
|-----------------------|--------------|--------------------------|-------------|-----------------------------------------|-----------------------------|--------------------------------------|------------------------------------------------------|---------------------------------|------------|------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------|
| BLANK                 | 5.48         | 50                       | 0.02        | 0.00                                    | 0.0                         | 0.00                                 | AR<br>ARA                                            | 0.0                             | 5          | ND                                       | ND                                          | ND                                              | ND                                             |                                     |
| 812823-1              | 8.09         | 50                       | 0.02        | 0.00                                    | 0.0                         | 6.30                                 |                                                      | 126.0                           | 5          | 126.0                                    | 126.0                                       | ND                                              | ND                                             |                                     |
| 812839-1              | 8.06         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7.55                                 |                                                      | 151.0                           | 5          | 151.0                                    | 151.0                                       | ND                                              | ND                                             |                                     |
| 812839-2              | 8.09         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7,80                                 | <b>X</b>                                             | 156.0                           | 5          | 156.0                                    | 156.0                                       | ND                                              | ND                                             |                                     |
| 812839-3              | 8.20         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7.30                                 |                                                      | 146.0                           | 5          | 146.0                                    | 146.0                                       | ND                                              | ND                                             |                                     |
| 812839-4              | 7.99         | 50                       | 0.02        | 0.00                                    | 0.0                         | 12.35                                |                                                      | 247.0                           | 5          | 247.0                                    | 247.0                                       | ND                                              | ND                                             |                                     |
| 812839-5              | 8.01         | 50                       | 0.02        | 0.00                                    | 0.0                         | 9.55                                 | 88 JUNE 1                                            | 191.0                           | 5          | 191.0                                    | 191.0                                       | ND                                              | ND                                             |                                     |
| 812839-6              | 7.84         | 50                       | 0.02        | 0.00                                    | 0.0                         | 8.35                                 |                                                      | 167.0                           | 5          | 167.0                                    | 167.0                                       | ND                                              | ND                                             |                                     |
| 812839-7              | 7.89         | 50                       | 0.02        | 0.00                                    | 0.0                         | 8.85                                 |                                                      | 177.0                           | 5          | 177.0                                    | 177.0                                       | ND                                              | ND                                             |                                     |
| 812969-1              | 7.64         | 50                       | 0.02        | 0.00                                    | 0.0                         | 10,90                                | Assist                                               | 218.0                           | 5          | 218.0                                    | 218.0                                       | D                                               | ND                                             |                                     |
| 812969-2              | 7.56         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7.25                                 | 144.0                                                | 145.0                           | 5          | 145.0                                    | 145.0                                       | ND                                              | ND ND                                          |                                     |
| 812969-2 DUP          | 7.58         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7.30                                 |                                                      | 146.0                           | 5          | 146.0                                    | 146.0                                       | ND                                              | ND                                             |                                     |
| LCS                   | 10.44        | 50                       | 0.02        | 2.0                                     | 39.0                        | 4.95                                 |                                                      | 99.0                            | 5          | 99.0                                     | 21.0                                        | 78                                              | ND                                             |                                     |
| LCSD                  | 10.45        | 50                       | 0.02        | 2.0                                     | 40.0                        | 4.95                                 |                                                      | 99.0                            | 5          | 99.0                                     | 19.0                                        | 80                                              | ND                                             |                                     |
| 812859-16             | 7.68         | 50                       | 0.02        | 0.0                                     | 0.0                         | 5.45                                 |                                                      | 109.0                           | 5          | 109.0                                    | 109.0                                       | ND                                              | ND                                             |                                     |
| 812859-20             | 8.25         | 50                       | 0.02        | 0.0                                     | 0.0                         | 6.45                                 |                                                      | 129.0                           | 5          | 129.0                                    | 129.0                                       | ND                                              | ND                                             |                                     |
| 812969-1 MS           | 9.03         | 50                       | 0.02        | 0.0                                     | 0.0                         | 15.50                                |                                                      | 310.0                           | 5          | 310.0                                    | 310.0                                       | 0                                               | ND                                             |                                     |
|                       |              |                          |             |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                                |                                     |
|                       |              |                          |             |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                                |                                     |
|                       |              |                          | Selection . |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                                |                                     |
| A South Street Wilder |              |                          |             | All Hall                                |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                                |                                     |
|                       |              |                          |             |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                                |                                     |
|                       |              |                          |             |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                                |                                     |
|                       |              |                          |             |                                         |                             |                                      | 7.50                                                 |                                 |            |                                          |                                             |                                                 |                                                |                                     |
|                       |              |                          |             |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                                |                                     |

Calculations as follows:

Tor P=

Where:

 $\frac{A \times N \times 50000}{\text{max} \times 10000}$ 

mL sample

T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L A = mL standard acid used

N = normality of standard acid

Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000 mL sample

/here: B = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

Accept Limit

<5

| QC Std<br>I.D. | Measured<br>Value, ppm | Theoretical<br>Value, ppm | % Recovery | Accetance<br>Limit | QC Within<br>Control? |
|----------------|------------------------|---------------------------|------------|--------------------|-----------------------|
| LCS            | 99                     | 100                       | 99.0%      | 90-110             | Yes                   |
| LCSD           | 99                     | 100                       | 99.0%      | 90-110             | Yes                   |

QC Within

Control? Yes

**Duplicate Determination Difference Summary** 

| Lab Number<br>I.D. | Measured<br>Value, ppm | Dup Value,<br>ppm | RPD  | Accetance Limit | QC Within<br>Control? |
|--------------------|------------------------|-------------------|------|-----------------|-----------------------|
| 812969-2           | 145                    | 146               | 0.7% | ≤20%            | Yes                   |
|                    |                        |                   |      |                 |                       |

Sample Matrix Spike (MS/MSD) Summary

| Campio man | ix opino (i          |            | Jan               |            |                           |                          |                 |                    |                       |     |                     |                       |
|------------|----------------------|------------|-------------------|------------|---------------------------|--------------------------|-----------------|--------------------|-----------------------|-----|---------------------|-----------------------|
| Lab Number | Conc of<br>Unspk spl | Dil Factor | Added Spk<br>Conc | MS/MSD Amt | Measrd Conc<br>of Spk Spl | Theor Conc of Spk<br>Spl | MS/MSD %<br>Rec | MS Accept<br>Limit | QC Within<br>Control? | RPD | RPD Accept<br>Limit | QC Within<br>Control? |
| 812969-1   | 218                  | 1.         | 100               | 100        | 310                       | 318.00                   | 92%             | 75-125             | Yes                   |     |                     |                       |
| 012303-1   |                      |            |                   | 0          |                           |                          |                 | 75-125             |                       |     |                     | ,                     |

Himani

**Blank Summary** 

Measured

Value, ppm

0

Reporting

Limit, RL

5 ppm

Analyst Signature

Maksim Gorbunov

Reviewer Printed Name

Reviewer Signature

 $\sim$ 

812969
CHAIN OF CUSTODY RECORD

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

[IM3Plant-EW-217]

TURNAROUND TIME 10 Days

DATE 04/08/14 PAGE 1 OF

| The Barbara     |                |                  |                                         |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |                                         |             |                  |                       |      |               |               |     |                    |   |                                              |                     |          | -        |                                       | -         |
|-----------------|----------------|------------------|-----------------------------------------|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|-----------------------------------------|-------------|------------------|-----------------------|------|---------------|---------------|-----|--------------------|---|----------------------------------------------|---------------------|----------|----------|---------------------------------------|-----------|
| COMPANY         | CH2M HILL /E2  | 2                |                                         |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                          | 7          | 1/2                                     | <u>9</u> ;/ | 7                | $\overline{}$         | 7    | $\overline{}$ | $\overline{}$ | 7   | 7                  | 7 | 7                                            | $\overline{}$       | 1        | 600      | MENTS                                 |           |
| PROJECT NAME    | PG&E Topock    | IM3Plant-EV      | V                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | B /        | 33/2                                    | 3/          |                  |                       |      |               |               |     |                    |   |                                              |                     | //       | COI      | AMENIS                                |           |
| PHONE           | 530-229-33     | 303 1            | FAX _53                                 | 0-339-3303            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | / ,        | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | ر<br>ا      | / ,              | gp/                   | / /  | / ,           | / ,           | / , | / ,                |   |                                              | / /.                | /        |          |                                       |           |
| ADDRESS         | 155 Grand Ave  | Ste 1000         | *************************************** |                       |                      | /,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16:                        |            | Š/,                                     | 70%         | /,               | <del>\</del> \\\\\\\\ | /    | /             | /             | /   | /                  | / | /                                            |                     |          |          |                                       |           |
|                 | Oakland, CA 94 | 4612             | man-Ayl                                 |                       |                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ž/_                        | 0,1        |                                         | */          | / 8              |                       | /    | Re            | c'd           | 04/ | 08/14              | ť |                                              | Z Z                 | /        |          |                                       |           |
| P.O. NUMBER     | 428648.IM.CS   | .EX.AC           |                                         | M-St-State Management | ,                    | 7. PM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PH (150 Cr B) Lab fillerad | (2)<br>(2) | C(V) (C) AH (SMC)                       | /           | 34,Mg,Na,Fe (202 | / /                   | /    | S             | 21b           | 11: | 08/14<br><b>29</b> | 6 | 9                                            | WIBER OF CONTAINEDS |          |          |                                       |           |
| SAMPLERS (SIGNA | ATURE M        | i ha             |                                         |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320                        | Ψ(o;/.     | Crv1), A                                | 7,48        | 1.00%            |                       |      |               |               |     |                    |   |                                              | 10 X                |          |          |                                       |           |
|                 |                |                  |                                         |                       | 880                  | \$\\\ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |            |                                         |             | 3/               |                       |      |               |               |     |                    |   |                                              |                     |          |          |                                       |           |
| SAMPLE I.D.     |                | DATE             | TIME                                    | DESCRIPTION           | 10                   | \ <u>\</u> \&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 E                        | <i>[</i>   | \S                                      | Dis         | _                |                       |      | _             |               | _   | _                  |   | <u>[                                    </u> | <u></u>             |          |          |                                       |           |
| PE-01-217       |                | 04/08/14         | 1415                                    | Ground water          | X                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                          | х          | Х                                       | Х           |                  |                       |      |               |               |     |                    |   | 4                                            |                     |          | (zoc     | 1.7/200                               | $\dot{y}$ |
| TW-03D-2        | 17             | 04/08/14         | 1415                                    | Ground water          | X                    | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                          | Х          |                                         | Х           |                  |                       |      |               |               |     |                    |   | 4                                            | //                  |          |          |                                       |           |
|                 |                |                  | -                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |                                         |             |                  |                       |      |               |               |     |                    |   |                                              |                     |          |          |                                       |           |
|                 |                |                  |                                         |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |                                         |             |                  |                       |      |               |               |     |                    |   |                                              |                     |          |          |                                       |           |
|                 |                |                  |                                         |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Anna                     |            | 6                                       |             |                  | ž.                    |      |               |               |     |                    |   |                                              |                     |          |          |                                       |           |
|                 |                | 333              | A                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sam                        | U          | V.                                      | al          | Πρ               | le                    | C    | on            | Ğ             | in  | ne                 |   |                                              |                     |          |          | · · · · · · · · · · · · · · · · · · · |           |
|                 |                |                  | A                                       | EK                    |                      | PRINCIPAL DE LA CONTRACTION DE |                            | Š          |                                         |             | or               |                       |      | ta            |               | 1   | F # # 500          |   |                                              |                     |          |          |                                       |           |
| A 11000         |                |                  | _ev                                     | elIIIG                | )C                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |            |                                         |             |                  | ** N E                | ¥ 86 | 4 6 6 A       | VI            | CC  | 4                  |   | 8                                            | тотл                | AL NUMBI | ER OF CC | NTAINERS                              |           |
|                 |                | E-MONTH PROPERTY |                                         |                       | NAMES AND ADDRESS OF | iteitramii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |            |                                         |             |                  |                       |      |               |               |     |                    |   | ***************************************      |                     |          |          |                                       |           |

| 1 / CH                             | IAIN OF CUSTODY SIG      | GNATURE RECORD              |                           | SAMPLE CONDITIONS C                                      |
|------------------------------------|--------------------------|-----------------------------|---------------------------|----------------------------------------------------------|
| Signature (Relinquished) Mo Khy    | Printed CHAIS LEWE       | Company/<br>Agency CH2mHtLL | Date/ 4-8-/4<br>Time /528 | RECEIVED COOL $\cancel{z}$ WARM $\boxed{5.2 \text{ °F}}$ |
| Signature (Received) Swall Mgo     | Printed Name THANH NGO   |                             | Date/ 4.8-/4<br>Time 1536 | CUSTODY SEALED YES NO 1                                  |
| Signature<br>(Relinquished)        | Printed THANANGO         | Agency RUZSDAIL             | Date/ F 8-14<br>Time      | SPECIAL REQUIREMENTS:                                    |
| Signature (Received) / a Mich Dud! | Printed Made Mex / Brade | Company/<br>Agency TL       | Date/<br>Time 48/140 2005 |                                                          |
| Signature(<br>(Relinquished)       | Printed<br>Name          | Company/<br>Agency          | Date/<br>Time             |                                                          |
| Signature<br>(Received)            | Printed<br>Name          | Company/<br>Agency          | Date/<br>Time             |                                                          |

# Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

| Date    | Lab Number |           |             | Final pH  | Time Buffered | Initials |
|---------|------------|-----------|-------------|-----------|---------------|----------|
| 3,26/19 | 8/2753     | 7.00      | 2ml/100ml   | 9.5       | 7.30          | NE       |
| 49114   | 812966-1   | 7.00      | 2 hl/100 ml | 9.5       | 7:20          | NZ       |
|         | 2          |           |             |           |               |          |
|         | √ -3       |           | V           |           | V             |          |
|         | 812967-1   | 9.5       | ~17         | N/A       | NA            |          |
|         | -2         |           |             |           |               |          |
|         | ~3         |           |             |           |               |          |
|         | _4         |           |             | <u>'</u>  |               |          |
|         | -3         |           |             |           |               |          |
|         | -6         |           |             |           |               |          |
|         | -7         |           |             |           |               |          |
|         | -8<br>-9   |           |             |           |               |          |
|         | _ 9        |           |             |           |               |          |
|         | -10        |           | į           |           |               |          |
|         | -11        |           |             |           |               |          |
|         | -12        |           |             |           |               |          |
|         | -13        |           |             |           |               |          |
|         | -14        |           |             |           |               |          |
|         | V -15      |           |             |           |               |          |
| -       | 812968 CS  | لا ( و. ه | V           | $\bigvee$ | $\sqrt{2}$    | <b>↓</b> |
|         | 812969-1   |           | 2 ml/100 ml | 9.5       | 7:20          | NE       |
| V       | V -2       | <i>\\</i> | Į į         |           | <u> </u>      |          |
|         |            |           |             | -         |               | _        |
|         |            |           |             |           |               |          |
|         |            |           |             |           |               |          |
|         |            |           |             |           |               |          |
|         |            |           |             |           |               |          |
|         |            |           |             |           |               |          |
|         |            |           |             |           |               | -        |
|         |            |           |             |           |               |          |
|         |            |           |             |           |               |          |
|         |            |           |             | h         |               |          |

M2 4/14/14

C:\My Documents\Templates\Hexavalent Chromium\Cr6+ pH Log



#### TRUESDAIL LABORATORIES, INC. Metals

Turbidity/pH Check

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I            |                                                                                       | 1 41 10                                      | idity/pH C |                      | TI                               |                                         | }                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------|----------------------------------------------|------------|----------------------|----------------------------------|-----------------------------------------|------------------|
| Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Turbidity    | pН                                                                                    | Date                                         | Analyst    | Need Digest<br>(Y/N) | Time of<br>Adjustment to<br>pH 2 | Date/Time of 2nd<br>pH check            | Comments         |
| 817.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | フリ           | 42                                                                                    | 4/3/14                                       | K57        | Yes                  |                                  |                                         |                  |
| <217830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >1           | <z< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td></td></z<>         |                                              |            | <u> </u>             |                                  |                                         |                  |
| 8/75833 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >1           | <z <z<="" td=""><td></td><td></td><td>(</td><td></td><td></td><td></td></z>           |                                              |            | (                    |                                  |                                         |                  |
| 8178452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | اد_          |                                                                                       |                                              | 1 1        |                      |                                  |                                         |                  |
| 817849-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71           | <7                                                                                    |                                              |            |                      |                                  | *************************************** |                  |
| 812851 (1-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21           | 42                                                                                    |                                              | · .        |                      |                                  |                                         |                  |
| 812852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | اح           | 12                                                                                    | <b>↓.₩</b>                                   | Ψ          |                      |                                  |                                         |                  |
| \$17.870<br>\$17.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71           | < <u>Z</u>                                                                            | 4/3/14                                       | KD         | Yes                  |                                  |                                         |                  |
| 47.870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >1           | 22                                                                                    | ļ <b>!</b>                                   |            | <b></b>              |                                  |                                         |                  |
| 817821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21           | <u> </u>                                                                              | <u>                                     </u> |            | <u> </u>             |                                  | e festest . To                          | ما الم           |
| \$17.823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1           | >7                                                                                    | 1 // / / /                                   | 4          | NO                   | 1110                             | पोपीप गरन                               | PHEZ             |
| 617859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>&lt; </u> | 27                                                                                    | 4/4/14                                       | KD         | NO                   |                                  |                                         |                  |
| 812872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71           | < <u>Z</u>                                                                            | -                                            |            | Yes -                |                                  |                                         |                  |
| 812866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>     | 72                                                                                    | <u> </u>                                     | 2 44       | EVEZ.                |                                  |                                         |                  |
| 812912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71           |                                                                                       | 417114                                       | ES         | yes                  |                                  |                                         |                  |
| 812922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41           | 47                                                                                    |                                              |            |                      |                                  |                                         |                  |
| 812923(1-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | フリ           | 42                                                                                    | 11 10 10 11                                  | ES         | <u> </u>             |                                  |                                         |                  |
| 9:2029(1-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71           | 22                                                                                    | 4/8/114                                      | >          | No                   | 10:00                            |                                         |                  |
| 812977-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 72                                                                                    | A ( / . /                                    | 121>       |                      | 1305                             |                                         |                  |
| 812947 (1,2,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>     | '>2<br>22                                                                             | 4/8/14                                       |            | - NO-                | 1302                             |                                         |                  |
| X12944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                       | 419114                                       | ES         | yes_                 |                                  |                                         |                  |
| 812945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>     |                                                                                       |                                              |            |                      |                                  | 712.7                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | フリ           |                                                                                       |                                              |            |                      |                                  |                                         |                  |
| 812947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            |                                                                                       |                                              |            |                      |                                  |                                         |                  |
| 812949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21           |                                                                                       |                                              |            |                      |                                  |                                         |                  |
| 812951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                       |                                              |            |                      |                                  |                                         |                  |
| 812952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                       |                                              |            |                      |                                  |                                         |                  |
| 812953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                                                                       |                                              |            |                      |                                  |                                         |                  |
| 812959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | $\bigvee$                                                                             |                                              | -          | -                    |                                  |                                         |                  |
| 8/2945(1-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | フス                                                                                    |                                              |            | No                   | 11:00                            |                                         |                  |
| 812967(1-11,1415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) 41         | 12                                                                                    | 49114                                        | 占          | Yes                  | 11200                            |                                         |                  |
| 812966(1,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41           | 42                                                                                    | 1                                            |            | 107                  |                                  |                                         |                  |
| 966-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 72                                                                                    |                                              |            |                      | 1703                             |                                         | pH 12            |
| 812969(1-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                                                                       |                                              |            |                      | 1:00                             | 1                                       | - Itered then be |
| Dinoa/ 1/10 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11           | 72                                                                                    | 4/10/14                                      | KD         | NO                   | 1720                             |                                         | i i was pen of   |
| 8iz991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71 2/10/10   | 17                                                                                    | 11011-1-                                     | 1          | Ver                  | 1000                             |                                         |                  |
| 812992 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71           | 27                                                                                    |                                              |            | Yes<br>Yes           |                                  |                                         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71           | 72                                                                                    |                                              |            | Yes                  |                                  |                                         |                  |
| \$12986 (1,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~~           | >ブ                                                                                    |                                              |            | 110                  | 1770                             |                                         |                  |
| 813007 (1-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-1-         | 72                                                                                    |                                              |            | NO<br>Yes            | V                                |                                         |                  |
| 813007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21           | <z td=""  <=""><td></td><td></td><td>Yes</td><td>- V</td><td></td><td></td></z>       |                                              |            | Yes                  | - V                              |                                         |                  |
| Marine Ma |              |                                                                                       |                                              | 1          | Vas                  |                                  |                                         |                  |
| 313004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <1           | <z <="" td="" z<=""><td>4 +</td><td>V</td><td>Yes</td><td></td><td></td><td></td></z> | 4 +                                          | V          | Yes                  |                                  |                                         |                  |

- Notes:

  1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.

  2. All Total Recoverable Analytes must be pH adjusted and digested.

  3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.



## Sample Integrity & Analysis Discrepancy Form

| Cli        | ent: <u>E2</u>                                                                                         | _ Lab# 8/2 965  |
|------------|--------------------------------------------------------------------------------------------------------|-----------------|
| Dat        | te Delivered:0 <u> </u>                                                                                | Field Service   |
| 1.         | Was a Chain of Custody received and signed?                                                            | dYes □No □N/A   |
| 2.         | Does Customer require an acknowledgement of the COC?                                                   | □Yes Þano □N/A  |
| 3.         | Are there any special requirements or notes on the COC?                                                | □Yes ŪNo □N/A   |
| 4.         | If a letter was sent with the COC, does it match the COC?                                              | □Yes □No ੯ÍN/A  |
| <b>5</b> . | Were all requested analyses understood and acceptable?                                                 | 12⊒Yes □No □N/A |
| <b>6</b> . | Were samples received in a chilled condition?<br>Temperature (if yes)? <u>ゟ゙, ゚゚゚ &amp; <b>° C</b></u> | ØYes □No □N/A   |
| 7.         | Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?                           | ∕āYes □No □N/A  |
| 8.         | Were sample custody seals intact?                                                                      | □Yes □No 增N/A   |
| 9.         | Does the number of samples received agree with COC?                                                    | ØYes □No □N/A   |
| 10.        | Did sample labels correspond with the client ID's?                                                     | ØYes □No □N/A   |
| 11.        | Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □Client              | □Yes □No ŒN/A   |
| 12.        | Were samples pH checked? pH = $\underbrace{SUC.0.c.}$                                                  | ✓Yes □No □N/A   |
| 13.        | Were all analyses within holding time at time of receipt?<br>If not, notify Project Manager.           | ØYes □No □N/A   |
| 4.         | Have Project due dates been checked and accepted?<br>Turn Around Time (TAT): ☐ <b>RUSH</b> ☐ Std       | ÆYes □No □N/A   |
| <b>5</b> . | Sample Matrix:                                                                                         |                 |
| 6.         | Comments:                                                                                              |                 |
| 7.         | Sample Check-In completed by Truesdail Log-In/Receiving:                                               | Luda            |



Established 1931



May 30, 2014

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NARRATIVE PG&E TOPOCK IM3PLANT-EW-218, GROUNDWATER MONITORING

PROJECT, TLI NO.: 813316

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-EW-218 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, wet chemistry raw data, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on May 6, 2014, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Samples for pH analysis by SM 4500-H B were received past the method specified holding time. Mr. Duffy approved the analysis of the samples.

Due to the discrepancy between the Total Dissolved Chromium (741 ug/L) and Hexavalent Chromium (601 ug/L) results for sample TW-03D-218, sample from the Total Dissolved Chromium and Hexavalent Chromium sample containers were digested and analyzed for Total Dissolved Chromium. The results were 720 ug/L and 761 ug/L, respectively. The original Total Dissolved Chromium digestate was re-analyzed for confirmation and yielded a result of 751 ug/L. The Hexavalent Chromium result was also confirmed. After reviewing the data, the original results were reported.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

L – Mona Nassimi

Manager, Analytical Services

Mideael

Michael Ngo

Quality Assurance/Quality Control Officer

## TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: Two (2) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 428648.IM.CS.EX.AC

Laboratory No.: 813316

Date: May 30, 2014 Collected: May 6, 2014 Received: May 6, 2014

#### **ANALYST LIST**

| METHOD      | PARAMETER              | ANALYST           |
|-------------|------------------------|-------------------|
| EPA 120.1   | Specific Conductivity  | Jenny Tankunakorn |
| SM 4500-H B | pH                     | Felipe Mendoza    |
| SM 2540C    | Total Dissolved Solids | Jenny Tankunakorn |
| SM 2320B    | Total Alkalinity       | Alex Luna         |
| EPA 300.0   | Anions                 | Giawad Ghenniwa   |
| EPA 200.7   | Metals by ICP          | Ethel Suico       |
| EPA 200.8   | Metals by ICP/MS       | Ethel Suico       |
| EPA 218.6   | Hexavalent Chromium    | Naheed Eidinejad  |
| SM 3500-CrB | Hexavalent Chromium    | Jenny Tankunakorn |



14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project No.: 428648.IM.CS.EX.AC
P.O. No.: PGEIM11111001

Laboratory No.: 813316 Date Received: May 6, 2014

## **Analytical Results Summary**

| Lab Sample II | ) Field ID | Analysis<br>Method | Extraction<br>Method | Sample<br>Date | Sample<br>Time | Parameter                          | Result | Units    | RL    |
|---------------|------------|--------------------|----------------------|----------------|----------------|------------------------------------|--------|----------|-------|
| 813316-001    | PE-01-218  | E120.1             | NONE                 | 5/6/2014       | 15:10          | EC                                 | 4540   | umhos/cm | 2.00  |
| 813316-001    | PE-01-218  | E200.7             | LABFLT               | 5/6/2014       | 15:10          | Calcium                            | 126000 | ug/L     | 50000 |
| 813316-001    | PE-01-218  | E200.7             | LABFLT               | 5/6/2014       | 15:10          | Iron                               | ND     | ug/L     | 20.0  |
| 813316-001    | PE-01-218  | E200.7             | LABFLT               | 5/6/2014       | 15:10          | Magnesium                          | 23400  | ug/L     | 10000 |
| 813316-001    | PE-01-218  | E200.7             | LABFLT               | 5/6/2014       | 15:10          | Sodium                             | 802000 | ug/L     | 50000 |
| 813316-001    | PE-01-218  | E200.8             | LABFLT               | 5/6/2014       | 15:10          | Chromium                           | 4.3    | ug/L     | 1.0   |
| 813316-001    | PE-01-218  | E200.8             | LABFLT               | 5/6/2014       | 15:10          | Manganese                          | 72.2   | ug/L     | 1.0   |
| 813316-001    | PE-01-218  | E218.6             | LABFLT               | 5/6/2014       | 15:10          | Chromium, Hexavalent               | 3.9    | ug/L     | 0.20  |
| 813316-001    | PE-01-218  | E300               | NONE                 | 5/6/2014       | 15:10          | Chloride                           | 1170   | mg/L     | 50.0  |
| 813316-001    | PE-01-218  | E300               | NONE                 | 5/6/2014       | 15:10          | Nitrate as N                       | ND     | mg/L     | 0.500 |
| 813316-001    | PE-01-218  | E300               | NONE                 | 5/6/2014       | 15:10          | Sulfate                            | 395    | mg/L     | 25.0  |
| 813316-001    | PE-01-218  | SM2320B            | NONE                 | 5/6/2014       | 15:10          | Alkalinity                         | 178    | mg/L     | 5.00  |
| 813316-001    | PE-01-218  | SM2320B            | NONE                 | 5/6/2014       | 15:10          | Alkalinity, Bicarbonate (As CaCO3) | 178    | mg/L     | 5.00  |
| 813316-001    | PE-01-218  | SM2320B            | NONE                 | 5/6/2014       | 15:10          | Alkalinity, Carbonate (As CaCO3)   | ND     | mg/L     | 5.00  |
| 813316-001    | PE-01-218  | SM2540C            | NONE                 | 5/6/2014       | 15:10          | Total Dissolved Solids             | 2680   | mg/L     | 125   |
| 813316-001    | PE-01-218  | SM4500HB           | NONE                 | 5/6/2014       | 15:10          | PH                                 | 7.38 J | рH       | 4.00  |





| Lab Sample II | D Field ID | Analysis<br>Method | Extraction<br>Method | Sample<br>Date | Sample<br>Time | Parameter                          | Result  | Units    | RL     |
|---------------|------------|--------------------|----------------------|----------------|----------------|------------------------------------|---------|----------|--------|
| 813316-002    | TW-03D-218 | E120.1             | NONE                 | 5/6/2014       | 15:15          | EC                                 | 8270    | umhos/cm | 2.00   |
| 813316-002    | TW-03D-218 | E200.7             | LABFLT               | 5/6/2014       | 15:15          | Calcium                            | 236000  | ug/L     | 50000  |
| 813316-002    | TW-03D-218 | E200.7             | LABFLT               | 5/6/2014       | 15:15          | Iron                               | ND      | ug/L     | 20.0   |
| 813316-002    | TW-03D-218 | E200.7             | LABFLT               | 5/6/2014       | 15:15          | Magnesium                          | 30400   | ug/L     | 10000  |
| 813316-002    | TW-03D-218 | E200.7             | LABFLT               | 5/6/2014       | 15:15          | Sodium                             | 1480000 | ug/L     | 250000 |
| 813316-002    | TW-03D-218 | E200.8             | LABFLT               | 5/6/2014       | 15:15          | Chromium                           | 742     | ug/L     | 5.0    |
| 813316-002    | TW-03D-218 | E200.8             | LABFLT               | 5/6/2014       | 15:15          | Manganese                          | 8.9     | ug/L     | 0.50   |
| 813316-002    | TW-03D-218 | E300               | NONE                 | 5/6/2014       | 15:15          | Chloride                           | 2520    | mg/L     | 50.0   |
| 813316-002    | TW-03D-218 | E300               | NONE                 | 5/6/2014       | 15:15          | Nitrate as N                       | 3.33    | mg/L     | 0.500  |
| 813316-002    | TW-03D-218 | E300               | NONE                 | 5/6/2014       | 15:15          | Sulfate                            | 541     | mg/L     | 25.0   |
| 813316-002    | TW-03D-218 | SM2320B            | NONE                 | 5/6/2014       | 15:15          | Alkalinity                         | 77.0    | mg/L     | 5.00   |
| 813316-002    | TW-03D-218 | SM2320B            | NONE                 | 5/6/2014       | 15:15          | Alkalinity, Bicarbonate (As CaCO3) | 77.0    | mg/L     | 5.00   |
| 813316-002    | TW-03D-218 | SM2320B            | NONE                 | 5/6/2014       | 15:15          | Alkalinity, Carbonate (As CaCO3)   | ND      | mg/L     | 5.00   |
| 813316-002    | TW-03D-218 | SM2540C            | NONE                 | 5/6/2014       | 15:15          | Total Dissolved Solids             | 4820    | mg/L     | 250    |
| 813316-002    | TW-03D-218 | SM3500-CrB         | LABFLT               | 5/6/2014       | 15:15          | Chromium, Hexavalent               | 601     | ug/L     | 250    |
| 813316-002    | TW-03D-218 | SM4500HB           | NONE                 | 5/6/2014       | 15:15          | PH                                 | 7.33 J  | рН       | 4.00   |

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

### TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 5/30/2014

Page 1 of 15

Laboratory No. 813316

#### REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 428648.IM.CS.EX.AC
P.O. Number: PGEIM11111001

Release Number:

Samples Received on 5/6/2014 8:50:00 PM

 Field ID
 Lab ID
 Collected
 Matrix

 PE-01-218
 813316-001
 05/06/2014 15:10
 Water

 TW-03D-218
 813316-002
 05/06/2014 15:15
 Water

| Parameter           | Unit | Analyzed         | DF   | MDL    | RL    | Result |
|---------------------|------|------------------|------|--------|-------|--------|
| 813316-001 Chloride | mg/L | 05/07/2014 17:16 | 500  | 17.4   | 50.0  | 1170   |
| Nitrate as Nitrogen | mg/L | 05/07/2014 16:14 | 5.00 | 0.0415 | 0.500 | ND     |
| Sulfate             | mg/L | 05/07/2014 16:51 | 50.0 | 1.54   | 25.0  | 395    |
| 813316-002 Chloride | mg/L | 05/07/2014 17:29 | 500  | 17.4   | 50.0  | 2520   |
| Nitrate as Nitrogen | mg/L | 05/07/2014 16:27 | 5.00 | 0.0415 | 0.500 | 3.33   |
| Sulfate             | mg/L | 05/07/2014 17:04 | 50.0 | 1.54   | 25.0  | 541    |

|                     | - 0  |      |        |              |      |       |          |            |
|---------------------|------|------|--------|--------------|------|-------|----------|------------|
| Sulfate             |      | mg/L | 05/07  | 7/2014 17:04 | 50.0 | 1.54  | 25.0     | 541        |
| Method Blank        |      |      |        |              |      |       |          | 4.74       |
| Parameter           | Unit | DF   | Result |              |      |       |          |            |
| Chloride            | mg/L | 1.00 | ND     |              |      |       |          |            |
| Fluoride            | mg/L | 1.00 | ND     |              |      |       |          |            |
| Sulfate             | mg/L | 1.00 | ND     |              |      |       |          |            |
| Nitrate as Nitrogen | mg/L | 1.00 | ND     |              |      |       |          |            |
| Duplicate           |      |      |        |              |      |       | Lab ID = | 813315-001 |
| Parameter           | Unit | DF   | Result | Expected     | F    | RPD   | Accepta  | nce Range  |
| Sulfate             | mg/L | 50.0 | 499    | 500          |      | 0.228 | 0 - 20   | _          |
| Duplicate           |      |      |        |              |      |       | Lab ID = | 813315-002 |
| Parameter           | Unit | DF   | Result | Expected     | F    | RPD   | Accepta  | nce Range  |
| Fluoride            | mg/L | 5.00 | 2.35   | 2.34         |      | 0.512 | 0 - 20   | J          |
| Nitrate as Nitrogen | mg/L | 5.00 | 2.76   | 2.64         |      | 4.62  | 0 - 20   |            |
|                     |      |      |        |              |      |       |          |            |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



| Client: E2 Consulting Eng                    | ineers, Inc.         |                    | roject Name:<br>roject Number | PG&E Topock Pro<br>: 428648.IM.CS.EX | -                      | Page 2 of 15<br>Printed 5/30/2014        |
|----------------------------------------------|----------------------|--------------------|-------------------------------|--------------------------------------|------------------------|------------------------------------------|
| Duplicate                                    |                      |                    |                               |                                      |                        | Lab ID = 813325-001                      |
| Parameter<br>Chloride                        | Unit<br>mg/L         | DF<br>25.0         | Result<br>81.3                | Expected<br>82.6                     | RPD<br>1.55            | Acceptance Range<br>0 - 20               |
| Lab Control Sample                           |                      |                    |                               |                                      |                        |                                          |
| Parameter<br>Chloride                        | Unit<br>mg/L         | DF<br>1.00         | Result<br>3.93                | Expected<br>4.00                     | Recovery<br>98.2       | Acceptance Range<br>90 - 110             |
| Fluoride<br>Sulfate                          | mg/L                 | 1.00<br>1.00       | 4.09<br>19.6                  | 4.00<br>20.0                         | 102<br>98.2            | 90 - 110<br>90 - 110                     |
| Nitrate as Nitrogen                          | mg/L<br>mg/L         | 1.00               | 4.03                          | 4.00                                 | 96.2<br>101            | 90 - 110                                 |
| Matrix Spike                                 | mg/L                 | 1.00               | 4.00                          | uni gyisenti uyiyi                   |                        | Lab ID = 813315-001                      |
| Parameter<br>Sulfate                         | Unit<br>mg/L         | DF<br>50.0         | Result<br>1010                | Expected/Added 1000(500)             | Recovery<br>102        | Acceptance Range<br>85 - 115             |
| Matrix Spike                                 |                      |                    |                               |                                      |                        | Lab ID = 813315-002                      |
| Parameter<br>Fluoride<br>Nitrate as Nitrogen | Unit<br>mg/L<br>mg/L | DF<br>5.00<br>5.00 | Result<br>22.7<br>23.1        | Expected/Added 22.3(20.0) 22.6(20.0) | Recovery<br>102<br>102 | Acceptance Range<br>85 - 115<br>85 - 115 |
| Matrix Spike                                 | mg/L                 | 5.00               | 23.1                          | 22.0(20.0)                           | 102<br>Armon Jane      | Lab ID = 813325-001                      |
| Parameter<br>Chloride                        | Unit<br>mg/L         | DF<br>25.0         | Result<br>177                 | Expected/Added 183(100)              | Recovery<br>94.2       | Acceptance Range<br>85 - 115             |
| MRCCS - Secondary                            |                      |                    |                               |                                      |                        |                                          |
| Parameter<br>Chloride                        | Unit<br>mg/L         | DF<br>1.00         | Result<br>3.99                | Expected 4.00                        | Recovery<br>99.6       | Acceptance Range<br>90 - 110             |
| Fluoride                                     | mg/L                 | 1.00               | 4.14                          | 4.00                                 | 103                    | 90 - 110                                 |
| Sulfate                                      | mg/L                 | 1.00               | 19.8                          | 20.0                                 | 99.1                   | 90 - 110                                 |
| Nitrate as Nitrogen                          | mg/L                 | 1.00               | 4.00                          | 4.00                                 | 100.                   | 90 - 110                                 |
| MRCVS - Primary                              |                      |                    |                               |                                      |                        |                                          |
| Parameter<br>Chloride                        | Unit<br>mg/L         | DF<br>1.00         | Result<br>3.06                | Expected 3.00                        | Recovery<br>102        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary                              |                      |                    |                               |                                      |                        |                                          |
| Parameter<br>Chloride                        | Unit<br>mg/L         | DF<br>1.00         | Result<br>3.02                | Expected 3.00                        | Recovery<br>101        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary                              |                      |                    |                               |                                      |                        |                                          |
| Parameter<br>Chloride                        | Unit<br>mg/L         | DF<br>1.00         | Result<br>3.00                | Expected 3.00                        | Recovery<br>99.8       | Acceptance Range<br>90 - 110             |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 428648.IM.CS.EX.AC

Page 4 of 15 Printed 5/30/2014

| Alkalinity by SM 2320E     | 3           |      | Batch        | 05ALK14C     |       |           |          |            |
|----------------------------|-------------|------|--------------|--------------|-------|-----------|----------|------------|
| Parameter                  |             | Unit | Ana          | ılyzed       | DF    | MDL       | RL       | Result     |
| 813316-001 Alkalinity as C | aCO3        | mg/L | _ 05/19/2014 |              | 1.00  | 1.68      | 5.00     | 178        |
| Bicarbonate (0             | Calculated) | mg/L | 05/19        | 9/2014       | 1.00  | 0.153     | 5.00     | 178        |
| Carbonate (Ca              | alculated)  | mg/L | 05/19        | 9/2014       | 1.00  | 0.153     | 5.00     | ND         |
| 813316-002 Alkalinity as C | aCO3        | mg/L | 05/19        | 9/2014       | 1.00  | 1.68      | 5.00     | 77.0       |
| Bicarbonate (0             | Calculated) | mg/L | 05/19        | 9/2014       | 1.00  | 0.153     | 5.00     | 77.0       |
| Carbonate (Ca              | alculated)  | mg/L | 05/19        | 9/2014       | 1.00  | 0.153     | 5.00     | ND         |
| Method Blank               |             | -    |              |              |       | Arry Brys |          |            |
| Parameter                  | Unit        | DF   | Result       |              |       |           |          |            |
| Alkalinity as CaCO3        | mg/L        | 1.00 | ND           |              |       |           |          |            |
| Duplicate                  |             |      |              |              |       |           | Lab ID = | 813316-001 |
| Parameter                  | Unit        | DF   | Result       | Expected     | F     | RPD       | Accepta  | ance Range |
| Alkalinity as CaCO3        | mg/L        | 1.00 | 175          | 178          |       | 1.70      | 0 - 20   |            |
| Lab Control Sample         | )           |      |              |              |       | Abel ask  |          |            |
| Parameter                  | Unit        | DF   | Result       | Expected     | F     | Recovery  | Accepta  | ance Range |
| Alkalinity as CaCO3        | mg/L        | 1.00 | 100          | 100          |       | 100       | 90 - 110 | )          |
| Lab Control Sample         | Duplicate   |      |              |              |       |           |          |            |
| Parameter                  | Unit        | DF   | Result       | Expected     | F     | Recovery  | Accepta  | ance Range |
| Alkalinity as CaCO3        | mg/L        | 1.00 | 99.0         | 100          |       | 99.0      | 90 - 110 | )          |
| Matrix Spike               |             |      |              |              |       |           | Lab ID = | 813316-002 |
| Parameter                  | Unit        | DF   | Result       | Expected/Add | led F | Recovery  | Accepta  | ance Range |
| Alkalinity as CaCO3        | mg/L        | 1.00 | 169          | 177(100)     |       | 92.0      | 75 - 125 | 5          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 5 of 15 Printed 5/30/2014

Project Number: 428648.IM.CS.EX.AC

| Specific Conductivity - E   | PA 120.1 |          | Batch   | 05EC14B  |      |          |            |            |
|-----------------------------|----------|----------|---------|----------|------|----------|------------|------------|
| Parameter                   |          | Unit     | Ana     | lyzed    | DF   | MDL      | RL         | Result     |
| 813316-001 Specific Conduct | ivity    | umhos/cr | n 05/12 | /2014    | 1.00 | 0.606    | 2.00       | 4540       |
| 813316-002 Specific Conduct | ivity    | umhos/cr | n 05/12 | /2014    | 1.00 | 0.606    | 2.00       | 8270       |
| Method Blank                |          |          |         |          |      |          |            | eji Kaji e |
| Parameter                   | Unit     | DF       | Result  |          |      |          |            |            |
| Specific Conductivity       | umhos    | 1.00     | ND      |          |      |          |            |            |
| Duplicate                   |          |          |         |          |      |          | Lab ID = I | 813334-004 |
| Parameter                   | Unit     | DF       | Result  | Expected | F    | RPD      | Accepta    | nce Range  |
| Specific Conductivity       | umhos    | 1.00     | 903     | 903      |      | 0        | 0 - 10     |            |
| Lab Control Sample          |          |          |         |          |      |          |            |            |
| Parameter                   | Unit     | DF       | Result  | Expected | F    | Recovery | Accepta    | nce Range  |
| Specific Conductivity       | umhos    | 1.00     | 728     | 706      |      | 103      | 90 - 110   |            |
| MRCCS - Secondary           |          |          |         |          |      |          |            |            |
| Parameter                   | Unit     | DF       | Result  | Expected | F    | Recovery | Accepta    | nce Range  |
| Specific Conductivity       | umhos    | 1.00     | 726     | 706      |      | 103      | 90 - 110   |            |
| MRCVS - Primary             |          |          |         |          |      |          |            |            |
| Parameter                   | Unit     | DF       | Result  | Expected | F    | Recovery | Accepta    | nce Range  |
| Specific Conductivity       | umhos    | 1.00     | 975     | 1000     |      | 97.5     | 90 - 110   |            |
| MRCVS - Primary             |          |          |         |          |      |          |            |            |
| Parameter                   | Unit     | DF       | Result  | Expected | F    | Recovery | Accepta    | nce Range  |
| Specific Conductivity       | umhos    | 1.00     | 984     | 1000     |      | 98.4     | 90 - 110   | _          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 6 of 15

Project Number: 428648.IM.CS.EX.AC

Printed 5/30/2014

| Chrome VI by EPA 218.6     |                                    |      | Batch  | 05CrH14 B     |      |          |          |            |
|----------------------------|------------------------------------|------|--------|---------------|------|----------|----------|------------|
| Parameter                  | geri keruser i i resur i se beergr | Unit | Anal   | yzed          | DF   | MDL      | RL       | Result     |
| 813316-001 Chromium, Hexav | valent                             | ug/L | 05/09  | /2014 11:52 1 | .00  | 0.00600  | 0.20     | 3.9        |
| Method Blank               |                                    |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result |               |      |          |          |            |
| Chromium, Hexavalent       | ug/L                               | 1.00 | ND     |               |      |          |          |            |
| Duplicate                  |                                    |      |        |               |      |          | Lab ID = | 813316-001 |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | PD       | Accepta  | ince Range |
| Chromium, Hexavalent       | ug/L 1.00 3.90                     |      | 3.90   | 3.91          |      | 0.328    | 0 - 20   |            |
| Low Level Calibration \    | /erification                       |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | ecovery  | Accepta  | nce Range  |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 0.200  | 0.200         |      | 100      | 70 - 130 | )          |
| Lab Control Sample         |                                    |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | ecovery  | Accepta  | nce Range  |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 4.95   | 5.00          |      | 99.0     | 90 - 110 | )          |
| Matrix Spike               |                                    |      |        |               |      |          | Lab ID = | 813316-001 |
| Parameter                  | Unit                               | DF   | Result | Expected/Adde | ed R | ecovery  | Accepta  | nce Range  |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 8.78   | 8.91(5.00)    |      | 97.5     | 90 - 110 | )          |
| MRCCS - Secondary          |                                    |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | ecovery  | Accepta  | nce Range  |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 5.03   | 5.00          |      | 100      | 90 - 110 | )          |
| MRCVS - Primary            |                                    |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 10.2   | 10.0          |      | 102      | 95 - 10  | 5          |
| MRCVS - Primary            |                                    |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 10.1   | 10.0          |      | 101      | 95 - 108 | 5          |
| MRCVS - Primary            |                                    |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 10.2   | 10.0          |      | 102      | 95 - 108 | 5          |
| MRCVS - Primary            |                                    |      |        |               |      |          |          |            |
| Parameter                  | Unit                               | DF   | Result | Expected      | R    | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                               | 1.00 | 10.1   | 10.0          |      | 101      | 95 - 10  | _          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 428648.IM.CS.EX.AC

Page 7 of 15 Printed 5/30/2014

| Chromium, Hexavalent b     | y SM 350             | 0-CrB | Batch  | 05CrH14A       |          |          |            |
|----------------------------|----------------------|-------|--------|----------------|----------|----------|------------|
| Parameter                  | eritaren 1867 billar | Unit  | Ana    | lyzed D        | F MDL    | RL       | Result     |
| 813316-002 Chromium, Hexav | valent               | ug/L  | 05/14  | /2014 14:53 25 | .0 110   | 250      | 601        |
| Method Blank               |                      |       |        |                |          |          |            |
| Parameter                  | Unit                 | DF    | Result |                |          |          |            |
| Chromium, Hexavalent       | ug/L                 | 1.00  | ND     |                |          |          |            |
| Duplicate                  |                      |       |        |                |          | Lab ID = | 813316-002 |
| Parameter                  | Unit                 | DF    | Result | Expected       | RPD      | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                 | 25.0  | 632    | 601            | 4.95     |          |            |
| Lab Control Sample         |                      |       |        |                |          |          |            |
| Parameter                  | Unit                 | DF    | Result | Expected       | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                 | 1.00  | 90.6   | 100            | 90.6     | 90 - 110 | )          |
| Matrix Spike               |                      |       |        |                |          | Lab ID = | 813316-002 |
| Parameter                  | Unit                 | DF    | Result | Expected/Added | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                 | 25.0  | 2960   | 3100(2500)     | 94.3     | 85 - 118 | 5          |
| MRCCS - Secondary          |                      |       |        |                |          |          |            |
| Parameter                  | Unit                 | DF    | Result | Expected       | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                 | 1.00  | 90.6   | 100            | 90.6     | 90 - 110 | )          |
| MRCVS - Primary            |                      |       |        |                |          |          |            |
| Parameter                  | Unit                 | DF    | Result | Expected       | Recovery | Accepta  | ance Range |
| Chromium, Hexavalent       | ug/L                 | 1.00  | 95.4   | 100            | 95.4     | 90 - 110 | )          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 428648.IM.CS.EX.AC

Page 8 of 15 Printed 5/30/2014

| pH by SM 4500-H B    |           |      | Batch  | 05PH14H          |             |          |                   |            |  |
|----------------------|-----------|------|--------|------------------|-------------|----------|-------------------|------------|--|
| Parameter            |           | Unit | Ana    | lyzed            | DF          | MDL      | RL                | Result     |  |
| 813316-001 pH        |           | рН   | 05/07  | 05/07/2014 14:17 |             | 0.0250   | 4.00              | 7.38       |  |
| 813316-002 pH        |           | pН   | 05/07  | /2014 14:21      | 1.00 0.0250 |          | 4.00              | 7.33       |  |
| Duplicate            |           |      |        |                  |             |          | Lab ID = 813316-0 |            |  |
| Parameter            | Unit      | DF   | Result | Expected         | F           | RPD      | Accepta           | ance Range |  |
| рН                   | рН        | 1.00 | 7.39   | 7.33             | 0.815       |          | 0 - 20            | _          |  |
| Lab Control Sample   |           |      |        |                  |             |          |                   |            |  |
| Parameter            | Unit      | DF   | Result | Expected         | Recovery    |          | Accepta           | ance Range |  |
| рН                   | pН        | 1.00 | 7.03   | 7.00             |             | 100      | 90 - 110          | )          |  |
| Lab Control Sample D | Ouplicate |      |        |                  |             |          |                   |            |  |
| Parameter            | Unit      | DF   | Result | Expected         | F           | Recovery | Accepta           | ance Range |  |
| рН                   | μΗ        | 1.00 | 7.08   | 7.00             |             | 101      | 90 - 110          | )          |  |
| MRCVS - Primary      |           |      |        |                  |             |          |                   |            |  |
| Parameter            | Unit      | DF   | Result | Expected         | F           | Recovery | Accepta           | ance Range |  |
| рН                   | рН        | 1.00 | 7.08   | 7.00             |             | 101      | 90 - 110          | )          |  |

| Total Dissolved Solids     | otal Dissolved Solids by SM 2540 C |      |                 |          |                  |          |          |            |
|----------------------------|------------------------------------|------|-----------------|----------|------------------|----------|----------|------------|
| Parameter                  |                                    | Unit | Analy           | zed      | DF               | MDL      | RL       | Result     |
| 813316-001 Total Dissolved | Solids                             | mg/L | mg/L 05/12/2014 |          | 1.00             | 1.76     | 125      | 2680       |
| 813316-002 Total Dissolved | Solids                             | mg/L | 05/12/          | 2014     | 14 1.00 1.76 250 |          |          | 4820       |
| Method Blank               |                                    |      |                 |          |                  |          |          |            |
| Parameter                  | Unit                               | DF   | Result          |          |                  |          |          |            |
| Total Dissolved Solids     | mg/L                               | 1.00 | ND              |          |                  |          |          |            |
| Duplicate                  |                                    |      |                 |          |                  |          | Lab ID = | 813315-001 |
| Parameter                  | Unit                               | DF   | Result          | Expected | F                | RPD      | Accepta  | ance Range |
| Total Dissolved Solids     | mg/L                               | 1.00 | 4330            | 4410     |                  | 1.83     | 0 - 10   |            |
| Lab Control Sample         |                                    |      |                 |          |                  |          |          |            |
| Parameter                  | Unit                               | DF   | Result          | Expected | F                | Recovery | Accepta  | ance Range |
| Total Dissolved Solids     | mg/L                               | 1.00 | 460             | 500      |                  | 92.0     | 90 - 110 | )          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 428648.IM.CS.EX.AC

Page 9 of 15 Printed 5/30/2014

| Parameter             |                | Unit                                      | Ana                                                      | lyzed                                                                           | DF                 | MDL                                            | RL       | Result     |
|-----------------------|----------------|-------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|--------------------|------------------------------------------------|----------|------------|
| 813316-001 Chromium   |                | ug/L                                      | 05/13                                                    | 3/2014 16:24                                                                    | 2.00               | 0.142                                          | 1.0      | 4.3        |
| Manganese             |                | ug/L                                      | 05/13                                                    | 3/2014 16:24                                                                    | 2.00               | 0.120                                          | 1.0      | 72.2       |
| 813316-002 Chromium   |                | ug/L                                      | 05/13                                                    | 3/2014 17:29                                                                    | 10.0               | 0.710                                          | 5.0      | 742        |
| Manganese             |                | ug/L                                      | 05/13                                                    | 3/2014 17:22                                                                    | 2 1.00 0.0600 0.50 |                                                |          | 8.9        |
| Method Blank          |                |                                           |                                                          |                                                                                 |                    |                                                |          |            |
| Parameter             | Unit           | DF                                        | Result                                                   |                                                                                 |                    |                                                |          |            |
| Chromium              | ug/L           | 1.00                                      | ND                                                       |                                                                                 |                    |                                                |          |            |
| Manganese             | ug/L           | 1.00                                      | ND                                                       |                                                                                 |                    |                                                |          |            |
| Duplicate             |                |                                           |                                                          |                                                                                 |                    |                                                | Lab ID = | 813316-001 |
| Parameter             | Unit           | DF                                        | Result                                                   | Expected                                                                        | F                  | RPD                                            | Accepta  | ance Range |
| Chromium              | ug/L           | 2.00                                      | 4.48                                                     | 4.32                                                                            |                    | 3.59                                           | 0 - 20   |            |
| Manganese             | ug/L           | 2.00                                      | 75.2                                                     | 72.2                                                                            |                    | 4.08                                           | 0 - 20   |            |
| Low Level Calibration | n Verification | 1                                         |                                                          |                                                                                 |                    |                                                |          |            |
| Parameter             | Unit           | DF                                        | Result                                                   | Expected                                                                        | F                  | Recovery                                       | Accepta  | ance Range |
| Chromium              | ug/L           | 1.00                                      | 0.544                                                    | 0.500                                                                           |                    | 109                                            | 70 - 130 | )          |
| Manganese             | ug/L           | 1.00                                      | 0.460                                                    | 0.500                                                                           |                    | 91.9                                           | 70 - 130 | )          |
| Lab Control Sample    |                |                                           |                                                          |                                                                                 |                    |                                                |          |            |
| Parameter             | Unit           | DF                                        | Result                                                   | Expected                                                                        | F                  | Recovery                                       | Accepta  | ance Range |
| Chromium              | ug/L           | 1.00                                      | 53.7                                                     | 50.0                                                                            |                    | 107                                            | 85 - 118 | 5          |
| Manganese             | ug/L           | 1.00                                      | 53.8                                                     | 50.0                                                                            |                    | 108                                            | 85 - 118 | 5          |
| Matrix Spike          |                |                                           |                                                          |                                                                                 |                    |                                                | Lab ID = | 813316-001 |
| Parameter             | Unit           | DF                                        | Result                                                   | Expected/Add                                                                    | ed F               | Recovery                                       | Accepta  | ance Range |
| Chromium              | ug/L           | 2.00                                      | 55.0                                                     | 54.3(50.0)                                                                      |                    | 101                                            | 75 - 12  | 5          |
| Manganese             | ug/L           | 2.00                                      | 126                                                      | 122(50.0)                                                                       |                    | 107                                            | 75 - 128 | 5          |
| Matrix Spike Duplicat | <b>te</b>      | - gargan sa miji karing ng sa miji katawa | estanionari confuti contennarii (est confugi esperi (est | agair s nia senting ang sist strong sist that it thought a sist through and the | pengintakan (ngah) | gagan jagan Pinton States (1995) salah yagan S | Lab ID = | 813316-001 |
| Parameter             | Unit           | DF                                        | Result                                                   | Expected/Add                                                                    | ed I               | Recovery                                       | Accepta  | ance Range |
| Chromium              | ug/L           | 2.00                                      | 54.3                                                     | 54.3(50.0)                                                                      |                    | 100.                                           | 75 - 12  | 5          |
| Manganese             | ug/L           | 2.00                                      | 123                                                      | 122(50.0)                                                                       |                    | 102                                            | 75 - 12  | 5          |
| MRCCS - Secondary     | •              |                                           |                                                          |                                                                                 |                    |                                                |          |            |
| Parameter             | Unit           | DF                                        | Result                                                   | Expected                                                                        | ı                  | Recovery                                       | Accepta  | ance Range |
| Chromium              | ug/L           | 1.00                                      | 19.0                                                     | 20.0                                                                            |                    | 95.2                                           | 90 - 110 | כ          |
| Manganese             | ug/L           | 1.00                                      | 19.1                                                     | 20.0                                                                            |                    | 95.4                                           | 90 - 110 | כ          |



| Client: E2 Consulting E | Engineers, In |            | Project Name<br>Project Numb | : PG&E Topo<br>er: 428648.IM. | •           | Page 11 of 15<br>Printed 5/30/2014 |
|-------------------------|---------------|------------|------------------------------|-------------------------------|-------------|------------------------------------|
| Serial Dilution         |               |            |                              |                               |             | Lab ID = 813316-001                |
| Parameter<br>Manganese  | Unit<br>ug/L  | DF<br>10.0 | Result<br>68.5               | Expected 72.2                 | RPD<br>5.22 | Acceptance Range<br>0 - 10         |
| Serial Dilution         |               |            |                              |                               |             | Lab ID = 813316-002                |
| Parameter<br>Chromium   | Unit<br>ug/L  | DF<br>50.0 | Result<br>779                | Expected<br>742               | RPD<br>4.83 | Acceptance Range 0 - 10            |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 428648.IM.CS.EX.AC

Page 12 of 15 Printed 5/30/2014

| Metals by 200.7, Dissolve Parameter |      | Unit | Batch<br>Analy | 70d F          | F MI       | DL RL      | Result     |
|-------------------------------------|------|------|----------------|----------------|------------|------------|------------|
|                                     |      |      |                |                |            |            |            |
| 813316-001 Calcium                  |      | ug/L |                | 2014 14:57 10  |            | 50000      | 126000     |
| Iron                                |      | ug/L | 05/13/2        | 2014 17:01 1.  | 00 3.00    | 20.0       | ND         |
| Magnesium                           |      | ug/L | 05/13/2        | 2014 16:07 10  | 0.0 4680   | 10000      | 23400      |
| Sodium                              |      | ug/L | 05/13/2        | 2014 14:57 10  | 00 5980    | 50000      | 802000     |
| 813316-002 Calcium                  |      | ug/L | 05/13/2        | 2014 15:02 10  | 00 1700    | 50000      | 236000     |
| Iron                                |      | ug/L | 05/13/2        | 2014 16:36 1.  | 00 3.00    | 20.0       | ND         |
| Magnesium                           |      | ug/L | 05/13/2        | 2014 15:46 10  | 0.0 4680   | 10000      | 30400      |
| Sodium                              |      | ug/L | 05/13/2        | 2014 14:19 50  | 00 29900   | 250000     | 1480000    |
| Method Blank                        |      |      |                |                |            |            | 4 3 9785 A |
| Parameter                           | Unit | DF   | Result         |                |            |            |            |
| Calcium                             | ug/L | 1.00 | ND             |                |            |            |            |
| Iron                                | ug/L | 1.00 | ND             |                |            |            |            |
| Sodium                              | ug/L | 1.00 | ND             |                |            |            |            |
| Magnesium                           | ug/L | 1.00 | ND             |                |            |            |            |
| Duplicate                           |      |      |                |                |            | Lab ID = 8 | 13316-002  |
| Parameter                           | Unit | DF   | Result         | Expected       | RPD        | Acceptar   | nce Range  |
| Calcium                             | ug/L | 100  | 240000         | 236000         | 1.80       | 0 - 20     |            |
| Iron                                | ug/L | 1.00 | ND             | 0              | 0          | 0 - 20     |            |
| Sodium                              | ug/L | 500  | 1360000        | 1480000        | 8.16       | 0 - 20     |            |
| Magnesium                           | ug/L | 10.0 | 31000          | 30400          | 1.89       | 0 - 20     |            |
| Lab Control Sample                  |      |      |                |                |            |            |            |
| Parameter                           | Unit | DF   | Result         | Expected       | Recovery   | y Acceptar | ice Range  |
| Calcium                             | ug/L | 1.00 | 2220           | 2000           | 111        | 85 - 115   |            |
| Iron                                | ug/L | 1.00 | 2110           | 2000           | 106        | 85 - 115   |            |
| Sodium                              | ug/L | 1.00 | 2000           | 2000           | 99.8       | 85 - 115   |            |
| Magnesium                           | ug/L | 1.00 | 1890           | 2000           | 94.4       | 85 - 115   |            |
| Matrix Spike                        |      |      |                |                |            | Lab ID = 8 | 13316-002  |
| Parameter                           | Unit | DF   | Result         | Expected/Added | d Recovery | y Acceptar | ice Range  |
| Calcium                             | ug/L | 100  | 452000         | 436000(200000  | ) 108      | 75 - 125   |            |
| Iron                                | ug/L | 1.00 | 1950           | 2000(2000)     | 97.6       | 75 - 125   |            |
| Sodium                              | ug/L | 500  | 2570000        | 2480000(10000  | C 109      | 75 - 125   |            |
| Magnesium                           | ug/L | 10.0 | 49000          | 50400(20000)   | 93.2       | 75 - 125   |            |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



| Client: E2 Consulting Eng   | gineers, Inc                                              |                                                                                                                 | oject Name:<br>oject Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PG&E Topock Pro           | -                      | Page 13 of 15<br>Printed 5/30/2014       |
|-----------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|------------------------------------------|
| Matrix Spike Duplicate      | <b>:</b>                                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        | Lab ID = 813316-002                      |
| Parameter<br>Iron           | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected/Added 2000(2000) | Recovery<br>95.3       | Acceptance Range<br>75 - 125             |
| MRCCS - Secondary           |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |
| Parameter<br>Calcium        | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected 5000             | Recovery<br>105        | Acceptance Range<br>95 - 105             |
| Iron                        | ug/L                                                      | 1.00                                                                                                            | 5050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000                      | 101                    | 95 - 105                                 |
| Sodium                      | ug/L                                                      | 1.00                                                                                                            | 4930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000                      | 98.7                   | 95 - 105                                 |
| Magnesium                   | ug/L                                                      | 1.00                                                                                                            | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000                      | 95.3                   | 95 - 105                                 |
| MRCVS - Primary             |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |
| Parameter<br>Calcium        | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected 5000             | Recovery<br>102        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary             |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |
| Parameter<br>Calcium        | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected 5000             | Recovery<br>106        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary             |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |
| Parameter<br>Calcium        | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>5000          | Recovery<br>105        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary             |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |
| Parameter Calcium           | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>5000          | Recovery<br>107        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary             |                                                           | -                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        | and francisco en esperante               |
| Parameter<br>Iron           | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>5000          | Recovery<br>103        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary             |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |
| Parameter<br>Iron           | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>5000          | Recovery<br>102        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary             | er gert som et groom gill more et elektrone et elektrone. | ermone or early and essential annual or early and a second or early and a second or early and a second or early | sammere anglement transcription of the settle of the settl |                           |                        |                                          |
| Parameter<br>Iron           | Unit<br>ug/L                                              | DF<br>1.00                                                                                                      | Result<br>5400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Expected<br>5000          | Recovery<br>108        | Acceptance Range<br>90 - 110             |
| MRCVS - Primary             |                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |
| Parameter<br>Iron<br>Sodium | Unit<br>ug/L<br>ug/L                                      | DF<br>1.00<br>1.00                                                                                              | Result<br>5090<br>5060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Expected 5000 5000        | Recovery<br>102<br>101 | Acceptance Range<br>90 - 110<br>90 - 110 |
|                             | J                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                        |                                          |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



| Client: E2 Consulting En | gineers, Inc. | •          | Project Name:<br>Project Number: | PG&E Topo<br>428648.IM.C | •                | Page 15 of 15<br>Printed 5/30/2014 |
|--------------------------|---------------|------------|----------------------------------|--------------------------|------------------|------------------------------------|
| Interference Check St    | andard AB     |            |                                  |                          |                  |                                    |
| Parameter<br>Calcium     | Unit<br>ug/L  | DF<br>1.00 | Result<br>2120                   | Expected 2000            | Recovery<br>106  | Acceptance Range<br>80 - 120       |
| Interference Check St    | andard AB     |            |                                  |                          |                  |                                    |
| Parameter<br>Iron        | Unit<br>ug/L  | DF<br>1.00 | Result<br>2170                   | Expected 2000            | Recovery<br>109  | Acceptance Range<br>80 - 120       |
| Interference Check St    | andard AB     |            |                                  |                          |                  |                                    |
| Parameter<br>Iron        | Unit<br>ug/L  | DF<br>1.00 | Result<br>2060                   | Expected 2000            | Recovery<br>103  | Acceptance Range<br>80 - 120       |
| Interference Check St    | andard AB     |            |                                  |                          |                  |                                    |
| Parameter<br>Sodium      | Unit<br>ug/L  | DF<br>1.00 | Result<br>1960                   | Expected 2000            | Recovery<br>98.0 | Acceptance Range<br>80 - 120       |
| Interference Check St    | andard AB     |            |                                  |                          |                  |                                    |
| Parameter<br>Sodium      | Unit<br>ug/L  | DF<br>1.00 | Result<br>1950                   | Expected 2000            | Recovery<br>97.7 | Acceptance Range<br>80 - 120       |
| Magnesium                | ug/L          | 1.00       | 2130                             | 2000                     | 106              | 80 - 120                           |
| Interference Check St    | andard AB     |            |                                  |                          |                  |                                    |
| Parameter<br>Magnesium   | Unit<br>ug/L  | DF<br>1.00 | Result<br>2060                   | Expected 2000            | Recovery<br>103  | Acceptance Range<br>80 - 120       |

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services





#### Total Dissolved Solids by SM 2540 C

#### Calculations

Batch: 05TDS14B

Date Analyzed: 5/12/2014

| Laboratory<br>Number | Sample<br>volume,<br>mL | Initial<br>weight, g | 1st<br>Final<br>weight, g | 2nd<br>Final<br>weight, g | Weight<br>Difference,<br>g | Exceeds<br>0.5mg?<br>Yes/No | Residue<br>weight, g | Filterable<br>residue,<br>ppm | RL,<br>ppm | Reported<br>Value,<br>ppm | DF |
|----------------------|-------------------------|----------------------|---------------------------|---------------------------|----------------------------|-----------------------------|----------------------|-------------------------------|------------|---------------------------|----|
| Blank                | 100                     | 67.7776              | 67.7779                   | 67.7779                   | 0.0000                     | No                          | 0,0003               | 3.0                           | 25.0       | ND                        | 1  |
| 813315-1             | 10                      | 30.0515              | 30.0959                   | 30.0956                   | 0.0003                     | No                          | 0.0441               | 4410.0                        | 250.0      | 4410.0                    | 1  |
| 813315-2             | 10                      | 29.5359              | 29.5803                   | 29.5801                   | 0.0002                     | No                          | 0.0442               | 4420.0                        | 250.0      | 4420.0                    | 1  |
| 813316-1             | 20                      | 29.2560              | 29.3098                   | 29.3095                   | 0.0003                     | No                          | 0.0535               | 2675.0                        | 125.0      | 2675.0                    | 1  |
| 813316-2             | 10                      | 29.4154              | 29,4639                   | 29.4636                   | 0.0003                     | No                          | 0.0482               | 4820.0                        | 250.0      | 4820.0                    | 1  |
| 813325-7             | 100                     | 70.8766              | 70.9345                   | 70.9345                   | 0.0000                     | No                          | 0.0579               | 579.0                         | 25.0       | 579.0                     | 1  |
| 813329-1             | 100                     | 72.5254              | 72.5585                   | 72.5582                   | 0.0003                     | No                          | 0.0328               | 328.0                         | 25.0       | 328.0                     | 1  |
| 813334-1             | 100                     | 76.7862              | 76.8368                   | 76.8367                   | 0.0001                     | No                          | 0.0505               | 505.0                         | 25.0       | 505.0                     | 1  |
| 813334-2             | 100                     | 74.7001              | 74.7506                   | 74:7505                   | 0.0001                     | No                          | 0.0504               | 504.0                         | 25.0       | 504.0                     | 1  |
| 813334-3             | 100                     | 73.4317              | 73.4811                   | 73.4811                   | 0.0000                     | No                          | 0.0494               | 494.0                         | 25.0       | 494.0                     | 1  |
| 813334-4             | 100                     | 76.2495              | 76.2993                   | 76.2993                   | 0.0000                     | No                          | 0.0498               | 498.0                         | 25.0       | 498.0                     | 1  |
| 813315-1 Dup         | 10                      | 30.4523              | 30.4960                   | 30.4956                   | 0.0004                     | No                          | 0.0433               | 4330.0                        | 250.0      | 4330.0                    | 1  |
| LCS                  | 100                     | 74.4535              | 74.4995                   | 74.4995                   | 0.0000                     | No                          | 0.0460               | 460.0                         | 25.0       | 460.0                     | 1  |
| 813345-1             | 100                     | 65.6719              | 65.7213                   | 65.7213                   | 0.0000                     | No                          | 0.0494               | 494.0                         | 25.0       | 494.0                     | 1  |
| 813345-2             | 100                     | 73.5706              | 73.6215                   | 73.6212                   | 0.0003                     | No                          | 0.0506               | 506.0                         | 25.0       | 506.0                     | 1  |
| 813349-2             | 100                     | 80.5714              | 80.5902                   | 80.5902                   | 0.0000                     | No                          | 0.0188               | 188.0                         | 25.0       | 188.0                     | 1  |
| 813349-4             | 100                     | 75.6057              | 75.6480                   | 75.6480                   | 0.0000                     | No                          | 0.0423               | 423.0                         | 25.0       | 423.0                     | 1  |
| 813350-1             | 50                      | 50.9271              | 50.9777                   | 50.9777                   | 0.0000                     | No                          | 0.0506               | 1012.0                        | 50.0       | 1012.0                    | 1  |
| 813350-2             | 100                     | 68.7237              | 68.7753                   | 68.7753                   | 0.0000                     | No                          | 0.0516               | 516.0                         | 25.0       | 516.0                     | 1  |
| 813350-3             | 100                     | 72.4021              | 72.4618                   | 72.4616                   | 0.0002                     | No                          | 0.0595               | 595.0                         | 25.0       | 595.0                     | 11 |
| 813350-4             | 50                      | 48.9740              | 49.0051                   | 49.0050                   | 0.0001                     | No                          | 0.0310               | 620.0                         | 50.0       | 620.0                     | 1  |
| 813383-1             | 100                     | 74.4531              | 74.4985                   | 74.4985                   | 0.0000                     | No                          | 0.0454               | 454.0                         | 25.0       | 454.0                     | 1  |
| 813383-2             | 100                     | 72.4800              | 72.5295                   | 72.5293                   | 0.0002                     | No                          | 0.0493               | 493.0                         | 25.0       | 493.0                     | 1  |
| 813350-4 Dup         | 50                      | 47.9106              | 47.9422                   | 47.9422                   | 0.0000                     | No                          | 0.0316               | 632.0                         | 50.0       | 632.0                     | 1  |

Calculation as follows:

Filterable residue (TDS), mg/L =

=

 $\left(\frac{A-B}{C}\right) \times 10^6$ 

Where:

A = weight of dish + residue in grams. B = weight of dish in grams. C = mL of sample filtered. RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

| QC Std<br>i.D. | Measurd<br>Value, ppm | Theoretical<br>Value, ppm | Percent Rec | Acceptance<br>Limit | QC Within<br>Control? |
|----------------|-----------------------|---------------------------|-------------|---------------------|-----------------------|
| LCS            | 460.0                 | 500                       | 92.0%       | 90-110%             | Yes                   |
| LCSD           |                       |                           |             |                     | 4                     |

**Duplicate Determinations Difference Summary** 

| Lab<br>Number | Sample<br>Weight, g | Sample Dup<br>Welght, g | % RPD | Acceptance<br>Limit | QC Within<br>Control? |
|---------------|---------------------|-------------------------|-------|---------------------|-----------------------|
| 813315-1      | 0.0441              | 0.0433                  | 0.9%  | ≤5%                 | Yes                   |
| 813350-4      | 0.0310              | 0.0316                  | 1.0%  | ≤5%                 | Yes                   |

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \, 100$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

**Duplicate Determination Difference** 

% Difference = 
$$\frac{|A \text{ or } B - C|}{C} \times 10^{-6}$$

where 
$$C = \frac{A+B}{2}$$

A = Weght of the first sample in (g).

B = Weght of the second sample in (g).

C = Average weight in (g).

Maksim G.

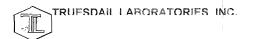
Reviewer Printed Name

Reviewer Signature

Jenny T.

Analyst Printed Name

Analyst Signature


#### Total Dissolved Solids by SM 2540 C

#### TDS/EC CHECK

Batch: 05TDS14B Date Analyzed: 5/12/2014

| Laboratory Number | EC   | TDS/EC Ratio:<br>0.55-0.90 | Calculated<br>TDS<br>(EC*0.65) | Measured<br>TDS / Calc<br>TDS <1.3 |
|-------------------|------|----------------------------|--------------------------------|------------------------------------|
|                   |      |                            |                                |                                    |
| 813315-1          | 7310 | 0.60                       | 4751.5                         | 0.93                               |
| 813315-2          | 7470 | 0.59                       | 4855.5                         | 0.91                               |
| 813316-1          | 4540 | 0.59                       | 2951                           | 0.91                               |
| 813316-2          | 8270 | 0.58                       | 5375.5                         | 0.90                               |
| 813325-7          | 920  | 0,63                       | 598                            | 0.97                               |
| 813329-1          | 522  | 0,63                       | 339.3                          | 0.97                               |
| 813334-1          | 903  | 0.56                       | 586.95                         | 0.86                               |
| 813334-2          | 905  | 0.56                       | 588.25                         | 0.86                               |
| 813334-3          | 903  | 0.55                       | 586.95                         | 0.84                               |
| 813334-4          | 903  | 0.55                       | 586.95                         | 0.85                               |
| 813315-1 Dup      | 7310 | 0.59                       | 4751.5                         | 0.91                               |
| LCS               |      |                            |                                |                                    |
| 813345-1          | 893  | 0.55                       | 580.45                         | 0.85                               |
| 813345-2          | 877  | 0.58                       | 570.05                         | 0.89                               |
| 813349-2          | 306  | 0.61                       | 198.9                          | 0.95                               |
| 813349-4          | 723  | 0.59                       | 469.95                         | 0.90                               |
| 813350-1          | 1715 | 0.59                       | 1114.75                        | 0.91                               |
| 813350-2          | 900  | 0.57                       | 585                            | 88.0                               |
| 813350-3          | 990  | 0.60                       | 643.5                          | 0.92                               |
| 813350-4          | 1090 | 0.57                       | 708.5                          | 0.88                               |
| 813383-1          | 835  | 0.54                       | 542.75                         | 0.84                               |
| 813383-2          | 832  | 0.59                       | 540.8                          | 0.91                               |
| 813350-4 Dup      | 1090 | 0.58                       | 708.5                          | 0.89                               |





## Alkalinity by SM 2320B

 Analytical Batch:
 05ALK14C

 Matrix:
 WATER

 Date of Analysis:
 5/19/2014

| Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample<br>pH                           | Sample<br>Volume<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N of<br>HCL        | Titrant<br>Volume<br>to reach<br>pH 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P<br>Alkalinity as<br>CaCO3 | Titrant<br>Volume to<br>reach pH<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total mL<br>titrant to<br>reach pH<br>0.3 unit<br>lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total<br>Alkalinity as<br>CaCO3 | RL,<br>ppm | Total<br>Alkalinity<br>Reported<br>Value | HCO3 Conc.<br>as CaCO <sub>3</sub><br>(ppm) | CO3 Alkalinity<br>as CaCO <sub>3</sub><br>(ppm) | OH Alkalinity<br>as CaCO₃<br>(ppm) | Low Alkalinity as CaCO <sub>3</sub> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------|
| BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.11                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                             | 5          | ND                                       | ND                                          | ND                                              | ND                                 |                                     |
| 813316-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.49                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                         | 8.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - CT899-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 178.0                           | 5          | 178.0                                    | 178.0                                       | ND                                              | ND                                 |                                     |
| 813316-1 DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.58                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                         | 8.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Michigan Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175.0                           | 5          | 175.0                                    | 175.0                                       | ND                                              | ND                                 |                                     |
| 813316-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.62                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                         | 3.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77.0                            | 5          | 77.0                                     | 77.0                                        | ND                                              | ND                                 |                                     |
| LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.30                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02               | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0                        | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0                           | 5          | 100.0                                    | 20.0                                        | 80                                              | ND                                 |                                     |
| LCSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.31                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02               | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.0                        | 4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.0                            | 5          | 99.0                                     | 21.0                                        | 78                                              | ND                                 | ····                                |
| 813316-2 MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.27                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                         | 8.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Searce -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 169.0                           | 5          | 169.0                                    | 169.0                                       | 0                                               | ND                                 |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Historia de Vinde de Historia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .,000              | - Person adaleste - mesa cara o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Nortidest II v I - s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |            |                                          |                                             |                                                 |                                    |                                     |
| - 1904 (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150765-167-1773                        | A MATERIAL SOLD AND THE PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - And Annual Section -  | 1                               |            |                                          |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            | 1                                        |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                  | 1441016488888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | u = -10-m/s/sz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                               |            |                                          |                                             |                                                 |                                    |                                     |
| Alexander - Alexan | ************************************** | et alemania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | gi maligoggo go a militati darya nda yo a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the special of th | i                               |            | -                                        |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fol two q <u>in gy</u> estar           | a de missa de compressión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | garego-treme .     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                               |            |                                          |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                     | and the second s | - 1:               | 3500 - 50 - 000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 70-00-2 - 7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alterna distribution de la company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ence la como e-    | SAME SECURIT FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STREET, TO THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            | -                                        |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            | 1                                        |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                      | and the control of the section of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Proposed place of the second s | isto in the length worker in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | e o consecutation — a visc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | A to a Members of the control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            |                                          |                                             |                                                 |                                    |                                     |
| and the second s | - pare propore                         | 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | - Andrew March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12 - 10-12  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |            |                                          |                                             |                                                 |                                    |                                     |
| grantengga a salah s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 14,544 46,570000 (84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Augustan and       | protes constitute to the constitute of the const |                             | Listens on - Listens delegated on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                               |            |                                          | 1                                           |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Children                             | 40000 III A F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | Construction of the Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                               |            | 1                                        | 1                                           |                                                 |                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                      | رفر عشر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lagor - Capturante | Taran na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | †                               |            |                                          | -,                                          |                                                 |                                    |                                     |

Calculations as follows:

Tor P=

 $\frac{A \times N \times 50000}{mL \ sample}$ 

Where: mL sample T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used

N = normality of standard acid

Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000

mL sample

nere: **B** = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

Accept Limit

<5

| QC Std<br>I.D. | Measured<br>Value, ppm | Theoretical<br>Value, ppm | % Recovery | Accetance<br>Limit | QC Within<br>Control? |
|----------------|------------------------|---------------------------|------------|--------------------|-----------------------|
| LCS            | 100                    | 100                       | 100.0%     | 90-110             | Yes                   |
| LCSD           | 99                     | 100                       | 99.0%      | 90-110             | Yes                   |

QC Within

Control?

Yes

**Duplicate Determination Difference Summary** 

| Lab Number<br>I.D. | Measured<br>Value, ppm | Dup Value,<br>ppm | RPD  | Accetance Limit | QC Within Control?                    |
|--------------------|------------------------|-------------------|------|-----------------|---------------------------------------|
| 813316-1           | 178                    | 175               | 1.7% | ≤20%            | Yes                                   |
| 54.5               |                        |                   |      |                 | , , , , , , , , , , , , , , , , , , , |

Sample Matrix Spike (MS/MSD) Summary

| Lab Number | Conc of<br>Unspk spl | Dil Factor | Added Spk<br>Conc | MS/MSD Amt | Measrd Conc<br>of Spk Spl | Theor Conc of Spk<br>Spl | MS/MSD %<br>Rec | MS Accept<br>Limit | QC Within<br>Control? | RPD | RPD Accept<br>Limit | QC Within<br>Control? |
|------------|----------------------|------------|-------------------|------------|---------------------------|--------------------------|-----------------|--------------------|-----------------------|-----|---------------------|-----------------------|
| 813316-2   | 77                   | 1          | 100               | 100        | 169                       | 177.00                   | 92%             | 75-125             | Yes                   |     |                     |                       |
| 010010-2   |                      |            |                   | -0         |                           |                          |                 | 75-125             |                       |     | 10.1                |                       |

ALEX L
Analyst Printed Name

**Blank Summary** 

Measured

Value, ppm

Reporting

Limit, RL

5 ppm

Analyst Signature

Maksim Gorbunov
Reviewer Printed Name

Reviewer Signature



# **2/33/6**CHAIN OF CUSTODY RECORD



TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

[IM3Plant-EW-218]

TURNAROUND TIME 10 Days

DATE 05/06/14 PAGE 1 OF 1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |         |                                               |           |                   |               |               |                                         |          |                                                                          |                                       |                                         |     |         |          |          |        |          | _               |          |        |          |                                         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|---------|-----------------------------------------------|-----------|-------------------|---------------|---------------|-----------------------------------------|----------|--------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----|---------|----------|----------|--------|----------|-----------------|----------|--------|----------|-----------------------------------------|------|
| COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH2M HILL /E2  | 2           |         |                                               |           |                   | $\overline{}$ | $\overline{}$ | 7,                                      | 0.0      | 7                                                                        | $\overline{}$                         | $\mathcal{T}$                           | 7   | 7       | 7        | 7        | 7      | 7        | 7               | 7        | 7      | 60       | MMENTS                                  |      |
| PROJECT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PG&E Topock    | IM3Plant-EV | V       |                                               |           |                   | 18            | 05/           | 73/2                                    | <u> </u> |                                                                          | eres.                                 | 3/                                      | /   |         |          |          |        |          |                 |          |        | CO       | WINDER IS                               |      |
| PHONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 530-229-33     | 303         | FAX _53 | 0-339-3303_                                   |           | ,                 |               | / ,           | \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | /_/      | / /                                                                      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | / /                                     | /   | /       | / ,      | /        | /      | /        | / ,             | /_       |        |          |                                         |      |
| ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155 Grand Ave  | Ste 1000    |         |                                               |           |                   | 76            |               | )<br>()<br>()                           | 02/      |                                                                          | 77/                                   |                                         |     |         |          |          |        |          |                 | FRS      | 7      |          |                                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oakland, CA 94 | 4612        |         |                                               |           | 18                |               | 0,7           |                                         | ¥/       | 18                                                                       |                                       |                                         |     |         |          |          |        |          |                 | <u> </u> |        |          |                                         |      |
| P.O. NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 428648.IM.CS   | .EX.AC      |         | <i>^</i>                                      | 1 /       |                   | ر چور<br>رخ   | $\frac{1}{2}$ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  | /        | \\ \a, \begin{align*} \eqrapsilon \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | / /                                   | / /                                     | /   | / /     | / ,      | / ,      | / ,    | / ,      |                 |          |        |          |                                         |      |
| SAMPLERS (SIGN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATURE Sat      | 12Da        | 201     |                                               | $ \cdot $ | O(V) (C) MI (200) | PH (1500-C/B) | 46/           | C(V)) (2) AH (SM2)                      | 9,/      | 16/1                                                                     | (200.7) Lab fillered                  |                                         |     |         |          |          |        |          | THER OF CONTAIN |          |        |          |                                         | l    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |         |                                               | 880       | ?<br>}<br>!       |               |               |                                         |          |                                                                          |                                       | /                                       | /   |         |          |          |        |          |                 |          |        |          |                                         |      |
| SAMPLE I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | DATE        | TIME    | DESCRIPTION                                   | 10        | <u>/ &amp;</u>    | 18            | <u> </u>      | <u>/ &amp; </u>                         | (9)      |                                                                          |                                       | /                                       |     |         |          |          |        | <u> </u> |                 |          |        |          | ****                                    |      |
| PE-01-218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3              | 05/06/14    | 1510    | Ground water                                  | x         |                   | Х             | х             | х                                       | х        |                                                                          |                                       |                                         |     |         |          |          |        | 4        |                 | le i     | 12/ =  | =7(      | 2007                                    | 12   |
| TW-03D-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :18            | 05/06/14    | 1515    | Ground water                                  | Х         | Х                 | ×             | Х             |                                         | Х        |                                                                          |                                       |                                         |     |         |          |          |        | 4        | J               | <u> </u> |        |          |                                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |         |                                               |           |                   |               |               |                                         |          |                                                                          |                                       |                                         |     | gys:    |          | م ا      |        |          | L.              |          |        |          |                                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |         |                                               |           |                   |               |               |                                         |          |                                                                          |                                       |                                         |     | E STATE | 0        | S. All   | 31     | nr       |                 |          | On     | di       | ions                                    | ig . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |         | 850 850 950 950 950 950 950 950 950 950 950 9 |           |                   |               |               |                                         |          |                                                                          |                                       |                                         |     |         | C        | a        | in the | <i>e</i> | m               | Δ        | H      | nch      | od                                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |         |                                               |           |                   |               |               |                                         |          |                                                                          |                                       |                                         | *** |         |          | - Carrie |        | W I      | 3 4 4           | H &      | 8 12 W | A WOVE B | W W                                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leve           |             |         |                                               |           | $\Box$            | <b>†</b>      |               |                                         |          |                                                                          |                                       |                                         |     |         |          |          |        |          |                 | -        | Win    |          |                                         |      |
| AND THE RESERVE OF THE PARTY OF |                |             |         |                                               |           | L                 | -l            | ·             |                                         |          |                                                                          |                                       | <del>ا رہیں۔۔۔۔ا</del>                  |     |         | <b>L</b> |          |        | 8        | ΤC              | 1 JATC   | NUMBI  | ER OF C  | ONTAINERS                               | ,    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |         |                                               |           |                   |               |               |                                         |          |                                                                          |                                       |                                         |     |         |          |          |        |          | A               |          |        |          | *************************************** |      |
| general control of the control of th | C              | CHAIN OF    | CUSTO   | DY SIGNATU                                    | RE R      | ECC               | RD            |               |                                         |          |                                                                          |                                       | *************************************** |     |         |          |          | S      | AMPL     | E CON           | VDITI    | ONS    |          | *************************************** |      |

| CH                                   | IAIN OF CUSTODY SI          | GNATURE RECORD              |                            | SAMPLE CONDITIONS     |
|--------------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------|
| 3ignature<br>(Relinquished)          | Printed Name Scott ODonnell | Company/ CH2m Hzu           | Date/ 5-6-14<br>Time /615  | RECEIVED COOL WARM    |
| Received) Show Mgo                   | Printed Name THAWK NGO      | Company/<br>Agency TWZSD#/( | Date/5-6-14<br>Time 16/5   | CUSTODY SEALED YES NO |
| 3ignature<br>(Relinquished) Wan vego | Printed Name 7##W# NS       | Company/<br>Agency          | Date/ 5-6-19               | SPECIAL REQUIREMENTS: |
| Received) Kurkear Ca                 | Printed Narcheal Bady       | Company/<br>Agency          | Date/<br>Time 5/16/14 2050 | Ø                     |
| 3ignature (<br>;Relinquished)        | Printed /<br>Name           | Company/ /<br>Agency        | Date/<br>Time              |                       |
| <br>Signature<br>(Received)          | Printed<br>Name             | Company/<br>Agency          | Date/<br>Time              |                       |

## Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

| Date    | Date Lab Number Ini |          | Buffer Added (mL) | Final pH | Time Buffered | Initials |
|---------|---------------------|----------|-------------------|----------|---------------|----------|
| 3126/14 | 8/2753              | 7.00     | eml/lovinl        | 9.5      | 7/30          | NE       |
| 49114   | 812966-1            | 7.00     | 2 hl/ 100 ml      | 9.5      | 7:20          | NE       |
|         | -2                  |          |                   |          |               |          |
|         | V -3 V              |          |                   |          | _ 1/          |          |
|         | 812967-1            | 9.5      | MA                | NIA      | NA            | ,        |
|         | -2                  |          |                   |          |               |          |
|         | ~3                  |          |                   |          |               |          |
|         | _4                  |          |                   |          |               |          |
|         | -5                  | <i>a</i> |                   |          |               |          |
|         | -6                  |          |                   |          | ·             |          |
|         | ~ 7                 |          |                   |          |               |          |
|         | -8                  |          |                   |          |               |          |
|         | _9                  |          |                   |          |               |          |
|         | -10                 |          |                   |          |               |          |
|         | -11                 |          |                   |          |               |          |
|         | -12                 |          |                   |          |               | ,        |
|         | -13                 |          |                   |          |               |          |
|         | 19                  |          |                   |          |               |          |
|         | V -15               |          |                   |          |               |          |
|         | 812968 CS           | (vg) V   | V                 |          |               | <u> </u> |
|         | 812969-1            | 7.00     | 2 ml / 100 ml     | 9.5      | 7:20          | NE       |
| V       | V -2                | <u> </u> |                   |          |               |          |
| 4116114 | 813068              | 7,00     | 2ml/100ml         | 9.5      | 7;40          | NE       |
| 4/23/14 | 813140              | 7.00     | 2 ml/ 100 ml      | 9.5      | 7:30          | NZ       |
| 4130/14 | 813212              | 7.00     | 2 ml/100 ml       | 9.5      | 7:30          | NE       |
| 5,7/14  | 813315-1            | 7.60     | 2 ml / 100 ml     | 9.5      | 1r:45         | NE       |
|         | -2                  |          |                   |          |               |          |
|         | 817316-1            |          | <u></u>           | _        |               | yt       |
| V       | -2                  | J        |                   |          |               |          |
|         |                     |          |                   |          |               |          |
|         |                     |          | <u> </u>          |          |               |          |
|         |                     |          |                   |          | /             | X        |

In Mx 5/9/14



#### TRUESDAIL LABORATORIES, INC. **Metals**

Turbidity/pH Check

| Turbidity/pH Check |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
|--------------------|-----------|------------|---------|---------|----------------------|----------------------------------|------------------------------|--------------|--|--|--|--|
| Sample Number      | Turbidity | рН         | Date    | Analyst | Need Digest<br>(Y/N) | Time of<br>Adjustment to<br>pH 2 | Date/Time of 2nd<br>pH check | Comments     |  |  |  |  |
| 812336             | 21        | 22         | 5/9/14  | E>      | Tes                  |                                  |                              |              |  |  |  |  |
| 613341             |           | i          | ,       | 1       |                      |                                  |                              |              |  |  |  |  |
| 813345(1-2)        |           |            |         |         |                      |                                  |                              | -1 TU71      |  |  |  |  |
| 613758             |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813356             |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813365             | 71        |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813325 (4-6)       | 41        | 72         |         |         | NO                   | 16:00                            | 11:00 5/12/14                | pH <2        |  |  |  |  |
| 813726(1-3)        | 1         | ì          |         |         | i                    | ì                                | 1                            | 1            |  |  |  |  |
| 813327 (10-12)     |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 8   3324 (1-2)     |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813349 (1-2,4)     |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813350 (1-4)       |           |            | T.      | V       | V                    |                                  | V                            | U            |  |  |  |  |
| G13315(1-2)<br>-2  | 41        | 72         | 5/12/14 | Es      | tes                  | 10:00                            |                              | TOTAL        |  |  |  |  |
| - 2                |           | 1          | 1       | 1       | i                    | 1                                |                              | Filtered the |  |  |  |  |
| 613716 (1-2)       |           |            |         |         |                      |                                  |                              | Filtered the |  |  |  |  |
| 813383(1-2)        | 41        | 12         | 514114  | ES      | yes                  |                                  |                              | 17471        |  |  |  |  |
| 812784             | 71        | ſ          | 1       | 1       | i                    |                                  |                              |              |  |  |  |  |
| 613394-4           | 41        |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813395             | 1         |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813 407            |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 817416             |           |            |         |         |                      |                                  | -                            |              |  |  |  |  |
| 817417             | V         |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 817418             | 71        |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 819419             | V         | 1          |         |         | <b>V</b>             |                                  |                              |              |  |  |  |  |
| 813390(1-2,4)      | 51        | 72         |         |         | m                    | 10:00                            |                              |              |  |  |  |  |
| 813406             | V         | 4          | •       | V       | 1                    | 4                                |                              |              |  |  |  |  |
| 813434 (1,2)       | >1        | <b>4</b> Z | 5/15/14 | W       | YES                  |                                  |                              |              |  |  |  |  |
| \$13440            | 71        | 42         | \L      | 1       | 1                    |                                  |                              |              |  |  |  |  |
| 313415             | 41        | 72         | 5/19/14 | B       | yes                  | i1:00                            |                              | PH LZ        |  |  |  |  |
| 8 3 429(10-12)     | j         |            |         | 1       | NU                   | 11:10                            |                              |              |  |  |  |  |
| 813442 (1-2)       |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
| 813445(1-2)        |           | <u> </u>   |         |         | <u> </u>             |                                  |                              |              |  |  |  |  |
| 813434(1-2)        | 71        |            |         |         | YUS                  |                                  |                              |              |  |  |  |  |
| 813444             | 41        |            |         |         | <u> </u>             |                                  |                              |              |  |  |  |  |
| 813458             |           | <u> </u>   | il l    | 4       | <b>₩</b>             |                                  |                              |              |  |  |  |  |
| 313474<br>811415   |           | -          | 5/19/14 | 1 23    | Yei<br>. L           |                                  |                              |              |  |  |  |  |
| 813415             | <u> </u>  | 1          | L       | 4       |                      |                                  |                              |              |  |  |  |  |
| 817482(1-2)        | 71        | 42         | 5/20/11 | ES      | 745                  |                                  |                              |              |  |  |  |  |
|                    |           |            |         |         |                      | ,                                |                              |              |  |  |  |  |
|                    |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
|                    |           |            |         |         |                      | . ,                              | •                            |              |  |  |  |  |
|                    |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
|                    |           |            |         |         |                      |                                  |                              |              |  |  |  |  |
|                    |           |            |         |         |                      |                                  |                              |              |  |  |  |  |

Notes:

1. Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.

2. All Total Recoverable Analytes must be pH adjusted and digested.

3. Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.



## Sample Integrity & Analysis Discrepancy Form

| Clie         | nt: E2                                                                                     | Lab #                  | 331             |
|--------------|--------------------------------------------------------------------------------------------|------------------------|-----------------|
| Date         | e Delivered: ØŚ / Øb/14 Time: ŽO:SD By: □Mail 🗵                                            | ,<br>Field Service □Cl | lient           |
| 1.           | Was a Chain of Custody received and signed?                                                | -gdYes □No □           | N/A             |
| <b>2</b> . · | Does Customer require an acknowledgement of the COC?                                       | □Yes ØNo □             | N/A             |
| 3.           | Are there any special requirements or notes on the COC?                                    | □Yes MNo □             | N/A             |
| 4. [         | If a letter was sent with the CQC, does it match the COC?                                  | □Yes □No Ø             | N/A             |
| <b>5</b> .   | Were all requested analyses understood and acceptable?                                     | ÁlYes □No □            | N/A             |
| 6.`          | Were samples received in a chilled condition?<br>Temperature (if yes)? <u>3. Y °C</u>      | taYes □No □            | N/A             |
| 7.           | Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?               | v Yes □No □            | N/A             |
| 8. ·         | Were sample custody seals intact?                                                          | □Yes □No ☑             | N/A             |
| 9.           | Does the number of samples received agree with CQC?                                        | ØYes □No □             | Ņ/A             |
| 10.          | Did sample labels correspond with the client ID/s?                                         | ØYes □No □I            | N/A             |
| 11.          | Did sample labels indicate proper preservation?  Preserved (if yes) by: □Truesdail □Client | . '□Yes □No tal        | /<br>N/A        |
| 12.          | Were samples pH checked? $pH = \underline{Jee} C.QC$ .                                     | Vri.<br>□ Yes □ No □ I | V/A             |
| 13.          | Were all analyses within holding time at time of receipt? If not, notify Project Manager.  | ďÝes □No □/            | V/A             |
| 14.          | Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH □ Std     | Yes DNO D              | WA <sup>*</sup> |
| 1 <b>5</b> . | Sample Matrix: □Liquid □Drinking Water □Ground □Sludge □Soil □Wipe □Paint □Solid □         |                        | ater<br>        |
| 16.          | Comments:                                                                                  |                        |                 |
| 17.          | Sample Check-In completed by Truesdail Log-In/Receiving:                                   | duda                   |                 |

Established 1931



July 2, 2014

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-EW-219, GROUNDWATER MONITORING PROJECT, TLI NO.: 814025

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-EW-219 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, wet chemistry raw data, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on June 3, 2014, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Samples were analyzed and recorded in the raw data as SDG 14F0025 but are reported as SDG 814025 in all final report pages.

Samples for pH analysis by SM 4500-H B were received past the method specified holding time. Mr. Duffy approved the analysis of the samples.

Due to an error during sample log-in, Alkalinity on sample TW-03D-219 was analyzed nearly 14 days past the 14 day method specified holding time. Mr. Duffy was notified.

Sample TW-03D-219 for Hexavalent Chromium was analyzed by method EPA 218.6 rather than SW 3500-Cr B as requested on the COC.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,
TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

alliched to

Michael Ngo

Quality Assurance/Quality Control Officer

## TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Two (2) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 428648.IM.CS.EX.AC Date: July 2, 2014 Collected: June 3, 2014

Received: June 3, 2014

#### **ANALYST LIST**

| METHOD      | PARAMETER              | ANALYST                |
|-------------|------------------------|------------------------|
| EPA 120.1   | Specific Conductivity  | Jenny Tankunakorn      |
| SM 4500-H B | рН                     | Jennine Ta             |
| SM 2540C    | Total Dissolved Solids | Jenny Tankunakorn      |
| SM 2320B    | Total Alkalinity       | Alex Luna / Jennine Ta |
| EPA 300.0   | Anions                 | Giawad Ghenniwa        |
| EPA 200.7   | Metals by ICP          | Ethel Suico            |
| EPA 200.8   | Metals by ICP/MS       | Ethel Suico            |
| EPA 218.6   | Hexavalent Chromium    | Naheed Eidinejad       |



14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 428648.IM.CS.EX.AC P.O. No.: PGEIM11111001 Laboratory No.: 814025

Date Received: June 3, 2014

### **Analytical Results Summary**

| Lab Sample ID | Field ID  | Analysis<br>Method | Extraction<br>Method | Sample<br>Date | Sample<br>Time | Parameter                          | Result | Units    | RL    |
|---------------|-----------|--------------------|----------------------|----------------|----------------|------------------------------------|--------|----------|-------|
| 814025-001    | PE-01-219 | E120.1             | NONE                 | 6/3/2014       | 9:00           | EC                                 | 4480   | umhos/cm | 2.00  |
| 814025-001    | PE-01-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Calcium                            | 110000 | ug/L     | 50000 |
| 814025-001    | PE-01-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Iron                               | 127    | ug/L     | 20.0  |
| 814025-001    | PE-01-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Magnesium                          | 24000  | ug/L     | 2500  |
| 814025-001    | PE-01-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Sodium                             | 762000 | ug/L     | 50000 |
| 814025-001    | PE-01-219 | E200.8             | LABFLT               | 6/3/2014       | 9:00           | Chromium                           | 4.1    | ug/L     | 1.0   |
| 814025-001    | PE-01-219 | E200.8             | LABFLT               | 6/3/2014       | 9:00           | Manganese                          | 68.7   | ug/L     | 0.50  |
| 814025-001    | PE-01-219 | E218.6             | LABFLT               | 6/3/2014       | 9:00           | Chromium, Hexavalent               | 3.7    | ug/L     | 0.20  |
| 814025-001    | PE-01-219 | E300               | NONE                 | 6/3/2014       | 9:00           | Chloride                           | 1140   | mg/L     | 50.0  |
| 814025-001    | PE-01-219 | E300               | NONE                 | 6/3/2014       | 9:00           | Nitrate as N                       | ND     | mg/L     | 0.500 |
| 814025-001    | PE-01-219 | E300               | NONE                 | 6/3/2014       | 9:00           | Sulfate                            | 396    | mg/L     | 25.0  |
| 814025-001    | PE-01-219 | SM2320B            | NONE                 | 6/3/2014       | 9:00           | Alkalinity                         | 224    | mg/L     | 5.00  |
| 814025-001    | PE-01-219 | SM2320B            | NONE                 | 6/3/2014       | 9:00           | Alkalinity, Bicarbonate (As CaCO3) | 224    | mg/L     | 5.00  |
| 814025-001    | PE-01-219 | SM2320B            | NONE                 | 6/3/2014       | 9:00           | Alkalinity, Carbonate (As CaCO3)   | ND     | mg/L     | 5.00  |
| 814025-001    | PE-01-219 | SM2540C            | NONE                 | 6/3/2014       | 9:00           | Total Dissolved Solids             | 2610   | mg/L     | 125   |
| 814025-001    | PE-01-219 | SM4500HB           | NONE                 | 6/3/2014       | 9:00           | PH                                 | 7.46   | pН       | 4.00  |





| Lab Sample II | Field ID   | Analysis<br>Method | Extraction<br>Method | Sample<br>Date | Sample<br>Time | Parameter                          | Result  | Units    | RL     |
|---------------|------------|--------------------|----------------------|----------------|----------------|------------------------------------|---------|----------|--------|
| 814025-002    | TW-03D-219 | E120.1             | NONE                 | 6/3/2014       | 9:00           | EC                                 | 8090    | umhos/cm | 2.00   |
| 814025-002    | TW-03D-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Calcium                            | 212000  | ug/L     | 50000  |
| 814025-002    | TW-03D-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Iron                               | 136     | ug/L     | 20.0   |
| 814025-002    | TW-03D-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Magnesium                          | 31700   | ug/L     | 10000  |
| 814025-002    | TW-03D-219 | E200.7             | LABFLT               | 6/3/2014       | 9:00           | Sodium                             | 1540000 | ug/L     | 250000 |
| 814025-002    | TW-03D-219 | E200.8             | LABFLT               | 6/3/2014       | 9:00           | Chromium                           | 737     | ug/L     | 5.0    |
| 814025-002    | TW-03D-219 | E200.8             | LABFLT               | 6/3/2014       | 9:00           | Manganese                          | 7.9     | ug/L     | 0.50   |
| 814025-002    | TW-03D-219 | E218.6             | LABFLT               | 6/3/2014       | 9:00           | Chromium, Hexavalent               | 725     | ug/L     | 10.0   |
| 814025-002    | TW-03D-219 | E300               | NONE                 | 6/3/2014       | 9:00           | Chloride                           | 2360    | mg/L     | 50.0   |
| 814025-002    | TW-03D-219 | E300               | NONE                 | 6/3/2014       | 9:00           | Nitrate as N                       | 3.28    | mg/L     | 0.500  |
| 814025-002    | TW-03D-219 | E300               | NONE                 | 6/3/2014       | 9:00           | Sulfate                            | 535     | mg/L     | 25.0   |
| 814025-002    | TW-03D-219 | SM2320B            | NONE                 | 6/3/2014       | 9:00           | Alkalinity                         | 134 J   | mg/L     | 5.00   |
| 814025-002    | TW-03D-219 | SM2320B            | NONE                 | 6/3/2014       | 9:00           | Alkalinity, Bicarbonate (As CaCO3) | 134 J   | mg/L     | 5.00   |
| 814025-002    | TW-03D-219 | SM2320B            | NONE                 | 6/3/2014       | 9:00           | Alkalinity, Carbonate (As CaCO3)   | ND J    | mg/L     | 5.00   |
| 814025-002    | TW-03D-219 | SM2540C            | NONE                 | 6/3/2014       | 9:00           | Total Dissolved Solids             | 4750    | mg/L     | 250    |
| 814025-002    | TW-03D-219 | SM4500HB           | NONE                 | 6/3/2014       | 9:00           | PH                                 | 7.43    | рН       | 4.00   |

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

## TRUESDAIL LABORATORIES, INC.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

Page 1 of 17

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Printed 7/2/2014

Acceptance Range

0 - 20

Laboratory No. 814025

#### REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Unit

mg/L

DF

50.0

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project Number: 428648.IM.CS.EX.AC P.O. Number: PGEIM11111001

Release Number:

Parameter

Sulfate

Samples Received on 6/3/2014 2:00:00 PM

Field ID Lab ID Collected Matrix PE-01-219 814025-001 06/03/2014 09:00 Water TW-03D-219 814025-002 06/03/2014 09:00 Water

|             | Unit<br>mg/L<br>mg/L                    | 06/04/                                           | yzed<br>/2014 15:21                                                                     | DF<br>500                                                                                         | MDL                                                                                                    | RL                                                                                                          | Result                                                                                                                    |
|-------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|             | mg/L                                    |                                                  | /2014 15:21                                                                             | 500                                                                                               | 47.4                                                                                                   |                                                                                                             |                                                                                                                           |
|             | -                                       | 06/04/                                           |                                                                                         |                                                                                                   | 17.4                                                                                                   | 50.0                                                                                                        | 1140                                                                                                                      |
|             |                                         | 00/04/                                           | /2014 16:10                                                                             | 5.00                                                                                              | 0.0415                                                                                                 | 0.500                                                                                                       | ND                                                                                                                        |
|             | mg/L                                    | 06/04/                                           | /2014 16:35                                                                             | 50.0                                                                                              | 1.54                                                                                                   | 25.0                                                                                                        | 396                                                                                                                       |
|             | mg/L                                    | 06/04/                                           | /2014 15:58                                                                             | 500                                                                                               | 17.4                                                                                                   | 50.0                                                                                                        | 2360                                                                                                                      |
|             | mg/L                                    | 06/04/                                           | /2014 16:23                                                                             | 5.00                                                                                              | 0.0415                                                                                                 | 0.500                                                                                                       | 3.28                                                                                                                      |
|             | mg/L                                    | 06/04/                                           | /2014 16:48                                                                             | 50.0                                                                                              | 1.54                                                                                                   | 25.0                                                                                                        | 535                                                                                                                       |
| ger er er e |                                         |                                                  | este trouvilla di di                                                                    | San de per                                                                                        | an Armina                                                                                              | ar elyetaka kalifa alif                                                                                     | van Danina                                                                                                                |
| Init        | DF                                      | Result                                           |                                                                                         |                                                                                                   |                                                                                                        |                                                                                                             |                                                                                                                           |
| g/L         | 1.00                                    | ND                                               |                                                                                         |                                                                                                   |                                                                                                        |                                                                                                             |                                                                                                                           |
| g/L         | 1.00                                    | ND                                               |                                                                                         |                                                                                                   |                                                                                                        |                                                                                                             |                                                                                                                           |
| g/L         | 1.00                                    | ND                                               |                                                                                         |                                                                                                   |                                                                                                        |                                                                                                             |                                                                                                                           |
| g/L         | 1.00                                    | ND                                               |                                                                                         |                                                                                                   | o menter control and control                                                                           |                                                                                                             |                                                                                                                           |
|             |                                         |                                                  |                                                                                         |                                                                                                   |                                                                                                        | Lab ID = 8                                                                                                  | 14025-00                                                                                                                  |
| nit         | DF                                      | Result                                           | Expected                                                                                | R                                                                                                 | PD                                                                                                     | Acceptar                                                                                                    | ice Rapo                                                                                                                  |
| g/L         | 500                                     | 1080                                             | 1140                                                                                    |                                                                                                   | 5.38                                                                                                   | 0 - 20                                                                                                      | range                                                                                                                     |
|             | Init<br>g/L<br>g/L<br>g/L<br>g/L<br>nit | mg/L Init DF g/L 1.00 g/L 1.00 g/L 1.00 g/L 1.00 | mg/L 06/04/  Init DF Result g/L 1.00 ND | mg/L 06/04/2014 16:48  Init DF Result g/L 1.00 ND | mg/L 06/04/2014 16:48 50.0  Init DF Result g/L 1.00 ND | mg/L 06/04/2014 16:48 50.0 1.54  Init DF Result g/L 1.00 ND | mg/L 06/04/2014 16:48 50.0 1.54 25.0  Init DF Result g/L 1.00 ND Acceptar |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 011

Expected

506

**RPD** 

0.621

Result



Fluoride

mg/L

1.00

Report Continued

| Client: E2 Consulting Eng | ineers, Inc |        | Project Name: PG&E Topock Project Project Number: 428648.IM.CS.EX.AC |                |          | Page 2 of 17<br>Printed 7/2/2014 |  |  |
|---------------------------|-------------|--------|----------------------------------------------------------------------|----------------|----------|----------------------------------|--|--|
| Duplicate                 |             |        |                                                                      |                |          | Lab ID = 814026-002              |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected       | RPD      | Acceptance Range                 |  |  |
| Fluoride                  | mg/L        | 5.00   | 2.54                                                                 | 2.41           | 5.41     | 0 - 20                           |  |  |
| Nitrate as Nitrogen       | mg/L        | 5.00   | 2.57                                                                 | 2.60           | 1.20     | 0 - 20                           |  |  |
| Lab Control Sample        |             |        |                                                                      |                |          |                                  |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected       | Recovery | Acceptance Range                 |  |  |
| Chloride                  | mg/L        | 1.00   | 4.06                                                                 | 4.00           | 101      | 90 - 110                         |  |  |
| Fluoride                  | mg/L        | 1.00   | 4.21                                                                 | 4.00           | 105      | 90 - 110                         |  |  |
| Sulfate                   | mg/L        | 1.00   | 20.7                                                                 | 20.0           | 104      | 90 - 110                         |  |  |
| Nitrate as Nitrogen       | mg/L        | 1.00   | 4.06                                                                 | 4.00           | 102      | 90 - 110                         |  |  |
| Matrix Spike              |             |        |                                                                      |                |          | Lab ID = 814025-001              |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected/Added | Recovery | Acceptance Range                 |  |  |
| Chloride                  | mg/L        | 500    | 3190                                                                 | 3140(2000)     | 102      | 85 - 115                         |  |  |
| Matrix Spike              |             |        |                                                                      |                |          | Lab ID = 814026-001              |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected/Added | Recovery | Acceptance Range                 |  |  |
| Sulfate                   | mg/L        | 50.0   | 700                                                                  | 706(200)       | 97.2     | 85 - 115                         |  |  |
| Matrix Spike              |             |        |                                                                      |                |          | Lab ID = 814026-002              |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected/Added | Recovery | Acceptance Range                 |  |  |
| Fluoride                  | mg/L        | 5.00   | 22.9                                                                 | 22.4(20.0)     | 102      | 85 - 115                         |  |  |
| Nitrate as Nitrogen       | mg/L        | 5.00   | 22.8                                                                 | 22.6(20.0)     | 101      | 85 - 115                         |  |  |
| MRCCS - Secondary         |             |        |                                                                      |                |          |                                  |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected       | Recovery | Acceptance Range                 |  |  |
| Chloride                  | mg/L        | 1.00   | 4.00                                                                 | 4.00           | 100      | 90 - 110                         |  |  |
| Fluoride                  | mg/L        | 1.00   | 4.22                                                                 | 4.00           | 105      | 90 - 110                         |  |  |
| Sulfate                   | mg/L        | 1.00   | 20.5                                                                 | 20.0           | 102      | 90 - 110                         |  |  |
| Nitrate as Nitrogen       | mg/L        | 1.00   | 4.05                                                                 | 4.00           | 101      | 90 - 110                         |  |  |
| MRCVS - Primary           |             |        |                                                                      |                |          |                                  |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected       | Recovery | Acceptance Range                 |  |  |
| Chloride                  | mg/L        | 1.00   | 3.06                                                                 | 3.00           | 102      | 90 - 110                         |  |  |
| MRCVS - Primary           |             | Šieta. |                                                                      |                |          |                                  |  |  |
| Parameter                 | Unit        | DF     | Result                                                               | Expected       | Recovery | Acceptance Range                 |  |  |
| Chloride                  | mg/L        | 1.00   | 3.02                                                                 | 3.00           | 100      | 90 - 110                         |  |  |
|                           |             |        |                                                                      |                |          |                                  |  |  |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

3.15

3.00

105

90 - 110



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

EX AC

Page 4 of 17

Project Number: 428648.IM.CS.EX.AC

Printed 7/2/2014

| Alkalinity by SM 2320B       |           |                                    | Batch    | 1406157       |          |           |            |
|------------------------------|-----------|------------------------------------|----------|---------------|----------|-----------|------------|
| Parameter                    |           | Unit                               | Analyzed |               | )F N     | MDL RL    | Result     |
| 814025-001 Alkalinity as CaC | :О3       | mg/L 06/10/2014<br>mg/L 06/10/2014 |          | )/2014 1      | 00 1.68  | 5.00      | 224        |
| Bicarbonate (Cal             | lculated) |                                    |          | )/2014 1      | 00 1.68  | 5.00      | 224        |
| Carbonate (Calc              | ulated)   | mg/L                               | 06/10    | )/2014 1      | 00 1.68  | 5.00      | ND         |
| Method Blank                 |           |                                    |          |               |          |           |            |
| Parameter                    | Unit      | DF                                 | Result   |               |          |           |            |
| Alkalinity as CaCO3          | mg/L      | 1.00                               | ND       |               |          |           |            |
| Carbonate (Calculated)       | mg/L      | 1.00                               | ND       |               |          |           |            |
| Bicarbonate (Calculated)     | mg/L      | 1.00                               | ND       |               |          |           |            |
| Duplicate                    |           |                                    |          |               |          | Lab ID =  | 814089-021 |
| Parameter                    | Unit      | DF                                 | Result   | Expected      | RPD      | Accept    | ance Range |
| Alkalinity as CaCO3          | mg/L      | 1.00                               | 120      | 119           | 0.837    | 0 - 20    |            |
| Lab Control Sample           |           |                                    |          |               |          |           |            |
| Parameter                    | Unit      | DF                                 | Result   | Expected      | Recove   | ry Accept | ance Range |
| Alkalinity as CaCO3          | mg/L      | 1.00                               | 100      | 100           | 100      | 90 - 11   | 0          |
| Lab Control Sample D         | uplicate  |                                    |          |               |          |           |            |
| Parameter                    | Unit      | DF                                 | Result   | Expected      | Recove   | ry Accept | ance Range |
| Alkalinity as CaCO3          | mg/L      | 1.00                               | 102      | 100           | 102      | 90 - 11   | 0          |
| Matrix Spike                 |           |                                    |          |               |          | Lab ID =  | 814025-001 |
| Parameter                    | Unit      | DF                                 | Result   | Expected/Adde | d Recove | ry Accept | ance Range |
| Alkalinity as CaCO3          | mg/L      | 1.00                               | 313      | 324(100)      | 89.0     | 75 - 12   | 5          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 5 of 17

Project Number: 428648.IM.CS.EX.AC

Printed 7/2/2014

| Alkalinity by SM 2320E           | 3            |            | Batch          | 1407022         |      |                  |                     |                 |   |
|----------------------------------|--------------|------------|----------------|-----------------|------|------------------|---------------------|-----------------|---|
| Parameter                        |              | Unit       | Ana            | Analyzed        |      | MDL              | RL                  | Result          | ï |
| 814025-002 Alkalinity as C       | aCO3         | mg/L       | 07/01          | /2014           | 1.00 | 1.68             | 5.00                | 134             | J |
| Bicarbonate (Calculated)         |              | mg/L       | 07/01          | /2014           | 1.00 | 1.68             | 5.00                | 134             | J |
| Carbonate (Calculated)           |              | mg/L       | 07/01          | /2014           | 1.00 | 1.68             | 5.00                | ND              | J |
| Method Blank                     |              |            |                |                 |      |                  |                     |                 |   |
| Parameter Alkalinity as CaCO3    | Unit<br>mg/L | DF<br>1.00 | Result<br>ND   |                 |      |                  |                     |                 |   |
| Duplicate                        |              |            |                |                 |      |                  | Lab ID =            | 814025-002      |   |
| Parameter Alkalinity as CaCO3    | Unit<br>mg/L | DF<br>1.00 | Result<br>134  | Expected<br>134 | F    | RPD<br>0         | Accepta<br>0 - 20   | ance Range      |   |
| Lab Control Sample               |              |            |                |                 |      |                  |                     |                 |   |
| Parameter<br>Alkalinity as CaCO3 | Unit<br>mg/L | DF<br>1.00 | Result<br>95.0 | Expected<br>100 | F    | Recovery<br>95.0 | Accepta<br>90 - 110 | ance Range      |   |
| Lab Control Sample               | Duplicate    |            |                |                 |      |                  |                     |                 |   |
| Parameter<br>Alkalinity as CaCO3 | Unit<br>mg/L | DF<br>1.00 | Result<br>95.0 | Expected<br>100 | F    | Recovery<br>95.0 | Accepta<br>90 - 110 | ance Range<br>) |   |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 6 of 17 Printed 7/2/2014

Project Number: 428648.IM.CS.EX.AC

| Specific Conductivity -   | EPA 120.1 | Batch 1406070 |         |            |      |          |          |            |
|---------------------------|-----------|---------------|---------|------------|------|----------|----------|------------|
| Parameter                 |           | Unit Analyzed |         | DF         | MDL  | RL       | Result   |            |
| 814025-001 Specific Condu | ctivity   | umhos/cr      | n 06/03 | 3/2014     | 1.00 | 0.706    | 2.00     | 4480       |
| 814025-002 Specific Condu | ctivity   | umhos/cr      | n 06/03 | 06/03/2014 |      | 0.706    | 2.00     | 8090       |
| Method Blank              |           |               |         |            |      |          |          |            |
| Parameter                 | Unit      | DF            | Result  |            |      |          |          |            |
| Specific Conductivity     | umhos     | 1.00          | ND      |            |      |          |          |            |
| Duplicate                 |           |               |         |            |      |          | Lab ID = | 814026-001 |
| Parameter                 | Unit      | DF            | Result  | Expected   | F    | RPD      | Accepta  | ance Range |
| Specific Conductivity     | umhos     | 1.00          | 7510    | 7490       |      | 0.267    | 0 - 10   |            |
| Lab Control Sample        |           |               |         |            |      |          |          |            |
| Parameter                 | Unit      | DF            | Result  | Expected   | F    | Recovery | Accepta  | ance Range |
| Specific Conductivity     | umhos     | 1.00          | 707     | 706        |      | 100      | 90 - 110 | )          |
| MRCCS - Secondar          | ý         |               |         |            |      |          |          |            |
| Parameter                 | Unit      | DF            | Result  | Expected   | F    | Recovery | Accepta  | ance Range |
| Specific Conductivity     | umhos     | 1.00          | 707     | 706        |      | 100      | 90 - 110 | )          |
| MRCVS - Primary           |           |               |         |            |      |          |          |            |
| Parameter                 | Unit      | DF            | Result  | Expected   | F    | Recovery | Accepta  | ance Range |
| Specific Conductivity     | umhos     | 1.00          | 1060    | 1000       |      | 106      | 90 - 110 | כ          |
| MRCVS - Primary           |           |               |         |            |      |          |          |            |
| Parameter                 | Unit      | DF            | Result  | Expected   | F    | Recovery | Accepta  | ance Range |
| Specific Conductivity     | umhos     | 1.00          | 1060    | 1000       |      | 106      | 90 - 110 | כ          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Printed 7/2/2014

Page 7 of 17

Project Number: 428648.IM.CS.EX.AC

| Chrome VI by EPA 218.0                            | 6              |            | Batch           | 1406028                     |                     |                  |                              |                                        |
|---------------------------------------------------|----------------|------------|-----------------|-----------------------------|---------------------|------------------|------------------------------|----------------------------------------|
| Parameter                                         |                | Unit       | Analyzed        |                             | DF                  | MDL              | RL                           | Result                                 |
| 814025-001 Chromium, Hexavalent                   |                | ug/L       | 06/04           | 1/2014 12:10 1              | .00                 | 0.00600          | 0.20                         | 3.7                                    |
| Method Blank                                      |                |            |                 |                             |                     |                  |                              |                                        |
| Parameter<br>Chromium, Hexavalent                 | Unit<br>ug/L   | DF<br>1.00 | Result<br>ND    |                             |                     |                  |                              | ************************************** |
| Duplicate                                         |                |            |                 |                             |                     |                  |                              | 814025-001                             |
| Parameter<br>Chromium, Hexavalent                 | Unit<br>ug/L   | DF<br>1.00 | Result<br>3.76  | Expected 3.74               |                     | RPD<br>0.464     | 0 - 20                       | ince Range                             |
| Low Level Calibration                             | n Verification | l .        |                 |                             |                     |                  |                              |                                        |
| Parameter Chromium, Hexavalent Lab Control Sample | Unit<br>ug/L   | DF<br>1.00 | Result<br>0.197 | Expected<br>0.200           | Recovery<br>98.4    |                  | Accepta<br>70 - 130          | ance Range<br>)                        |
| Parameter Chromium, Hexavalent Matrix Spike       | Unit<br>ug/L   | DF<br>1.00 | Result<br>5.02  | Expected<br>5.00            |                     | Recovery<br>100  | 90 - 110                     | ance Range<br>)<br>813618-001          |
| Parameter Chromium, Hexavalent Matrix Spike       | Unit<br>ug/L   | DF<br>5.00 | Result<br>5.26  | Expected/Adde 5.22(5.00)    | ed                  | Recovery<br>101  | 90 - 110                     | ance Range<br>)<br>813618-001          |
| Parameter<br>Chromium, Hexavalent                 | Unit<br>ug/L   | DF<br>1.00 | Result<br>1.27  | Expected/Adde<br>1.21(1.00) | ed                  | Recovery<br>106  | Accepta<br>90 - 110          | ance Range<br>)                        |
| Matrix Spike                                      |                |            |                 |                             |                     |                  | Hiller Destry Least American | 814025-001                             |
| Parameter Chromium, Hexavalent Matrix Spike       | Unit<br>ug/L   | DF<br>1.00 | Result<br>8.71  | Expected/Adde<br>8.74(5.00) | ∌d                  | Recovery<br>99.3 | 90 - 110                     | ance Range<br>)<br>814026-001          |
| Parameter Chromium, Hexavalent Matrix Spike       | Unit<br>ug/L   | DF<br>5.00 | Result<br>5.26  | Expected/Adde<br>5.21(5.00) | ed                  | Recovery<br>101  | 90 - 110                     | ance Range<br>)<br>814026-001          |
| Parameter Chromium, Hexavalent Matrix Spike       | Unit<br>ug/L   | DF<br>1.00 | Result<br>1.18  | Expected/Adde<br>1.16(1.00) | ded Recovery<br>102 |                  | 90 - 110                     | ance Range<br>)<br>814026-002          |
| Parameter<br>Chromium, Hexavalent                 | Unit<br>ug/L   | DF<br>25.0 | Result<br>1200  | Expected/Adde<br>1140(625)  | ed                  | Recovery<br>109  | GROVE Source Standistant     | ance Range                             |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 9 of 17

Project Number: 428648.IM.CS.EX.AC

Printed 7/2/2014

| Chrome VI by EPA 218.0                                           |              | Batch 1407024         |                              |                            |                 |                  |                                         |            |
|------------------------------------------------------------------|--------------|-----------------------|------------------------------|----------------------------|-----------------|------------------|-----------------------------------------|------------|
| Parameter                                                        |              | Unit                  | Analyzed<br>07/01/2014 19:23 |                            | DF              | MDL              | RL                                      | Result     |
| 814025-002 Chromium, Hexavalent                                  |              | ug/L                  |                              |                            | 0.0             | 0.300            | 10.0                                    | 725        |
| Method Blank                                                     |              |                       |                              |                            |                 |                  |                                         |            |
| Parameter Chromium, Hexavalent Duplicate                         | Unit<br>ug/L | DF<br>1.00            | Result<br>ND                 |                            |                 |                  | lah∤D=                                  | 814395-002 |
| Parameter Chromium, Hexavalent Low Level Calibration             | Unit<br>ug/L | /L 50.0 958 949 0.934 |                              | Acceptance Ran<br>0 - 20   |                 |                  |                                         |            |
| Parameter Chromium, Hexavalent Lab Control Sample                | Unit<br>ug/L | DF<br>1.00            | Result<br>0.194              | Expected 0.200             | •               |                  | Acceptance Ran<br>70 - 130              |            |
| Parameter Chromium, Hexavalent Matrix Spike                      | Unit<br>ug/L | DF<br>1.00            | Result<br>4.94               | Expected<br>5.00           | F               | Recovery<br>98.8 | ery Acceptano<br>90 - 110<br>Lab ID = 8 |            |
| Parameter<br>Chromium, Hexavalent                                | Unit<br>ug/L | DF<br>50.0            | Result<br>1480               | Expected/Adde<br>1480(750) | ed F            |                  |                                         | nce Range  |
| MRCCS - Secondary Parameter Chromium, Hexavalent MRCVS - Primary | Unit<br>ug/L | DF<br>1.00            | Result<br>4.95               | Expected 5.00              | F               | Recovery<br>98.9 | Accepta<br>90 - 110                     | ince Range |
| Parameter<br>Chromium, Hexavalent<br>MRCVS - Primary             | Unit<br>ug/L | DF<br>1.00            | Result<br>10.0               | Expected<br>10.0           | Recovery<br>100 |                  | Acceptance Ran<br>95 - 105              |            |
| Parameter Chromium, Hexavalent MRCVS - Primary                   | Unit<br>ug/L | DF<br>1.00            | Result<br>10.2               |                            |                 | •                | Accepta<br>95 - 105                     | nce Range  |
| Parameter<br>Chromium, Hexavalent                                | Unit<br>ug/L | DF<br>1.00            | Result<br>10.0               | Expected<br>10.0           | F               | Recovery<br>100  | Accepta<br>95 - 105                     | nce Range  |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 10 of 17

Project Number: 428648.IM.CS.EX.AC

Printed 7/2/2014

| pH by SM 4500-H B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Batch        | Batch 1406021 |                                       |                  |             |               |                    |            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------------------------------|------------------|-------------|---------------|--------------------|------------|--|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Unit          | Analyzed                              |                  | DF          | MDL           | RL                 | Result     |  |
| 814025-001 pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | pН            | 06/03                                 | 06/03/2014 17:48 |             | 0.0250        | 4.00               | 7.46       |  |
| 814025-002 pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | рН            | 06/03                                 | /2014 17:50      | 1.00 0.0250 |               | 4.00               | 7.43       |  |
| Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |               |                                       |                  |             |               | Lab ID =           | 814018-002 |  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit         | DF            | Result                                | Expected         | F           | RPD           | PD Acceptance      |            |  |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | рН           | 1.00          | 7.56                                  | 7.49             |             | 0.930         | 0 - 20             | -          |  |
| Lab Control Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |               |                                       |                  |             |               |                    |            |  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit         | DF            | Result                                | Expected         | Recovery    |               | Acceptance Rang    |            |  |
| pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pН           | 1.00          | 6.98                                  | 7.00             | 99.7        |               | 90 - 110           | )          |  |
| MRCVS - Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                       |                  |             |               |                    |            |  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit         | DF            | Result                                | Expected         | Recovery    |               | Acceptance Rar     |            |  |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pН           | 1.00          | 7.09                                  | 7.00             | 101         |               | 90 - 110           |            |  |
| Total Dissolved Solids Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dy 3Wi 234   | Unit          |                                       | 1406069<br>lyzed | DF          | MDL           | RL                 | Result     |  |
| 814025-001 Total Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I O - 6      |               | · · · · · · · · · · · · · · · · · · · |                  | 1.00        | 1.76          | 125                | 2610       |  |
| 814025-002 Total Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | mg/L          | 06/03/2014<br>06/03/2014              |                  | 1.00        | 1.76          | 250                | 4750       |  |
| Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i Sullus     | mg/L          | 00/03                                 | 7 <b>2014</b>    | 1,00        | 1.70          | 230                | 4700       |  |
| The Control of the Co | Unit         | DF            | Result                                |                  |             |               |                    |            |  |
| Parameter Total Dissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/L         | 1.00          | ND                                    |                  |             |               |                    |            |  |
| Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,            |               |                                       |                  |             |               | Lab ID = 814025-00 |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | DF            | Result Expected                       |                  | RPD         |               | Acceptance Range   |            |  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit         | Dr            | 1 Count                               |                  | 0           |               | 0 - 10             |            |  |
| Parameter Total Dissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit<br>mg/L | 1.00          | 2610                                  | 2610             |             | 0             | 0 - 10             |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                       | •                |             | 0             | 0 - 10             |            |  |
| Total Dissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |               |                                       | •                | F           | 0<br>Recovery |                    | ance Range |  |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Printed 7/2/2014

Page 11 of 17

Project Number: 428648.IM.CS.EX.AC

| Metals by EPA 200.8, Di | issolved       |                                                                                                               | Batch                                                                                                         | 061014A        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
|-------------------------|----------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
| Parameter               |                | Unit                                                                                                          | Ana                                                                                                           | lyzed          | DF             | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RL       | Result     |
| 814025-001 Chromium     |                | ug/L                                                                                                          | 06/10/2014 15:51                                                                                              |                | 2.00           | 0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0      | 4.1        |
| Manganese               |                | ug/L                                                                                                          | 06/10                                                                                                         | )/2014 15:51   | 2.00           | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50     | 68.7       |
| 814025-002 Chromium     |                | ug/L                                                                                                          | 06/10                                                                                                         | /2014 16:43    | 0.0            | 0.710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0      | 737        |
| Manganese               |                | ug/L                                                                                                          | 06/10                                                                                                         | )/2014 16:36 2 | 2.00 0.120     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50     | 7.9        |
| Method Blank            |                |                                                                                                               |                                                                                                               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Parameter               | Unit           | DF                                                                                                            | Result                                                                                                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Chromium                | ug/L           | 1.00                                                                                                          | ND                                                                                                            |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Manganese               | ug/L           | 1.00                                                                                                          | ND                                                                                                            |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Duplicate               |                |                                                                                                               |                                                                                                               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab ID = | 814025-001 |
| Parameter               | Unit           | DF                                                                                                            | Result                                                                                                        | Expected       | F              | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Accepta  | nce Range  |
| Chromium                | ug/L           | 2.00                                                                                                          | 4.06                                                                                                          | 4.13           |                | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 - 20   |            |
| Manganese               | ug/L           | 2.00                                                                                                          | 69.4                                                                                                          | 68.7           | 0.991          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 - 20   |            |
| Low Level Calibration   | r Verification | unite di                                                                                                      |                                                                                                               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Parameter               | Unit           | DF                                                                                                            | Result                                                                                                        | Expected       | F              | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accepta  | ince Range |
| Chromium                | ug/L           | 1.00                                                                                                          | 0.545                                                                                                         | 0.500          |                | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70 - 130 | )          |
| Manganese               | ug/L           | 1.00                                                                                                          | 0.221                                                                                                         | 0.200          | 110            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 130 |            |
| Lab Control Sample      |                |                                                                                                               |                                                                                                               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Parameter               | Unit           | DF                                                                                                            | Result                                                                                                        | Expected       | F              | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accepta  | nce Range  |
| Chromium                | ug/L           | 1.00                                                                                                          | 54.6                                                                                                          | 50.0           |                | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85 - 115 | 5          |
| Manganese               | ug/L           | 1.00                                                                                                          | 54.1                                                                                                          | 50.0           |                | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85 - 115 |            |
| Matrix Spike            |                |                                                                                                               |                                                                                                               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab ID = | 814025-001 |
| Parameter               | Unit           | DF                                                                                                            | Result                                                                                                        | Expected/Add   | ed F           | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | ance Range |
| Chromium                | ug/L           | 2.00                                                                                                          | 51.0                                                                                                          | 54.1(50.0)     |                | 93.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75 - 125 |            |
| Manganese               | ug/L           | 2.00                                                                                                          | 115                                                                                                           | 119(50.0)      |                | 93.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75 - 125 |            |
| Matrix Spike Duplicat   | te             | a de la compressión | entrestructurate de la companya de |                | and the second | and a state of the | Lab ID = | 814025-001 |
| Parameter               | Unit           | DF                                                                                                            | Result                                                                                                        | Expected/Add   | ed F           | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accepta  | ance Range |
| Chromium                | ug/L           | 2.00                                                                                                          | 50.6                                                                                                          | 54.1(50.0)     |                | 92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75 - 125 |            |
| Manganese               | ug/L           | 2.00                                                                                                          | 114                                                                                                           | 119(50.0)      |                | 90.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75 - 125 | 5          |
| MRCCS - Secondary       |                |                                                                                                               |                                                                                                               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |
| Parameter               | Unit           | DF                                                                                                            | Result                                                                                                        | Expected       | F              | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        | ance Range |
| Chromium                | ug/L           | 1.00                                                                                                          | 19.0                                                                                                          | 20.0           |                | 94.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90 - 110 |            |
| Manganese               | ug/L           | 1.00                                                                                                          | 18.7                                                                                                          | 20.0           |                | 93.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90 - 110 | )          |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 13 of 17

Project Number: 428648.IM.CS.EX.AC

Printed 7/2/2014

| Serial Dilution |      |      |        |          |      | Lab ID = 814025-001 |
|-----------------|------|------|--------|----------|------|---------------------|
| Parameter       | Unit | DF   | Result | Expected | RPD  | Acceptance Range    |
| Manganese       | ug/L | 10.0 | 70.5   | 68.7     | 2.64 | 0 - 10              |
| Serial Dilution |      |      |        |          |      | Lab ID = 814025-002 |
| Parameter       | Unit | DF   | Result | Expected | RPD  | Acceptance Range    |
| Chromium        | ug/L | 50.0 | 745    | 737      | 1.09 | 0 - 10              |



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 428648.IM.CS.EX.AC

Page 14 of 17 Printed 7/2/2014

| Metals by 200.7, Dissolv | Batch 061114A-Th2 |      |         |               |     |          |            |           |
|--------------------------|-------------------|------|---------|---------------|-----|----------|------------|-----------|
| Parameter                |                   | Unit | Analy   | zed l         | DF  | MDL      | RL         | Result    |
| 814025-001 Calcium       |                   | ug/L | 06/11/2 | 014 15:04 1   | 00  | 1700     | 50000      | 110000    |
| Iron                     |                   | ug/L | 06/11/2 | .014 1        | .00 | 3.00     | 20.0       | 127       |
| Magnesium                |                   | ug/L | 06/11/2 | .014 16:12 5  | .00 | 234      | 2500       | 24000     |
| Sodium                   |                   | ug/L | 06/11/2 | 014 15:04 1   | 00  | 5980     | 50000      | 762000    |
| 814025-002 Calcium       |                   | ug/L | 06/11/2 | 014 15:10 1   | 00  | 1700     | 50000      | 212000    |
| Iron                     |                   | ug/L | 06/11/2 | .014 16:28 1  | .00 | 3.00     | 20.0       | 136       |
| Magnesium                |                   | ug/L | 06/11/2 | .014 15:51 2  | 0.0 | 936      | 10000      | 31700     |
| Sodium                   |                   | ug/L | 06/11/2 | 2014 14:19 5  | 00  | 29900    | 250000     | 1540000   |
| Method Blank             |                   |      |         |               |     |          |            |           |
| Parameter                | Unit              | DF   | Result  |               |     |          |            |           |
| Calcium                  | ug/L              | 1.00 | ND      |               |     |          |            |           |
| Iron                     | ug/L              | 1.00 | ND      |               |     |          |            |           |
| Sodium                   | ug/L              | 1.00 | ND      |               |     |          |            |           |
| Magnesium                | ug/L              | 1.00 | ND      |               |     |          |            |           |
| Duplicate                |                   |      |         |               |     |          | Lab ID = 8 | 14025-002 |
| Parameter                | Unit              | DF   | Result  | Expected      | F   | RPD      | Acceptar   | ce Range  |
| Calcium                  | ug/L              | 100  | 214000  | 212000        |     | 1.12     | 0 - 20     |           |
| Iron                     | ug/L              | 1.00 | 132     | 136           |     | 3.29     | 0 - 20     |           |
| Sodium                   | ug/L              | 500  | 1480000 | 1540000       |     | 4.31     | 0 - 20     |           |
| Magnesium                | ug/L              | 20.0 | 30400   | 31700         |     | 4.22     | 0 - 20     |           |
| Lab Control Sample       |                   |      |         |               |     |          |            |           |
| Parameter                | Unit              | DF   | Result  | Expected      | F   | Recovery | Acceptar   | ce Range  |
| Calcium                  | ug/L              | 1.00 | 1970    | 2000          |     | 98.4     | 85 - 115   |           |
| Iron                     | ug/L              | 1.00 | 2140    | 2000          |     | 107      | 85 - 115   |           |
| Sodium                   | ug/L              | 1.00 | 1890    | 2000          |     | 94.5     | 85 - 115   |           |
| Magnesium                | ug/L              | 1.00 | 2190    | 2000          |     | 109      | 85 - 115   |           |
| Matrix Spike             |                   |      |         |               |     |          | Lab ID = 8 | 14025-002 |
| Parameter                | Unit              | DF   | Result  | Expected/Adde |     | Recovery | •          | ice Range |
| Calcium                  | ug/L              | 100  | 411000  | 412000(20000  | 0)  | 99.7     | 75 - 125   |           |
| Iron                     | ug/L              | 1.00 | 1810    | 2140(2000)    |     | 83.6     | 75 - 125   |           |
| Sodium                   | ug/L              | 500  | 2390000 | 2540000(1000  | 0C  | 85.1     | 75 - 125   |           |
| Magnesium                | ug/L              | 20.0 | 71100   | 71700(40000)  |     | 98.6     | 75 - 125   |           |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 15 of 17

Project Number: 428648.IM.CS.EX.AC Printed 7/2/2014

| Matrix Spike Duplic | ate  |      |        |                   |          | Lab ID = 814025-002 |
|---------------------|------|------|--------|-------------------|----------|---------------------|
| Parameter           | Unit | DF   | Result | Expected/Added    | Recovery | Acceptance Range    |
| Iron                | ug/L | 1.00 | 1790   | 2140(2000)        | 82.5     | 75 - 125            |
| MRCCS - Seconda     | ry   |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Calcium             | ug/L | 1.00 | 5070   | 5000              | 101      | 95 - 105            |
| Iron                | ug/L | 1.00 | 5050   | 5000              | 101      | 95 - 105            |
| Sodium              | ug/L | 1.00 | 4900   | 5000              | 97.9     | 95 - 105            |
| Magnesium           | ug/L | 1.00 | 5090   | 5000              | 102      | 95 - 105            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Calcium             | ug/L | 1.00 | 4780   | 5000              | 95.7     | 90 - 110            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Calcium             | ug/L | 1.00 | 4920   | 5000              | 98.4     | 90 - 110            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Calcium             | ug/L | 1.00 | 4860   | 5000              | 97.3     | 90 - 110            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Iron                | ug/L | 1.00 | 4880   | 5000              | 97.7     | 90 - 110            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Iron                | ug/L | 1.00 | 4970   | 50 <sup>0</sup> 0 | 99.4     | 90 - 110            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Iron                | ug/L | 1.00 | 4940   | 5000              | 98.9     | 90 - 110            |
| Sodium              | ug/L | 1.00 | 5040   | 5000              | 101      | 90 - 110            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Sodium              | ug/L | 1.00 | 4780   | 5000              | 95.6     | 90 - 110            |
| MRCVS - Primary     |      |      |        |                   |          |                     |
| Parameter           | Unit | DF   | Result | Expected          | Recovery | Acceptance Range    |
| Sodium              | ug/L | 1.00 | 4720   | 5000              | 94.5     | 90 - 110            |
| Magnesium           | ug/L | 1.00 | 5040   | 5000              | 101      | 90 - 110            |

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.



Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 17 of 17

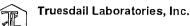
027

Project Number: 428648.IM.CS.EX.AC

Printed 7/2/2014

| Interference Check Sta | ndard AB |      |        |          |          |                  |
|------------------------|----------|------|--------|----------|----------|------------------|
| Parameter              | Unit     | DF   | Result | Expected | Recovery | Acceptance Range |
| Iron                   | ug/L     | 1.00 | 2070   | 2000     | 103      | 80 - 120         |
| Interference Check Sta | ndard AB |      |        |          |          |                  |
| Parameter              | Unit     | DF   | Result | Expected | Recovery | Acceptance Range |
| Iron                   | ug/L     | 1.00 | 2100   | 2000     | 105      | 80 - 120         |
| Interference Check Sta | ndard AB |      |        |          |          |                  |
| Parameter              | Unit     | DF   | Result | Expected | Recovery | Acceptance Range |
| Sodium                 | ug/L     | 1.00 | 2100   | 2000     | 105      | 80 - 120         |
| Interference Check Sta | ndard AB |      |        |          |          |                  |
| Parameter              | Unit     | DF   | Result | Expected | Recovery | Acceptance Range |
| Sodium                 | ug/L     | 1.00 | 1930   | 2000     | 96.6     | 80 - 120         |
| Magnesium              | ug/L     | 1.00 | 2120   | 2000     | 106      | 80 - 120         |
| Interference Check Sta | ndard AB |      |        |          |          |                  |
| Parameter              | Unit     | DF   | Result | Expected | Recovery | Acceptance Range |
| Magnesium              | ug/L     | 1.00 | 1940   | 2000     | 96.8     | 80 - 120         |

Respectfully submitted,


TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.







# Total Dissolved Solids by SM 2540 C

#### Calculations

Date Analyzed: 6/3/2014

| Laboratory<br>Number    | Sample<br>volume,<br>mL | Initial<br>weight, g    | 1st<br>Final<br>weight, g | 2nd<br>Final<br>weight, g | Weight<br>Difference,<br>g | Exceeds<br>0.5mg?<br>Yes/No | Residue<br>weight, g | Filterable<br>residue,<br>ppm | RL,<br>ppm   | Reported<br>Value,<br>ppm | DF |
|-------------------------|-------------------------|-------------------------|---------------------------|---------------------------|----------------------------|-----------------------------|----------------------|-------------------------------|--------------|---------------------------|----|
| Blank                   | 100                     | 75.4367                 | 75.4369                   | 75.4367                   | 0.0002                     | No                          | 0.0000               | 0.0                           | 25.0         | ND                        | 1  |
| 14E0196-01C             | 100                     | 69.2164                 | 69,2660                   | 69.2660                   | 0.0000                     | No                          | 0.0496               | 496.0                         | 25.0         | 496.0                     | 1  |
| 14E0196-02C             | 100                     | 74.5912                 | 74.6413                   | 74.6413                   | 0.0000                     | No                          | 0.0501               | 501.0                         | 25.0         | 501.0                     | 1  |
| 14E0196-03C             | 100                     | 73.5681                 | 73.6177                   | 73.6177                   | 0.0000                     | No                          | 0.0496               | 496.0                         | <b>2</b> 5.0 | 496.0                     | 1  |
| 14E0196-04C             | 100                     | 73.7557                 | 73.8056                   | 73.8056                   | 0.0000                     | No                          | 0.0499               | 499.0                         | 25.0         | 499.0                     | 1  |
| 14F0025-01A             | 20                      | 29.4752                 | 29.5274                   | 29.5274                   | 0.0000                     | No                          | 0.0522               | 2610.0                        | 125.0        | 2610.0                    | 1  |
| 14F0025-02A             | 10                      | 28.7500                 | 28.7975                   | 28.7975                   | 0.0000                     | No                          | 0.0475               | 4750.0                        | 250.0        | 4750.0                    | 1  |
| 14F0026-01B             | 10                      | <b>2</b> 8.743 <b>1</b> | 28.7867                   | 28.7867                   | 0.0000                     | No                          | 0.0436               | 4360.0                        | 250.0        | 4360.0                    | 1  |
| 14F0026-02J             | 10                      | 30.3640                 | 30.4065                   | 30.4065                   | 0.0000                     | No                          | 0.0425               | 4250.0                        | 250.0        | 4250.0                    | 1  |
| 14F0054-01A             | 50                      | 47.5150                 | 47.6001                   | 47.5999                   | 0.0002                     | No                          | 0.0849               | 1698.0                        | 50.0         | 1698.0                    | 1  |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
| 1 <b>4F0</b> 025-01 Dur | 20                      | 29.1648                 | 29.2170                   | 29.2170                   | 0.0000                     | No                          | 0,0522               | 2610.0                        | 125.0        | 2610,0                    | 1  |
| LCS                     | 100                     | 74.3733                 | 74.4250                   | 74.4250                   | 0.0000                     | No                          | 0.0517               | 517.0                         | 25.0         | 517.0                     | 1  |
|                         |                         | _                       |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         | -                       |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |
|                         |                         |                         |                           |                           |                            |                             |                      |                               |              |                           |    |

Calculation as follows:

Filterable residue (TDS), mg/L =

Where:

A = weight of dish + residue in grams. B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.
ND = not detected (below the reporting limit)

Laboratory Control Sample (LCS) Summary

|                |                       |                           | ,           | <i></i>             |                       |
|----------------|-----------------------|---------------------------|-------------|---------------------|-----------------------|
| QC Std<br>I.D. | Measurd<br>Value, ppm | Theoretical<br>Value, ppm | Percent Rec | Acceptance<br>Limit | QC Within<br>Control? |
| LCS            | 517.0                 | 500                       | 103.4%      | 90-110%             | Yes                   |
| LCSD           |                       |                           |             |                     |                       |

**Duplicate Determinations Difference Summary** 

| Lab<br>Number | Sample<br>Weight, g | Sample Dup<br>Welght, g | % RPD | Acceptance<br>Limit | QC Within<br>Control? |
|---------------|---------------------|-------------------------|-------|---------------------|-----------------------|
| 14F0025-01    | 0.0522              | 0.0522                  | 0.0%  | ≤5%                 | Yes                   |
|               |                     |                         |       |                     |                       |

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \ 10$$

P = Percent recovery.

LC= Measured LCS value (ppm).

LT = Theoretical LCS value (ppm).

**Duplicate Determination Difference** 

% Difference = 
$$\frac{|A \text{ or } B - C|}{C} \times 100$$

where 
$$C = \frac{A+B}{2}$$

A = Weght of the first sample in (g).

B = Weghl of the second sample in (g).

C = Average weight in (g).

Maksim G.

Reviewer Printed Name

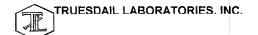
Jenny T.

Analyst Printed Name

WetChem 06TDS 14A

# Total Dissolved Solids by SM 2540 C

### TDS/EC CHECK


Batch: 9/6/5749

Date Analyzed: 6/3/2014

| Laboratory Number | EC   | TDS/EC Ratio:<br>0.55-0.90 | Calculated<br>TDS<br>(EC*0.65)                   | Measured<br>TDS / Calc<br>TDS <1.3 |
|-------------------|------|----------------------------|--------------------------------------------------|------------------------------------|
|                   |      |                            |                                                  |                                    |
| 14E0196-01C       | 905  | 0.55                       | 588.25                                           | 0.84                               |
| 14E0196-02C       | 909  | 0.55                       | 590,85                                           | 0.85                               |
| 14E0196-03C       | 904  | 0.55                       | 587.6                                            | 0.84                               |
| 14E0196-04C       | 903  | 0.55                       | 586.95                                           | 0.85                               |
| 14F0025-01A       | 4480 | 0.58                       | 2912                                             | 0.90                               |
| 14F0025-02A       | 8090 | 0.59                       | 5258.5                                           | 0.90                               |
| 14F0026-01B       | 7490 | 0.58                       | 4868.5                                           | 0.90                               |
| 14F0026-02J       | 7380 | 0,58                       | 4797                                             | 0.89                               |
| 14F0054-01A       | 2920 | 0.58                       | 1898                                             | 0.89                               |
|                   |      |                            |                                                  |                                    |
| 14F0025-01 Dup    | 4480 | 0.58                       | 2912                                             | 0.90                               |
| LCS               |      |                            | -                                                |                                    |
|                   |      |                            |                                                  |                                    |
|                   |      |                            | -                                                |                                    |
|                   |      |                            | -                                                | ·······                            |
|                   |      |                            |                                                  |                                    |
|                   |      |                            |                                                  |                                    |
|                   |      |                            |                                                  |                                    |
|                   |      |                            | -                                                |                                    |
|                   |      |                            | <del>                                     </del> |                                    |
|                   |      |                            |                                                  |                                    |
|                   |      |                            |                                                  |                                    |
|                   |      |                            |                                                  |                                    |
|                   |      |                            | <u> </u>                                         |                                    |







# Alkalinity by SM 2320B

Analytical Batch: 1406157

Matrix: WATER

Date of Analysis: 6/10/2014

| Lab ID         | Sample<br>pH | Sample<br>Volume<br>(ml) | N of<br>HCL | Titrant<br>Volume<br>to reach<br>pH 8.3 | <u> </u> | reach pH 4.5 | Total mL<br>titrant to<br>reach pH 0.3<br>unit lower | CaCO3 | RL,<br>ppm | Total<br>Alkalinity<br>Reported<br>Value | HCO3 Conc.<br>as CaCO <sub>3</sub><br>(ppm) | CO3 Alkalinity<br>as CaCO <sub>3</sub><br>(ppm) | OH Alkalinity<br>as CaCO <sub>3</sub><br>(ppm) | Low Alkalinity as CaCO <sub>3</sub> |
|----------------|--------------|--------------------------|-------------|-----------------------------------------|----------|--------------|------------------------------------------------------|-------|------------|------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------|
| BLANK          | 5.45         | 50                       | 0.02        | 0.00                                    | 0.0      | 0.00         |                                                      | 0.0   | 5          | ND                                       | ND                                          | ND                                              | ND                                             |                                     |
| 14F0025-01     | 7.91         | 50                       | 0,02        | 0.00                                    | 0.0      | 11,20        |                                                      | 224.0 | 5          | 224.0                                    | 224.0                                       | ND                                              | ND                                             |                                     |
| 14F0026-02     | 7.33         | 50                       | 0,02        | 0.00                                    | 0.0      | 8.50         |                                                      | 170.0 | 5          | 170.0                                    | 170.0                                       | ND                                              | ND                                             |                                     |
| 14F0065-01     | 7,89         | 50                       | 0.02        | 0.00                                    | 0.0      | 6,00         |                                                      | 120.0 | 5          | 120.0                                    | 120.0                                       | ND                                              | ND                                             |                                     |
| 14F0089-17     | 7.70         | 50                       | 0.02        | 0.00                                    | 0.0      | 5.45         |                                                      | 109.0 | 5          | 109.0                                    | 109.0                                       | ND                                              | ND                                             |                                     |
| 14F0089-21     | 7.87         | 50                       | 0.02        | 0.00                                    | 0.0      | 5.95         |                                                      | 119.0 | 5          | 119.0                                    | 119.0                                       | ND                                              | ND                                             |                                     |
| 14F0089-21 DUP | 7.92         | 50                       | 0.02        | 0.00                                    | 0.0      | 6.00         |                                                      | 120.0 | 5          | 120.0                                    | 120.0                                       | ND                                              | ND                                             |                                     |
| LCS            | 10.25        | 50                       | 0.02        | 2.00                                    | 40.0     | 5.00         |                                                      | 100.0 | 5          | 100.0                                    | 20.0                                        | 80                                              | ND                                             |                                     |
| LCSD           | 10.18        | 50                       | 0.02        | 2.00                                    | 40.0     | 5.10         |                                                      | 102.0 | 5          | 102.0                                    | 22.0                                        | 80                                              | ND                                             | -                                   |
| LCS-3          | 10.22        | 50                       | 0.02        | 2,00                                    | 40.0     | 5.05         |                                                      | 101.0 | 5          | 101.0                                    | 21.0                                        | 80                                              | ND                                             |                                     |
| LCS-4          | 10.25        | 50                       | 0.02        | 2.00                                    | 40.0     | 5.10         |                                                      | 102.0 | 5          | 102.0                                    | 22.0                                        | 80                                              | ND                                             |                                     |
| 14F0025-01 MS  | 9.05         | 50                       | 0.02        | 0,00                                    | 0.0      | 15.65        | 2.8                                                  | 313.0 | 5          | 313.0                                    | 313.0                                       | 0                                               | ND                                             |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            | _                                        |                                             |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              | <u> </u>                                             |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          | <u> </u>    |                                         |          |              | <u> </u>                                             |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |
|                |              |                          | <u> </u>    | <u> </u>                                |          |              | <u> </u>                                             |       |            |                                          | ļ                                           |                                                 |                                                |                                     |
|                |              |                          |             |                                         |          |              | <u> </u>                                             |       |            |                                          | ļ                                           | ļ                                               |                                                |                                     |
|                |              |                          |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |
|                | 1            | 1                        |             |                                         |          |              |                                                      |       |            |                                          |                                             |                                                 |                                                |                                     |

Calculations as follows:

Tor P=

 $\frac{A \times N \times 50000}{\text{mL sample}}$ 

Where:

T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used N = normality of standard acid Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000

mL sample

Where: B = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

Accept Limit

<5

| QC Std<br>I.D. | Measured<br>Value, ppm | Theoretical<br>Value, ppm | % Recovery | Accetance<br>Limit | QC Within<br>Control? |
|----------------|------------------------|---------------------------|------------|--------------------|-----------------------|
| LCS            | 100                    | 100                       | 100.0%     | 90-110             | Yes                   |
| LCSD           | 102                    | 100                       | 102.0%     | 90-110             | Yes                   |

QC Within

Control?

Yes

**Duplicate Determination Difference Summary** 

| Lab Number<br>I.D. |     |     | RPD  | Accetance Limit | QC Within Control? |
|--------------------|-----|-----|------|-----------------|--------------------|
| 14F0089-           | 119 | 120 | 0.8% | ≤20%            | Yes                |
|                    |     |     |      |                 |                    |

Sample Matrix Spike (MS/MSD) Summary

| Cample man  | y oblue (I           | HO/HIOD)   | Jummary           |            |                           |                          |                 |                    |                       |     |                     |                       |
|-------------|----------------------|------------|-------------------|------------|---------------------------|--------------------------|-----------------|--------------------|-----------------------|-----|---------------------|-----------------------|
| Lab Number  | Conc of<br>Unspk spl | Dil Factor | Added Spk<br>Conc | MS/MSD Amt | Measrd Conc<br>of Spk Spl | Theor Conc of Spk<br>Spl | MS/MSD %<br>Rec | MS Accept<br>Limit | QC Within<br>Control? | RPD | RPD Accept<br>Limit | QC Within<br>Control? |
| 14F0025-01  | 224                  | 1          | 100               | 100        | 313                       | 324.00                   | 89%             | 75-125             | Yes                   |     |                     |                       |
| 147 0023-01 |                      |            |                   | 0          |                           |                          |                 | 10-120             |                       |     | 201                 | ,                     |

ALEX/ JENNINE

**Blank Summary** 

Reporting

Limit, RL

5 ppm

Measured

Value, ppm

Analyst Printed Name

Maksim Gorbunov Ignature Reviewer Printed Name

Reviewer Signature



# Alkalinity by SM 2320B

**Analytical Batch:** 1407022 Matrix: WATER Date of Analysis: 7/1/2014

| Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample<br>pH                               | Sample<br>Volume<br>(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N of<br>HCL          | Titrant<br>Volume<br>to reach<br>pH 8.3 | P<br>Alkalinity as<br>CaCO3 | Titrant<br>Volume to<br>reach pH<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total mL<br>titrant to<br>reach pH<br>0.3 unit<br>lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total<br>Alkalinity as<br>CaCO3 | RL,<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Alkalinity Reported Value | HCO3 Conc.<br>as CaCO <sub>3</sub><br>(ppm) | CO3 Alkalinity<br>as CaCO <sub>3</sub><br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OH Alkalinity<br>as CaCO₃<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Low<br>Alkalinity<br>as CaCO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.94                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                 | 0.00                                    | 0.0                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                              | ND                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14F0402-20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.72                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                 | 0.00                                    | 0.0                         | 5.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107.0                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.0                           | 107.0                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14F0025-02A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.84                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                 | 0.00                                    | 0.0                         | 6.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 134.0                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134.0                           | 134.0                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14F0025-02A (Dup)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.83                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                 | 0.00                                    | 0.0                         | 6.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 134.0                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134.0                           | 134.0                                       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.01                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                 | 1.75                                    | 35.0                        | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.0                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.0                            | 25.0                                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LCS (Dup)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.94                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                 | 1.70                                    | 34.0                        | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.0                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95.0                            | 27.0                                        | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the control of the State of            | gova • • - zodan sala• J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rantara and Paul Miller of the Control of the Control of the Miller of the Control of the Contro |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | tace                                    |                             | - Water Market - Visite Market -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | and the same of th |                                 | T                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| And the second s | 1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | House - Bureau       | 1 Ch Ch Ch == +10Ch + +1 = +1           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                             | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o deposition and an arrangement of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | 11/1/2 11/1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | - Nov-problem - margen                  |                             | Soleto e a sella della d |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>†</b>                        | <u> </u>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Contracting the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of th |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                         | ····                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>+</b>                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                             | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                                         | <u> </u>                    | THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COLUMN TWO IN COL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~ <del>~~~</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                         | T                           | egi e-ratiyoyo e-rasa sa-ra-yoo roo gacaalaa ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commence Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <del> </del>                  |                                             | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | -107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                         |                             | - Wild West II - Line Intercorpe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                               | t                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | ~                                          | pagenca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | enera-maker ene      | # 1                                     | <u> </u>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100-100-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <del> </del>                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Processor of Sources | equiple to the length of the second     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | †                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Orași - Arra American de Viștini di Innii. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | <del> </del>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -37 \277                                   | to a large to enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1                  | \$100 011/Jen-                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CANADA MANAGEMENT TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STAT |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ages i per i transportation de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | <u> </u>                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | annes de la marça de la primeira de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constan | -                    |                                         |                             | - trivin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Josephanes (100, marchiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·   · · · · ·                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | - 9-9-1-1001 20-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                    |                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | †                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | - 04360-y-                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | <b>†</b>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Commit |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                          | : Market for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | <del> </del>                            |                             | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | †                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| estron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leon-barr            |                                         | <del> </del>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | <del> </del>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Calculations as follows:

Tor P=

 $A \times N \times 50000$ mL sample

Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000 mL sample

Blank Summary

| Diain Gai              | <u>.</u>               |              |                       |
|------------------------|------------------------|--------------|-----------------------|
| Reporting<br>Limit, RL | Measured<br>Value, ppm | Accept Limit | QC Within<br>Control? |
| 5 ppm                  | 0                      | <5           | Yes                   |

Where:

T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used

N = normality of standard acid

B = mL titrant to first recorded pH Where:

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate

ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

| =usolatol, o | one or ou  |             |            | ~         |           |  |
|--------------|------------|-------------|------------|-----------|-----------|--|
| QC Std       | Measured   | Theoretical | % Recovery | Accetance | QC Within |  |
| I.D.         | Value, ppm | Value, ppm  | / Recovery | Limit     | Control?  |  |
| LCS          | 109        | 100         | 109.0%     | 90-110    | Yes       |  |
| LCSD         | 109        | 100         | 109.0%     | 90-110    | Yes       |  |

**Duplicate Determination Difference Summary** 

| Lab Number<br>I.D. | Measured<br>Value, ppm | Dup Value,<br>ppm | RPD  | Accetance Limit | QC Within Control? |
|--------------------|------------------------|-------------------|------|-----------------|--------------------|
| 14F0025-           | 134                    | 134               | 0.0% | ≤20%            | Yes                |
|                    |                        |                   |      |                 |                    |

Sample Matrix Spike (MS/MSD) Summary

| Campio madi | y oblice (           | 110/111000 | Jannary           |            |                           |                          |                 |                    |                       |     |                     |                       |
|-------------|----------------------|------------|-------------------|------------|---------------------------|--------------------------|-----------------|--------------------|-----------------------|-----|---------------------|-----------------------|
| Lab Number  | Conc of<br>Unspk spl | Dil Factor | Added Spk<br>Conc | MS/MSD Amt | Measrd Conc<br>of Spk Spl | Theor Conc of Spk<br>Spl | MS/MSD %<br>Rec | MS Accept<br>Limit | QC Within<br>Control? | RPD | RPD Accept<br>Limit | QC Within<br>Control? |
|             |                      |            | : 11 A. I         | 0          |                           |                          |                 |                    | -                     |     |                     |                       |
|             |                      |            |                   | 0          |                           |                          |                 |                    |                       |     | į l                 |                       |

**JENNINE** Analyst Printed Name

Maksim Gorbunov Reviewer Printed Name

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

# **CHAIN OF CUSTODY RECORD**

814025/1450025

[IM3Plant-EW-219]

TURNAROUND TIME 10 Days
DATE 06/03/14 PAGE 1

PAGE 1 OF 1

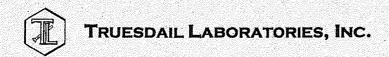
| COMPANY         | CH2M HILL /E2                          |            | :            |              |          |                     | $\overline{}$                          | $\overline{}$    | / 5                                    | <u>0</u>     | 7                                          | 7              | 7                  | $\overline{}$   | 7           | 7   | $\overline{}$ | 7            | 7              | $ \top $       | T                                       | $\mathcal{T}$                | COM   | MENTS                                   |                             |
|-----------------|----------------------------------------|------------|--------------|--------------|----------|---------------------|----------------------------------------|------------------|----------------------------------------|--------------|--------------------------------------------|----------------|--------------------|-----------------|-------------|-----|---------------|--------------|----------------|----------------|-----------------------------------------|------------------------------|-------|-----------------------------------------|-----------------------------|
| PROJECT NAME    | PG&E Topock I                          | M3Plant-EV | N ;          |              |          |                     | Gray (Gray                             | 3/               | 33/3/                                  |              |                                            |                | 8/                 |                 |             |     |               |              |                |                |                                         |                              | COM   | WLITI 3                                 |                             |
| PHONE           | 530-229-33                             | 103        | FAX 530      | 0-339-3303   |          | /                   | ) g                                    | Ι,               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | /<br>ም/      | / /                                        | \ <del>g</del> | / /                | / /             | / /         | / , | / /           | / ,          | / ,            | / /            | /. /                                    |                              |       |                                         |                             |
| ADDRESS         | 155 Grand Ave                          | Ste 1000   | :            |              |          |                     | 7<br>6<br>7                            |                  | ر<br>ازر                               | 08/<br>28/   |                                            | ž/             |                    |                 |             |     |               |              |                |                | E.E.S.                                  |                              |       |                                         |                             |
|                 | Oakland, CA 94                         | 1612       |              |              |          | /8                  | 3/_                                    | 0.7              |                                        | */           | /8                                         |                |                    |                 |             |     |               |              |                | 1 E            | /                                       |                              |       |                                         |                             |
| P.O. NUMBER     | 428648.IM.CS.                          | EX.AC      | $\nearrow$   |              |          | \ \frac{1}{2}       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 18/              | / <del>*</del> /                       | /<br>/       | $\langle a_{\mathcal{F}_{\theta}} \rangle$ | / ,            | / ,                | / /             | / /         | Ι,  | / ,           | / ,          | / ,            | Ş              |                                         |                              |       |                                         |                             |
| SAMPLERS (SIGNA | ATURE                                  | us &       | M            |              | 1/.      | Cr(V) (C) Min (200) | PH (1500-CrB)                          | (O)E             | Cr(V)/C, AH (SAT)                      | , / 6,6      | Jan. Mg. Na, Fe (200                       |                |                    |                 |             |     | /             |              |                | SER OF CONTAIN |                                         |                              |       |                                         |                             |
|                 | ······································ |            | <del>-</del> |              | 1088     | <u> </u>            |                                        |                  |                                        | ئ<br>روز / خ | 8 /                                        |                |                    |                 |             |     |               |              |                |                |                                         |                              |       |                                         |                             |
| SAMPLE I.D.     |                                        | DATE       | TIME         | DESCRIPTION  | 10       | / ঠ                 | / <del>E</del>                         | / ¤              | / F                                    | Sig          | /                                          | / .            | /                  | / ,             | /           | /   | /             | /            | <i>  \ge \</i> | /              |                                         |                              |       |                                         |                             |
| PE-01-219       |                                        | 06/03/14   | 09:00        | Ground water | х        |                     | Х                                      | Х                | х                                      | х            |                                            |                |                    |                 |             |     |               |              | 4              |                |                                         | pu                           | = 7 ( | 200                                     | 3.                          |
| TW-03D-2        | 19                                     | 06/03/14   | 09:00        | Ground water | Х        | Х                   | х                                      | х                |                                        | Х            |                                            |                |                    |                 |             |     |               |              | 4              | استنتع         |                                         | T                            |       | 200                                     |                             |
|                 |                                        |            | :            |              |          |                     |                                        |                  |                                        |              |                                            |                |                    |                 |             |     |               |              |                |                |                                         |                              |       |                                         |                             |
|                 |                                        |            | 1            |              |          |                     | 100                                    | gazgos produktio | usegrauspots trib                      |              | Rysons 18                                  | end end        | ents #             | ŝ               | Panasa P    |     |               |              |                |                |                                         |                              |       |                                         |                             |
|                 |                                        |            |              |              |          |                     |                                        |                  | J                                      |              | Secretaria I                               | Z              | SI<br>(Armedicated | Antoniosistas ( |             |     |               |              |                |                | DOM:                                    |                              |       |                                         |                             |
|                 |                                        |            |              |              | -        |                     |                                        |                  | le                                     | VE           |                                            |                | (                  | )(              | acquisates. |     |               |              |                |                |                                         |                              |       |                                         | <del>10**************</del> |
|                 |                                        |            | <b>†</b>     |              | <b>†</b> |                     |                                        |                  | COLUMN TO SERVICE                      |              |                                            |                |                    |                 |             |     |               |              |                |                |                                         | edital per meneral annual de |       |                                         |                             |
|                 |                                        | <u> </u>   |              | 1            |          | <b></b>             |                                        | <b></b>          | I                                      |              | L                                          | <u> </u>       | L                  | L               |             | L   | 4             | L.,,,,,,,,,, | 8              | то             | TAL N                                   | JMBER                        | OF CO | VTAINE                                  | २९                          |
|                 |                                        |            |              |              |          |                     |                                        |                  |                                        |              |                                            |                |                    |                 |             |     |               |              | L              | 8              | *************************************** |                              |       | *************************************** |                             |

| ///                            | HAIN OF CUSTODY SI          |                             | SAMPLE CONDITIONS                       |                                   |
|--------------------------------|-----------------------------|-----------------------------|-----------------------------------------|-----------------------------------|
| Signature (Relinquished) Mp h  | Printed CHAIS LEME          | Company/<br>Agency CH2nHu   | Date/ 6-3-14<br>Time /0:/0              | RECEIVED COOL 19 WARM 1 3. 9 6 °F |
| Signature (Received) Shark ugo | - Printed<br>Name THANH NEC | Company/<br>Agency TRUEDHIL | Date/ 6 - 3 - 14<br>Time / 0 10 /       | CUSTODY SEALED YES NO             |
| Signature<br>(Relinquished)    | Printed Name THANH NCO      | Company/<br>Agency RUZDAL   | Date/ G-3-14<br>Time G-3-14             | SPECIAL REQUIREMENTS:             |
| Signature (Received)           | Printed Alexander Wood      | Company/<br>Agency TLI      | Date/ <i>6·중·1식</i><br>Time <i>1400</i> |                                   |
| Signature<br>(Relinquished)    | Printed<br>Name             | Company/<br>Agency          | Date/<br>Time                           |                                   |
| Signature<br>(Received)        | Printed<br>Name             | Company/<br>Agency          | Date/<br>Time                           |                                   |

# Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

| Date      | Lab Number | Initial pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Buffer Added (mL) | Final pH  | Time Buffered | Initials                               |
|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|---------------|----------------------------------------|
| 61414     | 14F0025-1  | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2ml/100ml         | 9.5       | 7:45          | NE                                     |
|           | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           | 14F0026-1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
| $\bigvee$ | 1 -2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                 | -         | V             | V                                      |
| 6/11/14   | 14F0170    | 7:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2ml/100ml         | 9.5       | 7:30          | NE                                     |
| 6/18/14   | 14F0272    | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | <u>J/</u> |               | 4                                      |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           | 4          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |               | Mr. This is a second or a second or    |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               | ************************************** |
|           |            | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               | :                                      |
|           |            | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |               | ···                                    |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           | ,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                   |           |               |                                        |
| ·         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -         |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |
|           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |               |                                        |

Ne 7,2/14




Turbidity/nH Check

| 4.                                                     |           |                                                                       | Turb     | idity/pH C | Check                |                                  |                                         | , , , , , , , , , , , , , , , , , , , , |
|--------------------------------------------------------|-----------|-----------------------------------------------------------------------|----------|------------|----------------------|----------------------------------|-----------------------------------------|-----------------------------------------|
| Sample Number                                          | Turbidity | pН                                                                    | Date     | Analyst    | Need Digest<br>(Y/N) | Time of<br>Adjustment to<br>pH 2 | Date/Time of 2nd<br>pH check            | Comments                                |
| 813517                                                 | 21        | 7,2                                                                   | 5/22/14  | ES         | Yes                  | 1207)                            |                                         | PHCZ                                    |
| 819595(1-8)                                            | V         | 4-2                                                                   | J.       | N.         | Yes                  | 1                                |                                         | -7,8TU7                                 |
| 813908 (1-2,4)                                         | 41        | 72                                                                    | 9123/14  | ES         | No                   | 9:30                             | 5/26/14 W10: 4                          |                                         |
| Q13512(1-3)                                            |           | 1                                                                     | ì        | 1          | ì                    | 1                                | l l                                     | 1                                       |
| 913543 (10-12)                                         | 1         | $\bigvee$                                                             |          |            | V                    |                                  |                                         |                                         |
| 812553                                                 | 71        | L2                                                                    |          |            | 745                  |                                  | *************************************** |                                         |
| 813544 (1-2)                                           | 21        | 72                                                                    |          |            | Yes                  | 9:10                             |                                         |                                         |
| 317592 (1-2)                                           | 71        | L2                                                                    | 1        |            | HELS                 |                                  |                                         |                                         |
| 817.623                                                | 7/        | 12                                                                    | 5/29/14  | 25         | Yes                  |                                  |                                         |                                         |
| 3/3/74                                                 | 71        | 42                                                                    | - 1      | 1          | 7                    |                                  |                                         |                                         |
| 13677                                                  | 71        | 27_                                                                   |          |            |                      |                                  |                                         |                                         |
| 176754                                                 | 21        | 47                                                                    |          |            |                      |                                  | 111211111111111111111111111111111111111 |                                         |
| 13679                                                  |           | 27                                                                    |          |            |                      |                                  |                                         |                                         |
| 717670                                                 | 71        | <z< td=""><td></td><td></td><td></td><td></td><td></td><td></td></z<> |          |            |                      |                                  |                                         |                                         |
| 112020<br>201/107                                      | 71        | 17                                                                    | \  .     | ,          | 76                   |                                  |                                         |                                         |
| 9 <del>0</del> 47                                      | >1        | 75                                                                    | Y        | - 9        | <u> </u>             |                                  |                                         |                                         |
| \$1.2651<br>217777                                     |           | 5-27-67                                                               |          |            | ·                    |                                  |                                         |                                         |
| 51365C                                                 | 7/5/2     | 7 7                                                                   | 5/201/4  | 100        | Yes                  | 17:20                            |                                         | CHZM                                    |
| 213610                                                 | 57.7      | 14                                                                    | 3/24/14  | KI7        | _ <b>/</b>           |                                  |                                         |                                         |
|                                                        | <u> </u>  | 22                                                                    | 5/20/1   | 为          | Yes                  |                                  |                                         | CH7M CO                                 |
| 3135357 1,2)                                           |           |                                                                       | 5/30/14  | H.         | 16/-3                |                                  |                                         | Solid                                   |
| ×134-75 (1-3)                                          |           |                                                                       |          |            |                      | e 141.                           |                                         |                                         |
| 1576                                                   |           |                                                                       | ما المال | - V        |                      | 6144                             |                                         | <u> </u>                                |
| 11000                                                  | >1 UNI    | 27<br>400 71                                                          | 6/4/14   | 1057       | Yes                  |                                  |                                         | . 100 4                                 |
| 4F0016(i,2)                                            | 51        | -411 7L                                                               |          | -          |                      | 12:30                            |                                         | CHZM                                    |
| 420004(1,2                                             | 71        | 66                                                                    |          |            |                      |                                  |                                         |                                         |
| 410006                                                 | i         |                                                                       |          |            |                      |                                  |                                         |                                         |
| 4-F0007                                                |           |                                                                       |          |            |                      |                                  |                                         |                                         |
| 4F0052                                                 |           |                                                                       |          |            |                      |                                  |                                         |                                         |
| 4F0053                                                 |           |                                                                       |          |            | a company            |                                  |                                         |                                         |
| 334-01 10 W                                            | 4         |                                                                       |          |            | 200                  |                                  |                                         |                                         |
| F035-0                                                 |           |                                                                       |          |            |                      |                                  |                                         |                                         |
| HF0036                                                 |           |                                                                       |          |            | 7                    |                                  |                                         |                                         |
| 4FC099-                                                |           |                                                                       |          |            |                      |                                  |                                         |                                         |
| F0255                                                  | J         |                                                                       | ۲ ا      | 1          | 4                    |                                  |                                         |                                         |
| 74-07 wg 44<br>F0335-07<br>HF0036<br>4F0049-<br>HF0056 | V         | Br.                                                                   | V.       | V          |                      |                                  |                                         |                                         |
| 1F0061                                                 | 1         | 1                                                                     | V        | J.         | 16                   |                                  |                                         |                                         |
| 4 F0015 (1-2)                                          | 21        | 72                                                                    | 6/10/14  | ES         | Hes                  | 11:00                            |                                         | acciding                                |
| 4FU176-7-1                                             | 1         | J.                                                                    | <i>i</i> | d          | ijes<br>L            | il.                              |                                         | V                                       |
| 4 FV070 (1-2)                                          | 71        | 42                                                                    | 6/10/14  | <b>B</b>   | Yes                  |                                  |                                         |                                         |
| 4F1074-                                                |           | ,                                                                     | * 1.01.7 | ,          |                      |                                  |                                         |                                         |
| 4F1074-:                                               |           |                                                                       |          |            |                      |                                  |                                         |                                         |
| 470054                                                 | 41        |                                                                       |          |            |                      |                                  |                                         |                                         |
| 14 F W 9D                                              | 71        |                                                                       |          |            |                      |                                  |                                         |                                         |
|                                                        |           | - <del>\</del>                                                        | 1        | 1, +       |                      |                                  |                                         |                                         |
| 14 F 0091                                              | 41        |                                                                       | エー       |            |                      |                                  |                                         |                                         |

#### Notes:

- Samples should be analyzed after 24 hrs of pH adjustment to pH2 for Dissolved Analytes.
   All Total Recoverable Analytes must be pH adjusted and digested.
   Do not use disposable pipette to measure pH; pour a little amount of sample from the bottle.



# Sample Integrity & Analysis Discrepancy Form

| Clie       | ent: E2                                                                                       | Lab # <u>14 F 00</u> 2 |
|------------|-----------------------------------------------------------------------------------------------|------------------------|
| Date       | e Delivered: <u>06</u> 1 <u>03</u> 114 Time: <u> Y:№</u> By: □Mail &                          | Field Service          |
| 1.         | Was a Chain of Custody received and signed?                                                   | √dYes □No □N/A         |
| 2. ·       | Does Customer require an acknowledgement of the COC?                                          | □Yes ØNo □N/A          |
| 3.         | Are there any special requirements or notes on the COC?                                       | □Yes ⊠No □N/A          |
| 4.         | If a letter was sent with the CQC, does it match the COC?                                     | □Yes □No ÆN/A          |
| <b>5</b> . | Were all requested analyses understood and acceptable?                                        | Yes ONO ON/A           |
| <b>6</b> . | Were samples received in a chilled condition? Temperature (if yes)? $39c$                     | j⊒Yes □No □N/A         |
| 7.         | Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?                  | TYes ONO ONA           |
| 8.         | Were sample custody seals intact?                                                             | JOYES DINO DINIA       |
| 9.         | Does the number of samples received agree with COC?                                           | Payes and an/A         |
| 10.        | Did sample labels correspond with the client ID's?                                            | √ΔYes □No □N/A         |
| 11.        | Did sample labels indicate proper preservation?  Preserved (if yes) by: □Truesdail □Client    | . □Yes □No ÂN/A        |
| 12.        | Were samples pH checked? pH = <u>Jee</u> C, O, C,                                             | OXYES DNO DN/A         |
| 13.        | Were all analyses within holding time at time of receipt? If not, notify Project Manager.     | ⊄dYes □No □N/A         |
| 14.        | Have Project due dates been checked and accepted?<br>Turn Around Time (TAT): ப RUSH   'ற் Std | Yes ONO ON/A           |
| 15.        | Sample Matrix: □Liquid □Drinking Water □Ground □Sludge □Soil □Wipe □Paint □Solid              | . 111- 1/1D            |
| 16.        | Comments:                                                                                     |                        |
| 17.        | Sample Check-In completed by Truesdail Log-In/Receiving:                                      | Luda                   |

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

July 7, 2014

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-EW-219, GROUNDWATER MONITORING PROJECT, TLI NO.: 815007

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-EW-219 groundwater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, wet chemistry raw data, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on July 1, 2014, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Sample TW-03D-219-B was analyzed and recorded in the raw data as SDG 14G0036 but is reported as SDG 815007 in all final report pages.

No violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

fo- Mona Nassimi

Manager, Analytical Services

Michael Ngo

Quality Assurance/Quality Control Officer

**EXCELLENCE IN INDEPENDENT TESTING** 

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

**Client:** E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project Project No.: 428648.IM.CS.EX.AC

Laboratory No.: 815007

Date: July 7, 2014 Collected: July 1, 2014 Received: July 1, 2014

### **ANALYST LIST**

| METHOD   | PARAMETER        | ANALYST    |
|----------|------------------|------------|
| SM 2320B | Total Alkalinity | Jennine Ta |

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 428648.IM.CS.EX.AC P.O. No.: PGEIM11111001 Laboratory No.: 815007

Date Received: July 1, 2014

# **Analytical Results Summary**

| Lab Sample ID | Field ID     | Analysis<br>Method | Extraction<br>Method | Sample<br>Date | Sample<br>Time | Parameter                          | Result | Units | RL   |
|---------------|--------------|--------------------|----------------------|----------------|----------------|------------------------------------|--------|-------|------|
| 815007-001    | TW-03D-219-B | SM2320B            | NONE                 | 6/30/2014      | 18:00          | Alkalinity                         | 140    | mg/L  | 5.00 |
| 815007-001    | TW-03D-219-B | SM2320B            | NONE                 | 6/30/2014      | 18:00          | Alkalinity, Bicarbonate (As CaCO3) | 140    | mg/L  | 5.00 |
| 815007-001    | TW-03D-219-B | SM2320B            | NONE                 | 6/30/2014      | 18:00          | Alkalinity, Carbonate (As CaCO3)   | ND     | mg/L  | 5.00 |

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures.

Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

**EXCELLENCE IN INDEPENDENT TESTING** 



Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Page 1 of 2

Laboratory No. 815007

Printed 7/7/2014

### REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project
Project Number: 428648.IM.CS.EX.AC
P.O. Number: PGEIM11111001

Release Number:

Alkalinity as CaCO3

mg/L

1.00

Samples Received on 7/1/2014 6:50:00 PM

Field ID Collected Lab ID Matrix TW-03D-219-B 815007-001 06/30/2014 18:00 Water Batch 1407087 Alkalinity by SM 2320B DF Parameter Unit Analyzed MDL RL Result 815007-001 Alkalinity as CaCO3 mg/L 07/03/2014 1.00 5.00 1.68 140 Bicarbonate (Calculated) 07/03/2014 1.00 mg/L 1.68 5.00 140 Carbonate (Calculated) mg/L 07/03/2014 1.00 1.68 5.00 ND Method Blank Parameter Unit DF Result 1.00 ND Alkalinity as CaCO3 mg/L **Duplicate** Lab ID = 814000-001 Parameter Unit DF Result Expected **RPD** Acceptance Range 98.0 Alkalinity as CaCO3 mg/L 1.00 102 4.00 0 - 20Lab Control Sample Parameter Unit DF Expected Result Recovery Acceptance Range Alkalinity as CaCO3 mg/L 1.00 99.0 100 99.0 90 - 110 Lab Control Sample Duplicate DF Parameter Unit Result Expected Recovery Acceptance Range Alkalinity as CaCO3 95.0 100 95.0 90 - 110 mg/L 1.00 Lab ID = 814000-001 Matrix Spike DF Recovery Parameter Unit Result Expected/Added Acceptance Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

194

198(100)

96.0

007

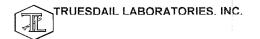
75 - 125



Report Continued

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

RE Topock Project Page 2 of 2


Project Number: 428648.IM.CS.EX.AC Printed 7/7/2014

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

€ Mona Nassimi

Manager, Analytical Services



# Alkalinity by SM 2320B

**Analytical Batch:** 1407087 Matrix: WATER Date of Analysis: 7/3/2014

| :            | Lab ID                                  | Sample<br>pH | Sample<br>Volume<br>(ml) | N of<br>HCL | Titrant<br>Volume<br>to reach<br>pH 8.3 | P<br>Alkalinity as<br>CaCO3 | Titrant<br>Volume to<br>reach pH 4.5 | Total mL<br>titrant to<br>reach pH 0.3<br>unit lower | Total<br>Alkalinity as<br>CaCO3 | RL,<br>ppm | Total<br>Alkalinity<br>Reported<br>Value | HCO3 Conc.<br>as CaCO <sub>3</sub><br>(ppm) | CO3 Alkalinity<br>as CaCO <sub>3</sub><br>(ppm) | OH Alkalinity<br>as CaCO,<br>(ppm) | Low Alkalinity as CaCO <sub>3</sub> |
|--------------|-----------------------------------------|--------------|--------------------------|-------------|-----------------------------------------|-----------------------------|--------------------------------------|------------------------------------------------------|---------------------------------|------------|------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------|
|              | BLANK                                   | 4.85         | 50                       | 0.02        | 0.00                                    | 0.0                         | 0.00                                 |                                                      | 0.0                             | 5          | ND                                       | ND                                          | ND                                              | ND                                 |                                     |
|              | 14G0036-01A (CH2M)                      | 7.39         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7.00                                 |                                                      | 140.0                           | 5          | 140.0                                    | 140.0                                       | ND                                              | ND                                 |                                     |
|              | 14G0038-01D                             | 7.60         | 50                       | 0.02        | 0.00                                    | 0.0                         | 11.85                                |                                                      | 237.0                           | 5          | 237.0                                    | 237.0                                       | ND                                              | ND                                 |                                     |
|              | 14G0038-02D                             | 7.43         | 50                       | 0.02        | 0.00                                    | 0.0                         | 6.80                                 |                                                      | 136.0                           | 5          | 136.0                                    | 136.0                                       | ND                                              | ND                                 |                                     |
| B14 000      | 14G0041-01A                             | 7.79         | 50                       | 0.02        | 0.00                                    | 0.0                         | 4.90                                 |                                                      | 98.0                            | 5          | 98.0                                     | 98.0                                        | ND                                              | ND                                 |                                     |
| •            | 14G0065-01A                             | 7.73         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7.70                                 |                                                      | 154.0                           | 5          | 154.0                                    | 154.0                                       | ND                                              | ND                                 |                                     |
|              | 14G0065-02A                             | 7.64         | 50                       | 0.02        | 0.00                                    | 0.0                         | 7.75                                 |                                                      | 155.0                           | 5          | 155.0                                    | 155.0                                       | ND                                              | ND                                 |                                     |
|              | 14G0065-03A                             | 7.61         | 50                       | 0.02        | 0.00                                    | 0.0                         | 9.65                                 |                                                      | 193.0                           | 5          | 193.0                                    | 193.0                                       | ND                                              | ND                                 |                                     |
|              | 14G0065-04A                             | 7.38         | 50                       | 0.02        | 0.00                                    | 0.0                         | 9.00                                 |                                                      | 180.0                           | 5          | 180.0                                    | 180.0                                       | ND                                              | ND                                 |                                     |
| 014000       | 14G0041-01A (DUP)                       | 7.84         | 50                       | 0.02        | 0.00                                    | 0.0                         | 5.10                                 |                                                      | 102.0                           | 5          | 102.0                                    | 102.0                                       | ND                                              | ND                                 |                                     |
| <i>y</i> , ( | LCS                                     | 9.96         | 50                       | 0.02        | 1.90                                    | 38.0                        | 4.95                                 |                                                      | 99.0                            | 5          | 99.0                                     | 23.0                                        | 76                                              | ND                                 |                                     |
|              | LCS(D)                                  | 9.99         | 50                       | 0.02        | 1.75                                    | 35.0                        | 4,75                                 |                                                      | 95.0                            | 5          | 95.0                                     | 25.0                                        | 70                                              | ND                                 |                                     |
| 914000/      | MS (14G0041-01A)                        | 9.31         | 50                       | 0.02        | 1.7                                     | 33.0                        | 9.70                                 |                                                      | 194.0                           | 5          | 194.0                                    | 128.0                                       | 66                                              | ND                                 |                                     |
| , , ,        | MDL Verification                        | 8.50         | 50                       | 0.02        | 0.0                                     | 0.0                         | 0.35                                 |                                                      | 7.0                             | 5          | 7.0                                      | 7.0                                         | 0                                               | ND                                 |                                     |
|              |                                         |              |                          |             |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|              |                                         |              |                          |             |                                         | 7                           |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|              |                                         |              |                          |             |                                         |                             |                                      |                                                      |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|              | *************************************** |              |                          |             |                                         |                             |                                      | 100                                                  |                                 |            |                                          |                                             |                                                 |                                    |                                     |
|              |                                         |              |                          |             |                                         |                             | 1000                                 |                                                      |                                 |            |                                          |                                             |                                                 |                                    |                                     |

Calculations as follows:

Tor P=

Where:

A x N x 50000 mL sample

Low Alkalinity: = as mg/L CaCO3

(2 x B - C) x N x 50000 mL sample

Blank Summary

| Diulik Cu              | iiiiiai y              |              |                       |
|------------------------|------------------------|--------------|-----------------------|
| Reporting<br>Limit, RL | Measured<br>Value, ppm | Accept Limit | QC Within<br>Control? |
| 5 ppm                  | 0                      | <5           | Vec                   |

T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used

N = normality of standard acid

Where: B = mL titrant to first recorded pH

C = Total mL titrant to reach pH 0.3 unit lower

N = Normality of standard acid

LCS = Laboratory Control Standard/Duplicate

MS/MSD = Matrix Spike/Duplicate
ND = Not Detected (below the reporting limit)

Laboratory Control Sample (LCS/LCSD) Summary

| QC Std<br>I.D. | Measured<br>Value, ppm | Theoretical<br>Value, ppm | % Recovery | Accetance<br>Limit | QC Within<br>Control? |
|----------------|------------------------|---------------------------|------------|--------------------|-----------------------|
| LCS            | 99                     | 100                       | 99.0%      | 90-110             | Yes                   |
| LCSD           | 95                     | 100                       | 95.0%      | 90-110             | Yes                   |

**Duplicate Determination Difference Summary** 

| Lab Number<br>I.D. | Measured<br>Value, ppm | Dup Value,<br>ppm | RPD  | Accetance Limit | QC Within Control? |
|--------------------|------------------------|-------------------|------|-----------------|--------------------|
| 14G0041-           | 98                     | 102               | 4.0% | ≤20%            | Yes                |
|                    |                        |                   |      |                 |                    |

Sample Matrix Spike (MS/MSD) Summary

| Lab Number   | Conc of<br>Unspk spl | Dil Factor | Added Spk<br>Conc | MS/MSD Amt | Measrd Conc<br>of Spk Spl | Theor Conc of Spk<br>Spl | MS/MSD %<br>Rec | MS Accept<br>Limit | QC Within<br>Control? | RPD | RPD Accept<br>Limit | QC Within<br>Control? |
|--------------|----------------------|------------|-------------------|------------|---------------------------|--------------------------|-----------------|--------------------|-----------------------|-----|---------------------|-----------------------|
| 14G0041-01A  | 98                   | 1          | 100               | 100        | 194                       | 198.00                   | 96%             | 75-125             | Yes                   |     |                     |                       |
| I TOUT I'VIA |                      |            |                   | 0          |                           |                          |                 | 73-123             |                       | _   | <b>.</b> .          |                       |

**JENNINE** 

Analyst Printed Name

Analyst Signature

Maksim Gorbunov Reviewer Printed Name

Réviewer-8ignature

X

915007/1460036

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

#### **CHAIN OF CUSTODY RECORD**

| 1 | rin/i | 30 | lan  | <b>+</b> = | la, | 219 | 1 |
|---|-------|----|------|------------|-----|-----|---|
| 1 | HAI   | J. | Iall | 1 - C      | AA- | 213 | 1 |

TURNAROUND TIME 10 Days
DATE 06/03/14 PAGE 1 OF 1

|                     |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |               |     |          |               |                  | ~        | 76-            | 30-14              |              |
|---------------------|----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|---------------|-----|----------|---------------|------------------|----------|----------------|--------------------|--------------|
| COMPANY             | CH2M HILL /E2                                                                                                  | 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              | $\overline{}$  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /5                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                      | 7                    | $\overline{}$ | 7   | 7        | $\overline{}$ | $\overline{}$    | 7        | /              |                    | COMMENTS     |
| PROJECT NAME        | PG&E Topock I                                                                                                  | IM3Plant-EV | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              | ere.           | 3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33/                                   | Ĭ/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                      | <i>B</i> /    |     |          |               |                  |          |                |                    | COMMENTS     |
| PHONE               | 530-229-33                                                                                                     | 303         | AX 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-339-3303_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | /                                            | ab filt        | / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /××/                                  | / <sub>66</sub> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | / ,                                    | de                   | / /           | / , | / ,      | / ,           | / ,              | / ,      | / ,            |                    |              |
| ADDRESS             | 155 Grand Ave                                                                                                  | Ste 1000    | NAME OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              | ,<br>(6)/      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ?<br>?<br>?                           | 87/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | <i>ii/</i>           |               |     |          |               |                  |          |                |                    |              |
|                     | Oakland, CA 94                                                                                                 | 4612        | garanteur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | /8                                           | ?/_            | 20,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/8                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /8                                     | )<br> <br>           |               |     |          |               |                  |          |                |                    |              |
| P.O. NUMBER         | 428648.IM.CS.                                                                                                  | .EX.AC      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,     | 1. P. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ر خ<br>(ج)     | / <u>\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde{\ilde}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}</u> | / <del>*</del> /                      | /_/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | / ,                  | / ,           | / , | / ,      | / ,           | / ,              | / ,      | / /            |                    |              |
| SAMPLERS (SIGNA     | ATURE                                                                                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | With the control of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o | / /   | CYVII COCK MAN (200)                         | PH (150, Cr.B) | #(0)E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cr(1) (2, 1), All (SM22, SO4, NO3/302 | 7,786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d,Mg,                                  | de Coursi Lab filler |               |     |          |               |                  |          |                | THER OF CONTAINERS |              |
| SAMPLE I.D.         |                                                                                                                | DATE        | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diss  |                                              | Ha             | Sal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                     | ) si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | _                    |               | _   | $\angle$ | _             | _                | $\angle$ | N <sub>C</sub> |                    |              |
| PE-01-219           |                                                                                                                | 06/03/14    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ground water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . X   |                                              | _X             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                      |               |     |          |               |                  |          | 4              | SM                 |              |
| <del>TW-03D-2</del> | 19                                                                                                             | 06/03/14    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ground water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×     | ×                                            | ×              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | -X-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                      |               |     |          |               |                  |          | 4              | 9                  |              |
| TWOSE               | J-219-B                                                                                                        | 6/30/14     | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ground water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3%    |                                              |                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |               |     |          |               |                  |          | l              | ALK TEST           |              |
| Charle.             | <del>WO</del>                                                                                                  | 2-14        | /. <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |               |     |          |               |                  |          |                |                    |              |
|                     | U                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,Table                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Λ                                      | Section 1            |               | T   |          |               | na de contrativo |          |                |                    |              |
|                     |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gyczeroszana dosa                     | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jean<br>Jean                           | 0.000/402            |               |     | 3        |               |                  |          |                |                    |              |
|                     |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Christophile                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0                                     | ve                   |               | Ш   | وا       | V             | perior that      |          |                |                    |              |
|                     | one en anno sea an de Paris de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos de |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H-100 |                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | in and an annual section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sect |                                        |                      |               |     |          |               |                  |          |                | TOTAL NUMBER O     | F CONTAINERS |
|                     |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |               |     |          |               |                  |          |                |                    |              |

| N, CH                               | IAIN OF CUSTODY SIGNATURE RECORD              | SAMPLE CONDITIONS                             |                              |
|-------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------|
| Signature (Relinquished)            | Printed Name Language 9-640 Agency E2 ,       | Date/ 6 - 30-14/43                            | RECEIVED COOL WARM 1 4.2°C & |
| Signature (Received) Limited 1490   | Printed Name 7 HANH NGO Agency TAUSSIAC       | Date/ 1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | CUSTODY SEALED YES NO        |
| Signature<br>(Relinquished) Man Man | Name THANH WOOAgency ONESDA                   | Date/                                         | SPECIAL REQUIREMENTS:        |
| Signature (Received)                | Printed Name Maksim Gordanov Gompany Transdai | Date/ 7/1/19<br>Time /8:50                    |                              |
| Signature (Relinquished)            | Printed Company/<br>Name Agency               | Date/<br>Time                                 |                              |
| Signature<br>(Received)             | Printed Company/<br>Name Agency               | Date/<br>Time                                 |                              |

Printed: 7/2/14 11:37:59AM

14G0036

Truesdail Laboratories, Inc

Client: E2 Consulting Engineers, Inc.

Project: Topock IM3Plant

Project Manager:

Sean Condon Topock IM3Plant

Project Number:

Report To:

E2 Consulting Engineers, Inc.

Christi Gitlin

1900 Powell Street, Suite 250

Emeryville, CA 94608 Phone: 510-428-4728 Fax: 510-652-5604

**Invoice To:** 

E2 Consulting Engineers, Inc.

Christi Gitlin

1900 Powell Street, Suite 250

Emeryville, CA 94608 Phone:510-428-4728 Fax: 510-652-5604

Date Due:

07/14/2014 16:30 (7 day TAT)

Received By: Logged In By:

Maksim Gorbunov

Luda Shabunina

Date Received:

07/01/2014 18:50

Date Logged In:

07/02/2014 11:35

Samples Received at:

Chain of Custody re Yes

Samples intact? Yes

Letter (if sent) matc No Requested analyses Yes

Custody seals (if an No Analyses within hol-Yes

Samples received in Yes

Analysis Due

4.2°C

**Expires** 

Comments

14G0036-01 TW-03D-219-B [Water] Sampled 06/30/2014 18:00 Pacific

Alkalinity

07/14/2014 12:00

07/14/2014 18:00

TAT



Reviewed By

April 30, 2014

Shawn P. Duffy
CA-ELAP No.:2676
CH2M HILL
NV Cert. No.:NV-00922

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N012390

RE: PG&E Topock, 423575.MP.02.GM.0

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on April 17, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

#### **ASSET Laboratories**

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.0 CASE NARRATIVE

**Date:** 30-Apr-14

Lab Order: N012390

#### SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 218.6:

Dilution was necessary for samples N012390-003, N012390-004 and N012390-031 due to matrix interference. Samples were analyzed at lower dilutions however matrix spikes were not recovered indicating possible matrix interference. Samples were reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 218.6R:

Dilution was necessary for samples N012390-011, N012390-028 and N012390-037 due to matrix interference. Samples were analyzed at lower dilutions however matrix spikes were not recovered indicating possible matrix interference. Samples were reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 300.0:

Dilution was necessary on samples N012390-011, N012390-019 and N012390-024 due to matrix.

Analytical Comments for EPA 6020\_Dissolved:

Because the results for total dissolved chromium (1.598 ug/L) and hexavalent chromium (0.2315 ug/L) for sample N012390-015 (MW-42-055-198) are discrepant, sample from both the total dissolved chromium and hexavalent chromium containers were redigested and analyzed for total dissolved chromium. The results from the redigested samples were 1.688 and 2.078 ug/L, respectively. Since

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Project: PG&E Topock, 423575.MP.02.GM.0 CASE NARRATIVE

Lab Order: N012390

these data confirmed the original result for total dissolved chromium, the original result is reported.

Because the results for total dissolved chromium (5.123 ug/L) and hexavalent chromium (0 ug/L) for sample N012390-032 (MW-125-198) are discrepant, sample from both the total dissolved chromium and hexavalent chromium containers were redigested and analyzed for total dissolved chromium. The results from the redigested samples were 5.381 and 5.294 ug/L, respectively. Since these data confirmed the original result for total dissolved chromium, the original result is reported.

Because the results for total dissolved chromium (5.484 ug/L) and hexavalent chromium (0 ug/L) for sample N012390-042 (MW-44-125-198) are discrepant, sample from both the total dissolved chromium and hexavalent chromium containers were redigested and analyzed for total dissolved chromium. The results from the redigested samples were 5.932 and 5.401 ug/L, respectively. Since these data confirmed the original result for total dissolved chromium, the original result is reported.

#### **ASSET Laboratories**

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.0 Work Order Sample Summary

Date: 30-Apr-14

Lab Order: N012390

**Contract No:** 2014-GMP-198-

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012390-001A  | MW-63-065-198    | Water  | 4/9/2014 2:12:00 PM    | 4/17/2014     | 4/30/2014     |
| N012390-001B  | MW-63-065-198    | Water  | 4/9/2014 2:12:00 PM    | 4/17/2014     | 4/30/2014     |
| N012390-001C  | MW-63-065-198    | Water  | 4/9/2014 2:12:00 PM    | 4/17/2014     | 4/30/2014     |
| N012390-002A  | MW-200-198       | Water  | 4/10/2014 6:18:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-003A  | MW-37D-198       | Water  | 4/10/2014 10:03:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-003B  | MW-37D-198       | Water  | 4/10/2014 10:03:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-003C  | MW-37D-198       | Water  | 4/10/2014 10:03:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-004A  | MW-41D-198       | Water  | 4/10/2014 7:57:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-004B  | MW-41D-198       | Water  | 4/10/2014 7:57:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-005A  | MW-121-198       | Water  | 4/14/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-005B  | MW-121-198       | Water  | 4/14/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-005C  | MW-121-198       | Water  | 4/14/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-005D  | MW-121-198       | Water  | 4/14/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-006A  | MW-201-198       | Water  | 4/14/2014 6:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-007A  | MW-27-020-198    | Water  | 4/14/2014 10:13:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-007B  | MW-27-020-198    | Water  | 4/14/2014 10:13:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-007C  | MW-27-020-198    | Water  | 4/14/2014 10:13:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-007D  | MW-27-020-198    | Water  | 4/14/2014 10:13:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-008A  | MW-27-020-198-EB | Water  | 4/14/2014 9:30:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-008B  | MW-27-020-198-EB | Water  | 4/14/2014 9:30:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-009A  | MW-27-060-198    | Water  | 4/14/2014 11:00:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-009B  | MW-27-060-198    | Water  | 4/14/2014 11:00:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-009C  | MW-27-060-198    | Water  | 4/14/2014 11:00:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-009D  | MW-27-060-198    | Water  | 4/14/2014 11:00:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-010A  | MW-27-060-198-EB | Water  | 4/14/2014 10:27:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-010B  | MW-27-060-198-EB | Water  | 4/14/2014 10:27:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-011A  | MW-27-085-198    | Water  | 4/14/2014 11:36:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-011B  | MW-27-085-198    | Water  | 4/14/2014 11:36:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-011C  | MW-27-085-198    | Water  | 4/14/2014 11:36:00 AM  | 4/17/2014     | 4/30/2014     |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab Order:** N012390 **Contract No:** 2014-GMP-198-

# **Work Order Sample Summary**

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012390-011D  | MW-27-085-198    | Water  | 4/14/2014 11:36:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-012A  | MW-27-085-198-EB | Water  | 4/14/2014 10:40:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-012B  | MW-27-085-198-EB | Water  | 4/14/2014 10:40:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-013A  | MW-30-030-198    | Water  | 4/14/2014 1:36:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-013B  | MW-30-030-198    | Water  | 4/14/2014 1:36:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-013C  | MW-30-030-198    | Water  | 4/14/2014 1:36:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-013D  | MW-30-030-198    | Water  | 4/14/2014 1:36:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-014A  | MW-30-030-198-EB | Water  | 4/14/2014 1:14:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-014B  | MW-30-030-198-EB | Water  | 4/14/2014 1:14:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-015A  | MW-42-055-198    | Water  | 4/14/2014 8:12:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-015B  | MW-42-055-198    | Water  | 4/14/2014 8:12:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-015C  | MW-42-055-198    | Water  | 4/14/2014 8:12:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-016A  | MW-42-055-198-EB | Water  | 4/14/2014 7:22:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-016B  | MW-42-055-198-EB | Water  | 4/14/2014 7:22:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-017A  | MW-42-065-198    | Water  | 4/14/2014 8:48:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-017B  | MW-42-065-198    | Water  | 4/14/2014 8:48:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-017C  | MW-42-065-198    | Water  | 4/14/2014 8:48:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-018A  | MW-42-065-198-EB | Water  | 4/14/2014 7:24:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-018B  | MW-42-065-198-EB | Water  | 4/14/2014 7:24:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-019A  | MW-122-198       | Water  | 4/15/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-019B  | MW-122-198       | Water  | 4/15/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-019C  | MW-122-198       | Water  | 4/15/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-019D  | MW-122-198       | Water  | 4/15/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-020A  | MW-202-198       | Water  | 4/15/2014 6:05:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-021A  | MW-203-198       | Water  | 4/15/2014 6:10:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-022A  | MW-28-025-198    | Water  | 4/15/2014 8:59:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-022B  | MW-28-025-198    | Water  | 4/15/2014 8:59:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-022C  | MW-28-025-198    | Water  | 4/15/2014 8:59:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-022D  | MW-28-025-198    | Water  | 4/15/2014 8:59:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-023A  | MW-28-025-198-EB | Water  | 4/15/2014 8:30:00 AM   | 4/17/2014     | 4/30/2014     |
|               |                  |        |                        |               |               |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab Order:** N012390 **Contract No:** 2014-GMP-198-

# **Work Order Sample Summary**

| Lab Sample ID Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|--------------------------------|--------|------------------------|---------------|---------------|
| N012390-023B MW-28-025-198-EB  | Water  | 4/15/2014 8:30:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-024A MW-28-090-198     | Water  | 4/15/2014 9:34:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-024B MW-28-090-198     | Water  | 4/15/2014 9:34:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-024C MW-28-090-198     | Water  | 4/15/2014 9:34:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-024D MW-28-090-198     | Water  | 4/15/2014 9:34:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-025A MW-28-090-198-EB  | Water  | 4/15/2014 8:47:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-025B MW-28-090-198-EB  | Water  | 4/15/2014 8:47:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-026A MW-43-025-198     | Water  | 4/15/2014 6:45:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-026B MW-43-025-198     | Water  | 4/15/2014 6:45:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-026C MW-43-025-198     | Water  | 4/15/2014 6:45:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-027A MW-43-025-198-EB  | Water  | 4/15/2014 6:20:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-027B MW-43-025-198-EB  | Water  | 4/15/2014 6:20:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-028A MW-43-090-198     | Water  | 4/15/2014 7:28:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-028B MW-43-090-198     | Water  | 4/15/2014 7:28:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-028C MW-43-090-198     | Water  | 4/15/2014 7:28:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-029A MW-43-090-198-EB  | Water  | 4/15/2014 6:58:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-029B MW-43-090-198-EB  | Water  | 4/15/2014 6:58:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-030A MW-46-175-198     | Water  | 4/15/2014 1:36:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-030B MW-46-175-198     | Water  | 4/15/2014 1:36:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-030C MW-46-175-198     | Water  | 4/15/2014 1:36:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-031A MW-46-205-198     | Water  | 4/15/2014 12:05:00 PM  | 4/17/2014     | 4/30/2014     |
| N012390-031B MW-46-205-198     | Water  | 4/15/2014 12:05:00 PM  | 4/17/2014     | 4/30/2014     |
| N012390-032A MW-125-198        | Water  | 4/16/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-032B MW-125-198        | Water  | 4/16/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-032C MW-125-198        | Water  | 4/16/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-032D MW-125-198        | Water  | 4/16/2014 7:00:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-033A MW-204-198        | Water  | 4/16/2014 6:10:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-034A MW-205-198        | Water  | 4/16/2014 6:12:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-035A MW-29-198         | Water  | 4/16/2014 2:20:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-035B MW-29-198         | Water  | 4/16/2014 2:20:00 PM   | 4/17/2014     | 4/30/2014     |
|                                |        |                        |               |               |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab Order:** N012390 **Contract No:** 2014-GMP-198-

# **Work Order Sample Summary**

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012390-035C  | MW-29-198        | Water  | 4/16/2014 2:20:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-035D  | MW-29-198        | Water  | 4/16/2014 2:20:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-036A  | MW-29-198-EB     | Water  | 4/16/2014 1:56:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-036B  | MW-29-198-EB     | Water  | 4/16/2014 1:56:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-037A  | MW-32-035-198    | Water  | 4/16/2014 1:38:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-037B  | MW-32-035-198    | Water  | 4/16/2014 1:38:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-037C  | MW-32-035-198    | Water  | 4/16/2014 1:38:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-038A  | MW-32-035-198-EB | Water  | 4/16/2014 1:00:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-038B  | MW-32-035-198-EB | Water  | 4/16/2014 1:00:00 PM   | 4/17/2014     | 4/30/2014     |
| N012390-039A  | MW-44-070-198    | Water  | 4/16/2014 8:18:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-039B  | MW-44-070-198    | Water  | 4/16/2014 8:18:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-039C  | MW-44-070-198    | Water  | 4/16/2014 8:18:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-040A  | MW-44-070-198-EB | Water  | 4/16/2014 7:33:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-040B  | MW-44-070-198-EB | Water  | 4/16/2014 7:33:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-041A  | MW-44-115-198    | Water  | 4/16/2014 7:38:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-041B  | MW-44-115-198    | Water  | 4/16/2014 7:38:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-041C  | MW-44-115-198    | Water  | 4/16/2014 7:38:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-042A  | MW-44-125-198    | Water  | 4/16/2014 11:59:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-042B  | MW-44-125-198    | Water  | 4/16/2014 11:59:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-042C  | MW-44-125-198    | Water  | 4/16/2014 11:59:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-042D  | MW-44-125-198    | Water  | 4/16/2014 11:59:00 AM  | 4/17/2014     | 4/30/2014     |
| N012390-043A  | MW-44-125-198-EB | Water  | 4/16/2014 8:25:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-043B  | MW-44-125-198-EB | Water  | 4/16/2014 8:25:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-044A  | MW-206-198       | Water  | 4/17/2014 6:20:00 AM   | 4/17/2014     | 4/30/2014     |
| N012390-045A  | MW-207-198       | Water  | 4/17/2014 6:10:00 AM   | 4/17/2014     | 4/30/2014     |

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-63-065-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-001

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 6600
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-003 Client Sample ID: MW-37D-198

Collection Date: 4/10/2014 10:03:00 AM

Print Date: 30-Apr-14

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

QC Batch: R93159 RunID: WETCHEM\_140418B PrepDate: Analyst: LCC Specific Conductance 15000 0.10 0.10 umhos/cm 4/18/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-005

Client Sample ID: MW-121-198

**Collection Date:** 4/14/2014 7:00:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 900
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-27-020-198

Lab Order: N012390 Collection Date: 4/14/2014 10:13:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-007

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 1000
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-27-060-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 11:00:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.0 **Matrix:** WATER

**Lab ID:** N012390-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 920
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeNO Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-27-085-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-011

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 11000
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-30-030-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 1:36:00 PM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-013

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 6800
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-019

Client Sample ID: MW-122-198

**Collection Date:** 4/15/2014 7:00:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 6600
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-28-025-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 8:59:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-022

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 910
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL Client Sample ID: MW-28-090-198

Lab Order: N012390 Collection Date: 4/15/2014 9:34:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

Lab ID: N012390-024

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

QC Batch: R93159 RunID: WETCHEM\_140418B PrepDate: Analyst: LCC Specific Conductance 6700 0.10 0.10 umhos/cm 4/18/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Client Sample ID: MW-46-175-198 Lab Order: N012390 Collection Date: 4/15/2014 1:36:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

Lab ID: N012390-030

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

QC Batch: R93159 RunID: WETCHEM\_140418B PrepDate: Analyst: LCC Specific Conductance 19000 0.10 0.10 umhos/cm 4/18/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-032

Client Sample ID: MW-125-198

Collection Date: 4/16/2014 7:00:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 9200
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-035

Client Sample ID: MW-29-198

Collection Date: 4/16/2014 2:20:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 2300
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-44-115-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 7:38:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-041

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 11000
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-44-125-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 11:59:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.0 **Matrix:** WATER

**Lab ID:** N012390-042

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140418B
 QC Batch:
 R93159
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 9200
 0.10
 0.10
 umhos/cm
 1
 4/18/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Date: 30-Apr-14

CLIENT: CH2M HILL

ANALYTICAL QC SUMMARY REPORT

Work Order: N012390 **Project:** PG&E Topock, 423575.MP.02.GM.0

TestCode: 120.1\_WPGE

| Sample ID: N012390-024D-DUP | SampType: <b>DUP</b>    | TestCode: 120.1_WPGE Units: umhos  | /cm Prep Date:                      | RunNo: <b>93159</b>   |
|-----------------------------|-------------------------|------------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ           | Batch ID: <b>R93159</b> | TestNo: <b>EPA 120.1</b>           | Analysis Date: 4/18/2014            | SeqNo: <b>1766159</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Specific Conductance        | 6690.000                | 0.10                               | 6670                                | 0.299 10              |
| Sample ID: N012390-042D-DUP | SampType: <b>DUP</b>    | TestCode: 120.1_WPGE Units: umhos. | /cm Prep Date:                      | RunNo: <b>93159</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93159        | TestNo: <b>EPA 120.1</b>           | Analysis Date: 4/18/2014            | SeqNo: <b>1766165</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Specific Conductance        | 9200.000                | 0.10                               | 9190                                | 0.109 10              |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

4/25/2014 01:01 PM

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-63-065-198

0.030

1.1

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-001

Chromium

| Analyses               | Result MDL              | PQL Qual Unit | s DF Date Analyzed     |
|------------------------|-------------------------|---------------|------------------------|
| HEXAVALENT CHROMIUM    | BY IC                   |               | ·                      |
|                        |                         | EPA 218.6     |                        |
| RunID: IC6_140421A     | QC Batch: <b>R93202</b> | PrepDate:     | Analyst: <b>RB</b>     |
| Hexavalent Chromium    | 1.4 0.016               | 0.20 μg/L     | 1 4/21/2014 12:43 PM   |
| DISSOLVED METALS BY IC | CP-MS                   |               |                        |
|                        | EPA 3010A               | EPA 6020      |                        |
| RunID: ICP7_140425B    | QC Batch: 45479         | PrepDate:     | 4/21/2014 Analyst: CEI |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

PG&E Topock, 423575.MP.02.GM.0

**Project:** Lab ID: N012390-002 Client Sample ID: MW-200-198

Collection Date: 4/10/2014 6:18:00 AM

Print Date: 30-Apr-14

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

RunID: IC6\_140421A QC Batch: R93202 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/21/2014 01:03 PM μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-37D-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-003

| Analyses                | Result MDL       | PQL | Qual Units | DF        | Date Analyzed      |
|-------------------------|------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |           |                    |
|                         |                  | EPA | A 218.6    |           |                    |
| RunID: IC6_140421A      | QC Batch: R93202 |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | 110 0.32         | 4.0 | μg/L       | 20        | 4/21/2014 03:12 PM |
| DISSOLVED METALS BY ICI | P-MS             |     |            |           |                    |
|                         | EPA 3010A        | EPA | A 6020     |           |                    |
| RunID: ICP7_140425B     | QC Batch: 45479  |     | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium                | 99 0.030         | 1.0 | μg/L       | 1         | 4/25/2014 01:28 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

**ASSET Laboratories** 

Print Date: 30-Apr-14 **CLIENT:** CH2M HILL Client Sample ID: MW-41D-198

Lab Order: N012390 Collection Date: 4/10/2014 7:57:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

Lab ID: N012390-004

| Analyses               | Result MDL              | PQL | Qual Units | DF        | Date Analyzed      |
|------------------------|-------------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |     |            |           |                    |
|                        |                         | EPA | 218.6      |           |                    |
| RunID: IC6_140421A     | QC Batch: <b>R93202</b> |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | 2.6 0.080               | 1.0 | μg/L       | 5         | 4/21/2014 02:52 PM |
| DISSOLVED METALS BY IC | P-MS                    |     |            |           |                    |
|                        | EPA 3010A               | EPA | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45479         |     | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | 2.4 0.030               | 1.0 | μg/L       | 1         | 4/25/2014 01:34 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 01:39 PM

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-121-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-005

Chromium

| Analyses               | Result MDL       | PQL Qual Uni | ts DF Date Analyzed    |
|------------------------|------------------|--------------|------------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |              |                        |
|                        |                  | EPA 218.6    |                        |
| RunID: IC7_140421A     | QC Batch: R93201 | PrepDate:    | Analyst: QBM           |
| Hexavalent Chromium    | ND 0.016         | 0.20 μg/L    | 1 4/21/2014 03:12 PM   |
| DISSOLVED METALS BY IC | P-MS             |              |                        |
|                        | EPA 3010A        | EPA 6020     |                        |
| RunID: ICP7_140425B    | QC Batch: 45479  | PrepDate:    | 4/21/2014 Analyst: CEI |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**Project:** 

**CLIENT:** CH2M HILL

Lab Order: N012390

PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-006 Client Sample ID: MW-201-198

Collection Date: 4/14/2014 6:00:00 AM

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

RunID: IC6\_140421A QC Batch: R93202 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/21/2014 03:32 PM μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 01:45 PM

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-27-020-198

Lab Order: N012390 Collection Date: 4/14/2014 10:13:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-007

Chromium

| Analyses               | Result MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |      |            |           |                    |
|                        |                  | EPA  | 218.6      |           |                    |
| RunID: IC7_140421A     | QC Batch: R93201 |      | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 4/21/2014 03:31 PM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EPA  | 6020       |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45479  |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 01:50 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

Chromium

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-27-020-198-EB

 Lab Order:
 N012390
 Collection Date: 4/14/2014 9:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-008

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140421A QC Batch: **R93202** PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/21/2014 03:52 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45479 PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 01:56 PM

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-27-060-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-009

Chromium

| Analyses               | Result MDL       | PQL Qual  | Units DF            | Date Analyzed      |
|------------------------|------------------|-----------|---------------------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |           |                     |                    |
|                        |                  | EPA 218.6 |                     |                    |
| RunID: IC7_140421A     | QC Batch: R93201 | PrepDat   | e:                  | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.016         | 0.20      | ıg/L 1              | 4/21/2014 04:47 PM |
| DISSOLVED METALS BY IC | P-MS             |           |                     |                    |
|                        | EPA 3010A        | EPA 6020  |                     |                    |
| RunID: ICP7_140425B    | QC Batch: 45479  | PrepDat   | e: <b>4/21/2014</b> | Analyst: CEI       |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

Lab Order:

**CLIENT:** CH2M HILL N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-010 Client Sample ID: MW-27-060-198-EB

Collection Date: 4/14/2014 10:27:00 AM

Print Date: 30-Apr-14

Matrix: WATER

| Analyses               | Result MDL       | PQL   | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|-------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |       |            |           |                    |
|                        |                  | EPA 2 | 18.6       |           |                    |
| RunID: IC6_140421A     | QC Batch: R93202 |       | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016         | 0.20  | μg/L       | 1         | 4/21/2014 04:32 PM |
| DISSOLVED METALS BY IC | P-MS             |       |            |           |                    |
|                        | EPA 3010A        | EPA 6 | 6020       |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45479  |       | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0   | μg/L       | 1         | 4/25/2014 02:01 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-27-085-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-011

| Analyses                | Result MDL       | PQL | Qual Units | DF        | Date Analyzed      |
|-------------------------|------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |           |                    |
|                         |                  | EP  | A 218.6    |           |                    |
| RunID: IC7_140421A      | QC Batch: R93201 |     | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium     | ND 0.080         | 1.0 | μg/L       | 5         | 4/21/2014 06:41 PM |
| DISSOLVED METALS BY ICI | P-MS             |     |            |           |                    |
|                         | EPA 3010A        | EP. | A 6020     |           |                    |
| RunID: ICP7_140425B     | QC Batch: 45479  |     | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0 | μg/L       | 1         | 4/25/2014 02:07 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 02:12 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

Chromium

CLIENT: CH2M HILL Client Sample ID: MW-27-085-198-EB

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-012

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140421A Analyst: RB QC Batch: **R93202** PrepDate: Hexavalent Chromium 0.016 0.20 4/21/2014 04:54 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45479 PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit
Results are wet unless otherwise specified

4/25/2014 02:18 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-30-030-198

Lab Order: N012390 Collection Date: 4/14/2014 1:36:00 PM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-013

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140421A QC Batch: R93201 PrepDate: Analyst: QBM Hexavalent Chromium 0.21 0.016 0.20 4/21/2014 10:30 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45479 PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

**ASSET Laboratories** 

CLIENT: CH2M HILL Lab Order: N012390

N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-014

Client Sample ID: MW-30-030-198-EB

Print Date: 30-Apr-14

**Collection Date:** 4/14/2014 1:14:00 PM

Matrix: WATER

| Analyses               | Result MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC            |      |            |           |                    |
|                        |                  | EPA  | 218.6      |           |                    |
| RunID: IC6_140421A     | QC Batch: R93202 |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 4/21/2014 05:15 PM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EPA  | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45479  |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0  | μg/L       | 1         | 4/25/2014 02:34 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 02:39 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-42-055-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 8:12:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

1.6

0.030

**Lab ID:** N012390-015

Chromium

Result MDL **PQL** DF Analyses Qual Units Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140422A QC Batch: R93219 PrepDate: Analyst: QBM Hexavalent Chromium 0.23 0.016 0.20 4/22/2014 02:22 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45479 PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-016 Client Sample ID: MW-42-055-198-EB Collection Date: 4/14/2014 7:22:00 AM

Matrix: WATER

| Analyses                | Result MDL       | PQL Qual Un | its DF    | Date Analyzed      |
|-------------------------|------------------|-------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |             |           |                    |
|                         |                  | EPA 218.6   |           |                    |
| RunID: IC6_140421A      | QC Batch: R93202 | PrepDate:   |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016         | 0.20 μg/L   | 1         | 4/21/2014 05:35 PM |
| DISSOLVED METALS BY ICI | P-MS             |             |           |                    |
|                         | EPA 3010A        | EPA 6020    |           |                    |
| RunID: ICP7_140425B     | QC Batch: 45479  | PrepDate:   | 4/21/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0 μg/L    | 1         | 4/25/2014 02:46 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-42-065-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 8:48:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-017

| Analyses               | Result MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |      |            |           |                    |
|                        |                  | EP#  | A 218.6    |           |                    |
| RunID: IC7_140421A     | QC Batch: R93201 |      | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 4/21/2014 07:02 PM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EPA  | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45479  |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0  | μg/L       | 1         | 4/25/2014 02:52 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390 **Project:** 

PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-018 Client Sample ID: MW-42-065-198-EB

Print Date: 30-Apr-14

Collection Date: 4/14/2014 7:24:00 AM

Matrix: WATER

| Analyses               | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC                   |      |            |           |                    |
|                        |                         | EP.  | A 218.6    |           |                    |
| RunID: IC6_140421A     | QC Batch: <b>R93202</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016                | 0.20 | μg/L       | 1         | 4/21/2014 05:55 PM |
| DISSOLVED METALS BY IC | P-MS                    |      |            |           |                    |
|                        | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45479         |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030                | 1.0  | μg/L       | 1         | 4/25/2014 02:57 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

PG&E Topock, 423575.MP.02.GM.0

**Project:** 

Lab ID: N012390-019 Client Sample ID: MW-122-198

Collection Date: 4/15/2014 7:00:00 AM

Matrix: WATER

| Analyses               | Result MDL       | PQL  | Qual Units | 5 DF      | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |      |            |           |                    |
|                        |                  | EP#  | A 218.6    |           |                    |
| RunID: IC7_140421A     | QC Batch: R93201 |      | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 4/21/2014 05:44 PM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EPA  | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45479  |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0  | μg/L       | 1         | 4/25/2014 03:03 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-020

Client Sample ID: MW-202-198

**Collection Date:** 4/15/2014 6:05:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140421A
 QC Batch:
 R93202
 PrepDate:
 Analyst: RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 4/21/2014 06:35 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-021 Client Sample ID: MW-203-198

Collection Date: 4/15/2014 6:10:00 AM

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

QC Batch: R93202 RunID: IC6\_140421A PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/21/2014 06:55 PM μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

4/25/2014 03:09 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-28-025-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 8:59:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-022

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140421A QC Batch: R93201 PrepDate: Analyst: QBM Hexavalent Chromium 0.016 0.20 4/21/2014 06:02 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45479 PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 03:14 PM

**ASSET Laboratories** 

Lab Order:

Chromium

CLIENT: CH2M HILL

N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-023

Client Sample ID: MW-28-025-198-EB

Print Date: 30-Apr-14

1

**Collection Date:** 4/15/2014 8:30:00 AM

Matrix: WATER

μg/L

Result MDL **PQL** DF Analyses Qual Units Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140421A QC Batch: **R93202** PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/21/2014 07:15 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45479 PrepDate: 4/21/2014 Analyst: CEI

1.0

ND

0.030

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 03:42 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-28-090-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 9:34:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-024

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140421A QC Batch: R93201 PrepDate: Analyst: QBM Hexavalent Chromium 0.016 0.20 4/21/2014 07:11 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45480 PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-025 Print Date: 30-Apr-14

Client Sample ID: MW-28-090-198-EB Collection Date: 4/15/2014 8:47:00 AM

Matrix: WATER

| Analyses               | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |      |            |           |                    |
|                        |                         | EP/  | A 218.6    |           |                    |
| RunID: IC6_140421A     | QC Batch: <b>R93202</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016                | 0.20 | μg/L       | 1         | 4/21/2014 07:35 PM |
| DISSOLVED METALS BY IC | P-MS                    |      |            |           |                    |
|                        | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480         |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030                | 1.0  | μg/L       | 1         | 4/25/2014 03:47 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-43-025-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 6:45:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-026

| Analyses               | Result MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |      |            |           |                    |
|                        |                  | EPA  | A 218.6    |           |                    |
| RunID: IC7_140421A     | QC Batch: R93201 |      | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 4/21/2014 07:30 PM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EP   | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480  |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0  | μg/L       | 1         | 4/25/2014 03:53 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-027 Client Sample ID: MW-43-025-198-EB Collection Date: 4/15/2014 6:20:00 AM

Matrix: WATER

| Analyses                | Result MDL       | PQL Qual Un | its DF    | Date Analyzed      |
|-------------------------|------------------|-------------|-----------|--------------------|
| HEXAVALENT CHROMIUM B   | SY IC            |             |           |                    |
|                         |                  | EPA 218.6   |           |                    |
| RunID: IC6_140421A      | QC Batch: R93202 | PrepDate:   |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016         | 0.20 μg/L   | 1         | 4/21/2014 07:54 PM |
| DISSOLVED METALS BY ICF | P-MS             |             |           |                    |
|                         | EPA 3010A        | EPA 6020    |           |                    |
| RunID: ICP7_140425B     | QC Batch: 45480  | PrepDate:   | 4/21/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0 μg/L    | 1         | 4/25/2014 03:58 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

- Value above quantitation range
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-43-090-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 7:28:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-028

| Analyses               | Result MDL       | PQL | Oual Units | DF        | Date Analyzed      |
|------------------------|------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  |                  | - 4 | Quui omi   | . 21      | 2 400 1211413 204  |
| TIEXAVALENT OTROMION I | 51 IO            | EPA | A 218.6    |           |                    |
| RunID: IC7_140422A     | QC Batch: R93219 |     | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.080         | 1.0 | μg/L       | 5         | 4/22/2014 10:17 AM |
| DISSOLVED METALS BY IC | P-MS             |     |            |           |                    |
|                        | EPA 3010A        | EP  | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480  |     | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0 | μg/L       | 1         | 4/25/2014 04:04 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

Lab ID: N012390-029

Client Sample ID: MW-43-090-198-EB Collection Date: 4/15/2014 6:58:00 AM

Matrix: WATER

| Analyses               | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |      |            |           |                    |
|                        |                         | EP/  | A 218.6    |           |                    |
| RunID: IC6_140421A     | QC Batch: <b>R93202</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016                | 0.20 | μg/L       | 1         | 4/21/2014 08:34 PM |
| DISSOLVED METALS BY IC | P-MS                    |      |            |           |                    |
|                        | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480         |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030                | 1.0  | μg/L       | 1         | 4/25/2014 07:23 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 04:15 PM

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-46-175-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 1:36:00 PM

0.030

19

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-030

Chromium

| Analyses               | Result MI        | OL PQL  | Qual Units  | DF        | Date Analyzed      |
|------------------------|------------------|---------|-------------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC            |         |             |           |                    |
|                        |                  | E       | PA 218.6    |           |                    |
| RunID: IC6_140421A     | QC Batch: R93202 |         | PrepDate:   |           | Analyst: RB        |
| Hexavalent Chromium    | 21 0.0           | 080 1.0 | μg/L        | 5         | 4/21/2014 08:54 PM |
| DISSOLVED METALS BY IC | P-MS             |         |             |           |                    |
|                        | EPA 3010A        | E       | PA 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480  |         | PrepDate: 4 | 1/21/2014 | Analyst: CEI       |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-46-205-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 12:05:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.0 **Matrix:** WATER

**Lab ID:** N012390-031

| Analyses                | Result MDL       | PQL | Qual Units | DF        | Date Analyzed      |
|-------------------------|------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |           |                    |
|                         |                  | EPA | 218.6      |           |                    |
| RunID: IC6_140422A      | QC Batch: R93215 |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | 5.5 0.080        | 1.0 | μg/L       | 5         | 4/22/2014 10:22 AM |
| DISSOLVED METALS BY ICI | P-MS             |     |            |           |                    |
|                         | EPA 3010A        | EP# | A 6020     |           |                    |
| RunID: ICP7_140425B     | QC Batch: 45480  |     | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium                | 4.8 0.030        | 1.0 | μg/L       | 1         | 4/25/2014 04:20 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 04:24 PM

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

Chromium

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-032

Client Sample ID: MW-125-198

μg/L

**Collection Date:** 4/16/2014 7:00:00 AM

Matrix: WATER

| Analyses                | Result MDL       | PQL Qual Unit | s DF Date Analyzed     |
|-------------------------|------------------|---------------|------------------------|
| HEXAVALENT CHROMIUM B   | Y IC             |               |                        |
|                         |                  | EPA 218.6     |                        |
| RunID: IC7_140421A      | QC Batch: R93201 | PrepDate:     | Analyst: QBM           |
| Hexavalent Chromium     | ND 0.016         | 0.20 μg/L     | 1 4/21/2014 08:36 PM   |
| DISSOLVED METALS BY ICP | P-MS             |               |                        |
|                         | EPA 3010A        | EPA 6020      |                        |
| RunID: ICP7_140425B     | QC Batch: 45480  | PrepDate:     | 4/21/2014 Analyst: CEI |

1.0

0.030

5.1

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-033

Client Sample ID: MW-204-198

Collection Date: 4/16/2014 6:10:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140421A
 QC Batch:
 R93202
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 4/21/2014 09:34 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

PG&E Topock, 423575.MP.02.GM.0

 Project:
 PG&E Topock,

 Lab ID:
 N012390-034

Client Sample ID: MW-205-198

**Collection Date:** 4/16/2014 6:12:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140422A
 QC Batch:
 R93215
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 4/22/2014 10:42 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-035

Client Sample ID: MW-29-198

Collection Date: 4/16/2014 2:20:00 PM

Matrix: WATER

| Analyses               | Result MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC            |      |            |           |                    |
|                        |                  | EPA  | 218.6      |           |                    |
| RunID: IC7_140421A     | QC Batch: R93201 |      | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 4/21/2014 08:55 PM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EPA  | 6020       |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480  |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0  | μg/L       | 1         | 4/25/2014 04:32 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 04:48 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

Chromium

CLIENT: CH2M HILL Client Sample ID: MW-29-198-EB

**Lab Order:** N012390 **Collection Date:** 4/16/2014 1:56:00 PM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-036

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140422A QC Batch: R93215 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/22/2014 11:02 AM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45480 PrepDate: RunID: ICP7\_140425B 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-32-035-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-037

| Analyses                | Result MDL       | PQL | Qual Units | s DF      | Date Analyzed      |
|-------------------------|------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |           |                    |
|                         |                  | EPA | A 218.6    |           |                    |
| RunID: IC7_140422A      | QC Batch: R93219 |     | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium     | ND 0.080         | 1.0 | μg/L       | 5         | 4/22/2014 10:37 AM |
| DISSOLVED METALS BY ICI | P-MS             |     |            |           |                    |
|                         | EPA 3010A        | EP  | A 6020     |           |                    |
| RunID: ICP7_140425B     | QC Batch: 45480  |     | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0 | μg/L       | 1         | 4/25/2014 04:54 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-038

Client Sample ID: MW-32-035-198-EB

Matrix: WATER

**Collection Date:** 4/16/2014 1:00:00 PM

Print Date: 30-Apr-14

| Analyses               | Result MDL       | PQL  | Qual Units | s DF      | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC            |      |            |           |                    |
|                        |                  | EPA  | A 218.6    |           |                    |
| RunID: IC6_140422A     | QC Batch: R93215 |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 4/22/2014 11:22 AM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EP   | A 6020     |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480  |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0  | μg/L       | 1         | 4/25/2014 07:51 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 05:05 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-44-070-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-039

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140421A QC Batch: R93201 PrepDate: Analyst: QBM Hexavalent Chromium 0.016 0.20 4/21/2014 09:33 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140425B QC Batch: 45480 PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

4/25/2014 05:11 PM

Print Date: 30-Apr-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-44-070-198-EB

**Lab Order:** N012390 **Collection Date:** 4/16/2014 7:33:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

ND

0.030

**Lab ID:** N012390-040

Chromium

Result MDL **PQL** DF Analyses Qual Units Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140422A QC Batch: R93215 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/22/2014 12:22 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45480 RunID: ICP7\_140425B PrepDate: 4/21/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-44-115-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 7:38:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-041

| Analyses               | Result MI        | DL PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|---------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |         |            |           |                    |
|                        |                  | EP      | A 218.6    |           |                    |
| RunID: IC6_140422A     | QC Batch: R93215 |         | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | 40 0.            | 080 1.0 | μg/L       | 5         | 4/22/2014 12:42 PM |
| DISSOLVED METALS BY IC | P-MS             |         |            |           |                    |
|                        | EPA 3010A        | EF      | PA 6020    |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480  |         | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Chromium               | 37 0.            | 030 1.0 | μg/L       | 1         | 4/25/2014 05:16 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

4/25/2014 05:21 PM

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-44-125-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 11:59:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

5.5

0.030

**Lab ID:** N012390-042

Chromium

| Analyses               | Result MDL       | PQL Qual Uni | ts DF Date Analyzed    |
|------------------------|------------------|--------------|------------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |              |                        |
|                        |                  | EPA 218.6    |                        |
| RunID: IC7_140421A     | QC Batch: R93201 | PrepDate:    | Analyst: QBM           |
| Hexavalent Chromium    | ND 0.016         | 0.20 μg/L    | 1 4/21/2014 09:52 PM   |
| DISSOLVED METALS BY IC | P-MS             |              |                        |
|                        | EPA 3010A        | EPA 6020     |                        |
| RunID: ICP7_140425B    | QC Batch: 45480  | PrepDate:    | 4/21/2014 Analyst: CEI |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

Lab Order:

**CLIENT:** CH2M HILL

PG&E Topock, 423575.MP.02.GM.0

**Project:** 

N012390

Lab ID: N012390-043 Client Sample ID: MW-44-125-198-EB

Collection Date: 4/16/2014 8:25:00 AM

Matrix: WATER

| Analyses               | Result MDL              | PQL Qual Units | DF        | Date Analyzed      |
|------------------------|-------------------------|----------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |                |           |                    |
|                        |                         | EPA 218.6      |           |                    |
| RunID: IC6_140422A     | QC Batch: <b>R93215</b> | PrepDate:      |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016                | 0.20 μg/L      | 1         | 4/22/2014 01:02 PM |
| DISSOLVED METALS BY IC | P-MS                    |                |           |                    |
|                        | EPA 3010A               | EPA 6020       |           |                    |
| RunID: ICP7_140425B    | QC Batch: 45480         | PrepDate:      | 4/21/2014 | Analyst: CEI       |
| Chromium               | ND 0.030                | 1.0 μg/L       | 1         | 4/25/2014 05:27 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-206-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-044

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140422A
 QC Batch:
 R93215
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 4/22/2014 01:22 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-045

Client Sample ID: MW-207-198

**Collection Date:** 4/17/2014 6:10:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140422A
 QC Batch:
 R93215
 PrepDate:
 Analyst: RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 4/22/2014 02:02 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Date: 30-Apr-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012390

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0 TestCode: 218.6\_WPGE

| Sample ID: MB-R93202 Client ID: PBW           | SampType: MBLK Batch ID: R93202 | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6    | Prep Date: Analysis Date: 4/21/2014 | RunNo: 93202                                 |
|-----------------------------------------------|---------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------------------------|
| Analyte                                       | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | SeqNo: <b>1769726</b> %RPD RPDLimit Qual     |
| Hexavalent Chromium                           | 0.033                           | 0.20                                                  |                                     |                                              |
| Sample ID: LCS-R93202<br>Client ID: LCSW      | SampType: LCS Batch ID: R93202  | TestCode: 218.6_WPGE Units: μg/L<br>TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/21/2014 | RunNo: <b>93202</b><br>SeqNo: <b>1769727</b> |
| Analyte                                       | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                           | 5.023                           | 0.20 5.000 0                                          | 100 90 110                          |                                              |
| Sample ID: N012390-001A-MS Client ID: ZZZZZZ  | SampType: MS Batch ID: R93202   | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6    | Prep Date: Analysis Date: 4/21/2014 | RunNo: <b>93202</b><br>SeqNo: <b>1769729</b> |
| Analyte                                       | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                           | 2.345                           | 0.20 1.000 1.353                                      | 99.1 90 110                         |                                              |
| Sample ID: N012390-002A-MS Client ID: ZZZZZZ  | SampType: MS Batch ID: R93202   | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6    | Prep Date: Analysis Date: 4/21/2014 | RunNo: <b>93202</b><br>SeqNo: <b>1769731</b> |
| Analyte                                       | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                           | 1.032                           | 0.20 1.000 0.06220                                    | 97.0 90 110                         |                                              |
| Sample ID: N012390-001A-DUP Client ID: ZZZZZZ | SampType: DUP  Batch ID: R93202 | TestCode: 218.6_WPGE Units: μg/L<br>TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/21/2014 | RunNo: <b>93202</b><br>SeqNo: <b>1769734</b> |
| Analyte                                       | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                           | 1.340                           | 0.20                                                  | 1.353                               | 0.980 20                                     |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order:

N012390

Project: PG&E Topock, 423575.MP.02.GM.0

## ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6\_WPGE

| Sample ID: N012390-001A-MSD | SampType: MSD           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
|-----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ           | Batch ID: <b>R93202</b> | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: <b>1769735</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 2.392                   | 0.20 1.000 1.353                 | 104 90 110 2.345                    | 2.00 20               |
| Sample ID: N012390-004A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769737        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 7.386                   | 1.0 5.000 2.561                  | 96.5 90 110                         |                       |
| Sample ID: N012390-003A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93202</b> | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: 1769739        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 210.046                 | 4.0 100.0 112.3                  | 97.7 90 110                         |                       |
| Sample ID: N012390-006A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93202</b> | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: 1769741        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.073                   | 0.20 1.000 0.07850               | 99.4 90 110                         |                       |
| Sample ID: N012390-008A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93202</b> | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: <b>1769745</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.054                   | 0.20 1.000 0.1098                | 94.4 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

| TestCode: | 218 6 | WPGE |
|-----------|-------|------|
| resicoue. | 410.0 | WIGE |

| Sample ID: N012390-010A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: R93202        | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: <b>1769747</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.077                   | 0.20 1.000 0.08870               | 98.8 90 110                         |                       |
| Sample ID: N012390-012A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769749</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.063                   | 0.20 1.000 0.07350               | 99.0 90 110                         |                       |
| Sample ID: N012390-014A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93202        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769751        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.089                   | 0.20 1.000 0.08330               | 101 90 110                          |                       |
| Sample ID: N012390-016A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769753</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.079                   | 0.20 1.000 0.07020               | 101 90 110                          |                       |
| Sample ID: N012390-018A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769757</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.012                   | 0.20 1.000 0                     | 101 90 110                          |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order:

N012390

Project: PG&E Topock, 423575.MP.02.GM.0

## ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6\_WPGE

| Sample ID: N012390-020A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769759</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.097                   | 0.20 1.000 0.08040               | 102 90 110                          |                       |
| Sample ID: N012390-021A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769761        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.117                   | 0.20 1.000 0.07030               | 105 90 110                          |                       |
| Sample ID: N012390-023A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769763        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.131                   | 0.20 1.000 0.09270               | 104 90 110                          |                       |
| Sample ID: N012390-025A-MS | SampType: <b>MS</b>     | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93202        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769765</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.152                   | 0.20 1.000 0.09200               | 106 90 110                          |                       |
| Sample ID: N012390-027A-MS | SampType: <b>MS</b>     | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769769</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.134                   | 0.20 1.000 0.08270               | 105 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012390

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0 TestCode: 218.6\_WPGE

| Sample ID: N012390-029A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93202          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769771        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.136                   | 0.20 1.000 0.07440               | 106 90 110                          |                       |
| Sample ID: N012390-030A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769773        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 45.300                  | 1.0 25.00 20.61                  | 98.8 90 110                         |                       |
| Sample ID: N012390-033A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93202</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93202</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769775</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.132                   | 0.20 1.000 0.09140               | 104 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

TestCode: 218.6\_WPGE

| Sample ID: MB-R93215       | SampType: MBLK          | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770150</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93215      | SampType: <b>LCS</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: LCSW            | Batch ID: <b>R93215</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770151</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4.930                   | 0.20 5.000 0                     | 98.6 90 110                         |                       |
| Sample ID: N012390-031A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770153</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 30.158                  | 1.0 25.00 5.492                  | 98.7 90 110                         |                       |
| Sample ID: N012390-034A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770155</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.063                   | 0.20 1.000 0.08330               | 98.0 90 110                         |                       |
| Sample ID: N012390-036A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770157</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.074                   | 0.20 1.000 0.09060               | 98.3 90 110                         |                       |
|                            |                         |                                  |                                     |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order: N012390

ANALYTICAL OC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0

| •         |            |
|-----------|------------|
| TestCode: | 218.6_WPGE |

| Sample ID: N012390-038A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
|-----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ           | Batch ID: <b>R93215</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770159</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.061                   | 0.20 1.000 0.07820               | 98.2 90 110                         |                       |
| Sample ID: N012390-034A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770162</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 0.096                   | 0.20                             | 0.08330                             | 0 20                  |
| Sample ID: N012390-034A-MSD | SampType: MSD           | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770163</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.063                   | 0.20 1.000 0.08330               | 98.0 90 110 1.063                   | 0.00941 20            |
| Sample ID: N012390-040A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93215</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770165</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.110                   | 0.20 1.000 0.07390               | 104 90 110                          |                       |
| Sample ID: N012390-041A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770167</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 64.651                  | 1.0 25.00 39.82                  | 99.3 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

Work Order: N012390 Project: PG&E Topock, 423575.MP.02.GM.0

TestCode: 218.6\_WPGE

| Sample ID: N012390-043A-MS        | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93215          |
|-----------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: <b>R93215</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770169</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.061                   | 0.20 1.000 0.09640               | 96.5 90 110                         |                       |
| Sample ID: <b>N012390-044A-MS</b> | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93215</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770171</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.082                   | 0.20 1.000 0.08240               | 99.9 90 110                         |                       |
| Sample ID: N012390-045A-MS        | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93215</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93215        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770175</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.109                   | 0.20 1.000 0.09980               | 101 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

Work Order: N012390

**Project:** 

TestCode: 218.6R\_WPGE PG&E Topock, 423575.MP.02.GM.0

| Sample ID: MB-R93201       | SampType: MBLK          | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: 93201          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: <b>R93201</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769681</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93201      | SampType: LCS           | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: LCSW            | Batch ID: R93201        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769682</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4.967                   | 0.20 5.000 0                     | 99.3 90 110                         |                       |
| Sample ID: N012390-005AMS  | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93201</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769684        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.021                   | 0.20 1.000 0.02570               | 99.5 90 110                         |                       |
| Sample ID: N012390-007AMS  | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93201        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769686</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.071                   | 0.20 1.000 0.06350               | 101 90 110                          |                       |
| Sample ID: N012390-005ADUP | SampType: <b>DUP</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93201        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769687</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.023                   | 0.20                             | 0.02570                             | 0 20                  |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

| ANALYTICAL | QC SUMMARY | REPOR |
|------------|------------|-------|
|------------|------------|-------|

| TestCode: | 218.6 <b>R_WPGE</b> |
|-----------|---------------------|
|           |                     |
|           |                     |

| Sample ID: N012390-007AMSD | SampType: MSD           | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: 93201          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: R93201        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: 1769688        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.076                   | 0.20 1.000 0.06350               | 101 90 110 1.071                    | 0.419 20              |
| Sample ID: N012390-009AMS  | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93201        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769692</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.041                   | 0.20 1.000 0.03040               | 101 90 110                          |                       |
| Sample ID: N012390-017AMS  | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93201        | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: <b>1769693</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.064                   | 0.20 1.000 0.04310               | 102 90 110                          |                       |
| Sample ID: N012390-019AMS  | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93201</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769695</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.988                   | 0.20 1.000 0                     | 98.8 90 110                         |                       |
| Sample ID: N012390-022AMS  | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93201</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769697</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.049                   | 0.20 1.000 0.04530               | 100 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

Work Order: N012390

TestCode: 218.6R\_WPGE

| Project: | PG&E Topock, 423575.MP.02.GM.0 |  |
|----------|--------------------------------|--|
|----------|--------------------------------|--|

|                           | 0 7                     | T (0 )                           | 2 21                                | B. N                  |
|---------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Sample ID: N012390-011AMS | SampType: MS            | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ         | Batch ID: <b>R93201</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769701</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 5.059                   | 1.0 5.000 0                      | 101 90 110                          |                       |
| Sample ID: N012390-024AMS | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93201        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769704</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.004                   | 0.20 1.000 0                     | 100 90 110                          |                       |
| Sample ID: N012390-026AMS | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: 93201          |
| Client ID: ZZZZZZ         | Batch ID: <b>R93201</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769706</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.037                   | 0.20 1.000 0                     | 104 90 110                          |                       |
| Sample ID: N012390-032AMS | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93201        | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: 1769710        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 0.995                   | 0.20 1.000 0                     | 99.5 90 110                         |                       |
| Sample ID: N012390-035AMS | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93201        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769712</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.039                   | 0.20 1.000 0                     | 104 90 110                          |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012390

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0 TestCode: 218.6R\_WPGE

| Sample ID: N012390-039AMS | SampType: MS     | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: 93201          |
|---------------------------|------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ         | Batch ID: R93201 | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: <b>1769714</b> |
| Analyte                   | Result           | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.069            | 0.20 1.000 0.02140               | 105 90 110                          |                       |
| Sample ID: N012390-042AMS | SampType: MS     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93201 | TestNo: EPA 218.6                | Analysis Date: 4/21/2014            | SeqNo: <b>1769716</b> |
| Analyte                   | Result           | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.013            | 0.20 1.000 0                     | 101 90 110                          |                       |
| Sample ID: N012390-013AMS | SampType: MS     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93201</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93201 | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/21/2014            | SeqNo: <b>1769720</b> |
| Analyte                   | Result           | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.249            | 0.20 1.000 0.2147                | 103 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012390

Project: PG&E Topock, 423575.MP.02.GM.0 TestCode: 218.6R\_WPGE

| Sample ID: MB-R93219       | SampType: MBLK          | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93219</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: <b>R93219</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: <b>4/22/2014</b>     | SeqNo: 1770347        |
|                            |                         |                                  | •                                   | •                     |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93219      | SampType: <b>LCS</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93219</b>   |
| Client ID: LCSW            | Batch ID: R93219        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: 1770348        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 5.044                   | 0.20 5.000 0                     | 101 90 110                          |                       |
| Sample ID: N012390-028AMS  | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93219</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93219        | TestNo: EPA 218.6                | Analysis Date: 4/22/2014            | SeqNo: <b>1770350</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4.928                   | 1.0 5.000 0                      | 98.6 90 110                         |                       |
| Sample ID: N012390-037AMS  | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93219</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93219        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: 1770352        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4.912                   | 1.0 5.000 0                      | 98.2 90 110                         |                       |
| Sample ID: N012410-014ADUP | SampType: <b>DUP</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93219</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93219</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/22/2014            | SeqNo: <b>1770354</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.988                   | 0.20                             | 1.008                               | 2.03 20               |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012390

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0

TestCode: 218.6R\_WPGE

| Sample ID: N012410-014AMS Client ID: ZZZZZZ  | SampType: MS  Batch ID: R93219  | TestCode: 218.6R_WPG Units: μg/L<br>TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/22/2014 | RunNo: <b>93219</b><br>SeqNo: <b>1770355</b> |
|----------------------------------------------|---------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------------------------|
| Analyte                                      | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 1.990                           | 0.20 1.000 1.008                                      | 98.2 90 110                         |                                              |
| Sample ID: N012410-014AMSD Client ID: ZZZZZZ | SampType: MSD  Batch ID: R93219 | TestCode: 218.6R_WPG Units: μg/L<br>TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/22/2014 | RunNo: <b>93219</b><br>SeqNo: <b>1770356</b> |
| Analyte                                      | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 2.029                           | 0.20 1.000 1.008                                      | 102 90 110 1.990                    | 1.96 20                                      |
| Sample ID: N012390-015AMS Client ID: ZZZZZZ  | SampType: MS Batch ID: R93219   | TestCode: 218.6R_WPG Units: μg/L TestNo: EPA 218.6    | Prep Date: Analysis Date: 4/22/2014 | RunNo: <b>93219</b><br>SeqNo: <b>1770370</b> |
| Analyte                                      | Result                          | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 1.236                           | 0.20 1.000 0.2315                                     | 100 90 110                          |                                              |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order:

## ANALYTICAL QC SUMMARY REPORT

N012390 Project: PG&E Topock, 423575.MP.02.GM.0

TestCode: 6020DIS\_CrPGE

| Sample ID: MB-45479                                               | SampType: MBLK                        | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                            | Prep Date: 4/21/2014                                                                                          | RunNo: 93260                                     |
|-------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: PBW                                                    | Batch ID: 45479                       | TestNo: <b>EPA 6020 EPA 3010A</b>                                                                                                                                            | Analysis Date: 4/25/2014                                                                                      | SeqNo: <b>1772343</b>                            |
| Analyte                                                           | Result                                | PQL SPK value SPK Ref Val                                                                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                                           | %RPD RPDLimit Qual                               |
| Chromium                                                          | ND                                    | 1.0                                                                                                                                                                          |                                                                                                               |                                                  |
| Sample ID: LCS-45479                                              | SampType: LCS                         | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                            | Prep Date: 4/21/2014                                                                                          | RunNo: <b>93260</b>                              |
| Client ID: LCSW                                                   | Batch ID: 45479                       | TestNo: EPA 6020 EPA 3010A                                                                                                                                                   | Analysis Date: 4/25/2014                                                                                      | SeqNo: <b>1772344</b>                            |
| Analyte                                                           | Result                                | PQL SPK value SPK Ref Val                                                                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                                           | %RPD RPDLimit Qual                               |
| Chromium                                                          | 9.925                                 | 1.0 10.00 0                                                                                                                                                                  | 99.3 85 115                                                                                                   |                                                  |
|                                                                   |                                       |                                                                                                                                                                              |                                                                                                               |                                                  |
| Sample ID: N012397-001A-MS                                        | SampType: MS                          | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                            | Prep Date: 4/21/2014                                                                                          | RunNo: <b>93260</b>                              |
| Sample ID: N012397-001A-MS Client ID: ZZZZZZ                      | SampType: MS Batch ID: 45479          | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A                                                                                                                 | Prep Date: 4/21/2014  Analysis Date: 4/25/2014                                                                | RunNo: <b>93260</b><br>SeqNo: <b>1772348</b>     |
| ,                                                                 |                                       |                                                                                                                                                                              | ·                                                                                                             |                                                  |
| Client ID: ZZZZZZ                                                 | Batch ID: <b>45479</b>                | TestNo: EPA 6020 EPA 3010A                                                                                                                                                   | Analysis Date: 4/25/2014                                                                                      | SeqNo: <b>1772348</b>                            |
| Client ID: ZZZZZZ Analyte                                         | Batch ID: <b>45479</b> Result         | TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val                                                                                                                         | Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val                                                 | SeqNo: <b>1772348</b>                            |
| Client ID: ZZZZZZ Analyte Chromium                                | Batch ID: <b>45479</b> Result  21.131 | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         11.66                                             | Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val  94.7 75 125                                    | SeqNo: 1772348<br>%RPD RPDLimit Qual             |
| Client ID: ZZZZZZ  Analyte  Chromium  Sample ID: N012397-001A-MSD | Result 21.131 SampType: MSD           | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         11.66           TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: <b>4/25/2014</b> %REC LowLimit HighLimit RPD Ref Val  94.7 75 125  Prep Date: <b>4/21/2014</b> | SeqNo: 1772348  %RPD RPDLimit Qual  RunNo: 93260 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012390

Project: PG&E Topock, 423575.MP.02.GM.0 TestCode: 6020DIS\_CrPGE

| Sample ID: MB-45480                                            | SampType: MBLK                                | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                        | Prep Date: 4/21/2014                                                                               | RunNo: 93260                                         |
|----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Client ID: PBW                                                 | Batch ID: 45480                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                               | Analysis Date: 4/25/2014                                                                           | SeqNo: <b>1772366</b>                                |
| Analyte                                                        | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                | %REC LowLimit HighLimit RPD Ref Val                                                                | %RPD RPDLimit Qual                                   |
| Chromium                                                       | ND                                            | 1.0                                                                                                                                                                      |                                                                                                    |                                                      |
| Sample ID: LCS-45480                                           | SampType: LCS                                 | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                        | Prep Date: 4/21/2014                                                                               | RunNo: <b>93260</b>                                  |
| Client ID: LCSW                                                | Batch ID: 45480                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                               | Analysis Date: 4/25/2014                                                                           | SeqNo: <b>1772367</b>                                |
| Analyte                                                        | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                | %REC LowLimit HighLimit RPD Ref Val                                                                | %RPD RPDLimit Qual                                   |
| Chromium                                                       | 10.084                                        | 1.0 10.00 0                                                                                                                                                              | 101 85 115                                                                                         |                                                      |
|                                                                |                                               |                                                                                                                                                                          |                                                                                                    |                                                      |
| Sample ID: N012390-024B-MS                                     | SampType: MS                                  | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                        | Prep Date: 4/21/2014                                                                               | RunNo: <b>93260</b>                                  |
| Sample ID: N012390-024B-MS Client ID: ZZZZZZ                   | SampType: MS Batch ID: 45480                  | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                                                                                             | Prep Date: 4/21/2014 Analysis Date: 4/25/2014                                                      | RunNo: <b>93260</b><br>SeqNo: <b>1772390</b>         |
| •                                                              | . 31                                          |                                                                                                                                                                          | •                                                                                                  |                                                      |
| Client ID: ZZZZZZ                                              | Batch ID: <b>45480</b>                        | TestNo: EPA 6020 EPA 3010A                                                                                                                                               | Analysis Date: 4/25/2014                                                                           | SeqNo: 1772390                                       |
| Client ID: ZZZZZZ Analyte                                      | Batch ID: <b>45480</b> Result                 | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                    | Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val                                      | SeqNo: 1772390                                       |
| Client ID: ZZZZZZ Analyte Chromium                             | Batch ID: <b>45480</b> Result  8.856          | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 0                                                                                                       | Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val  88.6 75 125                         | SeqNo: <b>1772390</b><br>%RPD RPDLimit Qual          |
| Client ID: ZZZZZZ Analyte Chromium Sample ID: N012390-024B-MSD | Batch ID: 45480  Result  8.856  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         0           TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: 4/25/2014  ***REC LowLimit HighLimit RPD Ref Val  88.6 75 125  Prep Date: 4/21/2014 | SeqNo: 1772390<br>%RPD RPDLimit Qual<br>RunNo: 93260 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

Work Order: N012390 Project: PG&E Topock, 423575.MP.02.GM.0

TestCode: 6020RDIS\_CrPGE

| Sample ID: MB-45479<br>Client ID: PBW                 | SampType: MBLK Batch ID: 45479             | TestCode: 6020RDIS_Cr Units: μg/L TestNo: EPA 6020 EPA 3010A                                         | Prep Date: 4/21/2014  Analysis Date: 4/25/2014                                                  | RunNo: <b>93260</b><br>SeqNo: <b>1772417</b>         |
|-------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Analyte                                               | Result                                     | PQL SPK value SPK Ref Val                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                             | %RPD RPDLimit Qual                                   |
| Chromium                                              | ND                                         | 1.0                                                                                                  |                                                                                                 |                                                      |
| Sample ID: LCS-45479 Client ID: LCSW Analyte Chromium | SampType: LCS Batch ID: 45479 Result 9.925 | TestCode: 6020RDIS_Cr Units: μg/L TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 0 | Prep Date: 4/21/2014 Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val  99.3 85 115 | RunNo: 93260<br>SeqNo: 1772418<br>%RPD RPDLimit Qual |
| Sample ID: N012397-001A-MS Client ID: ZZZZZZ          | SampType: MS Batch ID: 45479               | TestCode: 6020RDIS_Cr Units: μg/L TestNo: EPA 6020 EPA 3010A                                         | Prep Date: 4/21/2014 Analysis Date: 4/25/2014                                                   | RunNo: <b>93260</b><br>SeqNo: <b>1772422</b>         |
| Analyte Chromium                                      | Result 21.131                              | PQL SPK value SPK Ref Val  1.0 10.00 11.66                                                           | %REC LowLimit HighLimit RPD Ref Val 94.7 75 125                                                 | %RPD RPDLimit Qual                                   |
| Sample ID: N012397-001A-MSD Client ID: ZZZZZZ         | SampType: MSD Batch ID: 45479              | TestCode: 6020RDIS_Cr Units: µg/L TestNo: EPA 6020 EPA 3010A                                         | Prep Date: 4/21/2014 Analysis Date: 4/25/2014                                                   | RunNo: <b>93260</b><br>SeqNo: <b>1772423</b>         |
|                                                       |                                            | PQL SPK value SPK Ref Val                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                             | %RPD RPDLimit Qual                                   |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

Work Order: N012390

CrPGE

| Project: | PG&E Topock, 423575.MP.02.GM.0 | TestCode: | 6020RDIS_Cr |
|----------|--------------------------------|-----------|-------------|
|          |                                |           |             |

| Sample ID: MB-45480                                              | SampType: MBLK                                | TestCode: 6020RDIS_Cr Units: µg/L                                                                                                                                        | Prep Date: 4/21/2014                                                                             | RunNo: 93260                                     |
|------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: PBW                                                   | Batch ID: 45480                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                               | Analysis Date: 4/25/2014                                                                         | SeqNo: <b>1772437</b>                            |
| Analyte                                                          | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                | %REC LowLimit HighLimit RPD Ref Val                                                              | %RPD RPDLimit Qual                               |
| Chromium                                                         | ND                                            | 1.0                                                                                                                                                                      |                                                                                                  |                                                  |
| Sample ID: LCS-45480                                             | SampType: LCS                                 | TestCode: 6020RDIS_Cr Units: µg/L                                                                                                                                        | Prep Date: 4/21/2014                                                                             | RunNo: <b>93260</b>                              |
| Client ID: LCSW                                                  | Batch ID: 45480                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                               | Analysis Date: 4/25/2014                                                                         | SeqNo: <b>1772438</b>                            |
| Analyte                                                          | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                | %REC LowLimit HighLimit RPD Ref Val                                                              | %RPD RPDLimit Qual                               |
| Chromium                                                         | 10.084                                        | 1.0 10.00 0                                                                                                                                                              | 101 85 115                                                                                       |                                                  |
|                                                                  |                                               |                                                                                                                                                                          |                                                                                                  |                                                  |
| Sample ID: N012390-024B-MS                                       | SampType: <b>MS</b>                           | TestCode: 6020RDIS_Cr Units: μg/L                                                                                                                                        | Prep Date: 4/21/2014                                                                             | RunNo: <b>93260</b>                              |
| Sample ID: N012390-024B-MS Client ID: ZZZZZZ                     | SampType: MS Batch ID: 45480                  | TestCode: 6020RDIS_Cr Units: µg/L TestNo: EPA 6020 EPA 3010A                                                                                                             | Prep Date: 4/21/2014  Analysis Date: 4/25/2014                                                   | RunNo: <b>93260</b><br>SeqNo: <b>1772458</b>     |
| ·                                                                |                                               |                                                                                                                                                                          | ·                                                                                                |                                                  |
| Client ID: ZZZZZZ                                                | Batch ID: <b>45480</b>                        | TestNo: EPA 6020 EPA 3010A                                                                                                                                               | Analysis Date: 4/25/2014                                                                         | SeqNo: <b>1772458</b>                            |
| Client ID: ZZZZZZ Analyte                                        | Batch ID: <b>45480</b> Result                 | TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val                                                                                                                     | Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val                                    | SeqNo: <b>1772458</b>                            |
| Client ID: ZZZZZZ Analyte Chromium                               | Batch ID: <b>45480</b> Result  8.856          | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 0                                                                                                       | Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val  88.6 75 125                       | SeqNo: 1772458<br>%RPD RPDLimit Qual             |
| Client ID: ZZZZZZ  Analyte Chromium  Sample ID: N012390-024B-MSD | Batch ID: 45480  Result  8.856  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         0           TestCode: 6020RDIS_Cr Units: μg/L | Analysis Date: 4/25/2014  %REC LowLimit HighLimit RPD Ref Val  88.6 75 125  Prep Date: 4/21/2014 | SeqNo: 1772458  %RPD RPDLimit Qual  RunNo: 93260 |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-005

Client Sample ID: MW-121-198

**Collection Date:** 4/14/2014 7:00:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140418A
 QC Batch:
 R93183
 PrepDate:
 Analyst:
 QBM

 Fluoride
 0.80
 0.011
 0.10
 mg/L
 1
 4/18/2014 02:17 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-27-060-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140418A
 QC Batch:
 R93183
 PrepDate:
 Analyst:
 QBM

 Fluoride
 0.73
 0.011
 0.10
 mg/L
 1
 4/18/2014 02:29 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-27-085-198

 Lab Order:
 N012390
 Collection Date: 4/14/2014 11:36:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-011

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140418A
 QC Batch:
 R93183
 PrepDate:
 Analyst:
 QBM

 Fluoride
 ND 0.055
 0.50
 mg/L
 5
 4/18/2014 03:33 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012390

PG&E Topock, 423575.MP.02.GM.0

**Project:** 

Lab ID: N012390-019 Client Sample ID: MW-122-198

Collection Date: 4/15/2014 7:00:00 AM

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

QC Batch: R93183 RunID: IC2\_140418A PrepDate: Analyst: QBM Fluoride ND 0.055 0.50 5 4/18/2014 02:42 PM mg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-28-090-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 9:34:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-024

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140418A
 QC Batch:
 R93183
 PrepDate:
 Analyst:
 QBM

 Fluoride
 ND 0.055
 0.50
 mg/L
 5 4/18/2014 02:55 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Date: 30-Apr-14

CLIENT: CH2M HILL Work Order: N012390

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0 TestCode: 300\_W\_FPGE

| Sample ID: MB-R93183<br>Client ID: PBW | F SampType: MBLK  Batch ID: R93183 | TestCode: 300_W_FPGE Units: mg/L<br>TestNo: EPA 300.0 | Prep Date: Analysis Date: 4/18/2014 | RunNo: <b>93183</b><br>SeqNo: <b>1767972</b> |
|----------------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------------------------|
| Analyte                                | Result                             | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref V   | al %RPD RPDLimit Qual                        |
| Fluoride                               | ND                                 | 0.10                                                  |                                     |                                              |
| Sample ID: LCS-R93183                  | B_F SampType: LCS                  | TestCode: 300_W_FPGE Units: mg/L                      | Prep Date:                          | RunNo: <b>93183</b>                          |
| Client ID: LCSW                        | Batch ID: R93183                   | TestNo: <b>EPA 300.0</b>                              | Analysis Date: 4/18/2014            | SeqNo: 1767973                               |
| Analyte                                | Result                             | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref V   | al %RPD RPDLimit Qual                        |
| Fluoride                               | 2.352                              | 0.10 2.500 0                                          | 94.1 90 110                         |                                              |
| Sample ID: N012390-00                  | 9D-DUP SampType: DUP               | TestCode: 300_W_FPGE Units: mg/L                      | Prep Date:                          | RunNo: 93183                                 |
| Client ID: ZZZZZZ                      | Batch ID: <b>R93183</b>            | TestNo: <b>EPA 300.0</b>                              | Analysis Date: 4/18/2014            | SeqNo: <b>1767983</b>                        |
| Analyte                                | Result                             | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref V   | al %RPD RPDLimit Qual                        |
| Fluoride                               | 0.734                              | 0.10                                                  | 0.730                               | 00 0.546 20                                  |
| Sample ID: N012390-00                  | 9D-MS SampType: MS                 | TestCode: 300_W_FPGE Units: mg/L                      | Prep Date:                          | RunNo: <b>93183</b>                          |
| Client ID: ZZZZZZ                      | Batch ID: R93183                   | TestNo: <b>EPA 300.0</b>                              | Analysis Date: 4/18/2014            | SeqNo: <b>1767984</b>                        |
| Analyte                                | Result                             | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref V   | al %RPD RPDLimit Qual                        |
| Fluoride                               | 3.248                              | 0.10 2.500 0.7300                                     | 101 80 120                          |                                              |
| Sample ID: N012390-00                  | 9D-MSD SampType: MSD               | TestCode: 300_W_FPGE Units: mg/L                      | Prep Date:                          | RunNo: <b>93183</b>                          |
| Client ID: ZZZZZZ                      | Batch ID: <b>R93183</b>            | TestNo: <b>EPA 300.0</b>                              | Analysis Date: 4/18/2014            | SeqNo: <b>1767985</b>                        |
| Analyte                                | Result                             | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref V   | al %RPD RPDLimit Qual                        |
| Fluoride                               | 3.257                              | 0.10 2.500 0.7300                                     | 101 80 120 3.24                     | 8 0.277 20                                   |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Lab Order: N012390

N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-001

Client Sample ID: MW-63-065-198 Collection Date: 4/9/2014 2:12:00 PM

Matrix: WATER

| Analyses               | Result        | MDL   | PQL  | Qual Units | s DF      | Date Analyzed      |
|------------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |       |      |            |           |                    |
|                        | EPA 3010A     |       | EPA  | A 6020     |           |                    |
| RunID: ICP7_140425C    | QC Batch: 454 | 79    |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic                | 1.5           | 0.027 | 0.10 | μg/L       | 1         | 4/25/2014 01:01 PM |
| Manganese              | ND            | 0.026 | 0.50 | μg/L       | 1         | 4/25/2014 01:01 PM |
| Molybdenum             | 20            | 0.15  | 0.50 | μg/L       | 1         | 4/25/2014 01:01 PM |
| Selenium               | 0.81          | 0.069 | 0.50 | μg/L       | 1         | 4/25/2014 01:01 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-003

Client Sample ID: MW-37D-198

**Collection Date:** 4/10/2014 10:03:00 AM

Print Date: 30-Apr-14

Matrix: WATER

| Analyses               | Result         | MDL   | PQL  | Qual Unit | s DF      | Date Analyzed      |
|------------------------|----------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS           |       |      |           |           |                    |
|                        | EPA 3010A      |       | EPA  | A 6020    |           |                    |
| RunID: ICP7_140425C    | QC Batch: 4547 | 79    |      | PrepDate: | 4/21/2014 | Analyst: CEI       |
| Molybdenum             | 47             | 0.15  | 0.50 | μg/L      | 1         | 4/25/2014 01:28 PM |
| Selenium               | ND             | 0.069 | 0.50 | μg/L      | 1         | 4/25/2014 01:28 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-005

Client Sample ID: MW-121-198

Collection Date: 4/14/2014 7:00:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 179   |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 7.2           | 0.027 | 0.10 | μg/L       | 1         | 4/25/2014 01:39 PM |
| Manganese             | 190           | 0.13  | 2.5  | μg/L       | 5         | 4/25/2014 06:22 PM |
| Molybdenum            | 4.2           | 0.15  | 0.50 | μg/L       | 1         | 4/25/2014 01:39 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 4/25/2014 01:39 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-27-020-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 10:13:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-007

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 179   |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 0.84          | 0.027 | 0.10 | μg/L       | 1         | 4/25/2014 01:45 PM |
| Manganese             | 21            | 0.026 | 0.50 | μg/L       | 1         | 4/25/2014 01:45 PM |
| Molybdenum            | 3.4           | 0.15  | 0.50 | μg/L       | 1         | 4/25/2014 01:45 PM |
| Selenium              | 12            | 0.069 | 0.50 | μg/L       | 1         | 4/25/2014 01:45 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-27-060-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-009

| Analyses              | Result        | MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|------------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |                  |      |            |           |                    |
|                       | EPA 3010A     | A 3010A EPA 6020 |      | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 179              |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 6.9           | 0.027            | 0.10 | μg/L       | 1         | 4/25/2014 01:56 PM |
| Manganese             | 200           | 0.13             | 2.5  | μg/L       | 5         | 4/25/2014 06:28 PM |
| Molybdenum            | 4.1           | 0.15             | 0.50 | μg/L       | 1         | 4/25/2014 01:56 PM |
| Selenium              | ND            | 0.069            | 0.50 | μg/L       | 1         | 4/25/2014 01:56 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-27-085-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 11:36:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-011

| Analyses              | Result        | MDL          | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|--------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |              |      |            |           |                    |
|                       | EPA 3010A     | PA 3010A EPA |      | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 179          |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 0.18          | 0.027        | 0.10 | μg/L       | 1         | 4/25/2014 02:07 PM |
| Manganese             | 6.3           | 0.026        | 0.50 | μg/L       | 1         | 4/25/2014 02:07 PM |
| Molybdenum            | 2.2           | 0.15         | 0.50 | μg/L       | 1         | 4/25/2014 02:07 PM |
| Selenium              | ND            | 0.069        | 0.50 | μg/L       | 1         | 4/25/2014 02:07 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-30-030-198

**Lab Order:** N012390 **Collection Date:** 4/14/2014 1:36:00 PM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-013

| Analyses               | Result        | MDL         | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|---------------|-------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |             |      |            |           |                    |
|                        | EPA 3010A     |             | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C    | QC Batch: 454 | <b>1</b> 79 |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Molybdenum             | 22            | 0.15        | 0.50 | μg/L       | 1         | 4/25/2014 02:18 PM |
| Selenium               | ND            | 0.069       | 0.50 | ua/l       | 1         | 4/25/2014 02·18 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Client Sample ID: MW-42-055-198 Lab Order: N012390 Collection Date: 4/14/2014 8:12:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

Lab ID: N012390-015

Result MDL **PQL** Units DF Analyses Qual **Date Analyzed** 

**DISSOLVED METALS BY ICP-MS** 

**EPA 3010A EPA 6020** 

QC Batch: 45479 RunID: ICP7\_140425C PrepDate: 4/21/2014 Analyst: CEI Arsenic 11 0.027 0.10 4/25/2014 02:39 PM μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-42-065-198

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-017

| Analyses               | Result N        | MDL   | PQL  | Qual Unit | s DF      | Date Analyzed      |
|------------------------|-----------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS            |       |      |           |           |                    |
|                        | EPA 3010A       |       | EP/  | A 6020    |           |                    |
| RunID: ICP7_140425C    | QC Batch: 45479 | )     |      | PrepDate: | 4/21/2014 | Analyst: CEI       |
| Arsenic                | 3.0             | 0.027 | 0.10 | μg/L      | 1         | 4/25/2014 02:52 PM |
| Manganese              | 710             | 0.13  | 2.5  | μg/L      | 5         | 4/25/2014 06:34 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** 

PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-019

Client Sample ID: MW-122-198

**Collection Date:** 4/15/2014 7:00:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 79    |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 1.8           | 0.027 | 0.10 | μg/L       | 1         | 4/25/2014 03:03 PM |
| Manganese             | 120           | 0.026 | 0.50 | μg/L       | 1         | 4/25/2014 03:03 PM |
| Molybdenum            | 21            | 0.15  | 0.50 | μg/L       | 1         | 4/25/2014 03:03 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 4/25/2014 03:03 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-28-025-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 8:59:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-022

| Analyses              | Result        | MDL      | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|----------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |          |      |            |           |                    |
|                       | EPA 3010A     | 010A EPA |      | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 179      |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 1.8           | 0.027    | 0.10 | μg/L       | 1         | 4/25/2014 03:09 PM |
| Manganese             | 15            | 0.026    | 0.50 | μg/L       | 1         | 4/25/2014 03:09 PM |
| Molybdenum            | 4.5           | 0.15     | 0.50 | μg/L       | 1         | 4/25/2014 03:09 PM |
| Selenium              | ND            | 0.069    | 0.50 | μg/L       | 1         | 4/25/2014 03:09 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

NO Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-28-090-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 9:34:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-024

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 180   |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 1.8           | 0.027 | 0.10 | μg/L       | 1         | 4/25/2014 03:42 PM |
| Manganese             | 130           | 0.13  | 2.5  | μg/L       | 5         | 4/25/2014 05:33 PM |
| Molybdenum            | 22            | 0.15  | 0.50 | μg/L       | 1         | 4/25/2014 03:42 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 4/25/2014 03:42 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL Client Sample ID: MW-43-025-198

Lab Order: N012390 Collection Date: 4/15/2014 6:45:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

Lab ID: N012390-026

| Analyses               | Result MDL      | PQL    | Qual Units | DF        | Date Analyzed      |
|------------------------|-----------------|--------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS            |        |            |           |                    |
|                        | EPA 3010A       | EP     | A 6020     |           |                    |
| RunID: ICP7_140425C    | QC Batch: 45480 |        | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic                | 16 0.027        | 7 0.10 | μg/L       | 1         | 4/25/2014 03:53 PM |
| Manganese              | 320 0.13        | 2.5    | μg/L       | 5         | 4/25/2014 07:01 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-43-090-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 7:28:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-028

| Analyses               | Result MDL      | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS            |      |            |           |                    |
|                        | EPA 3010A       | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C    | QC Batch: 45480 |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic                | 3.1 0.027       | 0.10 | μg/L       | 1         | 4/25/2014 04:04 PM |
| Manganese              | 930 0.26        | 5.0  | μg/L       | 10        | 4/25/2014 07:18 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-46-175-198

**Lab Order:** N012390 **Collection Date:** 4/15/2014 1:36:00 PM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-030

| Analyses               | Result MDL      | DF  | Date Analyzed |           |                    |
|------------------------|-----------------|-----|---------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS            |     |               |           | _                  |
|                        | EPA 3010A       | EP  | EPA 6020      |           |                    |
| RunID: ICP7_140425C    | QC Batch: 45480 |     | PrepDate:     | 4/21/2014 | Analyst: CEI       |
| Molybdenum             | 170 0.76        | 2.5 | μg/L          | 5         | 4/25/2014 07:29 PM |
| Selenium               | ND 0.34         | 2.5 | μg/L          | 5         | 4/25/2014 07:29 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

**Lab ID:** N012390-032

Client Sample ID: MW-125-198

**Collection Date:** 4/16/2014 7:00:00 AM

Matrix: WATER

| Analyses              | Result        | MDL             | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |                 |      |            |           |                    |
|                       | EPA 3010A     |                 | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | QC Batch: 45480 |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 3.2           | 0.13            | 0.50 | μg/L       | 5         | 4/25/2014 07:34 PM |
| Manganese             | 620           | 0.13            | 2.5  | μg/L       | 5         | 4/25/2014 07:34 PM |
| Molybdenum            | 110           | 0.76            | 2.5  | μg/L       | 5         | 4/25/2014 07:34 PM |
| Selenium              | ND            | 0.34            | 2.5  | μg/L       | 5         | 4/25/2014 07:34 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

**CLIENT:** CH2M HILL

Lab Order: N012390

Lab ID:

PG&E Topock, 423575.MP.02.GM.0

**Project:** 

N012390-035

Client Sample ID: MW-29-198

Collection Date: 4/16/2014 2:20:00 PM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 180   |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 5.7           | 0.027 | 0.10 | μg/L       | 1         | 4/25/2014 04:32 PM |
| Manganese             | 270           | 0.13  | 2.5  | μg/L       | 5         | 4/25/2014 07:40 PM |
| Molybdenum            | 19            | 0.15  | 0.50 | μg/L       | 1         | 4/25/2014 04:32 PM |
| Selenium              | 9.5           | 0.069 | 0.50 | μg/L       | 1         | 4/25/2014 04:32 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/25/2014 07:45 PM

Print Date: 30-Apr-14

10

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-32-035-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 1:38:00 PM

0.26

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

1200

**Lab ID:** N012390-037

Manganese

| Analyses               | Result MDL      | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS            |      |            |           |                    |
|                        | EPA 3010A       | EPA  | 6020       |           |                    |
| RunID: ICP7_140425C    | QC Batch: 45480 |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic                | 27 0.027        | 0.10 | μg/L       | 1         | 4/25/2014 04:54 PM |

5.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-44-070-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 8:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-039

Analyses Result MDL PQL Qual Units DF Date Analyzed

**DISSOLVED METALS BY ICP-MS** 

EPA 3010A EPA 6020

RunID: ICP7\_140425C QC Batch: 45480 PrepDate: 4/21/2014 Analyst: CEI

Arsenic 4.2 0.027 0.10 μg/L 1 4/25/2014 05:05 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-44-115-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 7:38:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-041

| Analyses              | Result        | MDL      | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|----------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |          |      |            |           |                    |
|                       | EPA 3010A     | PA 3010A |      | EPA 6020   |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 180      |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 5.8           | 0.027    | 0.10 | μg/L       | 1         | 4/25/2014 05:16 PM |
| Manganese             | ND            | 0.026    | 0.50 | μg/L       | 1         | 4/25/2014 05:16 PM |
| Molybdenum            | 84            | 0.15     | 0.50 | μg/L       | 1         | 4/25/2014 05:16 PM |
| Selenium              | ND            | 0.069    | 0.50 | μg/L       | 1         | 4/25/2014 05:16 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 30-Apr-14

#### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-44-125-198

**Lab Order:** N012390 **Collection Date:** 4/16/2014 11:59:00 AM

Project: PG&E Topock, 423575.MP.02.GM.0 Matrix: WATER

**Lab ID:** N012390-042

| Analyses              | Result        | MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-----------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |           |      |            |           |                    |
|                       | EPA 3010A     | EPA 3010A |      | EPA 6020   |           |                    |
| RunID: ICP7_140425C   | QC Batch: 454 | 180       |      | PrepDate:  | 4/21/2014 | Analyst: CEI       |
| Arsenic               | 2.7           | 0.027     | 0.10 | μg/L       | 1         | 4/25/2014 05:21 PM |
| Manganese             | 620           | 0.13      | 2.5  | μg/L       | 5         | 4/25/2014 07:56 PM |
| Molybdenum            | 98            | 0.15      | 0.50 | μg/L       | 1         | 4/25/2014 05:21 PM |
| Selenium              | ND            | 0.069     | 0.50 | μg/L       | 1         | 4/25/2014 05:21 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Date: 30-Apr-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012390

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0 TestCode: 6020\_DIS

| Sample ID: MB-45479         | SampType: MBLK         | TestCode: 6020_DIS | Units: μg/L | Prep Date: 4/21/2014                | RunNo: <b>93261</b>   |
|-----------------------------|------------------------|--------------------|-------------|-------------------------------------|-----------------------|
| Client ID: PBW              | Batch ID: <b>45479</b> | TestNo: EPA 6020   |             | Analysis Date: 4/25/2014            | SeqNo: 1772492        |
| Analyte                     | Result                 | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Arsenic                     | ND                     | 0.10               |             |                                     |                       |
| Manganese                   | ND                     | 0.50               |             |                                     |                       |
| Molybdenum                  | ND                     | 0.50               |             |                                     |                       |
| Selenium                    | ND                     | 0.50               |             |                                     |                       |
| Sample ID: LCS-45479        | SampType: <b>LCS</b>   | TestCode: 6020_DIS | Units: µg/L | Prep Date: 4/21/2014                | RunNo: <b>93261</b>   |
| Client ID: LCSW             | Batch ID: 45479        | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 4/25/2014            | SeqNo: 1772493        |
| Analyte                     | Result                 | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Arsenic                     | 10.159                 | 0.10 10.00         | 0           | 102 85 115                          |                       |
| Manganese                   | 99.192                 | 0.50 100.0         | 0           | 99.2 85 115                         |                       |
| Molybdenum                  | 9.833                  | 0.50 10.00         | 0           | 98.3 85 115                         |                       |
| Selenium                    | 10.496                 | 0.50 10.00         | 0           | 105 85 115                          |                       |
| Sample ID: N012397-001A-MS  | SampType: MS           | TestCode: 6020_DIS | Units: µg/L | Prep Date: 4/21/2014                | RunNo: <b>93261</b>   |
| Client ID: ZZZZZZ           | Batch ID: 45479        | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 4/25/2014            | SeqNo: <b>1772497</b> |
| Analyte                     | Result                 | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Arsenic                     | 12.347                 | 0.10 10.00         | 2.364       | 99.8 75 125                         |                       |
| Manganese                   | 165.885                | 0.50 100.0         | 71.94       | 93.9 75 125                         |                       |
| Molybdenum                  | 12.405                 | 0.50 10.00         | 1.588       | 108 75 125                          |                       |
| Selenium                    | 10.307                 | 0.50 10.00         | 0.2260      | 101 75 125                          |                       |
| Sample ID: N012397-001A-MSD | SampType: MSD          | TestCode: 6020_DIS | Units: µg/L | Prep Date: 4/21/2014                | RunNo: <b>93261</b>   |
| Client ID: ZZZZZZ           | Batch ID: 45479        | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 4/25/2014            | SeqNo: 1772498        |
| Analyte                     | Result                 | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Arsenic                     | 12.318                 | 0.10 10.00         | 2.364       | 99.5 75 125 12.35                   | 0.236 20              |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118
- P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012390

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0 TestCode: 6020\_DIS

| Sample ID: N012397-001A-MSD | SampType: MSD   | TestCod | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat    | te: <b>4/21/20</b> | 14          | RunNo: 932        | 261      |      |
|-----------------------------|-----------------|---------|---------------------|-------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ           | Batch ID: 45479 | TestN   | No: EPA 6020        | EPA 3010A   |      | Analysis Da | te: <b>4/25/20</b> | 14          | SeqNo: <b>177</b> | 72498    |      |
| Analyte                     | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Manganese                   | 165.767         | 0.50    | 100.0               | 71.94       | 93.8 | 75          | 125                | 165.9       | 0.0715            | 20       |      |
| Molybdenum                  | 12.507          | 0.50    | 10.00               | 1.588       | 109  | 75          | 125                | 12.40       | 0.818             | 20       |      |
| Selenium                    | 10.082          | 0.50    | 10.00               | 0.2260      | 98.6 | 75          | 125                | 10.31       | 2.21              | 20       |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

Work Order:

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0

N012390

| TestCode: | 6020 | DIS |  |
|-----------|------|-----|--|
|-----------|------|-----|--|

| Sample ID: MB-45480         | SampType: MBLK  | TestCode: 6020_DIS | Units: µg/L | Prep Date     | e: 4/21/2014          | RunNo: 93261          |      |
|-----------------------------|-----------------|--------------------|-------------|---------------|-----------------------|-----------------------|------|
| Client ID: PBW              | Batch ID: 45480 | TestNo: EPA 6020   | EPA 3010A   | Analysis Date | e: 4/25/2014          | SeqNo: 1772516        |      |
| Analyte                     | Result          | PQL SPK value      | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Arsenic                     | ND              | 0.10               |             |               |                       |                       |      |
| Manganese                   | ND              | 0.50               |             |               |                       |                       |      |
| Molybdenum                  | ND              | 0.50               |             |               |                       |                       |      |
| Selenium                    | ND              | 0.50               |             |               |                       |                       |      |
| Sample ID: LCS-45480        | SampType: LCS   | TestCode: 6020_DIS | Units: µg/L | Prep Date     | e: 4/21/2014          | RunNo: <b>93261</b>   |      |
| Client ID: LCSW             | Batch ID: 45480 | TestNo: EPA 6020   | EPA 3010A   | Analysis Date | e: 4/25/2014          | SeqNo: 1772517        |      |
| Analyte                     | Result          | PQL SPK value      | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Arsenic                     | 10.247          | 0.10 10.00         | 0           | 102 85        | 115                   |                       |      |
| Manganese                   | 101.368         | 0.50 100.0         | 0           | 101 85        | 115                   |                       |      |
| Molybdenum                  | 10.157          | 0.50 10.00         | 0           | 102 85        | 115                   |                       |      |
| Selenium                    | 10.473          | 0.50 10.00         | 0           | 105 85        | 115                   |                       |      |
| Sample ID: N012390-024B-MS  | SampType: MS    | TestCode: 6020_DIS | Units: µg/L | Prep Date     | e: 4/21/2014          | RunNo: 93261          |      |
| Client ID: ZZZZZZ           | Batch ID: 45480 | TestNo: EPA 6020   | EPA 3010A   | Analysis Date | e: 4/25/2014          | SeqNo: <b>1772539</b> |      |
| Analyte                     | Result          | PQL SPK value      | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Arsenic                     | 11.654          | 0.10 10.00         | 1.819       | 98.3 75       | 125                   |                       |      |
| Molybdenum                  | 33.483          | 0.50 10.00         | 22.23       | 113 75        | 125                   |                       |      |
| Selenium                    | 9.764           | 0.50 10.00         | 0           | 97.6 75       | 125                   |                       |      |
| Sample ID: N012390-024B-MSD | SampType: MSD   | TestCode: 6020_DIS | Units: µg/L | Prep Date     | e: 4/21/2014          | RunNo: <b>93261</b>   |      |
| Client ID: ZZZZZZ           | Batch ID: 45480 | TestNo: EPA 6020   | EPA 3010A   | Analysis Date | e: 4/25/2014          | SeqNo: 1772540        |      |
| Analyte                     | Result          | PQL SPK value      | SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val | %RPD RPDLimit         | Qual |
| Arsenic                     | 11.746          | 0.10 10.00         | 1.819       | 99.3 75       | 125 11.65             | 0.786 20              |      |
|                             | 33.646          | 0.50 10.00         | 22.23       | 114 75        | 125 33.48             | 0.486 20              |      |
| Molybdenum                  | 33.040          |                    |             |               |                       | 000                   |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118

P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012390

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.0 TestCode: 6020\_DIS

| Sample ID: N012390-024B-MS                    | SampType: MS                  | TestCode: 6020_DIS                  | Units: µg/L              | Prep Date: 4/21/2014                          | RunNo: 93261                                 |
|-----------------------------------------------|-------------------------------|-------------------------------------|--------------------------|-----------------------------------------------|----------------------------------------------|
| Client ID: ZZZZZZ                             | Batch ID: 45480               | TestNo: EPA 6020                    | EPA 3010A                | Analysis Date: 4/25/2014                      | SeqNo: <b>1772546</b>                        |
| Analyte                                       | Result                        | PQL SPK value                       | SPK Ref Val              | %REC LowLimit HighLimit RPD Ref Val           | %RPD RPDLimit Qual                           |
| Manganese                                     | 234.696                       | 2.5 100.0                           | 128.7                    | 106 75 125                                    |                                              |
|                                               |                               |                                     |                          |                                               |                                              |
| Sample ID: N012390-024B-MSD                   | SampType: MSD                 | TestCode: 6020_DIS                  | Units: µg/L              | Prep Date: 4/21/2014                          | RunNo: <b>93261</b>                          |
| Sample ID: N012390-024B-MSD Client ID: ZZZZZZ | SampType: MSD Batch ID: 45480 | TestCode: 6020_DIS TestNo: EPA 6020 | Units: µg/L<br>EPA 3010A | Prep Date: 4/21/2014 Analysis Date: 4/25/2014 | RunNo: <b>93261</b><br>SeqNo: <b>1772547</b> |
|                                               | 1 31                          | · · · · <del>-</del>                |                          | •                                             |                                              |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

| CH | 21 | MH | 1000 |
|----|----|----|------|
|    |    |    |      |

#### **CHAIN OF CUSTODY RECORD**

4/17/2014 1:35:08 PM

Page 1 OF 4

| Project Name PG8<br>Location Topock<br>Project Manager Ja<br>Sample Manager Si<br>Project Number 42<br>Task Order | ay Piper                     | Pres  | Container:<br>ervatives: | 250 ml<br>Poly<br>(NH4)2S<br>O4/NH4O<br>H, 4°C | 2x250<br>ml Poly<br>(NH4)2S<br>O4/NH4O | 500 ml<br>Poly<br>HNO3,        | 500 ml<br>Poly                            | 500 ml<br>Poly                   | 500 ml<br>Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 ml                                    | 2x500                                       | 250 ml                   | 250 ml                                  |                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------|------------------------------|-------|--------------------------|------------------------------------------------|----------------------------------------|--------------------------------|-------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Number 42                                                                                                 | hawn Duf                     | fy    | 1                        | 11,70                                          | H, 4°C                                 | 4°C                            | HNO3,<br>4°C                              | HNO3,<br>4°C                     | HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Poly<br>HNO3,<br>4°C                      | ml Poly<br>HNO3,<br>4°C                     | Poly<br>4°C              | Poly<br>4°C                             |                                                                                               |        | CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF |                      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| •                                                                                                                 |                              |       | Filtered:                | Field                                          | Field                                  | Field                          | Field                                     | Field                            | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field                                     | Field                                       | NA                       | NA                                      |                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                                 |                              | Hold  | ling Time:               | 28                                             | 28                                     | 180                            | 180                                       | 180                              | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                       | 180                                         | 28                       | 28                                      |                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project 2014-GMP-<br>Turnaround Time<br>Shipping Date: 4/1<br>COC Number: 1                                       | -198-Q2<br>10 Days<br>7/2014 | ;     | N.O<br>Matrix            | Cr6 (E218.6) Field Filtered                    | Cr6 (E218.6R) Field Filtered           | Arsenic (6020A) Field Filtered | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn | Metals (6020A) Field Filtered<br>Mo,Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Metals (6020A-R) Field Filtered<br>Chromium | Anions (E300.0) Fluoride | Specific Conductance (E120.1)           |                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of Containers | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW-63-065-198                                                                                                     | 4/9/2014                     | 14:12 | Water                    | Х                                              |                                        | Ж                              | Х                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                         |                                             |                          | х                                       | NOI                                                                                           | 2390-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-200-198                                                                                                        | 4/10/2014                    | 6:18  | Water                    | Х                                              |                                        |                                | ***************************************   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                             |                          |                                         |                                                                                               | -2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-37D-198                                                                                                        | 4/10/2014                    | 10:03 | Water                    | х                                              |                                        |                                | Х                                         |                                  | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                             |                          | Х                                       |                                                                                               | -3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-41D-198                                                                                                        | 4/10/2014                    | 7:57  | Water                    | х                                              |                                        |                                | х                                         |                                  | Į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                             |                          |                                         |                                                                                               | -4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-121-198                                                                                                        | 4/14/2014                    | 7:00  | Water                    |                                                | х                                      | Ж                              |                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                         | Х                                           | Х                        | Х                                       |                                                                                               | -5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-201-198                                                                                                        | 4/14/2014                    | 6:00  | Water                    | Х                                              |                                        |                                |                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w                                         |                                             | ******                   | *************************************** |                                                                                               | -6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-27-020-198                                                                                                     | 4/14/2014                    | 10:13 | Water                    |                                                | х                                      | Х                              |                                           |                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                                         | Х                                           |                          | х                                       | adagana aya ya garifi 1999-yi ili wa wakini na maka ka    | -7     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-27-020-198-EB                                                                                                  | 4/14/2014                    | 9:30  | Water                    | Х                                              |                                        |                                | Х                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                             |                          |                                         |                                                                                               | -8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-27-060-198                                                                                                     | 4/14/2014                    | 11:00 | Water                    |                                                | х                                      | Х                              |                                           |                                  | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | Х                                         | Х                                           | Х                        | Х                                       |                                                                                               | -9     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-27-060-198-EB                                                                                                  | 4/14/2014                    | 10:27 | Water                    | Х                                              |                                        |                                | Х                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                             |                          |                                         |                                                                                               | -/0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-27-085-198                                                                                                     | 4/14/2014                    | 11:36 | Water                    |                                                | ×                                      | ж                              |                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                         | Х                                           | Х                        | х                                       |                                                                                               | -11    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-27-085-198-EB                                                                                                  | 4/14/2014                    | 10:40 | Water                    | Х                                              |                                        |                                | ×                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                             |                          |                                         |                                                                                               | -12    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-30-030-198                                                                                                     | 4/14/2014                    | 13:36 | Water                    |                                                | х                                      |                                |                                           |                                  | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Х                                           |                          | Х                                       | alandi one ne <del>ne ne ne ne ne ne ne ne ne ne</del> ne ne ne ne ne ne ne ne ne ne ne ne ne | -13    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-30-030-198-EB                                                                                                  | 4/14/2014                    | 13:14 | Water                    | х                                              |                                        |                                | х                                         |                                  | A STATE A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                             |                          |                                         |                                                                                               | V -14  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Date/Time Signatures Approved by Sampled by Relinquished by Received by Relinquished by Received by

**Shipping Details** 

Method of Shipment: courier

Lab Phone: (702) 307-2659

On Ice: (es) no 3.5,4.6,5.2,3 Airbill No:

Lab Name: ADVANCED TECHNOLOGY LABORATO

ATTN:

Sample Custody

and Marion

Shawn Duffy (530) 229-3303

Report Copy to

Special Instructions:

April 9 to May 15, 2014

| CH         | <b>#</b> | 馬馬                 | S 8 | 9 |
|------------|----------|--------------------|-----|---|
| Sh. 100 HE | 36 de C  | <b>一部 50</b> 66 26 | 85_ | ž |

#### **CHAIN OF CUSTODY RECORD**

4/17/2014 1:35:08 PM

Page 2 OF 4

| Corecioni III.                                                                              | ·                   |        |                           |                             |                                        |                                |                                           | <b>9</b> 11                      | 17 72 10 00                            | 72 40 40 4                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 2 2000 00            |                               | 777720747.555.507 107 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------|---------------------|--------|---------------------------|-----------------------------|----------------------------------------|--------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|---------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name PG<br>Location Topoci<br>Project Manager                                       | k                   |        | Container:<br>servatives: |                             | 2x250<br>mi Poly<br>(NH4)2S<br>O4/NH4O | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C   | 500 ml<br>Poly<br>HNO3,<br>4°C         | 500 ml<br>Poly<br>HNO3,<br>4°C            | 2x500<br>ml Poly<br>HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250 ml<br>Poly<br>4°C    | 250 ml<br>Poly<br>4°C         |                                                         |                      | PROFESSION SECUNDATION OF THE SECUNDATION OF THE SECUNDATION OF THE SECUNDATION OF THE SECUNDATION OF THE SECUNDATION OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE SECURITARIES OF THE S |
| Sample Manager                                                                              |                     | ffv    | Filtered:                 | H, 4°C<br>Field             | H, 4°C<br>Field                        | Field                          | Field                                     | Field                            | Field                                  | Field                                     | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                       | NA                            |                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| oan.p.o.manago.                                                                             |                     |        | rillered:<br>ding Time:   |                             | 28                                     | 180                            | 180                                       | 180                              | 180                                    | 180                                       | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                       | 28                            |                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Number of Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: 1 | P-198-Q2<br>10 Days | °.02.G |                           | Cr6 (E218.6) Field Filtered | Cr6 (E218.6R) Field Filtered           | Arsenic (6020A) Field Filtered | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Metals (6020A-R) Field Filtered<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anions (E300.0) Fluoride | Specific Conductance (E120.1) |                                                         | Number of Containers |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MVV-42-055-198                                                                              | 4/14/2014           | 8:12   | Water                     |                             | x                                      | х                              | 920000                                    |                                  |                                        |                                           | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                               | NO12390-15                                              | 5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-42-055-198-EB                                                                            | 4/14/2014           | 7:22   | Water                     | х                           |                                        |                                | ×                                         |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                               | -16                                                     | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-42-065-198                                                                               | 4/14/2014           | 8:48   | Water                     |                             | х                                      | х                              |                                           | х                                |                                        |                                           | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                        |                               | -17                                                     | 5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-42-065-198-EB                                                                            | 4/14/2014           | 7:24   | Water                     | х                           |                                        |                                | х                                         |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And Andread              |                               | -18                                                     | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-122-198                                                                                  | 4/15/2014           | 7:00   | Water                     |                             | х                                      | ×                              |                                           |                                  |                                        | х                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                        | х                             | -19                                                     | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-202-198                                                                                  | 4/15/2014           | 6:05   | Water                     | х                           |                                        |                                |                                           |                                  |                                        |                                           | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                               | -20                                                     | 1                    | T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MW-203-198                                                                                  | 4/15/2014           | 6:10   | Water                     | х                           |                                        |                                |                                           |                                  |                                        |                                           | arianisis pikiri pir <del>akiriyiya</del> nan <del>saan</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                               | -21                                                     | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-28-025-198                                                                               | 4/15/2014           | 8:59   | Water                     |                             | х                                      | X                              |                                           |                                  |                                        | Х                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | х                             | -22                                                     | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-28-025-198-EB                                                                            | 4/15/2014           | 8:30   | Water                     | х                           |                                        |                                | х                                         |                                  | <u> </u>                               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        |                               | -23                                                     | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-28-090-198                                                                               | 4/15/2014           | 9:34   | Water                     |                             | ×                                      | x                              |                                           | <b></b>                          |                                        | Х                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                        | х                             | -24                                                     | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-28-090-198-EB                                                                            | 4/15/2014           | 8:47   | Water                     | х                           |                                        |                                | x                                         |                                  |                                        |                                           | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00                    |                               | -25                                                     | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-43-025-198                                                                               | 4/15/2014           | 6:45   | Water                     |                             | Ж                                      | х                              |                                           | Х                                |                                        |                                           | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                        |                               | -26                                                     | 5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1874-40-020-100                                                                             |                     | i      |                           | <del> </del>                | <del> </del>                           | -                              | -                                         |                                  |                                        |                                           | Parameter de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de l |                          |                               |                                                         | 2                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MW-43-025-198-EB                                                                            | 4/15/2014           | 6:20   | Water                     | ×                           |                                        |                                | X                                         |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ì                        | 1                             | -27                                                     | Also 1               | ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Approved by

Sampled by

Relinquished by

Received by

Shipping Details

Lab Phone: (702) 307-2659

Method of Shipment: courier

On Ice: 10 7.5,46,5.2,3.2 Airbill No:

Lab Name: ADVANCED TECHNOLOGY LABORATO

Sample Custody

and

ATTN:

Marion

Special Instructions:

April 9 to May 15, 2014

Report Copy to

Shawn Duffy (530) 229-3303 CH2MHILL

### **CHAIN OF CUSTODY RECORD**

4/17/2014 1:35:09 PM

Page 3 OF 4

| GHZIVITIL                                                                                | <u>L</u>            |        |                             |                               |                                        |                                    |                                           | Un                                       | MIIN C                                 | T CO                                      | JIUU                                     | I IZEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UNL                           | 4/11/2014 1:35:09 PM | <u>۔</u>             |          |
|------------------------------------------------------------------------------------------|---------------------|--------|-----------------------------|-------------------------------|----------------------------------------|------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|----------------------|----------|
| Project Name Po                                                                          | k                   | ••     | Container:                  | Poly<br>(NH4)2S               | 2x250<br>ml Poly<br>(NH4)2S<br>O4/NH4O | 500 ml<br>Poly<br>HNO3,<br>4°C     | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C           | 500 ml<br>Poly<br>HNO3,<br>4°C         | 500 ml<br>Poly<br>HNO3,<br>4°C            | 2x500<br>ml Poly<br>HNO3,<br>4°C         | 250 mi<br>Poly<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250 ml<br>Poly<br>4°C         |                      |                      |          |
| Project Manager                                                                          |                     | -      | o. van 100.                 | H, 4°C                        | H, 4°C                                 | . 0                                | 4 0                                       | . 0                                      | , 0                                    |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | biocommon            |                      |          |
| Sample Manager                                                                           | Shawn Du            | _      | Filtered:                   | L                             | Field                                  | Field                              | Field                                     | Field                                    | Field                                  | Field                                     | Field                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                            | COLUMBA              |                      |          |
| Project Number Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: 1 | P-198-Q2<br>10 Days | .02.GN | ling Time:<br>1.0<br>Matrix | 8 Cr6 (E218.6) Field Filtered | Cr6 (E218.6R) Field Filtered           | 180 Arsenic (6020A) Field Filtered | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mr         | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Metals (6020A-R) Field Filtered Chromium | Anions (E300.0) Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specific Conductance (E120.1) |                      | Number of Containers | COMMENTS |
| MW-43-090-198-EB                                                                         |                     |        |                             |                               |                                        |                                    | T                                         | 3                                        |                                        |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Mai 2200 00          |                      | COMMENIS |
|                                                                                          | 4/15/2014           | 6:58   | Water                       | X                             |                                        |                                    | X                                         |                                          |                                        |                                           |                                          | Maria de maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Maria de Mar |                               | N012390-29           | 2                    |          |
| MW-46-175-198                                                                            | 4/15/2014           | 13:36  | Water                       | Х                             |                                        |                                    | X                                         |                                          | Х                                      |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                             | -30                  | 3                    |          |
| MW-46-205-198                                                                            | 4/15/2014           | 12:05  | Water                       | Х                             |                                        |                                    | Х                                         |                                          |                                        |                                           |                                          | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | -31                  | 2                    |          |
| MW-125-198                                                                               | 4/16/2014           | 7:00   | Water                       |                               | X                                      | Х                                  |                                           |                                          | ·                                      | Х                                         | Х                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                             | -32                  | 6                    |          |
| MW-204-198                                                                               | 4/16/2014           | 6:10   | Water                       | х                             |                                        |                                    |                                           |                                          |                                        |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -33                  | 4                    |          |
| MW-205-198                                                                               | 4/16/2014           | 6:12   | Water                       | х                             |                                        |                                    |                                           |                                          |                                        |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -34                  | 1                    |          |
| MW-29-198                                                                                | 4/16/2014           | 14:20  | Water                       |                               | х                                      | X                                  |                                           |                                          |                                        | Х                                         | х                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                             | -25                  | 6                    |          |
| MW-29-198-EB                                                                             | 4/16/2014           | 13:56  | Water                       | х                             |                                        |                                    | ×                                         | W. W. W. W. W. W. W. W. W. W. W. W. W. W |                                        |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -36                  | 2                    |          |
| MW-32-035-198                                                                            | 4/16/2014           | 13:38  | Water                       |                               | Х                                      | X                                  |                                           | х                                        |                                        |                                           | Х                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -37                  | 5                    |          |
| MW-32-035-198-EB                                                                         | 4/16/2014           | 13:00  | Water                       | х                             |                                        |                                    | ×                                         |                                          | -1                                     |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -38                  | 2                    |          |
| MW-44-070-198                                                                            | 4/16/2014           | 8:18   | Water                       |                               | х                                      | ×                                  |                                           |                                          | y.                                     |                                           | Х                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -39                  | 5                    |          |
| MW-44-070-198-EB                                                                         | 4/16/2014           | 7:33   | Water                       | Х                             |                                        |                                    | х                                         |                                          |                                        |                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -40                  | 2                    |          |
| MW-44-115-198                                                                            | 4/16/2014           | 7:38   | Water                       | х                             |                                        | Х                                  | х                                         |                                          |                                        | Х                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                             | -41                  | 3                    |          |
| MW-44-125-198                                                                            | 4/16/2014           | 11:59  | Water                       | 4                             | х                                      | Х                                  |                                           |                                          |                                        | Х                                         | х                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                             | V -42                | 6                    |          |

|                 | Signatures | Date/Time      |
|-----------------|------------|----------------|
| Approved by     | .///       | 4-17-14        |
| Sampled by      |            | 1635           |
| Relinquished by |            | Management and |
| Received by     |            | 17APR14 1635   |
| Relinquished by |            | MARRIY 1840    |
| Received by     |            |                |

**Shipping Details** Method of Shipment: courier

On Ice: Jes) 1 no 3.5, 4.6, 5.2, 3.2 °c Airbill No:

Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

ATTN:

Special Instructions: April 9 to May 15, 2014

Sample Custody and

Marlon (530) 229-3303

Report Copy to Shawn Duffy **CH2MHILL** 

## **CHAIN OF CUSTODY RECORD**

4/17/2014 1:35:09 PM

Page 4 OF 4

| THE RESERVE OF THE RESERVE                                                               | x Blacker           |      |                          |                             |                              |                                |                                           |                                  |                                        |                                           |                                             |                          |                                       |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------|---------------------|------|--------------------------|-----------------------------|------------------------------|--------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------|---------------------------------------|----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name Po<br>Location Topoc<br>Project Manager                                     | k                   |      | Container:<br>ervatives: | Poly<br>(NH4)2S<br>O4/NH4O  |                              | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C   | 500 ml<br>Poly<br>HNO3,<br>4°C         | 500 ml<br>Poly<br>HNO3,<br>4°C            | 2x500<br>ml Poly<br>HNO3,<br>4°C            | 250 ml<br>Poly<br>4°C    | 250 ml<br>Poly<br>4°C                 |                            |                      | - La constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la c |
| Sample Manager                                                                           |                     | ffy  | Filtered:                | H, 4°C<br>Field             | H, 4°C<br>Field              | Field                          | Field                                     | Field                            | Field                                  | Field                                     | Field                                       | NA                       | NA                                    |                            |                      | MOVAL PROBLEM IN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                          |                     | Holo | ling Time:               | 28                          | 28                           | 180                            | 180                                       | 180                              | 180                                    | 180                                       | 180                                         | 28                       | 28                                    |                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Number Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: 1 | P-198-Q2<br>10 Days | s    | A.O<br>Matrix            | Cr6 (E218.6) Field Filtered | Cr6 (E218.6R) Field Filtered | Arsenic (6020A) Field Filtered | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo.Se.Mn | Metals (6020A-R) Field Filtered<br>Chromium | Anions (E300.0) Fluoride | Specific Conductance (E120.1)         |                            | Number of Containers | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW-44-125-198-EB                                                                         | 4/16/2014           | 8:25 | Water                    | Х                           |                              |                                | Х                                         |                                  |                                        | 1                                         |                                             |                          |                                       | N012390-43                 | 2                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-206-198                                                                               | 4/17/2014           | 6:20 | Water                    | Х                           |                              |                                |                                           |                                  |                                        |                                           |                                             |                          |                                       | ) -44                      | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-207-198                                                                               | 4/17/2014           | 6:10 | Water                    | х                           |                              |                                |                                           | Stormann Edward Communication    |                                        |                                           |                                             |                          |                                       | -45                        | 4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                          | <del></del>         | 9    | \$                       | <del> </del>                | <del></del>                  |                                |                                           |                                  | <del></del>                            | ****                                      | (marrier annuel aus-                        |                          | · · · · · · · · · · · · · · · · · · · | TOTAL NUMBER OF CONTAINERS | 148                  | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Approved by     | Signatures | Date/Time    | Shipping Details                       |                | Special Instru | ctions:  |     |
|-----------------|------------|--------------|----------------------------------------|----------------|----------------|----------|-----|
| Sampled by      |            | 1635         | Method of Shipment: courier            | ATTN:          | April 9 to May | 15, 2014 |     |
| Relinquished by | Ma         |              | On Ice: (yes) / no 3.5,4.6,51,3.2°C    | Sample Custody |                |          |     |
| Received by     |            | 1749214 1435 | Airbill No:                            | and            | Report Copy t  | 0        |     |
| Relinquished by |            | TAPPELY 1840 | Lab Name: ADVANCED TECHNOLOGY LABORATO | Marlon         |                | n Duffy  |     |
| Received by     |            |              | Lab Phone: (702) 307-2659              |                | (530) 2        | 229-3303 | 124 |

# Advanced Technology Laboratories, Inc.

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

| If you have any questions of                               | r further inst                      | ruction, please   | contact our Pi | roject Coord | linator at (702 | ) 307-2659.  |               |  |
|------------------------------------------------------------|-------------------------------------|-------------------|----------------|--------------|-----------------|--------------|---------------|--|
| Cooler Received/Opened On:                                 | 4/17/2014                           |                   |                |              | Workorder:      | N012390      |               |  |
| Rep sample Temp (Deg C):                                   | 3.5/4.6/5.2/3                       | 3.2               |                |              | IR Gun ID:      | 2            |               |  |
| Temp Blank:                                                | Yes                                 | <b>✓</b> No       |                |              |                 |              |               |  |
| Carrier name:                                              | ATL                                 |                   |                |              |                 |              |               |  |
| Last 4 digits of Tracking No.:                             | NA                                  |                   |                | Packing      | Material Used:  | None         |               |  |
| Cooling process:                                           | ✓ Ice [                             | lce Pack          | Dry Ice        | Other        | ☐ None          |              |               |  |
|                                                            |                                     | <u>Sa</u>         | mple Receip    | t Checklist  |                 |              |               |  |
| 1. Shipping container/cooler in                            | good conditio                       | n?                |                |              | Yes 🗹           | No 🗆         | Not Present   |  |
| 2. Custody seals intact, signed,                           | dated on ship                       | opping container  | /cooler?       |              | Yes $\square$   | No 🗌         | Not Present 🗹 |  |
| 3. Custody seals intact on sam                             | ple bottles?                        |                   |                |              | Yes $\square$   | No 🗌         | Not Present 🗹 |  |
| 4. Chain of custody present?                               |                                     |                   |                |              | Yes 🗹           | No 🗌         |               |  |
| 5. Sampler's name present in C                             | COC?                                |                   |                |              | Yes 🗹           | No 🗌         |               |  |
| 6. Chain of custody signed whe                             | n relinquished                      | d and received?   |                |              | Yes 🗹           | No 🗌         |               |  |
| 7. Chain of custody agrees with                            | sample label                        | s?                |                |              | Yes 🗹           | No 🗌         |               |  |
| 8. Samples in proper container/                            | /bottle?                            |                   |                |              | Yes 🗸           | No 🗌         |               |  |
| 9. Sample containers intact?                               |                                     |                   |                |              | Yes 🗸           | No 🗆         |               |  |
| 10. Sufficient sample volume for                           | or indicated tes                    | st?               |                |              | Yes 🗸           | No 🗌         |               |  |
| 11. All samples received within                            | holding time?                       | •                 |                |              | Yes 🗸           | No 🗌         |               |  |
| 12. Temperature of rep sample                              | or Temp Blar                        | nk within accepta | able limit?    |              | Yes 🗸           | No 🗌         | NA $\square$  |  |
| 13. Water - VOA vials have zer                             | o headspace?                        | >                 |                |              | Yes             | No 🗌         | NA 🗸          |  |
| 14. Water - pH acceptable upor<br>Example: pH > 12 for (CN | •                                   | · Metals          |                |              | Yes 🗹           | No 🗌         | NA 🗌          |  |
| 15. Did the bottle labels indicate                         | e correct pres                      | ervatives used?   |                |              | Yes 🗸           | No 🗆         | NA $\square$  |  |
| 16. Were there Non-Conformar Wa                            | nce issues at l<br>as Client notifi |                   |                |              | Yes ☐<br>Yes ☐  | No 🗌<br>No 🗆 | NA 🗹          |  |
| Comments:                                                  |                                     |                   |                |              |                 |              |               |  |

Checklist Completed By MBC MBC

Reviewed By: 04/21/1

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = A \* DF

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For **N012390-003A** concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 5.6173 \* 20 = 112.346

Reporting result in two significant figures,

$$Cr^{+6} \mu g/L = 110$$

Narry 4/29/2014

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = A \* DF

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration  
DF = dilution factor

For **N012390-013A** concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 0.2147 \* 1  
= 0.2147

Reporting result in two significant figures,

$$Cr^{+6}$$
,  $\mu$ g/L = 0.21

Narry 4/29/2014

**METHOD**: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Fluoride concentration, in mg/L, in the original sample as follows:

where:

A = mg/L, IC calculated concentration DF = dilution factor

For N012390-005D, concentration in mg/L is calculated as follows:

Fluoride, mg/L = 0.797 \* 1

= 0.797

Reporting result in two significant figures,

Fluoride, mg/L = 0.80

Nancy 4/30/2014

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

**MATRIX:** Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic, ug/L = A \* DF \* PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N012390-005B, the concentration in ug/L is calculated as follows:

Arsenic, ug/L = 7.19642806592856 \* 1 \* (25/25)

= 7.19642806592856

Reporting results in two significant figures,

Arsenic, ug/L = 7.2

Narry 4/30/2014

#### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012390

 Test Method:
 EPA 6020

 Analysis Date:
 4/25/2014

Matrix: Water
Batch No.: 45479

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to As, Mo, Se & Cr. The calculated values are <25X RL. PS @ 2x passed criteria.

| Sample ID          | Analyte    | &Units | Calc Val    | OQual | SAMPRefVal  | %DIFF   | %DIFFlimit |
|--------------------|------------|--------|-------------|-------|-------------|---------|------------|
| N012397-001A-DT 5X | Arsenic    | μg/L   | 2.221438985 | NA    | 2.36406027  | 6.03%   | 10         |
| N012397-001A-DT 5X | Manganese  | μg/L   | 73.85165718 | PASS  | 71.93615798 | 2.66%   | 10         |
| N012397-001A-DT 5X | Molybdenum | μg/L   | 1.525165432 | NA    | 1.587516839 | 3.93%   | 10         |
| N012397-001A-DT 5X | Selenium   | μg/L   | 0           | NA    | 0.226015046 | 100.00% | 10         |
| N012397-001A-DT 5X | Chromium   | μg/L   | 11.80752337 | NA    | 11.6617115  | 1.25%   | 10         |

Note: NA - Not applicable

#### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012390

 Test Method:
 EPA 6020

 Analysis Date:
 4/25/2014

Matrix: Water
Batch No.: 45480

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to As, Se & Cr. The calculated values are <25X RL. PS @ 2x passed criteria.

| Sample ID           | Analyte    | &Units | Calc Val    | OQual | SAMPRefVal  | %DIFF | %DIFFlimit |
|---------------------|------------|--------|-------------|-------|-------------|-------|------------|
| N012390-024B-DT 5X  | Arsenic    | μg/L   | 1.848747142 | NA    | 1.819403596 | 1.61% | 10         |
| N012390-024B-DT 25X | Manganese  | μg/L   | 132.9899546 | PASS  | 128.732773  | 3.31% | 10         |
| N012390-024B-DT 5X  | Molybdenum | μg/L   | 20.56856118 | PASS  | 22.22861913 | 7.47% | 10         |
| N012390-024B-DT 5X  | Selenium   | μg/L   | 0           | NA    | 0           |       | 10         |
| N012390-024B-DT 5X  | Chromium   | μg/L   | 0           | NA    | 0           |       | 10         |

Note: NA - Not applicable

# Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Work Order: N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

## ANALYTICAL QC SUMMARY REPORT

Date: 29-Apr-14

TestCode: 6020\_DIS

| Sample ID: N012397-001A-PS | SampType: <b>PS</b> | TestCoo | le: <b>6020_DIS</b> | Units: µg/L |                          | Prep Da  | te:                   |             | RunNo: 932 | 261      |      |
|----------------------------|---------------------|---------|---------------------|-------------|--------------------------|----------|-----------------------|-------------|------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45479     | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   | Analysis Date: 4/25/2014 |          | SeqNo: <b>1772496</b> |             |            |          |      |
| Analyte                    | Result              | PQL     | SPK value           | SPK Ref Val | %REC                     | LowLimit | HighLimit             | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Arsenic                    | 23.863              | 0.20    | 20.00               | 2.364       | 107                      | 75       | 125                   |             |            |          |      |
| Manganese                  | 277.188             | 1.0     | 200.0               | 71.94       | 103                      | 75       | 125                   |             |            |          |      |
| Molybdenum                 | 24.043              | 1.0     | 20.00               | 1.588       | 112                      | 75       | 125                   |             |            |          |      |
| Selenium                   | 21.948              | 1.0     | 20.00               | 0.2260      | 109                      | 75       | 125                   |             |            |          |      |

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

N012390

PG&E Topock, 423575.MP.02.GM.0 **Project:** 

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012390-024B-PS        | SampType: <b>PS</b> | TestCode | e: <b>6020_DIS</b> | Units: µg/L | Prep Date:               |             | RunNo: <b>93261</b>   |                       |      |
|-----------------------------------|---------------------|----------|--------------------|-------------|--------------------------|-------------|-----------------------|-----------------------|------|
| Client ID: ZZZZZZZ                | Batch ID: 45480     | TestNo   | o: <b>EPA 6020</b> | EPA 3010A   | Analysis Date: 4/25/2014 |             | SeqNo: <b>1772533</b> |                       |      |
| Analyte                           | Result              | PQL      | SPK value          | SPK Ref Val | %REC                     | LowLimit    | HighLimit RPD Ref V   | al %RPD RPDLimit      | Qual |
| Arsenic                           | 22.931              | 0.20     | 20.00              | 1.819       | 106                      | 75          | 125                   |                       |      |
| Molybdenum                        | 46.546              | 1.0      | 20.00              | 22.23       | 122                      | 75          | 125                   |                       |      |
| Selenium                          | 21.248              | 1.0      | 20.00              | 0           | 106                      | 75          | 125                   |                       |      |
| Sample ID: <b>N012390-024B-PS</b> | SampType: <b>PS</b> | TestCode | e: <b>6020_DIS</b> | Units: µg/L |                          | Prep Da     | te:                   | RunNo: <b>93261</b>   |      |
| Client ID: ZZZZZZZ                | Batch ID: 45480     | TestNo   | o: <b>EPA 6020</b> | EPA 3010A   |                          | Analysis Da | te: <b>4/25/2014</b>  | SeqNo: <b>1772545</b> |      |
| Analyte                           | Result              | PQL      | SPK value          | SPK Ref Val | %REC                     | LowLimit    | HighLimit RPD Ref V   | al %RPD RPDLimit      | Qual |
| Manganese                         | 619.983             | 2.5      | 500.0              | 128.7       | 98.3                     | 75          | 125                   |                       |      |

- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Analyte detected in the associated Method Blank В

N012390

PG&E Topock, 423575.MP.02.GM.0 **Project:** 

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012397-001A-PS | SampType: <b>PS</b> | TestCod | de: <b>6020DIS_</b> 0 | CrP Units: μg/L |      | Prep Da     | te:                 |             | RunNo: 932 | 260      |      |
|----------------------------|---------------------|---------|-----------------------|-----------------|------|-------------|---------------------|-------------|------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45479     | TestN   | lo: <b>EPA 6020</b>   | EPA 3010A       |      | Analysis Da | te: <b>4/25/201</b> | 4           | SeqNo: 17  | 72347    |      |
| Analyte                    | Result              | PQL     | SPK value             | SPK Ref Val     | %REC | LowLimit    | HighLimit           | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Chromium                   | 32.799              | 2.0     | 20.00                 | 11.66           | 106  | 80          | 120                 | _           | •          |          | -    |

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

N012390

PG&E Topock, 423575.MP.02.GM.0 **Project:** 

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012390-024B-PS | SampType: <b>PS</b> | TestCod | le: <b>6020DIS_</b> 0 | CrP Units: μg/L |      | Prep Da     | te:          |             | RunNo: 932 | 260      |      |
|----------------------------|---------------------|---------|-----------------------|-----------------|------|-------------|--------------|-------------|------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45480     | TestN   | lo: <b>EPA 6020</b>   | EPA 3010A       |      | Analysis Da | te: 4/25/201 | 4           | SeqNo: 17  | 72384    |      |
| Analyte                    | Result              | PQL     | SPK value             | SPK Ref Val     | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Chromium                   | 19.270              | 2.0     | 20.00                 | 0               | 96.3 | 80          | 120          |             |            |          |      |

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

N012390

PG&E Topock, 423575.MP.02.GM.0 **Project:** 

## ANALYTICAL QC SUMMARY REPORT

TestCode: 6020RDIS\_CrPGE

| Sample ID: N012397-001A-PS | SampType: <b>PS</b> | TestCod | de: <b>6020RDIS</b> | _Cr Units: μg/L |      | Prep Da     | te:                |             | RunNo: 932 | 260      |      |
|----------------------------|---------------------|---------|---------------------|-----------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45479     | TestN   | lo: <b>EPA 6020</b> | EPA 3010A       |      | Analysis Da | te: <b>4/25/20</b> | 14          | SeqNo: 177 | 72421    |      |
| Analyte                    | Result              | PQL     | SPK value           | SPK Ref Val     | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Chromium                   | 32.799              | 2.0     | 20.00               | 11.66           | 106  | 80          | 120                |             |            |          |      |

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N012390

N012390

**Project:** PG&E Topock, 423575.MP.02.GM.0

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020RDIS\_CrPGE

| Sample ID: N012390-024B-PS | SampType: <b>PS</b> | TestCod | de: <b>6020RDIS</b> | _Cr Units: μg/L |      | Prep Da     | te:                |             | RunNo: 932         | 260      |      |
|----------------------------|---------------------|---------|---------------------|-----------------|------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45480     | TestN   | lo: <b>EPA 6020</b> | EPA 3010A       |      | Analysis Da | te: <b>4/25/20</b> | 14          | SeqNo: <b>17</b> 7 | 72452    |      |
| Analyte                    | Result              | PQL     | SPK value           | SPK Ref Val     | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Chromium                   | 19 270              | 2.0     | 20.00               | n               | 96.3 | 80          | 120                |             |                    |          |      |

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

July 28, 2014

Shawn P. Duffy CA-ELAP No.:2676

CH2M HILL NV Cert. No.: NV-00922

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N012433

RE: PG&E Topock, 423575.MP.02.GM.02

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on April 24, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

This is an amended report. Please disregard all previous documentation that corresponds to the page(s) enclosed.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.



## Revision 1, 07/28/14

Date: 28-Jul-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL

PG&E Topock, 423575.MP.02.GM.02 **Project: CASE NARRATIVE** 

N012433 Lab Order:

#### SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Sample results have been switched for samples MW-23-060-198 and MW-23-080-198 due to sample label not matching Chain of Custody (COC).

Analytical Comments for EPA 218.6:

Dilution was necessary for samples N012433-006 and N012433-029 due to matrix interference. Samples were analyzed at lower dilution however matrix spikes were not recovered indicating possible matrix interference. Samples were reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 300.0:

Dilution was necessary for samples N012433-003, N012433-009, N012433-012 and N012433-013 due to matrix interference.

Analytical Comments for EPA 6010B\_Dissolved:

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for Calcium since the analyte concentration in the sample is disproportionate to the spike level. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Analytical Comments for EPA 6020 Dissolved:

Because the results for total dissolved chromium (4.743 ug/L) and hexavalent chromium (6.195 ug/L) for sample N012433-014 (MW-72BR-200-198) are discrepant, sample from both the total dissolved chromium and hexavalent chromium containers were redigested and analyzed for total dissolved chromium. The results from the redigested samples were 4.623 and 4.965 ug/L, respectively. Since



## Revision 1, 07/28/14

**CLIENT:** CH2M HILL

PG&E Topock, 423575.MP.02.GM.02 **Project: CASE NARRATIVE** 

Lab Order: N012433

these data confirmed the original result for total dissolved chromium, the original result is reported.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for some analytes possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Dilution was necessary on samples N012433-003, N012433-013, N012433-014, N012433-020, N012433-022 and N012433-021 due to failed Internal Standard when samples were analyzed at no dilution.



## **ASSET Laboratories**

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 Work Order Sample Summary

**Date:** 08-May-14

**Lab Order:** N012433 **Contract No:** 2014-GMP-198-

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012433-001A  | MW-33-040-198    | Water  | 4/17/2014 2:34:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-001B  | MW-33-040-198    | Water  | 4/17/2014 2:34:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-001C  | MW-33-040-198    | Water  | 4/17/2014 2:34:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-001D  | MW-33-040-198    | Water  | 4/17/2014 2:34:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-002A  | MW-33-040-198-EB | Water  | 4/17/2014 1:02:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-002B  | MW-33-040-198-EB | Water  | 4/17/2014 1:02:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-003A  | MW-33-150-198    | Water  | 4/17/2014 1:48:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-003B  | MW-33-150-198    | Water  | 4/17/2014 1:48:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-003C  | MW-33-150-198    | Water  | 4/17/2014 1:48:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-004A  | MW-34-080-198    | Water  | 4/17/2014 9:12:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-004B  | MW-34-080-198    | Water  | 4/17/2014 9:12:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-004C  | MW-34-080-198    | Water  | 4/17/2014 9:12:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-005A  | MW-34-080-198-EB | Water  | 4/17/2014 7:16:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-005B  | MW-34-080-198-EB | Water  | 4/17/2014 7:16:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-006A  | MW-34-100-198    | Water  | 4/17/2014 7:40:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-006B  | MW-34-100-198    | Water  | 4/17/2014 7:40:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-007A  | MW-36-090-198    | Water  | 4/17/2014 10:44:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-007B  | MW-36-090-198    | Water  | 4/17/2014 10:44:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-008A  | MW-36-100-198    | Water  | 4/17/2014 11:24:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-008B  | MW-36-100-198    | Water  | 4/17/2014 11:24:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-008C  | MW-36-100-198    | Water  | 4/17/2014 11:24:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-009A  | MW-123-198       | Water  | 4/21/2014 7:00:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-009B  | MW-123-198       | Water  | 4/21/2014 7:00:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-009C  | MW-123-198       | Water  | 4/21/2014 7:00:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-010A  | MW-208-198       | Water  | 4/21/2014 7:05:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-011A  | MW-209-198       | Water  | 4/21/2014 7:00:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-012A  | MW-33-090-198    | Water  | 4/21/2014 8:18:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-012B  | MW-33-090-198    | Water  | 4/21/2014 8:18:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-012C  | MW-33-090-198    | Water  | 4/21/2014 8:18:00 AM   | 4/24/2014     | 5/8/2014      |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

# Revision 1, 07/28/14

**CLIENT:** CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab Order:** N012433

**Contract No:** 2014-GMP-198-

# **Work Order Sample Summary**

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012433-013A  | MW-33-210-198    | Water  | 4/21/2014 9:32:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-013B  | MW-33-210-198    | Water  | 4/21/2014 9:32:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-013C  | MW-33-210-198    | Water  | 4/21/2014 9:32:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-014A  | MW-72BR-200-198  | Water  | 4/21/2014 2:52:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-014B  | MW-72BR-200-198  | Water  | 4/21/2014 2:52:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-014C  | MW-72BR-200-198  | Water  | 4/21/2014 2:52:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-015A  | MW-16-198        | Water  | 4/22/2014 8:14:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-015B  | MW-16-198        | Water  | 4/22/2014 8:14:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-016A  | MW-210-198       | Water  | 4/22/2014 6:30:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-017A  | MW-211-198       | Water  | 4/22/2014 6:32:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-018A  | MW-21-198        | Water  | 4/22/2014 11:10:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-018B  | MW-21-198        | Water  | 4/22/2014 11:10:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-018C  | MW-21-198        | Water  | 4/22/2014 11:10:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-018D  | MW-21-198        | Water  | 4/22/2014 11:10:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-019A  | MW-21-198-EB     | Water  | 4/22/2014 11:00:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-019B  | MW-21-198-EB     | Water  | 4/22/2014 11:00:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-020A  | MW-23-080-198    | Water  | 4/22/2014 2:15:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-020B  | MW-23-080-198    | Water  | 4/22/2014 2:15:00 PM   | 4/24/2014     | 5/8/2014      |
| N012433-021A  | MW-23-060-198    | Water  | 4/22/2014 12:47:00 PM  | 4/24/2014     | 5/8/2014      |
| N012433-021B  | MW-23-060-198    | Water  | 4/22/2014 12:47:00 PM  | 4/24/2014     | 5/8/2014      |
| N012433-022A  | MW-57-185-198    | Water  | 4/22/2014 11:06:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-022B  | MW-57-185-198    | Water  | 4/22/2014 11:06:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-022C  | MW-57-185-198    | Water  | 4/22/2014 11:06:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-023A  | MW-126-198       | Water  | 4/23/2014 7:00:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-023B  | MW-126-198       | Water  | 4/23/2014 7:00:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-024A  | MW-17-198        | Water  | 4/23/2014 8:25:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-024B  | MW-17-198        | Water  | 4/23/2014 8:25:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-025A  | MW-212-198       | Water  | 4/23/2014 7:38:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-026A  | MW-213-198       | Water  | 4/23/2014 7:30:00 AM   | 4/24/2014     | 5/8/2014      |
| N012433-027A  | MW-47-055-198    | Water  | 4/23/2014 9:29:00 AM   | 4/24/2014     | 5/8/2014      |
|               |                  |        |                        |               |               |



CLIENT: CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab Order:** N012433 **Contract No:** 2014-GMP-198-

## **Work Order Sample Summary**

| Lab Sample ID | Client Sample ID | Matrix | Collection Date       | Date Received | Date Reported |
|---------------|------------------|--------|-----------------------|---------------|---------------|
| N012433-027B  | MW-47-055-198    | Water  | 4/23/2014 9:29:00 AM  | 4/24/2014     | 5/8/2014      |
| N012433-028A  | MW-47-115-198    | Water  | 4/23/2014 10:11:00 AM | 4/24/2014     | 5/8/2014      |
| N012433-028B  | MW-47-115-198    | Water  | 4/23/2014 10:11:00 AM | 4/24/2014     | 5/8/2014      |
| N012433-029A  | MW-48-198        | Water  | 4/23/2014 12:54:00 PM | 4/24/2014     | 5/8/2014      |
| N012433-029B  | MW-48-198        | Water  | 4/23/2014 12:54:00 PM | 4/24/2014     | 5/8/2014      |
| N012433-030A  | MW-50-095-198    | Water  | 4/23/2014 12:06:00 PM | 4/24/2014     | 5/8/2014      |
| N012433-030B  | MW-50-095-198    | Water  | 4/23/2014 12:06:00 PM | 4/24/2014     | 5/8/2014      |
| N012433-031A  | MW-214-198       | Water  | 4/24/2014 6:30:00 AM  | 4/24/2014     | 5/8/2014      |

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-040-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 2:34:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-001

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 5600
 0.10
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-150-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 1:48:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-003

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 14000
 0.10
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

**Client Sample ID:** MW-36-100-198 Lab Order: N012433 Collection Date: 4/17/2014 11:24:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012433-008

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140424C QC Batch: R93249 PrepDate: Analyst: LCC Specific Conductance 7000 0.10 0.10 umhos/cm 4/24/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-123-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 8700
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-090-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 8:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-012

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 8800
 0.10
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-210-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-013

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 17000
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-014

Client Sample ID: MW-72BR-200-198

**Collection Date:** 4/21/2014 2:52:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 14000
 0.10
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-21-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 11:10:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-018

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 8300
 0.10
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-57-185-198

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-022

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140424C
 QC Batch:
 R93249
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 17000
 0.10
 umhos/cm
 1
 4/24/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories Date:** 08-May-14

**CLIENT:** CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 120.1\_WPGE

| Sample ID: N012433-022C-DU | JP SampType: DUP | TestCod | de: <b>120.1_WP</b>   | GE Units: umh | os/cm | Prep Da     | ite:         |             | RunNo: 932        | 249      |      |
|----------------------------|------------------|---------|-----------------------|---------------|-------|-------------|--------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: R93249 | TestN   | No: <b>EPA 120.</b> 1 |               |       | Analysis Da | ite: 4/24/20 | 114         | SeqNo: <b>177</b> | 1925     |      |
| Analyte                    | Result           | PQL     | SPK value             | SPK Ref Val   | %REC  | LowLimit    | HighLimit    | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Specific Conductance       | 17160.000        | 0.10    |                       |               |       |             |              | 17210       | 0.291             | 10       |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

4/30/2014 09:19 PM

Print Date: 08-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-040-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-33-040-198

 Lab Order:
 N012433
 Collection Date: 4/17/2014 2:34:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

**Lab ID:** N012433-001

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140425A QC Batch: R93266 PrepDate: Analyst: QBM Hexavalent Chromium 0.016 0.20 4/25/2014 10:51 AM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140430C QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/30/2014 09:25 PM

1

**ASSET Laboratories** 

Print Date: 08-May-14 **CLIENT:** CH2M HILL Client Sample ID: MW-33-040-198-EB

Lab Order: N012433 Collection Date: 4/17/2014 1:02:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

Lab ID: N012433-002

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140425A QC Batch: R93269 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/25/2014 10:04 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140430B QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

1.0

μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Holding times for preparation or analysis exceeded Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-150-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 1:48:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-003

| Analyses                | Result MDL              | PQL | Qual Units | DF       | Date Analyzed      |
|-------------------------|-------------------------|-----|------------|----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |     |            |          |                    |
|                         |                         | EP  | A 218.6    |          |                    |
| RunID: IC6_140425A      | QC Batch: <b>R93269</b> |     | PrepDate:  |          | Analyst: RB        |
| Hexavalent Chromium     | 12 0.080                | 1.0 | μg/L       | 5        | 4/25/2014 06:19 PM |
| DISSOLVED METALS BY ICI | P-MS                    |     |            |          |                    |
|                         | EPA 3010A               | EP. | A 6020     |          |                    |
| RunID: ICP7_140506A     | QC Batch: 45595         |     | PrepDate:  | 5/5/2014 | Analyst: CEI       |
| Chromium                | 9.6 0.030               | 1.0 | μg/L       | 1        | 5/6/2014 10:36 AM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

4/30/2014 09:36 PM

Print Date: 08-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-34-080-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 9:12:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

**Lab ID:** N012433-004

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140425A QC Batch: R93266 PrepDate: Analyst: QBM Hexavalent Chromium 0.016 0.20 4/25/2014 11:10 AM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140430C QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

4/30/2014 09:41 PM

Print Date: 08-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-34-080-198-EB

**Lab Order:** N012433 **Collection Date:** 4/17/2014 7:16:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

**Lab ID:** N012433-005

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140425A QC Batch: R93269 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/25/2014 10:24 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140430B QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-34-100-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 7:40:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-006

| Analyses               | Result MDL       | PQL               | Qual Units | DF        | Date Analyzed      |  |  |  |
|------------------------|------------------|-------------------|------------|-----------|--------------------|--|--|--|
| HEXAVALENT CHROMIUM E  | BY IC            |                   |            |           |                    |  |  |  |
|                        |                  | EPA 218.6         |            |           |                    |  |  |  |
| RunID: IC6_140428A     | QC Batch: R93270 |                   | PrepDate:  |           | Analyst: RB        |  |  |  |
| Hexavalent Chromium    | 3.0 0.080        | 1.0               | μg/L       | 5         | 4/28/2014 11:38 AM |  |  |  |
| DISSOLVED METALS BY IC | P-MS             |                   |            |           |                    |  |  |  |
|                        | EPA 3010A        | PA 3010A EPA 6020 |            |           |                    |  |  |  |
| RunID: ICP7_140430B    | QC Batch: 45535  |                   | PrepDate:  | 4/25/2014 | Analyst: CEI       |  |  |  |
| Chromium               | 3.5 0.030        | 1.0               | μg/L       | 1         | 4/30/2014 09:47 PM |  |  |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

4/30/2014 09:52 PM

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-36-090-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 10:44:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

ND

0.030

**Lab ID:** N012433-007

Chromium

| Analyses               | Result MDL       | PQL Qual Uni | its DF Date Analyzed   |  |  |  |  |  |
|------------------------|------------------|--------------|------------------------|--|--|--|--|--|
| HEXAVALENT CHROMIUM    | BY IC            |              |                        |  |  |  |  |  |
|                        |                  | EPA 218.6    |                        |  |  |  |  |  |
| RunID: IC6_140425A     | QC Batch: R93269 | PrepDate:    | Analyst: RB            |  |  |  |  |  |
| Hexavalent Chromium    | ND 0.016         | 0.20 μg/L    | 1 4/25/2014 10:44 Pt   |  |  |  |  |  |
| DISSOLVED METALS BY IC | P-MS             |              |                        |  |  |  |  |  |
|                        | EPA 3010A        | EPA 6020     |                        |  |  |  |  |  |
| RunID: ICP7_140430B    | QC Batch: 45535  | PrepDate:    | 4/25/2014 Analyst: CEI |  |  |  |  |  |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-36-100-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 11:24:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-008

| Analyses               | Resu      | ılt 1     | MDL   | PQL | Qual   | Units | DF        | Date Analyzed      |
|------------------------|-----------|-----------|-------|-----|--------|-------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC     |           |       |     |        |       |           |                    |
|                        |           | EPA 218.6 |       |     |        |       |           |                    |
| RunID: IC6_140425A     | QC Batch: | R932      | 269   |     | PrepDa | ate:  |           | Analyst: RB        |
| Hexavalent Chromium    | 4         | 48        | 0.080 | 1.0 |        | μg/L  | 5         | 4/26/2014 01:43 AM |
| DISSOLVED METALS BY IC | P-MS      |           |       |     |        |       |           |                    |
|                        | EPA 3010A |           |       | EP. | A 6020 |       |           |                    |
| RunID: ICP7_140430B    | QC Batch: | 4553      | 5     |     | PrepDa | ate:  | 4/25/2014 | Analyst: CEI       |
| Chromium               | 4         | 47        | 0.030 | 1.0 |        | μg/L  | 1         | 4/30/2014 10:09 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/30/2014 10:14 PM

Print Date: 08-May-14

1

**ASSET Laboratories** 

Chromium

CLIENT: CH2M HILL Client Sample ID: MW-123-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

9.8

0.030

**Lab ID:** N012433-009

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140429A QC Batch: R93281 PrepDate: Analyst: RB Hexavalent Chromium 12 0.016 0.20 4/29/2014 11:05 AM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140430B QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-010

Client Sample ID: MW-208-198

**Collection Date:** 4/21/2014 7:05:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140425A
 QC Batch:
 R93269
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 4/25/2014 11:04 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012433

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-011

Client Sample ID: MW-209-198

Collection Date: 4/21/2014 7:00:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140429A
 QC Batch:
 R93281
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 4/29/2014 10:45 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/30/2014 10:20 PM

Print Date: 08-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-090-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-33-090-198

 Lab Order:
 N012433
 Collection Date: 4/21/2014 8:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

10

0.030

**Lab ID:** N012433-012

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140425A QC Batch: R93269 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 4/25/2014 03:59 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140430B QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-210-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-013

| Analyses                | Result MDL       | PQL       | Qual Units | DF        | Date Analyzed      |  |  |  |
|-------------------------|------------------|-----------|------------|-----------|--------------------|--|--|--|
| HEXAVALENT CHROMIUM E   | BY IC            |           |            |           |                    |  |  |  |
|                         |                  | EPA 218.6 |            |           |                    |  |  |  |
| RunID: IC6_140425A      | QC Batch: R93269 |           | PrepDate:  |           | Analyst: RB        |  |  |  |
| Hexavalent Chromium     | 10 0.080         | 1.0       | μg/L       | 5         | 4/25/2014 06:38 PM |  |  |  |
| DISSOLVED METALS BY ICI | P-MS             |           |            |           |                    |  |  |  |
|                         | EPA 3010A        | EP        | A 6020     |           |                    |  |  |  |
| RunID: ICP7_140430B     | QC Batch: 45535  |           | PrepDate:  | 4/25/2014 | Analyst: CEI       |  |  |  |
| Chromium                | 8.4 0.030        | 1.0       | μg/L       | 1         | 4/30/2014 10:25 PM |  |  |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/30/2014 10:31 PM

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-72BR-200-198

Lab Order: N012433 Collection Date: 4/21/2014 2:52:00 PM

0.030

4.7

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-014

Chromium

| Analyses               | Result MDL       | PQL Qual Ur | nits DF I | Date Analyzed      |
|------------------------|------------------|-------------|-----------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |             |           |                    |
|                        |                  | EPA 218.6   |           |                    |
| RunID: IC6_140425A     | QC Batch: R93269 | PrepDate:   |           | Analyst: RB        |
| Hexavalent Chromium    | 6.2 0.080        | 1.0 μg/L    | 5         | 4/25/2014 06:58 PM |
| DISSOLVED METALS BY IC | P-MS             |             |           |                    |
|                        | EPA 3010A        | EPA 6020    |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45535  | PrepDate:   | 4/25/2014 | Analyst: CEI       |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/30/2014 07:29 PM

**Print Date:** 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-16-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 8:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

9.7

0.030

**Lab ID:** N012433-015

Chromium

| Analyses               | Result MDL       | PQL Qual Uni | ts DF Date Analyzed    |
|------------------------|------------------|--------------|------------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |              |                        |
|                        |                  | EPA 218.6    |                        |
| RunID: IC6_140425A     | QC Batch: R93269 | PrepDate:    | Analyst: RB            |
| Hexavalent Chromium    | 9.9 0.016        | 0.20 μg/L    | 1 4/25/2014 04:29 PM   |
| DISSOLVED METALS BY IC | P-MS             |              |                        |
|                        | EPA 3010A        | EPA 6020     |                        |
| RunID: ICP7_140430B    | QC Batch: 45536  | PrepDate:    | 4/25/2014 Analyst: CEI |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-210-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 6:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-016

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140425A
 QC Batch:
 R93269
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 4/26/2014 12:03 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012433

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-017

Client Sample ID: MW-211-198

**Collection Date:** 4/22/2014 6:32:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140429A
 QC Batch:
 R93281
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 4/29/2014 10:25 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/30/2014 10:36 PM

**Print Date:** 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-21-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 11:10:00 AM

0.030

1.8

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-018

Chromium

| Analyses               | Result MDL       | PQL   | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|-------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC            |       |            |           |                    |
|                        |                  | EPA 2 | 218.6      |           |                    |
| RunID: IC7_140425A     | QC Batch: R93266 |       | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | 1.9 0.016        | 0.20  | μg/L       | 1         | 4/25/2014 11:29 AM |
| DISSOLVED METALS BY IC | P-MS             |       |            |           |                    |
|                        | EPA 3010A        | EPA 6 | 6020       |           |                    |
| RunID: ICP7_140430C    | QC Batch: 45535  |       | PrepDate:  | 4/25/2014 | Analyst: CEI       |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

4/30/2014 10:42 PM

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-21-198-EB

**Lab Order:** N012433 **Collection Date:** 4/22/2014 11:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

**Lab ID:** N012433-019

Chromium

| Analyses               | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM I  | BY IC                   |      |            |           |                    |
|                        |                         | EPA  | 218.6      |           |                    |
| RunID: IC6_140425A     | QC Batch: <b>R93269</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016                | 0.20 | μg/L       | 1         | 4/26/2014 12:43 AM |
| DISSOLVED METALS BY IC | P-MS                    |      |            |           |                    |
|                        | EPA 3010A               | EPA  | 6020       |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45535         |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

# Revision 1, 07/28/14

## **ANALYTICAL RESULTS**

Print Date: 28-Jul-14

CLIENT: CH2M HILL Client Sample ID: MW-23-080-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 2:15:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-020

**ASSET Laboratories** 

| A 1                     | D I MDI          | DOL | 0 1 11 4   | DE        | D ( ) 1            |
|-------------------------|------------------|-----|------------|-----------|--------------------|
| Analyses                | Result MDL       | PQL | Qual Units | DF        | Date Analyzed      |
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |           |                    |
|                         |                  | EP# | A 218.6    |           |                    |
| RunID: IC6_140425A      | QC Batch: R93269 |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | 15 0.080         | 1.0 | μg/L       | 5         | 4/25/2014 04:39 PM |
| DISSOLVED METALS BY ICI | P-MS             |     |            |           |                    |
|                         | EPA 3010A        | EP  | A 6020     |           |                    |
| RunID: ICP7_140430B     | QC Batch: 45535  |     | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Chromium                | 13 0.030         | 1.0 | μg/L       | 1         | 4/30/2014 10:47 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified





# Revision 1, 07/28/14

## **ANALYTICAL RESULTS**

Print Date: 28-Jul-14

CLIENT: CH2M HILL Client Sample ID: MW-23-060-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 12:47:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-021

**ASSET Laboratories** 

| Analyses                  | Result MDL              | PQL | Qual Units | DF        | Date Analyzed      |
|---------------------------|-------------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E     | BY IC                   |     |            |           |                    |
|                           |                         | EP. | A 218.6    |           |                    |
| RunID: <b>IC6_140425A</b> | QC Batch: <b>R93269</b> |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium       | 39 0.080                | 1.0 | μg/L       | 5         | 4/25/2014 07:38 PM |
| DISSOLVED METALS BY IC    | P-MS                    |     |            |           |                    |
|                           | EPA 3010A               | EP  | A 6020     |           |                    |
| RunID: ICP7_140430B       | QC Batch: 45535         |     | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Chromium                  | 34 0.030                | 1.0 | μg/L       | 1         | 4/30/2014 10:53 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified





Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-57-185-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 11:06:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-022

| Analyses               | Result MDL       | PQL | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |     |            |           |                    |
|                        |                  | EP  | A 218.6    |           |                    |
| RunID: IC6_140425A     | QC Batch: R93269 |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | 8.8 0.080        | 1.0 | μg/L       | 5         | 4/25/2014 08:03 PM |
| DISSOLVED METALS BY IC | P-MS             |     |            |           |                    |
|                        | EPA 3010A        | EP. | A 6020     |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45536  |     | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Chromium               | 7.8 0.030        | 1.0 | μg/L       | 1         | 4/30/2014 07:00 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012433-023 Client Sample ID: MW-126-198

Collection Date: 4/23/2014 7:00:00 AM

Matrix: WATER

| Analyses               | Result      | t MDL  | PQL | Qual Units | s DF      | Date Analyzed      |
|------------------------|-------------|--------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC       |        |     |            |           |                    |
|                        |             |        | EP  | A 218.6    |           |                    |
| RunID: IC6_140425A     | QC Batch: R | R93269 |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | 24          | 0.080  | 1.0 | μg/L       | 5         | 4/25/2014 08:24 PM |
| DISSOLVED METALS BY IC | P-MS        |        |     |            |           |                    |
|                        | EPA 3010A   |        | EP  | A 6020     |           |                    |
| RunID: ICP7_140430B    | QC Batch: 4 | 5536   |     | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Chromium               | 20          | 0.030  | 1.0 | μg/L       | 1         | 4/30/2014 07:40 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012433-024 Client Sample ID: MW-17-198

Collection Date: 4/23/2014 8:25:00 AM

Matrix: WATER

| Analyses               | Result N        | IDL PQL    | Qual Units | DF        | Date Analyzed      |
|------------------------|-----------------|------------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC           |            |            |           |                    |
|                        |                 | E          | PA 218.6   |           |                    |
| RunID: IC7_140425A     | QC Batch: R9326 | 66         | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | 12              | 0.016 0.20 | μg/L       | 1         | 4/25/2014 12:26 PM |
| DISSOLVED METALS BY IC | CP-MS           |            |            |           |                    |
|                        | EPA 3010A       | i i        | EPA 6020   |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45536 |            | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Chromium               | 12              | 0.030 1.0  | μg/L       | 1         | 4/30/2014 07:35 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-212-198

**Lab Order:** N012433 **Collection Date:** 4/23/2014 7:38:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-025

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC7\_140425A
 QC Batch:
 R93266
 PrepDate:
 Analyst:
 QBM

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 4/25/2014 02:34 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-213-198

**Lab Order:** N012433 **Collection Date:** 4/23/2014 7:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-026

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC7\_140425A
 QC Batch:
 R93266
 PrepDate:
 Analyst:
 QBM

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 4/25/2014 03:50 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

4/30/2014 07:57 PM

Print Date: 08-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-47-055-198

**Lab Order:** N012433 **Collection Date:** 4/23/2014 9:29:00 AM

0.030

14

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-027

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140425A QC Batch: R93266 PrepDate: Analyst: QBM Hexavalent Chromium 16 0.032 0.40 2 4/25/2014 01:19 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45536 RunID: ICP7\_140430B PrepDate: 4/25/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-47-115-198

**Lab Order:** N012433 **Collection Date:** 4/23/2014 10:11:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-028

| Analyses               | Res       | sult | MDL   | PQL | Qual U    | nits DF   | Date Analyzed      |
|------------------------|-----------|------|-------|-----|-----------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC     |      |       |     |           |           |                    |
|                        |           |      |       | EP  | A 218.6   |           |                    |
| RunID: IC7_140425A     | QC Batch: | R9   | 3266  |     | PrepDate: |           | Analyst: QBM       |
| Hexavalent Chromium    |           | 23   | 0.080 | 1.0 | μg/l      | _ 5       | 4/25/2014 01:38 PM |
| DISSOLVED METALS BY IC | P-MS      |      |       |     |           |           |                    |
|                        | EPA 3010A |      |       | EP. | A 6020    |           |                    |
| RunID: ICP7_140430B    | QC Batch: | 455  | 36    |     | PrepDate: | 4/25/2014 | Analyst: CEI       |
| Chromium               |           | 20   | 0.030 | 1.0 | μg/l      | _ 1       | 4/30/2014 08:02 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

**Print Date:** 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-48-198

**Lab Order:** N012433 **Collection Date:** 4/23/2014 12:54:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-029

| Analyzaz               | Result MDL       | PQL | <b>Oual Units</b> | DF        | Data Analyzad      |
|------------------------|------------------|-----|-------------------|-----------|--------------------|
| Analyses               | Result MDL       | rųL | Quai Units        | Dr        | Date Analyzed      |
| HEXAVALENT CHROMIUM E  | BY IC            |     |                   |           |                    |
|                        |                  | EPA | A 218.6           |           |                    |
| RunID: IC7_140425A     | QC Batch: R93266 |     | PrepDate:         |           | Analyst: QBM       |
| Hexavalent Chromium    | ND 0.080         | 1.0 | μg/L              | 5         | 4/25/2014 04:18 PM |
| DISSOLVED METALS BY IC | P-MS             |     |                   |           |                    |
|                        | EPA 3010A        | EP  | A 6020            |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45536  |     | PrepDate:         | 4/25/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0 | μg/L              | 1         | 4/30/2014 08:08 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

4/30/2014 08:13 PM

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-50-095-198

**Lab Order:** N012433 **Collection Date:** 4/23/2014 12:06:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

12

0.030

**Lab ID:** N012433-030

Chromium

| Analyses               | Result MI        | DL PQL | Qual Units | DF        | Date Analyzed      |
|------------------------|------------------|--------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM    | BY IC            |        |            |           |                    |
|                        |                  | El     | PA 218.6   |           |                    |
| RunID: IC7_140425A     | QC Batch: R93266 |        | PrepDate:  |           | Analyst: QBM       |
| Hexavalent Chromium    | 13 0.0           | 0.40   | μg/L       | 2         | 4/25/2014 01:56 PM |
| DISSOLVED METALS BY IC | P-MS             |        |            |           |                    |
|                        | EPA 3010A        | Е      | PA 6020    |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45536  |        | PrepDate:  | 4/25/2014 | Analyst: CEI       |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

**Project:** 

**CLIENT:** CH2M HILL

Lab Order: N012433

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-031

Client Sample ID: MW-214-198

Collection Date: 4/24/2014 6:30:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC7\_140425A
 QC Batch:
 R93266
 PrepDate:
 Analyst:
 QBM

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 4/25/2014 03:31 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories Date:** 08-May-14

CLIENT: CH2M HILL Work Order: N012433

## ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: MB-R93266 Client ID: PBW          | SampType: MBLK Batch ID: R93266              | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/25/2014 | RunNo: <b>93266</b><br>SegNo: <b>1772880</b> |
|----------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------|----------------------------------------------|
| Analyte                                      | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | ND                                           | 0.20                                               |                                     |                                              |
| Sample ID: LCS-R93266                        | SampType: <b>LCS</b>                         | TestCode: 218.6_WPGE Units: µg/L                   | Prep Date:                          | RunNo: <b>93266</b>                          |
| Client ID: LCSW                              | Batch ID: R93266                             | TestNo: <b>EPA 218.6</b>                           | Analysis Date: 4/25/2014            | SeqNo: <b>1772881</b>                        |
| Analyte                                      | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 4.961                                        | 0.20 5.000 0                                       | 99.2 90 110                         |                                              |
| Sample ID: N012433-004AMS Client ID: ZZZZZZ  | SampType: MS Batch ID: R93266                | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/25/2014 | RunNo: <b>93266</b><br>SeqNo: <b>1772885</b> |
| Analyte                                      | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 0.976                                        | 0.20 1.000 0                                       | 97.6 90 110                         |                                              |
| Sample ID: N012433-001ADUP Client ID: ZZZZZZ | SampType: <b>DUP</b> Batch ID: <b>R93266</b> | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/25/2014 | RunNo: <b>93266</b><br>SeqNo: <b>1772888</b> |
| Analyte                                      | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 0.041                                        | 0.20                                               | 0.04360                             | 0 20                                         |
| Sample ID: N012433-004AMSD                   | SampType: MSD                                | TestCode: 218.6_WPGE Units: μg/L                   | Prep Date:                          | RunNo: <b>93266</b>                          |
| Client ID: ZZZZZZ                            | Batch ID: <b>R93266</b>                      | TestNo: <b>EPA 218.6</b>                           | Analysis Date: 4/25/2014            | SeqNo: <b>1772889</b>                        |
| Analyte                                      | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 0.975                                        | 0.20 1.000 0                                       | 97.5 90 110 0.9759                  | 0.113 20                                     |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

TestCode: 218.6\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012433-024AMS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
|---------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ         | Batch ID: <b>R93266</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772893</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 17.072                  | 0.20 5.000 12.25                 | 96.4 90 110                         |                       |
| Sample ID: N012433-027AMS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
| Client ID: ZZZZZZ         | Batch ID: <b>R93266</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772895</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 25.327                  | 0.40 10.00 15.60                 | 97.3 90 110                         |                       |
| Sample ID: N012433-028AMS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
| Client ID: ZZZZZZ         | Batch ID: <b>R93266</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1772897        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 48.431                  | 1.0 25.00 23.47                  | 99.8 90 110                         |                       |
| Sample ID: N012433-030AMS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
| Client ID: ZZZZZZ         | Batch ID: <b>R93266</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1772901        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 22.909                  | 0.40 10.00 13.08                 | 98.3 90 110                         |                       |
| Sample ID: N012433-025AMS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93266        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772903</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.025                   | 0.20 1.000 0.03600               | 98.9 90 110                         |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 218.6\_WPGE

| Sample ID: N012433-026AMS                   | SampType: MS                  | TestCode: 218.6_WPGE Units: µg/L                      | Prep Date:                          | RunNo: <b>93266</b>                          |
|---------------------------------------------|-------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------------------------|
| Client ID: ZZZZZZ                           | Batch ID: R93266              | TestNo: <b>EPA 218.6</b>                              | Analysis Date: 4/25/2014            | SeqNo: 1772904                               |
| Analyte                                     | Result                        | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                         | 1.016                         | 0.20 1.000 0.03090                                    | 98.5 90 110                         |                                              |
| Sample ID: N012433-031AMS Client ID: ZZZZZZ | SampType: MS Batch ID: R93266 | TestCode: 218.6_WPGE Units: μg/L<br>TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/25/2014 | RunNo: <b>93266</b><br>SeqNo: <b>1772906</b> |
| Analyte                                     | Result                        | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                         | 1.031                         | 0.20 1.000 0.03260                                    | 99.8 90 110                         |                                              |
| Sample ID: N012433-029AMS Client ID: ZZZZZZ | SampType: MS Batch ID: R93266 | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6    | Prep Date: Analysis Date: 4/25/2014 | RunNo: <b>93266</b><br>SeqNo: <b>1772911</b> |
| Analyte                                     | Result                        | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                         | 5.251                         | 1.0 5.000 0.3080                                      | 98.9 90 110                         |                                              |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order: N012433

## ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID  | : MB-R93269        | SampType: MBLK          | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93269          |
|------------|--------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: | PBW                | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1772982        |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | t Chromium         | ND                      | 0.20                             |                                     |                       |
| Sample ID  | : LCS-R93269       | SampType: <b>LCS</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: | LCSW               | Batch ID: <b>R93269</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772983</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | t Chromium         | 5.005                   | 0.20 5.000 0                     | 100 90 110                          |                       |
| Sample ID  | : N012433-020A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: | ZZZZZZ             | Batch ID: <b>R93269</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772989</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | t Chromium         | 15.364                  | 1.0                              | 15.24                               | 0.791 20              |
| Sample ID  | : N012433-020A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: | ZZZZZZ             | Batch ID: <b>R93269</b> | TestNo: EPA 218.6                | Analysis Date: 4/25/2014            | SeqNo: <b>1772990</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | t Chromium         | 40.008                  | 1.0 25.00 15.24                  | 99.1 90 110                         |                       |
| Sample ID  | : N012433-020A-MSD | SampType: MSD           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: | ZZZZZZ             | Batch ID: <b>R93269</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1772991        |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | t Chromium         | 40.552                  | 1.0 25.00 15.24                  | 101 90 110 40.01                    | 1.35 20               |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

| TestCode: | 218.6_WPGE |  |
|-----------|------------|--|
|-----------|------------|--|

| Sample ID: N012433-003A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1772993        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 36.727                  | 1.0 25.00 11.87                  | 99.4 90 110                         |                       |
| Sample ID: N012433-013A-MS | SampType: <b>MS</b>     | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772995</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 35.388                  | 1.0 25.00 9.992                  | 102 90 110                          |                       |
| Sample ID: N012433-014A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1772997        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 31.289                  | 1.0 25.00 6.194                  | 100 90 110                          |                       |
| Sample ID: N012433-021A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1773001        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 64.378                  | 1.0 25.00 39.33                  | 100 90 110                          |                       |
| Sample ID: N012433-022A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93269</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1773003</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 33.813                  | 1.0 25.00 8.832                  | 99.9 90 110                         |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

TestCode: 218.6\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012433-023A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93269          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1773005</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 48.531                  | 1.0 25.00 23.95                  | 98.3 90 110                         |                       |
| Sample ID: N012433-015A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1773008        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 15.117                  | 0.20 5.000 9.914                 | 104 90 110                          |                       |
| Sample ID: N012433-002A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: EPA 218.6                | Analysis Date: 4/25/2014            | SeqNo: 1773010        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.085                   | 0.20 1.000 0.07670               | 101 90 110                          |                       |
| Sample ID: N012433-005A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1773012        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.072                   | 0.20 1.000 0.06580               | 101 90 110                          |                       |
| Sample ID: N012433-007A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93269</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1773014</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.111                   | 0.20 1.000 0.06630               | 104 90 110                          |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

Project:

TestCode: 218.6\_WPGE PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012433-010A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93269          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1773016        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.100                   | 0.20 1.000 0.06930               | 103 90 110                          |                       |
| Sample ID: N012433-016A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/26/2014            | SeqNo: <b>1773020</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.108                   | 0.20 1.000 0.05470               | 105 90 110                          |                       |
| Sample ID: N012433-019A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: EPA 218.6                | Analysis Date: 4/26/2014            | SeqNo: <b>1773022</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.075                   | 0.20 1.000 0.06690               | 101 90 110                          |                       |
| Sample ID: N012433-008A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93269</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/26/2014            | SeqNo: 1773026        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 72.766                  | 1.0 25.00 47.76                  | 100 90 110                          |                       |
| Sample ID: N012433-012A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93269</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93269        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/26/2014            | SeqNo: 1773027        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 16.461                  | 0.20 5.000 11.46                 | 100 90 110                          |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

TestCode: 218.6\_WPGE Project: PG&E Topock, 423575.MP.02.GM.02

| Sample ID: MB-R93270 Client ID: PBW                                          | SampType: MBLK Batch ID: R93270              | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6                                              | Prep Date: Analysis Date: 4/28/2014                                                                                                                      | RunNo: <b>93270</b><br>SeqNo: <b>1773036</b>     |
|------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Analyte                                                                      | Result                                       | PQL SPK value SPK Ref Val                                                                       | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                               |
| Hexavalent Chromium                                                          | 0.048                                        | 0.20                                                                                            |                                                                                                                                                          |                                                  |
| Sample ID: LCS-R93270<br>Client ID: LCSW                                     | SampType: LCS Batch ID: R93270               | TestCode: 218.6_WPGE Units: μg/L<br>TestNo: EPA 218.6                                           | Prep Date: Analysis Date: 4/28/2014                                                                                                                      | RunNo: <b>93270</b><br>SeqNo: <b>1773037</b>     |
| Analyte                                                                      | Result                                       | PQL SPK value SPK Ref Val                                                                       | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                               |
| Hexavalent Chromium                                                          | 4.897                                        | 0.20 5.000 0                                                                                    | 97.9 90 110                                                                                                                                              |                                                  |
|                                                                              |                                              |                                                                                                 |                                                                                                                                                          |                                                  |
| Sample ID: N012433-006A-MS                                                   | SampType: MS                                 | TestCode: 218.6_WPGE Units: μg/L                                                                | Prep Date:                                                                                                                                               | RunNo: <b>93270</b>                              |
| Sample ID: N012433-006A-MS Client ID: ZZZZZZ                                 | SampType: MS Batch ID: R93270                | TestCode: 218.6_WPGE Units: μg/L<br>TestNo: EPA 218.6                                           | Prep Date: Analysis Date: 4/28/2014                                                                                                                      | RunNo: <b>93270</b><br>SeqNo: <b>1773039</b>     |
|                                                                              |                                              |                                                                                                 | •                                                                                                                                                        |                                                  |
| Client ID: ZZZZZZ                                                            | Batch ID: <b>R93270</b>                      | TestNo: EPA 218.6                                                                               | Analysis Date: 4/28/2014                                                                                                                                 | SeqNo: <b>1773039</b>                            |
| Client ID: ZZZZZZ Analyte                                                    | Batch ID: R93270                             | TestNo: <b>EPA 218.6</b> PQL SPK value SPK Ref Val                                              | Analysis Date: 4/28/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                            | SeqNo: <b>1773039</b>                            |
| Client ID: ZZZZZZ  Analyte  Hexavalent Chromium  Sample ID: N012433-006A-MSD | Batch ID: R93270 Result 28.038 SampType: MSD | TestNo: EPA 218.6  PQL SPK value SPK Ref Val  1.0 25.00 2.964  TestCode: 218.6_WPGE Units: μg/L | Analysis Date: 4/28/2014           %REC         LowLimit         HighLimit         RPD Ref Val           100         90         110           Prep Date: | SeqNo: 1773039  %RPD RPDLimit Qual  RunNo: 93270 |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

TestCode: 218.6\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: MB-R93281       | SampType: MBLK          | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93281</b> |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|---------------------|
| Client ID: PBW             | Batch ID: R93281        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/29/2014            | SeqNo: 1773576      |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium        | 0.031                   | 0.20                             |                                     |                     |
| Sample ID: LCS-R93281      | SampType: <b>LCS</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93281        |
| Client ID: LCSW            | Batch ID: <b>R93281</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/29/2014            | SeqNo: 1773577      |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium        | 5.158                   | 0.20 5.000 0.03050               | 103 90 110                          |                     |
| Sample ID: N012433-017A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93281        |
| Client ID: ZZZZZZ          | Batch ID: <b>R93281</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/29/2014            | SeqNo: 1773579      |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium        | 1.011                   | 0.20 1.000 0.05900               | 95.2 90 110                         |                     |
| Sample ID: N012433-011A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93281        |
| Client ID: ZZZZZZ          | Batch ID: R93281        | TestNo: EPA 218.6                | Analysis Date: 4/29/2014            | SeqNo: 1773581      |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium        | 1.004                   | 0.20 1.000 0                     | 100 90 110                          |                     |
| Sample ID: N012433-009A-MS | SampType: <b>MS</b>     | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93281</b> |
| Client ID: ZZZZZZ          | Batch ID: <b>R93281</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/29/2014            | SeqNo: 1773583      |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium        | 16.425                  | 0.20 5.000 11.55                 | 97.5 90 110                         |                     |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

TestCode: 218.6\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012454-003A-MS  | SampType: MS         | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93281          |
|-----------------------------|----------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ           | Batch ID: R93281     | TestNo: EPA 218.6                | Analysis Date: 4/29/2014            | SeqNo: <b>1773585</b> |
| Analyte                     | Result               | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.806                | 0.20 1.000 0.8026                | 100 90 110                          |                       |
| Sample ID: N012454-003A-DUP | SampType: <b>DUP</b> | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93281          |
| Client ID: ZZZZZZ           | Batch ID: R93281     | TestNo: EPA 218.6                | Analysis Date: 4/29/2014            | SeqNo: 1773588        |
| Analyte                     | Result               | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 0.812                | 0.20                             | 0.8026                              | 1.10 20               |
| Sample ID: N012454-003A-MSD | SampType: MSD        | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93281</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93281     | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/29/2014            | SeqNo: <b>1773589</b> |
| Analyte                     | Result               | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.852                | 0.20 1.000 0.8026                | 105 90 110 1.806                    | 2.53 20               |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

Project:

TestCode: 218.6R\_WPGE PG&E Topock, 423575.MP.02.GM.02

| Sample ID: MB-R93266      | SampType: <b>MBLK</b>   | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
|---------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW            | Batch ID: R93266        | TestNo: EPA 218.6                | Analysis Date: 4/25/2014            | SeqNo: <b>1772840</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93266     | SampType: <b>LCS</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: 93266          |
| Client ID: LCSW           | Batch ID: R93266        | TestNo: EPA 218.6                | Analysis Date: 4/25/2014            | SeqNo: 1772841        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 4.961                   | 0.20 5.000 0                     | 99.2 90 110                         |                       |
| Sample ID: N012433-001AMS | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: 93266          |
| Client ID: ZZZZZZ         | Batch ID: R93266        | TestNo: EPA 218.6                | Analysis Date: 4/25/2014            | SeqNo: 1772843        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 1.040                   | 0.20 1.000 0.04360               | 99.6 90 110                         |                       |
| Sample ID: N012433-004AMS | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93266        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772845</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 0.976                   | 0.20 1.000 0                     | 97.6 90 110                         |                       |
| Sample ID: N012433-018AMS | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93266</b>   |
| Client ID: ZZZZZZ         | Batch ID: <b>R93266</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 4/25/2014            | SeqNo: 1772847        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 2.844                   | 0.20 1.000 1.888                 | 95.7 90 110                         |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6R\_WPGE

| Sample ID: N012433-001ADUP                   | SampType: <b>DUP</b>           | TestCode: 218.6R_WPG Units: µg/L                   | Prep Date:                          | RunNo: 93266                                 |
|----------------------------------------------|--------------------------------|----------------------------------------------------|-------------------------------------|----------------------------------------------|
| Client ID: ZZZZZZ                            | Batch ID: <b>R93266</b>        | TestNo: <b>EPA 218.6</b>                           | Analysis Date: 4/25/2014            | SeqNo: 1772848                               |
| Analyte                                      | Result                         | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 0.041                          | 0.20                                               | 0.04360                             | 0 20                                         |
|                                              |                                |                                                    |                                     |                                              |
| Sample ID: N012433-004AMSD                   | SampType: MSD                  | TestCode: 218.6R_WPG Units: μg/L                   | Prep Date:                          | RunNo: <b>93266</b>                          |
| Sample ID: N012433-004AMSD Client ID: ZZZZZZ | SampType: MSD Batch ID: R93266 | TestCode: 218.6R_WPG Units: µg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 4/25/2014 | RunNo: <b>93266</b><br>SeqNo: <b>1772849</b> |
|                                              |                                |                                                    | '                                   |                                              |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

| TestCode: | 6020DIS_ | _CrPGE |
|-----------|----------|--------|
|-----------|----------|--------|

| Sample ID: <b>MB-45535</b>                                       | SampType: MBLK                                 | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                            | Prep Date: 4/25/2014                                                                             | RunNo: 93318                                 |
|------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|
| Client ID: PBW                                                   | Batch ID: 45535                                | TestNo: <b>EPA 6020 EPA 3010A</b>                                                                                                                                            | Analysis Date: 4/30/2014                                                                         | SeqNo: <b>1775295</b>                        |
| Analyte                                                          | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                              | %RPD RPDLimit Qual                           |
| Chromium                                                         | ND                                             | 1.0                                                                                                                                                                          |                                                                                                  |                                              |
| Sample ID: LCS-45535                                             | SampType: <b>LCS</b>                           | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                            | Prep Date: 4/25/2014                                                                             | RunNo: 93318                                 |
| Client ID: LCSW                                                  | Batch ID: 45535                                | TestNo: EPA 6020 EPA 3010A                                                                                                                                                   | Analysis Date: 4/30/2014                                                                         | SeqNo: <b>1775296</b>                        |
| Analyte                                                          | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                              | %RPD RPDLimit Qual                           |
| Chromium                                                         | 9.433                                          | 1.0 10.00 0                                                                                                                                                                  | 94.3 85 115                                                                                      |                                              |
|                                                                  |                                                |                                                                                                                                                                              |                                                                                                  |                                              |
| Sample ID: N012426-001A-MS                                       | SampType: MS                                   | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                            | Prep Date: 4/25/2014                                                                             | RunNo: <b>93318</b>                          |
| Sample ID: N012426-001A-MS Client ID: ZZZZZZ                     | SampType: MS Batch ID: 45535                   | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                                                                                                 | Prep Date: 4/25/2014  Analysis Date: 4/30/2014                                                   | RunNo: <b>93318</b><br>SeqNo: <b>1775300</b> |
|                                                                  |                                                |                                                                                                                                                                              | ,                                                                                                |                                              |
| Client ID: ZZZZZZ                                                | Batch ID: <b>45535</b>                         | TestNo: EPA 6020 EPA 3010A                                                                                                                                                   | Analysis Date: 4/30/2014                                                                         | SeqNo: 1775300                               |
| Client ID: ZZZZZZ Analyte                                        | Batch ID: 45535  Result                        | TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val                                                                                                                         | Analysis Date: 4/30/2014  %REC LowLimit HighLimit RPD Ref Val                                    | SeqNo: 1775300                               |
| Client ID: ZZZZZZ Analyte Chromium                               | Batch ID: <b>45535</b> Result  12.321          | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         3.103                                             | Analysis Date: 4/30/2014  %REC LowLimit HighLimit RPD Ref Val  92.2 75 125                       | SeqNo: <b>1775300</b><br>%RPD RPDLimit Qual  |
| Client ID: ZZZZZZ  Analyte Chromium  Sample ID: N012426-001A-MSD | Batch ID: 45535  Result  12.321  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         3.103           TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: 4/30/2014  %REC LowLimit HighLimit RPD Ref Val  92.2 75 125  Prep Date: 4/25/2014 | SeqNo: 1775300<br>%RPD RPDLimit Qual         |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project:

ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020DIS\_CrPGE

| Sample ID: MB-45536         | SampType: MBLK  | TestCode: 6020DIS_CrP Units: µg/L | Prep Date: 4/25/2014                | RunNo: 93318          |
|-----------------------------|-----------------|-----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW              | Batch ID: 45536 | TestNo: EPA 6020 EPA 3010A        | Analysis Date: 4/30/2014            | SeqNo: <b>1775279</b> |
| Analyte                     | Result          | PQL SPK value SPK Ref Val         | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Chromium                    | ND              | 1.0                               |                                     |                       |
| Sample ID: LCS-45536        | SampType: LCS   | TestCode: 6020DIS_CrP Units: µg/L | Prep Date: 4/25/2014                | RunNo: 93318          |
| Client ID: LCSW             | Batch ID: 45536 | TestNo: EPA 6020 EPA 3010A        | Analysis Date: 4/30/2014            | SeqNo: <b>1775280</b> |
| Analyte                     | Result          | PQL SPK value SPK Ref Val         | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Chromium                    | 9.643           | 1.0 10.00 0                       | 96.4 85 115                         |                       |
| Sample ID: N012433-022B-MS  | SampType: MS    | TestCode: 6020DIS_CrP Units: µg/L | Prep Date: 4/25/2014                | RunNo: 93318          |
| Client ID: ZZZZZZ           | Batch ID: 45536 | TestNo: EPA 6020 EPA 3010A        | Analysis Date: 4/30/2014            | SeqNo: <b>1775284</b> |
| Analyte                     | Result          | PQL SPK value SPK Ref Val         | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Chromium                    | 15.614          | 1.0 10.00 7.777                   | 78.4 75 125                         |                       |
| Sample ID: N012433-022B-MSE | SampType: MSD   | TestCode: 6020DIS_CrP Units: µg/L | Prep Date: 4/25/2014                | RunNo: <b>93318</b>   |
| Client ID: ZZZZZZ           | Batch ID: 45536 | TestNo: EPA 6020 EPA 3010A        | Analysis Date: 4/30/2014            | SeqNo: <b>1775285</b> |
| Olicita IB. EEEEEE          |                 |                                   |                                     |                       |
| Analyte                     | Result          | PQL SPK value SPK Ref Val         | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Analysis Date: 5/6/2014

75

125

90.3

Work Order: N012433

PG&E Topock, 423575.MP.02.GM.02

Batch ID: 45595

18.013

**Project:** 

Client ID: LCSW

Chromium

TestCode: 6020DIS\_CrPGE

SeqNo: 1776801

| Sample ID: MB-45595<br>Client ID: PBW | SampType: MBLK Batch ID: 45595 | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A | Prep Date: 5/5/2014  Analysis Date: 5/6/2014 | RunNo: <b>93353</b><br>SeqNo: <b>1776800</b> |
|---------------------------------------|--------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| Analyte                               | Result                         | PQL SPK value SPK Ref Val                                    | %REC LowLimit HighLimit RPD Ref Val          | %RPD RPDLimit Qual                           |
| Chromium                              | ND                             | 1.0                                                          |                                              |                                              |
| Sample ID: LCS-45595                  | SampType: <b>LCS</b>           | TestCode: 6020DIS_CrP Units: µg/L                            | Prep Date: 5/5/2014                          | RunNo: 93353                                 |

**EPA 3010A** 

| Analyte                    | Result          | PQL    | SPK value            | SPK Ref Val    | %REC | LowLimit    | HighLimit            | RPD Ref Val | %RPD              | RPDLimit | Qual |
|----------------------------|-----------------|--------|----------------------|----------------|------|-------------|----------------------|-------------|-------------------|----------|------|
| Chromium                   | 9.851           | 1.0    | 10.00                | 0              | 98.5 | 85          | 115                  |             |                   |          |      |
| Sample ID: N012429-003B-MS | SampType: MS    | TestCo | de: <b>6020DIS_C</b> | rP Units: μg/L |      | Prep Da     | te: <b>5/5/201</b> 4 | 4           | RunNo: 933        | 53       |      |
| Client ID: ZZZZZZ          | Batch ID: 45595 | Testi  | No: <b>EPA 6020</b>  | EPA 3010A      |      | Analysis Da | te: <b>5/6/201</b> 4 | 4           | SeqNo: <b>177</b> | 6805     |      |
| Analyte                    | Result          | PQL    | SPK value            | SPK Ref Val    | %REC | LowLimit    | HighLimit            | RPD Ref Val | %RPD              | RPDLimit | Qual |

TestNo: EPA 6020

10.00

1.0

| Sample ID: N012429-003B-MSD | SampType: MSD   | TestCod | de: <b>6020DIS_C</b> | CrP Units: μg/L |      | Prep Dat    | te: <b>5/5/201</b> | 4           | RunNo: 933        | 53       |      |
|-----------------------------|-----------------|---------|----------------------|-----------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ           | Batch ID: 45595 | TestN   | No: EPA 6020         | EPA 3010A       |      | Analysis Da | te: <b>5/6/201</b> | 4           | SeqNo: <b>177</b> | 6806     |      |
| Analyte                     | Result          | PQL     | SPK value            | SPK Ref Val     | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Chromium                    | 17.746          | 1.0     | 10.00                | 8.985           | 87.6 | 75          | 125                | 18.01       | 1.50              | 20       |      |

8.985

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

- E Value above quantitation range
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

TestCode: 6020RDIS\_CrPGE Project: PG&E Topock, 423575.MP.02.GM.02

| Sample ID: MB-45535                                            | SampType: MBLK                                 | TestCode: 6020RDIS_Cr Units: µg/L                                                                                                                                            | Prep Date: 4/25/2014                                                                             | RunNo: 93319                                     |
|----------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: PBW                                                 | Batch ID: 45535                                | TestNo: EPA 6020 EPA 3010A                                                                                                                                                   | Analysis Date: 4/30/2014                                                                         | SeqNo: 1775341                                   |
| Analyte                                                        | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                              | %RPD RPDLimit Qual                               |
| Chromium                                                       | ND                                             | 1.0                                                                                                                                                                          |                                                                                                  |                                                  |
| Sample ID: LCS-45535 Client ID: LCSW                           | SampType: LCS  Batch ID: 45535                 | TestCode: 6020RDIS_Cr Units: μg/L TestNo: EPA 6020 EPA 3010A                                                                                                                 | Prep Date: 4/25/2014  Analysis Date: 4/30/2014                                                   | RunNo: <b>93319</b><br>SeqNo: <b>1775342</b>     |
| Analyte                                                        | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                              | %RPD RPDLimit Qual                               |
| Chromium                                                       | 9.433                                          | 1.0 10.00 0                                                                                                                                                                  | 94.3 85 115                                                                                      |                                                  |
|                                                                |                                                |                                                                                                                                                                              |                                                                                                  |                                                  |
| Sample ID: N012426-001A-MS                                     | SampType: <b>MS</b>                            | TestCode: 6020RDIS_Cr Units: μg/L                                                                                                                                            | Prep Date: 4/25/2014                                                                             | RunNo: <b>93319</b>                              |
| Sample ID: N012426-001A-MS Client ID: ZZZZZZ                   | SampType: MS Batch ID: 45535                   | TestCode: 6020RDIS_Cr Units: μg/L TestNo: EPA 6020 EPA 3010A                                                                                                                 | Prep Date: 4/25/2014 Analysis Date: 4/30/2014                                                    | RunNo: 93319<br>SeqNo: 1775346                   |
| ·                                                              |                                                |                                                                                                                                                                              | •                                                                                                |                                                  |
| Client ID: ZZZZZZ                                              | Batch ID: <b>45535</b>                         | TestNo: EPA 6020 EPA 3010A                                                                                                                                                   | Analysis Date: 4/30/2014                                                                         | SeqNo: <b>1775346</b>                            |
| Client ID: ZZZZZZ Analyte                                      | Batch ID: <b>45535</b> Result  12.321          | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                        | Analysis Date: 4/30/2014  %REC LowLimit HighLimit RPD Ref Val                                    | SeqNo: <b>1775346</b>                            |
| Client ID: ZZZZZZ Analyte Chromium                             | Batch ID: <b>45535</b> Result  12.321          | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         3.103                                             | Analysis Date: 4/30/2014  %REC LowLimit HighLimit RPD Ref Val  92.2 75 125                       | SeqNo: 1775346<br>%RPD RPDLimit Qual             |
| Client ID: ZZZZZZ Analyte Chromium Sample ID: N012426-001A-MSD | Batch ID: 45535  Result  12.321  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         3.103           TestCode: 6020RDIS_Cr Units: μg/L | Analysis Date: 4/30/2014  %REC LowLimit HighLimit RPD Ref Val  92.2 75 125  Prep Date: 4/25/2014 | SeqNo: 1775346  %RPD RPDLimit Qual  RunNo: 93319 |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-040-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-33-040-198

 Lab Order:
 N012433
 Collection Date: 4/17/2014 2:34:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-001

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140425A
 QC Batch:
 R93258
 PrepDate:
 Analyst:
 QBM

 Fluoride
 9.8
 0.11
 1.0
 mg/L
 10
 4/25/2014 10:42 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-150-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 1:48:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-003

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140425A
 QC Batch:
 R93258
 PrepDate:
 Analyst:
 QBM

 Fluoride
 ND
 0.055
 0.50
 mg/L
 5
 4/25/2014 10:55 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-123-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140425A
 QC Batch:
 R93258
 PrepDate:
 Analyst:
 QBM

 Fluoride
 ND
 0.055
 0.50
 mg/L
 5
 4/25/2014 11:08 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-090-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 8:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-012

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140425A
 QC Batch:
 R93258
 PrepDate:
 Analyst:
 QBM

 Fluoride
 ND 0.055
 0.50
 mg/L
 5 4/25/2014 11:20 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-33-210-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-013

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140425A
 QC Batch:
 R93258
 PrepDate:
 Analyst:
 QBM

 Fluoride
 ND 0.055
 0.50
 mg/L
 5 4/25/2014 11:33 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories

Date: 08-May-14

CLIENT: CH2M HILL Work Order: N012433

# ANALYTICAL QC SUMMARY REPORT

TestCode: 300\_W\_FPGE

**Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: | : MB-R93258_F      | SampType: MBLK          | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: <b>93258</b>   |
|------------|--------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: | PBW                | Batch ID: R93258        | TestNo: EPA 300.0                | Analysis Date: 4/25/2014            | SeqNo: <b>1772256</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | ND                      | 0.10                             |                                     |                       |
| Sample ID: | : LCS-R93258_F     | SampType: LCS           | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: <b>93258</b>   |
| Client ID: | LCSW               | Batch ID: <b>R93258</b> | TestNo: <b>EPA 300.0</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772257</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | 2.343                   | 0.10 2.500 0                     | 93.7 90 110                         |                       |
| Sample ID  | : N012433-001D-DUP | SampType: <b>DUP</b>    | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: 93258          |
| Client ID: | ZZZZZZ             | Batch ID: <b>R93258</b> | TestNo: <b>EPA 300.0</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772263</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | 9.820                   | 1.0                              | 9.770                               | 0.510 20              |
| Sample ID: | : N012433-001D-MS  | SampType: MS            | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: 93258          |
| Client ID: | ZZZZZZ             | Batch ID: R93258        | TestNo: <b>EPA 300.0</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772264</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | 34.200                  | 1.0 25.00 9.770                  | 97.7 80 120                         |                       |
| Sample ID  | : N012433-001D-MSD | SampType: MSD           | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: 93258          |
| Client ID: | ZZZZZZ             | Batch ID: <b>R93258</b> | TestNo: <b>EPA 300.0</b>         | Analysis Date: 4/25/2014            | SeqNo: <b>1772265</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |

9.770

98.8

80

120

### Qualifiers:

Fluoride

B Analyte detected in the associated Method Blank

34.460

1.0

- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

25.00

R RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com H Holding times for preparation or analysis exceeded

34.20

S Spike/Surrogate outside of limits due to matrix interference

0.757

20

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-015

Client Sample ID: MW-16-198

**Collection Date:** 4/22/2014 8:14:00 AM

Matrix: WATER

| Analyses                | Result        | MDL             | PQL | Qual Unit | s DF      | Date Analyzed      |
|-------------------------|---------------|-----------------|-----|-----------|-----------|--------------------|
| DISSOLVED METALS BY ICP |               |                 |     |           |           |                    |
|                         | EPA 3010A     |                 | EPA | 6010B     |           |                    |
| RunID: ICP2_140502B     | QC Batch: 455 | QC Batch: 45532 |     | PrepDate: | 4/25/2014 | Analyst: <b>SF</b> |
| Aluminum                | ND            | 6.2             | 50  | ug/L      | 1         | 5/2/2014 04:16 PM  |
| Boron                   | 250           | 19              | 100 | ug/L      | 1         | 5/2/2014 04:16 PM  |
| Calcium                 | 24000         | 58              | 500 | ug/L      | 1         | 5/2/2014 04:16 PM  |
| Iron                    | ND            | 1.3             | 20  | ug/L      | 1         | 5/2/2014 04:16 PM  |
| Magnesium               | 4300          | 11              | 100 | ug/L      | 1         | 5/2/2014 04:16 PM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012433

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-024

Client Sample ID: MW-17-198

Collection Date: 4/23/2014 8:25:00 AM

Matrix: WATER

| Analyses                | Result        | MDL | PQL | Qual Units | DF        | Date Analyzed     |
|-------------------------|---------------|-----|-----|------------|-----------|-------------------|
| DISSOLVED METALS BY ICP |               |     |     |            |           |                   |
|                         | EPA 3010A     |     | EPA | 6010B      |           |                   |
| RunID: ICP2_140502B     | QC Batch: 455 | 32  |     | PrepDate:  | 4/25/2014 | Analyst: SF       |
| Aluminum                | ND            | 6.2 | 50  | ug/L       | 1         | 5/2/2014 04:21 PM |
| Boron                   | 190           | 19  | 100 | ug/L       | 1         | 5/2/2014 04:21 PM |
| Calcium                 | 61000         | 58  | 500 | ug/L       | 1         | 5/2/2014 04:21 PM |
| Iron                    | ND            | 1.3 | 20  | ug/L       | 1         | 5/2/2014 04:21 PM |
| Magnesium               | 9000          | 11  | 100 | ug/L       | 1         | 5/2/2014 04:21 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Date:** 08-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012433

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6010\_WDPGEPPB

| Sample ID: MB-45532          | SampType: MBLK         | TestCod | de: <b>6010 WD</b> F  | GE Units: ug/L |      | Prep Dat      | te: <b>4/25/20</b> | 14          | RunNo: 933        | 332      |      |
|------------------------------|------------------------|---------|-----------------------|----------------|------|---------------|--------------------|-------------|-------------------|----------|------|
| Client ID: PBW               | Batch ID: <b>45532</b> |         | lo: <b>EPA 6010</b> E | _              |      | Analysis Dat  |                    |             | SeqNo: 177        |          |      |
| Client ID. FBW               | Datch ID. 43332        | 16511   | O. EFA GUIUE          | 5 EFA 3010A    |      | Allalysis Dal | .c. 3/2/201        | •           | Sequo. 177        | 0072     |      |
| Analyte                      | Result                 | PQL     | SPK value             | SPK Ref Val    | %REC | LowLimit      | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Aluminum                     | 19.460                 | 50      |                       |                |      |               |                    |             |                   |          |      |
| Boron                        | 39.441                 | 100     |                       |                |      |               |                    |             |                   |          |      |
| Calcium                      | ND                     | 500     |                       |                |      |               |                    |             |                   |          |      |
| Iron                         | 9.062                  | 20      |                       |                |      |               |                    |             |                   |          |      |
| Magnesium                    | 28.060                 | 100     |                       |                |      |               |                    |             |                   |          |      |
| Sample ID: <b>LCS1-45532</b> | SampType: <b>LCS</b>   | TestCod | de: <b>6010_WD</b> F  | GE Units: ug/L |      | Prep Dat      | te: <b>4/25/20</b> | 14          | RunNo: 933        | 332      |      |
| Client ID: LCSW              | Batch ID: 45532        | TestN   | lo: <b>EPA 6010</b> E | B EPA 3010A    |      | Analysis Dat  | te: <b>5/2/201</b> | 4           | SeqNo: <b>177</b> | 6075     |      |
| Analyte                      | Result                 | PQL     | SPK value             | SPK Ref Val    | %REC | LowLimit      | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Aluminum                     | 9180.402               | 50      | 10000                 | 0              | 91.8 | 85            | 115                |             |                   |          |      |
| Boron                        | 4408.816               | 100     | 5000                  | 0              | 88.2 | 85            | 115                |             |                   |          |      |
| Calcium                      | 9444.663               | 500     | 10000                 | 0              | 94.4 | 85            | 115                |             |                   |          |      |
| Iron                         | 100.172                | 20      | 100.0                 | 0              | 100  | 85            | 115                |             |                   |          |      |
| Magnesium                    | 9481.117               | 100     | 10000                 | 0              | 94.8 | 85            | 115                |             |                   |          |      |
| Sample ID: N012402-029B-MS1  | SampType: <b>MS</b>    | TestCod | de: <b>6010_WDF</b>   | GE Units: ug/L |      | Prep Dat      | te: <b>4/25/20</b> | 14          | RunNo: 933        | 332      |      |
| Client ID: ZZZZZZ            | Batch ID: 45532        | TestN   | lo: <b>EPA 6010</b> E | B EPA 3010A    |      | Analysis Dat  | te: <b>5/2/201</b> | 4           | SeqNo: <b>177</b> | 76081    |      |
| Analyte                      | Result                 | PQL     | SPK value             | SPK Ref Val    | %REC | LowLimit      | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Aluminum                     | 9018.388               | 50      | 10000                 | 7.905          | 90.1 | 75            | 125                |             |                   |          |      |
| Boron                        | 4603.369               | 100     | 5000                  | 206.3          | 87.9 | 75            | 125                |             |                   |          |      |
| Calcium                      | 49223.327              | 500     | 10000                 | 43620          | 56.0 | 75            | 125                |             |                   |          | S    |
| Iron                         | 170.356                | 20      | 100.0                 | 74.72          | 95.6 | 75            | 125                |             |                   |          |      |
| Magnesium                    | 18143.664              | 100     | 10000                 | 9036           | 91.1 | 75            | 125                |             |                   |          |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 6010\_WDPGEPPB

| Sample ID: N012402-029B | B-MSD SampType: MSD | TestCo | TestCode: 6010_WDPGE Units: ug/L Prep D             |             | Prep Da | e: <b>4/25/2014</b> |                       | RunNo: 93332 |       |          |      |
|-------------------------|---------------------|--------|-----------------------------------------------------|-------------|---------|---------------------|-----------------------|--------------|-------|----------|------|
| Client ID: ZZZZZZ       | Batch ID: 45532     | Test   | TestNo: EPA 6010B EPA 3010A Analysis Date: 5/2/2014 |             |         | 4                   | SeqNo: <b>1776082</b> |              |       |          |      |
| Analyte                 | Result              | PQL    | SPK value                                           | SPK Ref Val | %REC    | LowLimit            | HighLimit             | RPD Ref Val  | %RPD  | RPDLimit | Qual |
| Aluminum                | 9046.103            | 50     | 10000                                               | 7.905       | 90.4    | 75                  | 125                   | 9018         | 0.307 | 20       |      |
| Boron                   | 4616.307            | 100    | 5000                                                | 206.3       | 88.2    | 75                  | 125                   | 4603         | 0.281 | 20       |      |
| Calcium                 | 48930.106           | 500    | 10000                                               | 43620       | 53.1    | 75                  | 125                   | 49220        | 0.597 | 20       | S    |
| Iron                    | 167.927             | 20     | 100.0                                               | 74.72       | 93.2    | 75                  | 125                   | 170.4        | 1.44  | 20       |      |
| Magnesium               | 17975.095           | 100    | 10000                                               | 9036        | 89.4    | 75                  | 125                   | 18140        | 0.933 | 20       |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-33-040-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 2:34:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-001

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140430B   | QC Batch: 455 | 35    |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 14            | 0.027 | 0.10 | μg/L       | 1         | 4/30/2014 09:19 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 09:19 PM |
| Molybdenum            | 130           | 0.15  | 0.50 | μg/L       | 1         | 4/30/2014 09:19 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 4/30/2014 09:19 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-33-150-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 1:48:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-003

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP.  | A 6020     |           |                    |
| RunID: ICP7_140430B   | QC Batch: 455 | 35    |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 1.1           | 0.027 | 0.10 | μg/L       | 1         | 4/30/2014 09:30 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 09:30 PM |
| Molybdenum            | 24            | 0.76  | 2.5  | μg/L       | 5         | 5/1/2014 01:37 PM  |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5         | 5/1/2014 01:37 PM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL **Client Sample ID:** MW-34-080-198

Lab Order: N012433 Collection Date: 4/17/2014 9:12:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012433-004

| Analyses               | Result       | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|--------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS        |       |      |            |           |                    |
|                        | EPA 3010A    |       | EPA  | A 6020     |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45 | 535   |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic                | 1.4          | 0.027 | 0.10 | μg/L       | 1         | 4/30/2014 09:36 PM |
| Manganese              | 8.0          | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 09:36 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-34-100-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 7:40:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-006

Analyses Result MDL PQL Qual Units DF Date Analyzed

**DISSOLVED METALS BY ICP-MS** 

EPA 3010A EPA 6020

RunID: ICP7\_140430B QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

Arsenic 1.3 0.027 0.10 μg/L 1 4/30/2014 09:47 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-36-090-198

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-007

Analyses Result MDL PQL Qual Units DF Date Analyzed

**DISSOLVED METALS BY ICP-MS** 

EPA 3010A EPA 6020

RunID: ICP7\_140430B QC Batch: 45535 PrepDate: 4/25/2014 Analyst: CEI

Arsenic 19 0.027 0.10 μg/L 1 4/30/2014 09:52 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-36-100-198

**Lab Order:** N012433 **Collection Date:** 4/17/2014 11:24:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-008

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140430B   | QC Batch: 455 | 35    |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 8.5           | 0.027 | 0.10 | μg/L       | 1         | 4/30/2014 10:09 PM |
| Manganese             | 17            | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 10:09 PM |
| Molybdenum            | 35            | 0.15  | 0.50 | μg/L       | 1         | 4/30/2014 10:09 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 4/30/2014 10:09 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

**Project:** 

CLIENT: CH2M HILL

Lab Order: N012433

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-009

Client Sample ID: MW-123-198

**Collection Date:** 4/21/2014 7:00:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140430B   | QC Batch: 455 | 535   |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 1.3           | 0.027 | 0.10 | μg/L       | 1         | 4/30/2014 10:14 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 10:14 PM |
| Molybdenum            | 15            | 0.15  | 0.50 | μg/L       | 1         | 4/30/2014 10:14 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 4/30/2014 10:14 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-33-090-198

**Lab Order:** N012433 **Collection Date:** 4/21/2014 8:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-012

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140430B   | QC Batch: 455 | 35    |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 1.3           | 0.027 | 0.10 | μg/L       | 1         | 4/30/2014 10:20 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 10:20 PM |
| Molybdenum            | 15            | 0.15  | 0.50 | μg/L       | 1         | 4/30/2014 10:20 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 4/30/2014 10:20 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012433-013

Collection Date: 4/21/2014 9:32:00 AM

Matrix: WATER

Client Sample ID: MW-33-210-198

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140501B   | QC Batch: 455 | 35    |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 0.94          | 0.13  | 0.50 | μg/L       | 5         | 5/1/2014 01:42 PM  |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 10:25 PM |
| Molybdenum            | 17            | 0.76  | 2.5  | μg/L       | 5         | 5/1/2014 01:42 PM  |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5         | 5/1/2014 01:42 PM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012433

PG&E Topock, 423575.MP.02.GM.02

**Project:** 

Lab ID: N012433-014 Client Sample ID: MW-72BR-200-198

Collection Date: 4/21/2014 2:52:00 PM

Matrix: WATER

| Analyses              | Result       | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|--------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS        |       |      |            |           |                    |
|                       | EPA 3010A    |       | EP.  | A 6020     |           |                    |
| RunID: ICP7_140430B   | QC Batch: 45 | 535   |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 14           | 0.027 | 0.10 | μg/L       | 1         | 4/30/2014 10:31 PM |
| Manganese             | ND           | 0.026 | 0.50 | μg/L       | 1         | 4/30/2014 10:31 PM |
| Molybdenum            | 75           | 0.76  | 2.5  | μg/L       | 5         | 5/1/2014 01:48 PM  |
| Selenium              | ND           | 0.34  | 2.5  | μg/L       | 5         | 5/1/2014 01:48 PM  |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-16-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 8:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-015

| Analyses               | Result       | MDL    | PQL  | Qual     | Units | DF        | Date Analyzed      |
|------------------------|--------------|--------|------|----------|-------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS        |        |      |          |       |           |                    |
|                        | EPA 3010A    |        | EP   | EPA 6020 |       |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45 | 536    |      | PrepDa   | ate:  | 4/25/2014 | Analyst: CEI       |
| Antimony               | ND           | 0.18   | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Arsenic                | 10           | 0.027  | 0.10 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Barium                 | 29           | 0.030  | 1.0  |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Beryllium              | ND           | 0.010  | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Cadmium                | ND           | 0.013  | 0.50 |          | μg/L  | 1         | 5/1/2014 01:03 PM  |
| Cobalt                 | ND           | 0.017  | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Copper                 | ND           | 0.040  | 1.0  |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Lead                   | ND           | 0.011  | 1.0  |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Manganese              | ND           | 0.026  | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Molybdenum             | 13           | 0.15   | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Nickel                 | 2.0          | 0.032  | 1.0  |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Selenium               | 1.8          | 0.069  | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Silver                 | ND           | 0.094  | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Thallium               | ND           | 0.0080 | 0.50 |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Vanadium               | 32           | 0.16   | 1.0  |          | μg/L  | 1         | 4/30/2014 07:29 PM |
| Zinc                   | 14           | 0.23   | 10   |          | μg/L  | 1         | 4/30/2014 07:29 PM |

Qualifiers: B

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-21-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 11:10:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-018

| Analyses               | Resul       | t MDL | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|-------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS        |       |      |            |           |                    |
|                        | EPA 3010A   |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140430B    | QC Batch: 4 | 5535  |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Molybdenum             | 69          | 0.15  | 0.50 | μg/L       | 1         | 4/30/2014 10:36 PM |
| Selenium               | 27          | 0.069 | 0.50 | μg/L       | 1         | 4/30/2014 10:36 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

# Revision 1, 07/28/14

# **ANALYTICAL RESULTS**

Print Date: 28-Jul-14

Client Sample ID: MW-23-080-198 CH2M HILL **CLIENT:** 

Lab Order: N012433 Collection Date: 4/22/2014 2:15:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012433-020

**ASSET Laboratories** 

| Analyses              | Result        | MDL                 | PQL  | Qual Units | s DF      | Date Analyzed      |
|-----------------------|---------------|---------------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |                     |      |            |           |                    |
|                       | EPA 3010A     |                     | EP   | A 6020     |           |                    |
| RunID: ICP7_140501B   | QC Batch: 455 | Batch: <b>45535</b> |      | PrepDate:  | 4/25/2014 | Analyst: CEI       |
| Arsenic               | 2.7           | 0.13                | 0.50 | μg/L       | 5         | 5/1/2014 01:53 PM  |
| Manganese             | ND            | 0.026               | 0.50 | μg/L       | 1         | 4/30/2014 10:47 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Ε Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified





# Revision 1, 07/28/14

# **ANALYTICAL RESULTS**

Print Date: 28-Jul-14

CLIENT: CH2M HILL Client Sample ID: MW-23-060-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 12:47:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-021

**ASSET Laboratories** 

| Analyses               | Result        | MDL   | PQL  | Qual U    | Inits DF  | Date Analyzed      |
|------------------------|---------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |       |      |           |           |                    |
|                        | EPA 3010A     |       | EP   | A 6020    |           |                    |
| RunID: ICP7_140501B    | QC Batch: 455 | 35    |      | PrepDate: | 4/25/2014 | Analyst: CEI       |
| Arsenic                | 2.6           | 0.13  | 0.50 | μg/       | L 5       | 5/1/2014 01:59 PM  |
| Manganese              | ND            | 0.026 | 0.50 | μg/       | L 1       | 4/30/2014 10:53 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified





Print Date: 08-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-57-185-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 11:06:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-022

| Analyses              | Result        | MDL                 | PQL  | Qual Units | DF | Date Analyzed      |
|-----------------------|---------------|---------------------|------|------------|----|--------------------|
| DISSOLVED METALS BY I | CP-MS         |                     |      |            |    |                    |
|                       | EPA 3010A     |                     | EP   | A 6020     |    |                    |
| RunID: ICP7_140430B   | QC Batch: 455 | Batch: <b>45536</b> |      | PrepDate:  |    | Analyst: CEI       |
| Arsenic               | 13            | 0.027               | 0.10 | μg/L       | 1  | 4/30/2014 07:00 PM |
| Manganese             | 280           | 0.13                | 2.5  | μg/L       | 5  | 4/30/2014 07:06 PM |
| Molybdenum            | 89            | 0.76                | 2.5  | μg/L       | 5  | 4/30/2014 07:06 PM |
| Selenium              | ND            | 0.34                | 2.5  | μg/L       | 5  | 4/30/2014 07:06 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Client Sample ID: MW-17-198

Lab Order: N012433 Collection Date: 4/23/2014 8:25:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012433-024

| Analyses               | Result       | MDL    | PQL  | Qual U    | nits DF   | Date Analyzed      |
|------------------------|--------------|--------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS         |        |      |           |           |                    |
|                        | EPA 3010A    |        | EP   | A 6020    |           |                    |
| RunID: ICP7_140430B    | QC Batch: 45 | 536    |      | PrepDate: | 4/25/2014 | Analyst: CEI       |
| Antimony               | ND           | 0.18   | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Arsenic                | 1.4          | 0.027  | 0.10 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Barium                 | 25           | 0.030  | 1.0  | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Beryllium              | ND           | 0.010  | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Cadmium                | ND           | 0.013  | 0.50 | μg/l      | _ 1       | 5/1/2014 01:09 PM  |
| Cobalt                 | ND           | 0.017  | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Copper                 | ND           | 0.040  | 1.0  | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Lead                   | ND           | 0.011  | 1.0  | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Manganese              | ND           | 0.026  | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Molybdenum             | 16           | 0.15   | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Nickel                 | ND           | 0.032  | 1.0  | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Selenium               | 8.6          | 0.069  | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Silver                 | ND           | 0.094  | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Thallium               | ND           | 0.0080 | 0.50 | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Vanadium               | 5.4          | 0.16   | 1.0  | μg/l      | _ 1       | 4/30/2014 07:35 PM |
| Zinc                   | 21           | 0.23   | 10   | μg/l      | _ 1       | 4/30/2014 07:35 PM |

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

- Value above quantitation range
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Date:** 08-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012433

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: MB-45535         | SampType: MBLK       | TestCode: 6020_DIS | Units: µg/L | Prep Date: 4/25/2014                | RunNo: 93318          |
|-----------------------------|----------------------|--------------------|-------------|-------------------------------------|-----------------------|
| Client ID: PBW              | Batch ID: 45535      | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 4/30/2014            | SeqNo: <b>1775203</b> |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Arsenic                     | ND                   | 0.10               |             |                                     |                       |
| Manganese                   | ND                   | 0.50               |             |                                     |                       |
| Molybdenum                  | ND                   | 0.50               |             |                                     |                       |
| Selenium                    | ND                   | 0.50               |             |                                     |                       |
| Sample ID: LCS-45535        | SampType: <b>LCS</b> | TestCode: 6020_DIS | Units: µg/L | Prep Date: 4/25/2014                | RunNo: <b>93318</b>   |
| Client ID: LCSW             | Batch ID: 45535      | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 4/30/2014            | SeqNo: 1775204        |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Arsenic                     | 9.437                | 0.10 10.00         | 0           | 94.4 85 115                         |                       |
| Manganese                   | 93.359               | 0.50 100.0         | 0           | 93.4 85 115                         |                       |
| Molybdenum                  | 9.349                | 0.50 10.00         | 0           | 93.5 85 115                         |                       |
| Selenium                    | 9.642                | 0.50 10.00         | 0           | 96.4 85 115                         |                       |
| Sample ID: N012426-001A-MS  | SampType: <b>MS</b>  | TestCode: 6020_DIS | Units: µg/L | Prep Date: 4/25/2014                | RunNo: 93318          |
| Client ID: ZZZZZZ           | Batch ID: 45535      | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 4/30/2014            | SeqNo: 1775208        |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Arsenic                     | 11.017               | 0.10 10.00         | 1.531       | 94.9 75 125                         |                       |
| Manganese                   | 139.956              | 0.50 100.0         | 49.90       | 90.1 75 125                         |                       |
| Molybdenum                  | 13.704               | 0.50 10.00         | 3.396       | 103 75 125                          |                       |
| Selenium                    | 9.491                | 0.50 10.00         | 0           | 94.9 75 125                         |                       |
| Sample ID: N012426-001A-MSD | SampType: MSD        | TestCode: 6020_DIS | Units: µg/L | Prep Date: 4/25/2014                | RunNo: <b>93318</b>   |
| Client ID: ZZZZZZ           | Batch ID: 45535      | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 4/30/2014            | SeqNo: <b>1775211</b> |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
|                             |                      |                    |             | 3                                   |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: N012426-001A-MSD | SampType: MSD   | TestCod | de: <b>6020_DIS</b>        | Units: µg/L | Prep Date: 4/25/2014     |          |           | 14          | RunNo: 93318   |          |      |
|-----------------------------|-----------------|---------|----------------------------|-------------|--------------------------|----------|-----------|-------------|----------------|----------|------|
| Client ID: ZZZZZZ           | Batch ID: 45535 | TestN   | TestNo: EPA 6020 EPA 3010A |             | Analysis Date: 4/30/2014 |          |           |             | SeqNo: 1775211 |          |      |
| Analyte                     | Result          | PQL     | SPK value                  | SPK Ref Val | %REC                     | LowLimit | HighLimit | RPD Ref Val | %RPD           | RPDLimit | Qual |
| Manganese                   | 140.213         | 0.50    | 100.0                      | 49.90       | 90.3                     | 75       | 125       | 140.0       | 0.183          | 20       |      |
| Molybdenum                  | 13.778          | 0.50    | 10.00                      | 3.396       | 104                      | 75       | 125       | 13.70       | 0.535          | 20       |      |
| Selenium                    | 9.601           | 0.50    | 10.00                      | 0           | 96.0                     | 75       | 125       | 9.491       | 1.15           | 20       |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Work Order:

# ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 423575.MP.02.GM.02

N012433

TestCode: 6020\_DIS

| Sample ID: MB-45536<br>Client ID: PBW | SampType: MBLK Batch ID: 45536 |      | le: 6020_DIS<br>lo: EPA 6020 | Units: µg/L<br>EPA 3010A | Prep Date: 4/25/2014  Analysis Date: 4/30/2014 |          |           |             | RunNo: <b>933</b><br>SeqNo: <b>177</b> |          |      |
|---------------------------------------|--------------------------------|------|------------------------------|--------------------------|------------------------------------------------|----------|-----------|-------------|----------------------------------------|----------|------|
| Analyte                               | Result                         | PQL  | SPK value                    | SPK Ref Val              | %REC                                           | LowLimit | HighLimit | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Antimony                              | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Arsenic                               | ND                             | 0.10 |                              |                          |                                                |          |           |             |                                        |          |      |
| Barium                                | ND                             | 1.0  |                              |                          |                                                |          |           |             |                                        |          |      |
| Beryllium                             | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Cobalt                                | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Copper                                | ND                             | 1.0  |                              |                          |                                                |          |           |             |                                        |          |      |
| Lead                                  | ND                             | 1.0  |                              |                          |                                                |          |           |             |                                        |          |      |
| Manganese                             | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Molybdenum                            | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Nickel                                | ND                             | 1.0  |                              |                          |                                                |          |           |             |                                        |          |      |
| Selenium                              | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Silver                                | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Thallium                              | ND                             | 0.50 |                              |                          |                                                |          |           |             |                                        |          |      |
| Vanadium                              | ND                             | 1.0  |                              |                          |                                                |          |           |             |                                        |          |      |
| Zinc                                  | ND                             | 10   |                              |                          |                                                |          |           |             |                                        |          |      |

| Sample ID: LCS-45536 Client ID: LCSW | SampType: LCS  Batch ID: 45536 |       | de: 6020_DIS | Units: µg/L<br>EPA 3010A |      | Prep Da<br>Analysis Da | te: 4/25/20 | RunNo: <b>93318</b><br>SeqNo: <b>1775188</b> |           |          |      |
|--------------------------------------|--------------------------------|-------|--------------|--------------------------|------|------------------------|-------------|----------------------------------------------|-----------|----------|------|
| Client ID. LC3W                      | Datell ID. 43330               | 16311 | 10. EFA 6020 | EFA 3010A                |      | Allalysis Da           | le. 4/30/20 | 14                                           | Sequo. 17 | 3100     |      |
| Analyte                              | Result                         | PQL   | SPK value    | SPK Ref Val              | %REC | LowLimit               | HighLimit   | RPD Ref Val                                  | %RPD      | RPDLimit | Qual |
| Antimony                             | 10.085                         | 0.50  | 10.00        | 0                        | 101  | 85                     | 115         |                                              |           |          |      |
| Arsenic                              | 10.274                         | 0.10  | 10.00        | 0                        | 103  | 85                     | 115         |                                              |           |          |      |
| Barium                               | 88.449                         | 1.0   | 100.0        | 0                        | 88.4 | 85                     | 115         |                                              |           |          |      |
| Beryllium                            | 9.827                          | 0.50  | 10.00        | 0                        | 98.3 | 85                     | 115         |                                              |           |          |      |
| Cobalt                               | 9.858                          | 0.50  | 10.00        | 0                        | 98.6 | 85                     | 115         |                                              |           |          |      |
| Copper                               | 10.898                         | 1.0   | 10.00        | 0                        | 109  | 85                     | 115         |                                              |           |          |      |
| Lead                                 | 10.513                         | 1.0   | 10.00        | 0                        | 105  | 85                     | 115         |                                              |           |          |      |
| Manganese                            | 85.422                         | 0.50  | 100.0        | 0                        | 85.4 | 85                     | 115         |                                              |           |          |      |
| Molybdenum                           | 10.011                         | 0.50  | 10.00        | 0                        | 100  | 85                     | 115         |                                              |           |          |      |
| Nickel                               | 10.783                         | 1.0   | 10.00        | 0                        | 108  | 85                     | 115         |                                              |           |          |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691
  - www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: LCS-45536        | SampType: <b>LCS</b> | TestCo | de: <b>6020_DIS</b> | Units: μg/L |      | Prep Da     | te: <b>4/25/20</b> | 14          | RunNo: 933            | 318      | ·    |  |
|-----------------------------|----------------------|--------|---------------------|-------------|------|-------------|--------------------|-------------|-----------------------|----------|------|--|
| Client ID: LCSW             | Batch ID: 45536      | Testi  | No: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: 4/30/20        | 14          | SeqNo: <b>177</b>     | 75188    |      |  |
| Analyte                     | Result               | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD                  | RPDLimit | Qual |  |
| Selenium                    | 11.078               | 0.50   | 10.00               | 0           | 111  | 85          | 115                |             |                       |          |      |  |
| Silver                      | 10.859               | 0.50   | 10.00               | 0           | 109  | 85          | 115                |             |                       |          |      |  |
| Thallium                    | 10.132               | 0.50   | 10.00               | 0           | 101  | 85          | 115                |             |                       |          |      |  |
| Vanadium                    | 9.497                | 1.0    | 10.00               | 0           | 95.0 | 85          | 115                |             |                       |          |      |  |
| Zinc                        | 102.087              | 10     | 100.0               | 0           | 102  | 85          | 115                |             |                       |          |      |  |
| Sample ID: N012433-022B-MS  | SampType: <b>MS</b>  | TestCo | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te: <b>4/25/20</b> | 14          | RunNo: 933            | 318      |      |  |
| Client ID: ZZZZZZ           | Batch ID: 45536      | Testi  | No: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: 4/30/20        | 14          | SeqNo: <b>1775192</b> |          |      |  |
| Analyte                     | Result               | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD                  | RPDLimit | Qual |  |
| Arsenic                     | 21.597               | 0.10   | 10.00               | 13.17       | 84.3 | 75          | 125                |             |                       |          |      |  |
| Cobalt                      | 7.511                | 0.50   | 10.00               | 0.04074     | 74.7 | 75          | 125                |             |                       |          | S    |  |
| Copper                      | 8.151                | 1.0    | 10.00               | 0           | 81.5 | 75          | 125                |             |                       |          |      |  |
| Nickel                      | 9.303                | 1.0    | 10.00               | 0.06481     | 92.4 | 75          | 125                |             |                       |          |      |  |
| Vanadium                    | 10.404               | 1.0    | 10.00               | 1.197       | 92.1 | 75          | 125                |             |                       |          |      |  |
| Zinc                        | 95.697               | 10     | 100.0               | 28.49       | 67.2 | 75          | 125                |             |                       |          | S    |  |
| Sample ID: N012433-022B-MSD | SampType: MSD        | TestCo | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te: <b>4/25/20</b> | 14          | RunNo: 933            | 318      |      |  |
| Client ID: ZZZZZZ           | Batch ID: 45536      | Testi  | No: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: <b>4/30/20</b> | 14          | SeqNo: <b>177</b>     | 75193    |      |  |
| Analyte                     | Result               | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD                  | RPDLimit | Qual |  |
| Arsenic                     | 22.245               | 0.10   | 10.00               | 13.17       | 90.7 | 75          | 125                | 21.60       | 2.96                  | 20       |      |  |
| Cobalt                      | 7.624                | 0.50   | 10.00               | 0.04074     | 75.8 | 75          | 125                | 7.511       | 1.49                  | 20       |      |  |
| Copper                      | 8.296                | 1.0    | 10.00               | 0           | 83.0 | 75          | 125                | 8.151       | 1.76                  | 20       |      |  |
| Nickel                      | 9.138                | 1.0    | 10.00               | 0.06481     | 90.7 | 75          | 125                | 9.303       | 1.78                  | 20       |      |  |
| Vanadium                    | 10.439               | 1.0    | 10.00               | 1.197       | 92.4 | 75          | 125                | 10.40       | 0.329                 | 20       |      |  |
| Zinc                        | 96.043               | 10     | 100.0               | 28.49       | 67.6 | 75          | 125                | 95.70       | 0.361                 | 20       | s    |  |
|                             |                      |        |                     |             |      |             |                    |             |                       |          |      |  |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: N | MB-45536         | SampType: MBLK       | TestCod | de: <b>6020_DIS</b> | Units: µg/L |                 | Prep Dat      | e: <b>4/25/20</b> | 14          | RunNo: 93336      |          |      |  |  |  |
|--------------|------------------|----------------------|---------|---------------------|-------------|-----------------|---------------|-------------------|-------------|-------------------|----------|------|--|--|--|
| Client ID: F | PBW              | Batch ID: 45536      | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   |                 | Analysis Dat  | e: <b>5/1/201</b> | 4           | SeqNo: <b>177</b> | 6349     |      |  |  |  |
| Analyte      |                  | Result               | PQL     | SPK value           | SPK Ref Val | %REC            | %REC LowLimit |                   | RPD Ref Val | %RPD              | RPDLimit | Qual |  |  |  |
| Cadmium      |                  | ND                   | 0.50    |                     |             |                 |               |                   |             |                   |          |      |  |  |  |
| Sample ID: L | _CS-45536        | SampType: <b>LCS</b> | TestCod | de: <b>6020_DIS</b> | Units: µg/L |                 | Prep Dat      | e: <b>4/25/20</b> | 14          | RunNo: 933        | 336      |      |  |  |  |
| Client ID: L | _csw             | Batch ID: 45536      | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   |                 | Analysis Dat  | e: <b>5/1/201</b> | 4           | SeqNo: <b>177</b> | 6350     |      |  |  |  |
| Analyte      |                  | Result               | PQL     | SPK value           | SPK Ref Val | %REC            | LowLimit      | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |  |  |  |
| Cadmium      |                  | 10.086               | 0.50    | 10.00               | 0           | 101             | 85            | 115               |             |                   |          |      |  |  |  |
| Sample ID: N | N012433-022B-MS  | SampType: MS         | TestCod | de: <b>6020_DIS</b> | Units: µg/L | Prep Date: 4/25 |               |                   | 14          | RunNo: 933        | 336      |      |  |  |  |
| Client ID: Z | ZZZZZZ           | Batch ID: 45536      | TestN   | No: <b>EPA 6020</b> | EPA 3010A   | Analysis Date:  |               | e: <b>5/1/201</b> | 4           | SeqNo: <b>177</b> | 6367     |      |  |  |  |
| Analyte      |                  | Result               | PQL     | SPK value           | SPK Ref Val | %REC            | LowLimit      | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |  |  |  |
| Antimony     |                  | 10.757               | 2.5     | 10.00               | 0           | 108             | 75            | 125               |             |                   |          |      |  |  |  |
| Barium       |                  | 152.175              | 5.0     | 100.0               | 54.99       | 97.2            | 75            | 125               |             |                   |          |      |  |  |  |
| Beryllium    |                  | 10.413               | 2.5     | 10.00               | 0           | 104             | 75            | 125               |             |                   |          |      |  |  |  |
| Cadmium      |                  | 8.265                | 2.5     | 10.00               | 0           | 82.7            | 75            | 125               |             |                   |          |      |  |  |  |
| Silver       |                  | 10.025               | 2.5     | 10.00               | 0           | 100             | 75            | 125               |             |                   |          |      |  |  |  |
| Sample ID: N | N012433-022B-MSD | SampType: MSD        | TestCod | de: <b>6020_DIS</b> | Units: μg/L |                 | Prep Dat      | e: <b>4/25/20</b> | 14          | RunNo: 933        | 336      |      |  |  |  |
| Client ID: Z | ZZZZZZ           | Batch ID: 45536      | TestN   | No: <b>EPA 6020</b> | EPA 3010A   |                 | Analysis Dat  | e: <b>5/1/201</b> | 4           | SeqNo: <b>177</b> | 6368     |      |  |  |  |
| Analyte      |                  | Result               | PQL     | SPK value           | SPK Ref Val | %REC            | LowLimit      | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |  |  |  |
| Antimony     |                  | 10.949               | 2.5     | 10.00               | 0           | 109             | 75            | 125               | 10.76       | 1.77              | 20       |      |  |  |  |
| Barium       |                  | 152.551              | 5.0     | 100.0               | 54.99       | 97.6            | 75            | 125               | 152.2       | 0.247             | 20       |      |  |  |  |
| Beryllium    |                  | 10.341               | 2.5     | 10.00               | 0           | 103             | 75            | 125               | 10.41       | 0.688             | 20       |      |  |  |  |
| Cadmium      |                  | 8.220                | 2.5     | 10.00               | 0           | 82.2            | 75            | 125               | 8.265       | 0.550             | 20       |      |  |  |  |
| Silver       |                  | 10.097               | 2.5     | 10.00               | 0           | 101             | 75            | 125               | 10.02       | 0.715             | 20       |      |  |  |  |
|              |                  |                      |         |                     |             |                 |               |                   |             |                   |          |      |  |  |  |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

| TestCode: | 6020 | DIS |
|-----------|------|-----|
|-----------|------|-----|

| Sample ID: N012433-022B-MS  | SampType: <b>MS</b> | TestCoo                    | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat     | te: <b>4/25/20</b> | 14          | RunNo: 933         | 353      |      |  |  |
|-----------------------------|---------------------|----------------------------|---------------------|-------------|------|--------------|--------------------|-------------|--------------------|----------|------|--|--|
| Client ID: ZZZZZZ           | Batch ID: 45536     | TestN                      | lo: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Dat | te: <b>5/6/201</b> | 4           | SeqNo: 1776832     |          |      |  |  |
| Analyte                     | Result              | PQL                        | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD               | Qual     |      |  |  |
| Lead                        | 10.500              | 5.0                        | 10.00               | 0           | 105  | 75           | 125                |             |                    |          |      |  |  |
| Thallium                    | 11.154              | 2.5                        | 10.00               | 0.7576      | 104  | 75           | 125                |             |                    |          |      |  |  |
| Sample ID: N012433-022B-MSD | SampType: MSD       | TestCoo                    | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat     | te: <b>4/25/20</b> | 14          | RunNo: 933         | 353      |      |  |  |
| Client ID: ZZZZZZ           | Batch ID: 45536     | TestNo: EPA 6020 EPA 3010A |                     |             |      | Analysis Dat | te: <b>5/6/201</b> | 4           | SeqNo: <b>17</b> 7 | 76833    |      |  |  |
| Analyte                     | Result              | PQL                        | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |  |  |
| Lead                        | 10.565              | 5.0                        | 10.00               | 0           | 106  | 75           | 125                | 10.50       | 0.619              | 20       |      |  |  |
| Thallium                    | 11.075              | 2.5                        | 10.00               | 0.7576      | 103  | 75           | 125                | 11.15       | 0.708              | 20       |      |  |  |
| Sample ID: N012433-022B-MS  | SampType: <b>MS</b> | TestCoo                    | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat     | te: <b>4/25/20</b> | 14          | RunNo: 933         | 336      |      |  |  |
| Client ID: ZZZZZZ           | Batch ID: 45536     | TestN                      | No: EPA 6020        | EPA 3010A   |      | Analysis Dat | te: <b>5/1/201</b> | 4           | SeqNo: 1778297     |          |      |  |  |
| Analyte                     | Result              | PQL                        | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |  |  |
| Manganese                   | 338.036             | 2.5                        | 100.0               | 278.4       | 59.6 | 75           | 125                |             |                    |          | S    |  |  |
| Molybdenum                  | 92.724              | 2.5                        | 10.00               | 89.17       | 35.5 | 75           | 125                |             |                    |          | S    |  |  |
| Selenium                    | 10.451              | 2.5                        | 10.00               | 0           | 105  | 75           | 125                |             |                    |          |      |  |  |
| Sample ID: N012433-022B-MSD | SampType: MSD       | TestCoo                    | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat     | te: <b>4/25/20</b> | 14          | RunNo: 933         | 336      |      |  |  |
| Client ID: ZZZZZZ           | Batch ID: 45536     | TestN                      | lo: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Dat | te: <b>5/1/201</b> | 4           | SeqNo: <b>17</b> 7 | 78298    |      |  |  |
| Analyte                     | Result              | PQL                        | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |  |  |
| Manganese                   | 341.112             | 2.5                        | 100.0               | 278.4       | 62.7 | 75           | 125                | 338.0       | 0.906              | 20       | S    |  |  |
| Molybdenum                  | 92.503              | 2.5                        | 10.00               | 89.17       | 33.3 | 75           | 125                | 92.72       | 0.239              | 20       | S    |  |  |
|                             |                     |                            |                     |             |      |              |                    |             |                    |          |      |  |  |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-16-198

**Lab Order:** N012433 **Collection Date:** 4/22/2014 8:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-015

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE

**EPA 7470A** 

RunID: AA1\_140429C QC Batch: 45553 PrepDate: 4/29/2014 Analyst: LCC

Mercury ND 0.038 0.20 µg/L 1 4/29/2014 12:05 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 08-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-17-198

**Lab Order:** N012433 **Collection Date:** 4/23/2014 8:25:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012433-024

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE

**EPA 7470A** 

RunID: AA1\_140429C QC Batch: 45553 PrepDate: 4/29/2014 Analyst: LCC

Mercury ND 0.038 0.20 µg/L 1 4/29/2014 12:08 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

**Date:** 08-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 7470\_W\_DISSPGE

| Sample ID: MB-45553                                                               | SampType: MBLK                                                     | TestCode: <b>7470_W_DIS</b> Units: μg/L                                                                                      | Prep Date: 4/29/2014                                                                                                  | RunNo: 93289                                       |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Client ID: PBW                                                                    | Batch ID: 45553                                                    | TestNo: EPA 7470A                                                                                                            | Analysis Date: 4/29/2014                                                                                              | SeqNo: <b>1773721</b>                              |
| Analyte                                                                           | Result                                                             | PQL SPK value SPK Ref Val                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                                                   | %RPD RPDLimit Qual                                 |
| Mercury                                                                           | ND                                                                 | 0.20                                                                                                                         |                                                                                                                       |                                                    |
| Sample ID: LCS-45553                                                              | SampType: <b>LCS</b>                                               | TestCode: <b>7470_W_DIS</b> Units: μg/L                                                                                      | Prep Date: 4/29/2014                                                                                                  | RunNo: <b>93289</b>                                |
| Client ID: LCSW                                                                   | Batch ID: 45553                                                    | TestNo: EPA 7470A                                                                                                            | Analysis Date: 4/29/2014                                                                                              | SeqNo: 1773722                                     |
| Analyte                                                                           | Result                                                             | PQL SPK value SPK Ref Val                                                                                                    | %REC LowLimit HighLimit RPD Ref Val                                                                                   | %RPD RPDLimit Qual                                 |
| Mercury                                                                           | 5.239                                                              | 0.20 5.000 0                                                                                                                 | 105 85 115                                                                                                            |                                                    |
| Mercury                                                                           | 0.200                                                              | 0.20 3.000 0                                                                                                                 | 103 83 113                                                                                                            |                                                    |
| Sample ID: <b>N012433-015E</b>                                                    |                                                                    | TestCode: <b>7470_W_DIS</b> Units: μg/L                                                                                      | Prep Date: 4/29/2014                                                                                                  | RunNo: <b>93289</b>                                |
| ,                                                                                 |                                                                    |                                                                                                                              |                                                                                                                       | RunNo: <b>93289</b><br>SeqNo: <b>1773725</b>       |
| Sample ID: N012433-015E                                                           | B-MS SampType: MS                                                  | TestCode: <b>7470_W_DIS</b> Units: μg/L                                                                                      | Prep Date: 4/29/2014                                                                                                  |                                                    |
| Sample ID: N012433-015E                                                           | B-MS SampType: MS  Batch ID: 45553                                 | TestCode: 7470_W_DIS Units: µg/L TestNo: EPA 7470A                                                                           | Prep Date: 4/29/2014 Analysis Date: 4/29/2014                                                                         | SeqNo: <b>1773725</b>                              |
| Sample ID: N012433-015E Client ID: ZZZZZZ Analyte                                 | B-MS SampType: MS Batch ID: 45553 Result 5.173                     | TestCode: <b>7470_W_DIS</b> Units: μg/L TestNo: <b>EPA 7470A</b> PQL SPK value SPK Ref Val                                   | Prep Date: 4/29/2014  Analysis Date: 4/29/2014  %REC LowLimit HighLimit RPD Ref Val                                   | SeqNo: <b>1773725</b>                              |
| Sample ID: N012433-015E Client ID: ZZZZZZ Analyte Mercury                         | B-MS SampType: MS Batch ID: 45553 Result 5.173                     | TestCode: <b>7470_W_DIS</b> Units: μg/L TestNo: <b>EPA 7470A</b> PQL SPK value SPK Ref Val  0.20 5.000 0                     | Prep Date: 4/29/2014  Analysis Date: 4/29/2014  %REC LowLimit HighLimit RPD Ref Val  103 75 125                       | SeqNo: 1773725<br>%RPD RPDLimit Qual               |
| Sample ID: N012433-015E Client ID: ZZZZZZ Analyte Mercury Sample ID: N012433-015E | B-MS SampType: MS Batch ID: 45553 Result 5.173 B-MSD SampType: MSD | TestCode: 7470_W_DIS Units: μg/L TestNo: EPA 7470A  PQL SPK value SPK Ref Val 0.20 5.000 0  TestCode: 7470_W_DIS Units: μg/L | Prep Date: 4/29/2014  Analysis Date: 4/29/2014  %REC LowLimit HighLimit RPD Ref Val  103 75 125  Prep Date: 4/29/2014 | SeqNo: 1773725<br>%RPD RPDLimit Qual  RunNo: 93289 |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CH2MHILL

## **CHAIN OF CUSTODY RECORD**

4/24/2014 10:51:26 AM

Page 1 OF 3

| CHZWHIL                                                                                     |                     |               |            |                                                  |                                                  |                                |                                                                            | U                                         | IMIN C                           | rvo                                    | JIUU                                      | INEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UNU                      |                               | 4/24/2014 10:51.25 AW Page | OF _                 | <u> </u> |
|---------------------------------------------------------------------------------------------|---------------------|---------------|------------|--------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|----------------------------|----------------------|----------|
| Project Name Po<br>Location Topoc<br>Project Manager                                        | k                   | ••            | Container: | 250 ml<br>Poly<br>(NH4)2S<br>04/NH40<br>H, 4°C   | 2x250<br>ml Poly<br>(NH4)2S<br>O4/NH4O<br>H, 4°C | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C                                             | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C   | 500 ml<br>Poly<br>HNO3,<br>4°C         | 500 ml<br>Poly<br>HNO3,<br>4°C            | 2x500<br>ml Poly<br>HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250 ml<br>Poly<br>4°C    | 250 ml<br>Poly<br>4°C         |                            |                      |          |
| Sample Manager                                                                              | Shawn Du            | ffy           | Filtered:  |                                                  | Field                                            | Field                          | Field                                                                      | Field                                     | Field                            | Field                                  | Field                                     | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                       | NA                            |                            |                      |          |
| -                                                                                           |                     | Hold          | ing Time:  | <u> </u>                                         | 28                                               | 180                            | 180                                                                        | 180                                       | 180                              | 180                                    | 180                                       | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                       | 28                            |                            |                      |          |
| Project Number of Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: 3 | P-198-Q2<br>10 Days |               |            | Cr6 (E218.6) Field Filtered                      | Cr6 (E218.6R) Field Filtered                     | Arsenic (6020A) Field Filtered | Metals (SW6010B/SW6020Adis)<br>Field Filtered<br>AlSbAsBaBeBCaCdCoCuFePbMg | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Metals (6020A-R) Field Filtered<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anions (E300.0) Fluoride | Specific Conductance (E120.1) |                            | Number of Containers | COMMENTS |
| MW-33-040-198                                                                               | 4/17/2014           | 14:34         | Water      |                                                  | х                                                | x                              |                                                                            |                                           |                                  |                                        | Х                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                        | Х                             | NO12433-1                  | 6                    |          |
| MW-33-040-198-EB                                                                            | 4/17/2014           | 13:02         | Water      | х                                                |                                                  |                                |                                                                            | Х                                         |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                               | 1 -2                       | 2                    |          |
| MW-33-150-198                                                                               | 4/17/2014           | 13:48         | Water      | х                                                |                                                  | Х                              |                                                                            | Х                                         |                                  |                                        | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ж                        | Х                             | -3                         | 3                    |          |
| MW-34-080-198                                                                               | 4/17/2014           | 9:12          | Water      |                                                  | х                                                | х                              |                                                                            |                                           | x                                |                                        |                                           | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                               | -4                         | 5                    |          |
| MW-34-080-198-EB                                                                            | 4/17/2014           | 7:16          | Water      | x                                                |                                                  |                                |                                                                            | х                                         |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                               | -5                         | 2                    |          |
| MW-34-100-198                                                                               | 4/17/2014           | 7:40          | Water      | х                                                |                                                  | Х                              |                                                                            | х                                         |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                               | -6                         | 2                    |          |
| MW-36-090-198                                                                               | 4/17/2014           | 10:44         | Water      | х                                                |                                                  | Х                              |                                                                            | х                                         |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                               | -7                         | 2                    |          |
| MW-36-100-198                                                                               | 4/17/2014           | 11:24         | Water      | х                                                |                                                  | х                              |                                                                            | х                                         |                                  |                                        | х                                         | And a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                          | х                             | -8                         | 3                    |          |
| MW-123-198                                                                                  | 4/21/2014           | 7:00          | Water      | x                                                |                                                  | Х                              |                                                                            | Х                                         |                                  |                                        | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                        | х                             | -9                         | 3                    |          |
| MW-208-198                                                                                  | 4/21/2014           | 7:05          | Water      | х                                                | <u> </u>                                         |                                |                                                                            |                                           |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                               | -10                        | 4                    |          |
| MW-209-198                                                                                  | 4/21/2014           | 7:00          | Water      | х                                                |                                                  |                                |                                                                            |                                           |                                  |                                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                               | -11                        | ques                 |          |
| MW-33-090-198                                                                               | 4/21/2014           | 8:18          | Water      | Х                                                |                                                  | Х                              |                                                                            | Х                                         |                                  |                                        | Х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                        | Х                             | -12                        | 3                    |          |
|                                                                                             |                     | <del>  </del> |            | <del>                                     </del> | <u> </u>                                         | 147                            |                                                                            | Х                                         |                                  |                                        | x                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                        | Х                             | -13                        | 3                    |          |
| MW-33-210-198                                                                               | 4/21/2014           | 9:32          | Water      | X                                                |                                                  | X                              |                                                                            | A.                                        | į.                               | ì                                      |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 77                            | 1 15                       | ***                  | g        |

| Approved by     |  |
|-----------------|--|
| Sampled by      |  |
| Relinquished by |  |
| Received by     |  |
| Relinquished by |  |
| Received by     |  |

Signatures

Method of Shipment: On Ice: (yes / no 2 Airbill No:

**Shipping Details** 

Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

ATTN:

**Special Instructions:** April 9 to May 15, 2014

Sample Custody and

Marlon

Report Copy to (530) 229-3303

Shawn Duffy

| CH         | 27             | MH       | 1000  | -         |
|------------|----------------|----------|-------|-----------|
| APAN W III | AUDICUS SEE VE | 2 22 E 4 | 10 Um | on Heater |

## **CHAIN OF CUSTODY RECORD**

4/24/2014 10:51:26 AM

Page 2 OF 3

| Project Name PG                                                                             | - 7.1               | k     | Container:      | 250 ml<br>Poly               | 2x250<br>ml Poly             | 500 ml<br>Poly                 | 500 ml<br>Poly                                                             | 500 ml<br>Poly                            | 500 ml<br>Poly                   | 500 ml<br>Poly                         | 500 ml<br>Poly                            | 2x500<br>ml Poly                            | 250 ml<br>Poly           | 250 ml<br>Poly                | Please note the metals list for                                 |                      |         |
|---------------------------------------------------------------------------------------------|---------------------|-------|-----------------|------------------------------|------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------|-------------------------------|-----------------------------------------------------------------|----------------------|---------|
| Project Manager                                                                             |                     | Pres  | servatives:     | (NH4)2S<br>04/NH40<br>H, 4°C | (NH4)2S<br>O4/NH4O<br>H, 4°C | HNO3,<br>4°C                   | HNO3,<br>4°C                                                               | HNO3,<br>4°C                              | HNO3,<br>4°C                     | HNO3,<br>4°C                           | HNO3,<br>4°C                              | HNO3,<br>4°C                                | 4°C                      | 4°C                           | MW-16-198 and MW-17-198 is the                                  |                      |         |
| Sample Manager                                                                              | Shawn Du            | ffy   | Filtered:       | Field                        | Field                        | Field                          | Field                                                                      | Field                                     | Field                            | Field                                  | Field                                     | Field                                       | NA                       | NA                            | following:                                                      |                      |         |
|                                                                                             |                     |       | ding Time:      | 28                           | 28                           | 180                            | 180                                                                        | 180                                       | 180                              | 180                                    | 180                                       | 180                                         | 28                       | 28                            | *Metals (SW6010B/SW6020A dis)Al,Sb,                             |                      |         |
| Project Number 4 Task Order Project 2014-GMI Turnaround Time Shipping Date: 4 COC Number: 3 | P-198-Q2<br>10 Days | \$    | VI.O.2.  Matrix | Cr6 (E218.6) Field Filtered  | Cr6 (E218.6R) Field Filtered | Arsenic (6020A) Field Filtered | Metals (SW6010B/SW6020Adis)<br>Field Filtered<br>AlSbAsBaBeBCaCdCoCuFePbMg | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Metals (6020A-R) Field Filtered<br>Chromium | Anions (E300.0) Fluoride | Specific Conductance (E120.1) | As,Ba,Be,B,Ca,Cd,Co,Cu,Fe,Pb,Mg,Mn,Hg,Mo,Ni,Se,Ag,Tl,V, and Zn. | Number of Containers | COMMENT |
| MW-16-198                                                                                   | 4/22/2014           | 8:14  | Water           | х                            |                              |                                | х                                                                          | x                                         |                                  |                                        |                                           |                                             |                          |                               | NO12433-15                                                      | 2                    |         |
| MW-210-198                                                                                  | 4/22/2014           | 6:30  | Water           | Х                            |                              |                                |                                                                            |                                           |                                  |                                        |                                           |                                             |                          |                               | 1 -16                                                           | 1                    |         |
| MW-211-198                                                                                  | 4/22/2014           | 6:32  | Water           | ×                            |                              |                                |                                                                            |                                           |                                  |                                        |                                           |                                             |                          |                               | -17                                                             | 1                    |         |
| MW-21-198                                                                                   | 4/22/2014           | 11:10 | Water           |                              | х                            |                                |                                                                            |                                           |                                  | х                                      |                                           | х                                           |                          | х                             | -18                                                             | 6                    |         |
| MW-21-198-EB                                                                                | 4/22/2014           | 11:00 | Water           | х                            |                              |                                |                                                                            | х                                         |                                  |                                        |                                           |                                             |                          |                               | -19                                                             | 2                    |         |
| MW-23-060-198                                                                               | 4/22/2014           | 12:47 | Water           | Х                            |                              | Х                              |                                                                            | х                                         | x                                |                                        |                                           |                                             |                          |                               | -20                                                             | 2                    |         |
| MW-23-080-198                                                                               | 4/22/2014           | 14:15 | Water           | ×                            |                              | ×                              |                                                                            | X                                         | ×                                |                                        |                                           |                                             |                          |                               | -21                                                             | 2                    |         |
| MW-57-185-198                                                                               | 4/22/2014           | 11:06 | Water           | х                            |                              | х                              |                                                                            | Х                                         |                                  |                                        | х                                         |                                             |                          | х                             | -22                                                             | 3                    |         |
| MW-126-198                                                                                  | 4/23/2014           | 7:00  | Water           | Х                            |                              |                                |                                                                            | X                                         |                                  |                                        |                                           |                                             |                          |                               | -23                                                             | 2                    |         |
| MVV-17-198                                                                                  | 4/23/2014           | 8:25  | Water           | х                            |                              |                                | ×                                                                          | х                                         |                                  |                                        |                                           |                                             |                          |                               | -24                                                             | 2                    |         |
| MW-212-198                                                                                  | 4/23/2014           | 7:38  | Water           | Х                            |                              |                                |                                                                            |                                           |                                  |                                        |                                           |                                             |                          |                               | -25                                                             | 1                    |         |
| MW-213-198                                                                                  | 4/23/2014           | 7:30  | Water           | Х                            |                              |                                |                                                                            |                                           |                                  |                                        |                                           |                                             |                          |                               | -26                                                             | 1                    |         |
|                                                                                             |                     | 9:29  | Water           | X                            |                              |                                |                                                                            | Х                                         |                                  |                                        |                                           |                                             |                          |                               | -27                                                             | 2                    |         |
| MW-47-055-198                                                                               | 4/23/2014           | 3.23  |                 | 25,000                       |                              |                                |                                                                            |                                           |                                  |                                        |                                           |                                             |                          |                               |                                                                 |                      |         |

| Approved by     |      |
|-----------------|------|
| Sampled by      | 13   |
| Relinquished by | 10a  |
| Received by     | DIN  |
| Relinquished by | tous |
| Received by     | Anno |

Date/Time 4-24-14 1230

Signatures

Shipping Details

Method of Shipment: courier
On Ice: (ves) / no j. 47 / 2-5-7

Lab Name: ADVANCED TECHNOLOGY LABORATO

Lab Phone: (702) 307-2659

ATTN:

Special Instructions:

April 9 to May 15, 2014

Sample Custody

and Marlon

Report Copy to Shawn Duffy (530) 229-3303

103

**CH2MHILL** 

## **CHAIN OF CUSTODY RECORD**

4/24/2014 10:51:26 AM

Page 2 OF 3

| CHZIVINIL                                                                                | · L                 |       |                          |                                                |                                                  |                                |                                                                      | <b>•</b>                                  | 19-733-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 8 × 3 mm                                  |                          |                               | 4/24/2014 10.01.20 AM Fage | OF.                  | <u> </u>                                         |
|------------------------------------------------------------------------------------------|---------------------|-------|--------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|-------------------------------|----------------------------|----------------------|--------------------------------------------------|
| Project Name PG<br>Location Topoc<br>Project Manager                                     | k                   |       | Container:<br>ervatives: | 250 ml<br>Poly<br>(NH4)2S<br>O4/NH4O<br>H, 4°C | 2x250<br>ml Poly<br>(NH4)2S<br>O4/NH4O<br>H, 4°C | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C                                       | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 ml<br>Poly<br>HNO3,<br>4°C         | 500 ml<br>Poly<br>HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2x500<br>ml Poly<br>HNO3,<br>4°C            | 250 ml<br>Poly<br>4°C    | 250 ml<br>Poly<br>4°C         |                            |                      |                                                  |
| Sample Manager                                                                           | Shawn Du            | ffy   | Filtered:                | Field                                          | Field                                            | Field                          | Field                                                                | Field                                     | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field                                  | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field                                       | NA                       | NA                            |                            |                      |                                                  |
|                                                                                          |                     | Hold  | ling Time:               | 28                                             | 28                                               | 180                            | 180                                                                  | 180                                       | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                    | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                         | 28                       | 28                            |                            |                      |                                                  |
| Project Number Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: 3 | P-198-Q2<br>10 Days | S     | i.02<br>Matrix           | Cr6 (E218.6) Field Filtered                    | Cr6 (E218.6R) Field Filtered                     | Arsenic (6020A) Field Filtered | Metals (SW6010B/SW6020Adis) Field Filtered AlSbAsBaBeBCaCdCoCuFePbMg | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo,Se,Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metals (6020A-R) Field Filtered<br>Chromium | Anions (E300.0) Fluoride | Specific Conductance (E120.1) | ·                          | Number of Containers | COMMENTS                                         |
| MW-16-198                                                                                | 4/22/2014           | 8:14  | Water                    | х                                              |                                                  |                                | х                                                                    | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | -                        |                               | NO12433-15                 | 2                    |                                                  |
| MW-210-198                                                                               | 4/22/2014           | 6:30  | Water                    | x                                              |                                                  |                                |                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          |                               | 1 -16                      | 1                    |                                                  |
| MW-211-198                                                                               | 4/22/2014           | 6:32  | Water                    | х                                              |                                                  |                                |                                                                      |                                           | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          |                               | -17                        | 4                    |                                                  |
| MW-21-198                                                                                | 4/22/2014           | 11:10 | Water                    |                                                | Х                                                |                                |                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                      | THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PE | Х                                           |                          | х                             | -18                        | 6                    |                                                  |
| MW-21-198-EB                                                                             | 4/22/2014           | 11:00 | Water                    | х                                              |                                                  |                                |                                                                      | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          |                               | -19                        | 2                    |                                                  |
| MW-23-060-198                                                                            | 4/22/2014           | 12:47 | Water                    | х                                              |                                                  | ×                              |                                                                      | х                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          |                               | -20                        | 2                    |                                                  |
| MW-23-080-198                                                                            | 4/22/2014           | 14:15 | Water                    | х                                              |                                                  | Х                              |                                                                      | х                                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                          |                               | -21                        | 2                    |                                                  |
| MW-57-185-198                                                                            | 4/22/2014           | 11:06 | Water                    | х                                              |                                                  | х                              |                                                                      | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                          | Х                             | -22                        | 3                    |                                                  |
| MW-126-198                                                                               | 4/23/2014           | 7:00  | Water                    | Х                                              |                                                  |                                |                                                                      | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          |                               | -23                        | 2                    |                                                  |
| MW-17-198                                                                                | 4/23/2014           | 8:25  | Water                    | х                                              |                                                  | 2                              | ×                                                                    | Ж                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | riano are menore man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                          |                               | -24                        | 2                    |                                                  |
| MW-212-198                                                                               | 4/23/2014           | 7:38  | Water                    | х                                              |                                                  | -                              |                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | THE RESERVE OF THE PERSON NAMED IN COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                          |                               | -25                        | 1                    |                                                  |
| MW-213-198                                                                               | 4/23/2014           | 7:30  | Water                    | х                                              |                                                  |                                |                                                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          |                               | -26                        | 1                    |                                                  |
| MW-47-055-198                                                                            | 4/23/2014           | 9:29  | Water                    | х                                              |                                                  | -                              |                                                                      | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                          |                               | -27                        | 2                    |                                                  |
| MW-47-115-198                                                                            | 4/23/2014           | 10:11 | Water                    | ×                                              | 1                                                | !                              |                                                                      | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          |                               | V -28                      | 2                    | <del>                                     </del> |

Approved by Sampled by Relinquished by Received by Relinquished by

Received by

**Signatures** 

Date/Time

**Shipping Details** Method of Shipment:

On Ice: (ves)

ル刻 Airbill No:

Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

courier

ATTN:

Special Instructions: April 9 to May 15, 2014

Sample Custody

and Marion

Report Copy to

Shawn Duffy (530) 229-3303

104

CH2MHILL

### CHAIN OF CUSTODY RECORD

4/24/2014 10:51:27 AM

Page 3 OF 3

| we become in the                                                                                        | n Sees                            |       |                          |                                                |                                                  |                                |                                                                            | •                                         | 23.665.6 C                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Way 1) American                           | 2 2 4 5 mm 40                               | A CHAP                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/2-7/2014 10.01.21 7/100 1 ago 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~        |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|-------|--------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Project Name Po<br>Location Topoc<br>Project Manager                                                    | .k                                |       | Container:<br>ervatives: | 250 ml<br>Poly<br>(NH4)2S<br>O4/NH4O<br>H, 4°C | 2x250<br>ml Poly<br>(NH4)2S<br>O4/NH4O<br>H. 4°C | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C                                             | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C   | 500 ml<br>Poly<br>HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 ml<br>Poly<br>HNO3,<br>4°C            | 2x500<br>ml Poly<br>HNO3,<br>4°C            | 250 ml<br>Poly<br>4°C    | 250 ml<br>Poly<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Manager                                                                                          | Shawn Du                          | ffy   | Filtered:                |                                                | Field                                            | Field                          | Field                                                                      | Field                                     | Field                            | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field                                     | Field                                       | NA                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                         |                                   | Hold  | ling Time:               | 28                                             | 28                                               | 180                            | 180                                                                        | 180                                       | 180                              | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                       | 180                                         | 28                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF |          |
| Project Number<br>Task Order<br>Project 2014-GM<br>Turnaround Time<br>Shipping Date: 4<br>COC Number: 3 | IP-198-Q2<br>10 Day:<br>1/24/2014 | s     | II.0Q<br>Matrix          | Cr6 (E218.6) Field Filtered                    | Cr6 (E218.6R) Field Filtered                     | Arsenic (6020A) Field Filtered | Metals (SW6010B/SW6020Adis)<br>Field Filtered<br>AlSbAsBaBeBCaCdCoCuFePbMg | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn | Metals (6020A) Field Filtered<br>Mo,Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Metals (6020A-R) Field Filtered<br>Chromium | Anions (E300.0) Fluoride | Specific Conductance (E120.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | Number of Containers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMMENTS |
| MW-48-198                                                                                               | 4/23/2014                         | 12:54 | Water                    | Х                                              |                                                  |                                |                                                                            | Х                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                             |                          | d de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l | NO12433-29                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| MW-50-095-198                                                                                           | 4/23/2014                         | 12:06 | Water                    | Х                                              |                                                  |                                |                                                                            | х                                         |                                  | and control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co | Комони и посможна да свого                |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 30                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| MW-214-198                                                                                              | 4/24/2014                         | 6:30  | Water                    | Х                                              |                                                  |                                |                                                                            |                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3)                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                         |                                   |       |                          |                                                | ,                                                |                                |                                                                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,   | ,                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | ,                                           |                          | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL NUMBER OF CONTAINERS        | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |

| Approved by               | Signatures    | Date/Time       | Shipping Details                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Special Instructions:   | And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |
|---------------------------|---------------|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approved by<br>Sampled by |               | 4-24-14<br>1230 | Method of Shipment: courier            | ATTN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | April 9 to May 15, 2014 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished by           | 10/           |                 | On Ice: (yes) / no 3. 900              | Sample Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received by               | pholony       | 4/24/18 1280    | Airbill No:                            | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Report Copy to          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished by           | personal      | 4P4/14 144      | Lab Name: ADVANCED TECHNOLOGY LABORATO | Marion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shawn Duffy             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received by               | Amanda Costes | 4/24/14 1425    | Lab Phone: (702) 307-2659              | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | (530) 229-3303          | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### Advanced Technology Laboratories, Inc.

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

| Cooler Received/Opened On:        | 4/24/2014                    | ļ.                 |                |              | Workorder:     | N012433      |              |
|-----------------------------------|------------------------------|--------------------|----------------|--------------|----------------|--------------|--------------|
| Rep sample Temp (Deg C):          | 2.4, 2.8, 3                  | 3.9                |                |              | IR Gun ID:     | 2            |              |
| Temp Blank:                       | Yes                          | <b>✓</b> No        |                |              |                |              |              |
| Carrier name:                     | ATL                          |                    |                |              |                |              |              |
| ast 4 digits of Tracking No.:     | NA                           |                    |                | Packing      | Material Used: | None         |              |
| Cooling process:                  | ✓ Ice                        | ☐ Ice Pack         | ☐ Dry Ice      | Other        | ☐ None         |              |              |
|                                   |                              | s                  | ample Recei    | nt Checklis  | <b>.</b>       |              |              |
| . Shipping container/cooler in    | good condi                   |                    | arripio recori | pt Griodiano | Yes 🗹          | No 🗌         | Not Present  |
| 2. Custody seals intact, signed   | l, dated on s                | shippping containe | er/cooler?     |              | Yes            | No 🗌         | Not Present  |
| 3. Custody seals intact on sam    | nple bottles?                | •                  |                |              | Yes $\square$  | No $\square$ | Not Present  |
| I. Chain of custody present?      |                              |                    |                |              | Yes 🗹          | No $\square$ |              |
| 5. Sampler's name present in 0    | COC?                         |                    |                |              | Yes 🗹          | No $\square$ |              |
| 6. Chain of custody signed who    | en relinquisl                | ned and received   | ?              |              | Yes 🗹          | No $\square$ |              |
| 7. Chain of custody agrees with   | h sample la                  | bels?              |                |              | Yes 🗹          | No $\square$ |              |
| 3. Samples in proper container    | r/bottle?                    |                    |                |              | Yes 🗹          | No $\square$ |              |
| 9. Sample containers intact?      |                              |                    |                |              | Yes 🗹          | No $\square$ |              |
| 0. Sufficient sample volume f     | or indicated                 | test?              |                |              | Yes 🗹          | No $\square$ |              |
| 1. All samples received within    | n holding tim                | ie?                |                |              | Yes 🗹          | No $\square$ |              |
| 2. Temperature of rep sample      | e or Temp B                  | lank within accep  | table limit?   |              | Yes 🗸          | No $\square$ | NA $\square$ |
| 3. Water - VOA vials have ze      | ro headspa                   | ce?                |                |              | Yes $\square$  | No $\square$ | NA 🗸         |
| 4. Water - pH acceptable upo      | •                            |                    |                |              | Yes 🗹          | No $\square$ | NA $\square$ |
| Example: pH > 12 for (C           |                              |                    | _              |              |                | $\Box$       | $\Box$       |
| 5. Did the bottle labels indicate |                              |                    | ?              |              | Yes 🗹          | No 🗆         | NA L         |
| 6. Were there Non-Conforma        | nce issues a<br>as Client no | -                  |                |              | Yes □<br>Yes □ | No □<br>No □ | NA 🗹<br>NA 🗸 |
| VV                                |                              |                    |                |              |                |              |              |

Checklist Completed By AC AC 4/25/20

**1** 04/28/14

### **ATLInc Reports**

From: amanda cortes [amanda.cortes@assetlaboratories.com]

Sent: Friday, April 25, 2014 8:24 AM
To: Shawn.Duffy@CH2M.com
Cc: 'Marlon Cartin'; 'Sample Control'
Subject: Topock Analyte Selection List
Attachments: SKMBT\_60114042508200.pdf

Hello, Shawn.

I am trying to verify a selection list for the Topock samples that were received yesterday. On the COC, there is a list of analytes listed as 6010B/6020Adis (Al, Sb, As, Ba, Be, B, Ca, Cd, Co, Cu, Fe, Pb, Mg). Since these are not in the normal selection lists for these projects, I would like to verify which analytes by which method you would like us to run. Please reference attached COC.

Thank you,
Amanda Cortes

Advanced Technology Laboratories, Inc.

# dba ASSET Laboratories

3151 W. Post Road Las Vegas NV 89118

www.assetlaboratories.com Tel: (702)307-2659 Ext. 404

Fax (702) 307-2691

**Asset Laboratories** is a full-service woman owned environmental laboratory providing organic and inorganic analyses of soil, water, wastewater, storm water and hazardous waste samples. Asset Laboratories is certified by the State of California, NELAP-Oregon, and the State of Nevada. It is also a certified UDBE, SBE and DBE. **Asset Laboratories** takes pride in providing our customers with quick turnaround time, excellent customer service and defensible data while offering very competitive rates.

This message is intended for the use of the individual or entity to which it is addressed. This may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and delete the original message. Thank you.

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

### FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = A \* DF

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For N012433-008A concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 9.5517 \* 5  
= 47.7585

Reporting result in two significant figures,

$$Cr^{+6}$$
,  $\mu g/L = 48$ 

Many 5/6/2014

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = A \* DF

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For N012433-018A concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 1.8875 \* 1 = 1.8875

Reporting result in two significant figures,

$$Cr^{+6}, \mu g/L = 1.9$$

Nancy 5/7/2014

**METHOD:** EPA 300.0

**TEST NAME:** INORGANIC ANIONS BY IC

MATRIX: Water

FORMULA:

Calculate the Fluoride concentration, in mg/L, in the original sample as follows:

Fluoride, mg/L = A \* DF

where:

A = mg/L, IC calculated concentration DF = dilution factor

For **N012433-001D**, concentration in mg/L is calculated as follows:

Fluoride, mg/L = 0.977 \* 10

= 9.77

Reporting result in two significant figures,

Fluoride, mg/L = 9.8



METHOD: EPA 6010

TEST NAME: Heavy Metals by ICP

**MATRIX:** Groundwater

### FORMULA:

Calculate the Calcium concentration, in ug/L, in the original sample as follows:

#### where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Amt. of Sample mL

For Sample **N012433-015B**, the concentration in ug/L is calculated as follows:

23604.3754

Reporting results in two significant figures,

Calcium, ug/L = 24000

Nany 5/8/2014

### Advanced Technology Laboratories, Inc.

ICP-Metals in Water

**Dilution Test Summary** 

| N012433  |
|----------|
| EPA 6010 |
| 05/02/14 |
|          |

 Matrix:
 Water

 Batch No.:
 45532

Instrument ID: ICP-02

Instrument Description: Perkin Elmer Optima DV Series

Comments: Analyzed By: Sara Ferrer

Dilution Test is not applicable for Fe, Al and B. The calculated concentration was < 25X the RL. However the PS @2X passed criteria.

| Sample ID          | Analyte   | Units | Calc Val         | OQual  | SAMPrefval       | %DIFF   | %DIFFlimit |
|--------------------|-----------|-------|------------------|--------|------------------|---------|------------|
| N012402-029B-DT 5X | Calcium   | μg/L  | 42673.9087700000 | Passed | 43622.6916500000 | 2.17%   | 10         |
| N012402-029B-DT 5X | Iron      | μg/L  | 83.2054700000    | NA     | 74.7162410000    | 11.36%  | 10         |
| N012402-029B-DT 5X | Magnesium | μg/L  | 9562.0133650000  | Passed | 9035.7902830000  | 5.82%   | 10         |
| N012402-029B-DT 5X | Aluminum  | μg/L  | 0.0000000000     | NA     | 7.9054450000     | 100.00% | 10         |
| N012402-029B-DT 5X | Boron     | μg/L  | 271.7623750000   | NA     | 206.2976480000   | 31.73%  | 10         |

Note: NA - Not Applicable

ASSET Laboratories

Date: 07-May-14

CLIENT: CH2M HILL Work Order: N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 6010\_WDPGEPPB

| Sample ID <b>N012402-029B-PS</b> | SampType: <b>PS</b> | TestCod | de: <b>6010_WD</b>  | PG Units: ug/L | g/L Prep Date:          |          |           | RunNo: 93             | RunNo: 93332 |          |      |
|----------------------------------|---------------------|---------|---------------------|----------------|-------------------------|----------|-----------|-----------------------|--------------|----------|------|
| Client ID: ZZZZZZ                | Batch ID: 45532     | TestN   | lo: <b>EPA 6010</b> | B EPA 3010A    | Analysis Date: 5/2/2014 |          |           | SeqNo: <b>1776080</b> |              |          |      |
| Analyte                          | Result              | PQL     | SPK value           | SPK Ref Val    | %REC                    | LowLimit | HighLimit | RPD Ref Val           | %RPD         | RPDLimit | Qual |
| Aluminum                         | 4883.078            | 100     | 5000                | 7.905          | 97.5                    | 80       | 120       |                       |              |          |      |
| Boron                            | 2465.954            | 200     | 2500                | 206.3          | 90.4                    | 80       | 120       |                       |              |          |      |
| Calcium                          | 48400.433           | 1000    | 5000                | 43620          | 95.6                    | 80       | 120       |                       |              |          |      |
| Iron                             | 4826.364            | 40      | 5000                | 74.72          | 95.0                    | 80       | 120       |                       |              |          |      |
| Magnesium                        | 14199.180           | 200     | 5000                | 9036           | 103                     | 80       | 120       |                       |              |          |      |

#### Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits
Calculations are based on raw values

H Holding times for preparation or analysis exceeded

METHOD: EPA 6020

**TEST NAME:** Heavy Metals by ICP-MS

**MATRIX:** Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic, ug/L = A \* DF \* PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N012433-007B, the concentration in ug/L is calculated as follows:

Arsenic, ug/L = 19.309437378756 \* 1 \* (25/25)

= 19.309437378756

Reporting results in two significant figures,

Arsenic, ug/L = 19

Narry 5/7/2014

**ICP-Metals in Water Dilution Test Summary** 

Work Order No.: N012433 Matrix: Water Test Method: EPA 6020 Batch No.: 45535 Analysis Date: 4/30/2014

Instrument ID: ICP-MS #2 Agilent 7700x Instrument Description:

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to As, Cr, Mo & Se. The calculated values are <25X RL. PS @ 2x passed criteria. Dilution test failed to Mn. However, PS @2X passed criteria.

| Sample ID          | Analyte    | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF  | %DIFFlimit |
|--------------------|------------|-------|-------------|-------|-------------|--------|------------|
| N012426-001A-DT 5X | Arsenic    | μg/L  | 1.579816207 | NA    | 1.530968216 | 3.19%  | 10         |
| N012426-001A-DT 5X | Chromium   | μg/L  | 3.443018688 | NA    | 3.103182873 | 10.95% | 10         |
| N012426-001A-DT 5X | Molybdenum | μg/L  | 3.580434027 | NA    | 3.396403623 | 5.42%  | 10         |
| N012426-001A-DT 5X | Selenium   | μg/L  | 0.034435296 | NA    | 0.067240377 | 48.79% | 10         |
| N012426-001A-DT 5X | Manganese  | μg/L  | 55.63862084 | FAIL  | 49.90416504 | 11.49% | 10         |

Note: NA - Not applicable

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012433
 Matrix:
 Water

 Test Method:
 EPA 6020
 Batch No.:
 45536

 Analysis Date:
 4/30/2014

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Cr, Co, Ni, V & Zn. The calculated values are <25X RL. PS @ 2x passed criteria.

Dilution test failed to As. However, PS @2X passed criteria.

| Dilution test is not applicable | to Cu. The calculated | d value is <25X RL. N | /IS/MSD passed crite | eria. |             |         |            |
|---------------------------------|-----------------------|-----------------------|----------------------|-------|-------------|---------|------------|
| Sample ID                       | Analyte               | Units                 | Calc Val             | OQual | SAMPRefVal  | %DIFF   | %DIFFlimit |
| N012433-022B-DT 5X              | Arsenic               | μg/L                  | 14.96873046          | FAIL  | 13.17027008 | 13.66%  | 10         |
| N012433-022B-DT 5X              | Chromium              | μg/L                  | 8.434431619          | NA    | 7.776777199 | 8.46%   | 10         |
| N012433-022B-DT 5X              | Cobalt                | μg/L                  | 0                    | NA    | 0.040736336 | 100.00% | 10         |
| N012433-022B-DT 5X              | Copper                | μg/L                  | 0                    | NA    | 0           |         | 10         |
| N012433-022B-DT 5X              | Nickel                | μg/L                  | 0                    | NA    | 0.064811433 | 100.00% | 10         |
| N012433-022B-DT 5X              | Vanadium              | μg/L                  | 1.103187261          | NA    | 1.197079862 | 7.84%   | 10         |
| N012433-022B-DT 5X              | Zinc                  | μg/L                  | 24.70045934          | NA    | 28.48794743 | 13.30%  | 10         |

Note: NA - Not applicable

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012433

 Test Method:
 EPA 6020

 Analysis Date:
 5/1/2014

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Sb, Be, Cd, Se & Ag. The calculated values are <25X RL. PS @ 5x passed criteria.

| Sample ID           | Analyte    | Units                 | Calc Val                 | OQual | SAMPRefVal  | %DIFF              | %DIFFlimit |
|---------------------|------------|-----------------------|--------------------------|-------|-------------|--------------------|------------|
| N012433-022B-DT 25X | Antimony   | μg/L                  | 51 10 Pag                | NA    | 54 00106    | 0.02               | 10         |
| N012433-022B-DT 25X | Barium     | μg/L                  | 54 06364343              | PASS  | 55.01860549 | <del>-1.97</del> % | 10         |
| N012433-022B-DT 25X | Beryllium  | μg/L                  | 0                        | NA    | 0           |                    | 10         |
| N012433-022B-DT 25X | Cadmium    | μg/L                  | 288 7994                 | NA    | 0           | 2 72               | 10         |
| N012433-022B-DT 25X | Manganese  | μg/L <sub>97 70</sub> | 10 <b>286.78601</b> 59   | PASS  | 278.3879617 | <del>3,7</del> 4%  | 10         |
| N012433-022B-DT 25X | Molybdenum | μg/L                  | 8 <del>6.7047107</del> 7 | PASS  | 89.16999252 | <del>2.78%</del>   | 10         |
| N012433-022B-DT 25X | Selenium   | μg/L                  | 0                        | NA    | 0           |                    | 10         |
| N012433-022B-DT 25X | Silver     | μg/L                  | 0                        | NA    | 0           |                    | 10         |

Note: NA - Not applicable

Narry 5/8/2014

Matrix:

Batch No.:

Water

45536

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012433

 Test Method:
 EPA 6020

 Analysis Date:
 5/6/2014

Matrix: Water
Batch No.: 45536

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Pb & Tl. The calculated values are <25X RL. PS @ 5x passed criteria.

| Sample ID           | Analyte  | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF              | %DIFFlimit |
|---------------------|----------|-------|-------------|-------|-------------|--------------------|------------|
| N012433-022B-DT 25X | Lead     | μg/L  | 0           | NA    | 0           |                    | 10         |
| N012433-022B-DT 25X | Thallium | μg/L  | 0.550516209 | NA    | 0.681198487 | <del>-19.18%</del> | 10         |

Note: NA - Not applicable 0.757645 27.3

Many 5/8/2014

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012433

 Test Method:
 EPA 6020

 Analysis Date:
 5/6/2014

Matrix: Water
Batch No.: 45595

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Cr. The calculated value is <25X RL. PS @ 2x passed criteria.

| Sample ID           | Analyte  | Units | Calc Val    | OQual | SAMPRefVal | %DIFF | %DIFFlimit |
|---------------------|----------|-------|-------------|-------|------------|-------|------------|
| N012429-003B-DT 25X | Chromium | μg/L  | 9.615192969 | NA    | 8.98469095 | 7.02% | 10         |

Note: NA - Not applicable

**ASSET Laboratories Date:** 08-May-14

**CLIENT:** CH2M HILL Work Order:

N012433

PG&E Topock, 423575.MP.02.GM.02 **Project:** 

## ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: <b>N012426-001A-PS</b> | SampType: <b>PS</b>    | TestCo | de: <b>6020_DIS</b> | Units: µg/L |      |              | RunNo: <b>93318</b> |             |                   |          |      |
|-----------------------------------|------------------------|--------|---------------------|-------------|------|--------------|---------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: <b>45535</b> | TestN  | lo: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Dat | e: <b>4/30/20</b>   | 14          | SeqNo: <b>177</b> | 5207     |      |
| Analyte                           | Result                 | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit           | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Arsenic                           | 21.822                 | 0.20   | 20.00               | 1.531       | 101  | 80           | 120                 |             |                   |          |      |
| Manganese                         | 248.143                | 1.0    | 200.0               | 49.90       | 99.1 | 80           | 120                 |             |                   |          |      |
| Molybdenum                        | 25.021                 | 1.0    | 20.00               | 3.396       | 108  | 80           | 120                 |             |                   |          |      |
| Selenium                          | 20.319                 | 1.0    | 20.00               | 0           | 102  | 80           | 120                 |             |                   |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

## ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: <b>N012433-022B-PS</b> | SampType: <b>PS</b> | TestCod | e: <b>6020_DIS</b> | Units: µg/L | Prep Date: |             |                      | RunNo: <b>93318</b> |                       |          |      |
|-----------------------------------|---------------------|---------|--------------------|-------------|------------|-------------|----------------------|---------------------|-----------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45536     | TestN   | o: <b>EPA 6020</b> | EPA 3010A   |            | Analysis Da | te: 4/30/201         | 14                  | SeqNo: <b>1775191</b> |          |      |
| Analyte                           | Result              | PQL     | SPK value          | SPK Ref Val | %REC       | LowLimit    | HighLimit            | RPD Ref Val         | %RPD                  | RPDLimit | Qual |
| Arsenic                           | 34.159              | 0.20    | 20.00              | 13.17       | 105        | 80          | 120                  |                     |                       |          |      |
| Cobalt                            | 16.106              | 1.0     | 20.00              | 0.04074     | 80.3       | 80          | 120                  |                     |                       |          |      |
| Copper                            | 3.804               | 2.0     | 20.00              | 0           | 19.0       | 80          | 120                  |                     |                       |          | S    |
| Nickel                            | 17.782              | 2.0     | 20.00              | 0.06481     | 88.6       | 80          | 120                  |                     |                       |          |      |
| Vanadium                          | 20.304              | 2.0     | 20.00              | 1.197       | 95.5       | 80          | 120                  |                     |                       |          |      |
| Zinc                              | 197.170             | 20      | 200.0              | 28.49       | 84.3       | 80          | 120                  |                     |                       |          |      |
| Sample ID: <b>N012433-022B-PS</b> | SampType: <b>PS</b> | TestCod | e: <b>6020_DIS</b> | Units: µg/L | Prep Date: |             | RunNo: <b>93336</b>  |                     |                       |          |      |
| Client ID: ZZZZZZ                 | Batch ID: 45536     | TestN   | o: <b>EPA 6020</b> | EPA 3010A   |            | Analysis Da | te: <b>5/1/201</b> 4 | 4                   | SeqNo: <b>17</b> 7    | 76366    |      |
| Analyte                           | Result              | PQL     | SPK value          | SPK Ref Val | %REC       | LowLimit    | HighLimit            | RPD Ref Val         | %RPD                  | RPDLimit | Qual |
| Antimony                          | 54.496              | 2.5     | 50.00              | 0           | 109        | 80          | 120                  |                     |                       |          |      |
| Barium                            | 559.136             | 5.0     | 500.0              | 54.99       | 101        | 80          | 120                  |                     |                       |          |      |
| Beryllium                         | 53.422              | 2.5     | 50.00              | 0           | 107        | 80          | 120                  |                     |                       |          |      |
| Cadmium                           | 48.631              | 2.5     | 50.00              | 0           | 97.3       | 80          | 120                  |                     |                       |          |      |
| Silver                            | 51.768              | 2.5     | 50.00              | 0           | 104        | 80          | 120                  |                     |                       |          |      |
| Sample ID: N012433-022B-PS        | SampType: <b>PS</b> | TestCod | e: <b>6020_DIS</b> | Units: µg/L |            | Prep Dat    | te:                  |                     | RunNo: <b>93353</b>   |          |      |
| Client ID: ZZZZZZ                 | Batch ID: 45536     | TestN   | o: <b>EPA 6020</b> | EPA 3010A   |            | Analysis Da | te: <b>5/6/201</b> 4 | 4                   | SeqNo: <b>17</b> 7    | 76831    |      |
| Analyte                           | Result              | PQL     | SPK value          | SPK Ref Val | %REC       | LowLimit    | HighLimit            | RPD Ref Val         | %RPD                  | RPDLimit | Qual |
| Lead                              | 55.024              | 5.0     | 50.00              | 0           | 110        | 80          | 120                  |                     |                       |          |      |
| Thallium                          | 54.085              | 2.5     | 50.00              | 0.7576      | 107        | 80          | 120                  |                     |                       |          |      |
| Sample ID: <b>N012433-022B-PS</b> | SampType: <b>PS</b> | TestCod | e: <b>6020_DIS</b> | Units: µg/L |            | Prep Dat    | te:                  |                     | RunNo: 933            | 336      |      |
| Client ID: ZZZZZZ                 | Batch ID: 45536     | TestN   | o: <b>EPA 6020</b> | EPA 3010A   |            | Analysis Da | te: <b>5/1/201</b> 4 | 4                   | SeqNo: <b>17</b> 7    | 78299    |      |
| Analyte                           | Result              | PQL     | SPK value          | SPK Ref Val | %REC       | LowLimit    | HighLimit            | RPD Ref Val         | %RPD                  | RPDLimit | Qual |
| Manganese                         | 706.845             | 2.5     | 500.0              | 278.4       | 85.7       | 75          | 125                  |                     |                       |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Nancy

5/8/2014 686

N012433

**Project:** PG&E Topock, 423575.MP.02.GM.02

## ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012433-022B-PS | SampType: <b>PS</b> | TestCod | e: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat    | te:                 |             | RunNo: 933        | 336      |      |
|----------------------------|---------------------|---------|--------------------|-------------|------|-------------|---------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45536     | TestN   | o: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: <b>5/1/2014</b> |             | SeqNo: <b>177</b> | 78299    |      |
| Analyte                    | Result              | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit    | HighLimit I         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Molybdenum                 | 148.571             | 2.5     | 50.00              | 89.17       | 119  | 75          | 125                 |             |                   |          |      |
| Selenium                   | 47.736              | 2.5     | 50.00              | 0           | 95.5 | 75          | 125                 |             |                   |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

N012433

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: <b>N012426-001A-PS</b> | SampType: <b>PS</b> | TestCod | de: <b>6020DIS_C</b> i | rP Units: μg/L |                          | Prep Da  | te:                   |             | RunNo: <b>933</b> | 18       |      |
|-----------------------------------|---------------------|---------|------------------------|----------------|--------------------------|----------|-----------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45535     | TestN   | lo: <b>EPA 6020</b>    | EPA 3010A      | Analysis Date: 4/30/2014 |          | SeqNo: <b>1775299</b> |             |                   |          |      |
| Analyte                           | Result              | PQL     | SPK value              | SPK Ref Val    | %REC                     | LowLimit | HighLimit             | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Chromium                          | 23.200              | 2.0     | 20.00                  | 3.103          | 100                      | 80       | 120                   |             |                   |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

TestCode: 6020DIS\_CrPGE

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020DIS\_CrPGE

| Sample ID: <b>N012433-022B-PS</b> | SampType: <b>PS</b> | TestCod | de: <b>6020DIS</b> _C | rP Units: μg/L |      | Prep Da     | te:           |             | RunNo: 933        | 18       |      |
|-----------------------------------|---------------------|---------|-----------------------|----------------|------|-------------|---------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45536     | TestN   | lo: <b>EPA 6020</b>   | EPA 3010A      |      | Analysis Da | nte: 4/30/201 | 14          | SeqNo: <b>177</b> | 5283     |      |
| Analyte                           | Result              | PQL     | SPK value             | SPK Ref Val    | %REC | LowLimit    | HighLimit     | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Chromium                          | 25.647              | 2.0     | 20.00                 | 7.777          | 89.4 | 80          | 120           |             |                   |          |      |

#### Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020DIS\_CrPGE

| Sample ID: N0124 | 1 71                             |      | _                   | rP Units: μg/L |      | Prep Da     |                     |             | RunNo: 933        |          |      |
|------------------|----------------------------------|------|---------------------|----------------|------|-------------|---------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZ  | <b>ZZ</b> Batch ID: <b>45595</b> | Test | No: <b>EPA 6020</b> | EPA 3010A      |      | Analysis Da | te: <b>5/6/2014</b> | ļ           | SeqNo: <b>177</b> | 6804     |      |
| Analyte          | Result                           | PQL  | SPK value           | SPK Ref Val    | %REC | LowLimit    | HighLimit           | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Chromium         | 28 700                           | 2.0  | 20.00               | 8 985          | 98.6 | 80          | 120                 |             |                   |          |      |

#### Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020RDIS\_CrPGE

| Sample ID: <b>N012426-001A-PS</b> | SampType: <b>PS</b> | TestCoo | de: <b>6020RDIS</b> _ | Cr Units: µg/L |      | Prep Da     | te:               | RunN  | o: <b>93</b> 3 | 319      |      |
|-----------------------------------|---------------------|---------|-----------------------|----------------|------|-------------|-------------------|-------|----------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45535     | TestN   | lo: <b>EPA 6020</b>   | EPA 3010A      |      | Analysis Da | te: 4/30/2014     | SeqN  | o: <b>17</b> 7 | 75345    |      |
| Analyte                           | Result              | PQL     | SPK value             | SPK Ref Val    | %REC | LowLimit    | HighLimit RPD Ref | Val % | RPD            | RPDLimit | Qual |
| Chromium                          | 23 200              | 2.0     | 20.00                 | 3 103          | 100  | 80          | 120               |       |                |          |      |

#### Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded

### Advanced Technology Laboratories, Inc.

### **Sample Calculation**

Work Order No.: N012433
Test Method: EPA 7470
Matrix: Aqueous

### FORMULA:

Calculate the Mercury concentration in ug/L in the original sample as follows:

Hg = [ A ][ DF ]

where:

A = ug/L, instrument calculated concentration DF = dilution factor

For: **N012433-015B** 

The concentration in ug/L is calculated as follows:

Hg = [ A ][ DF ]

Hg = [ 0.00800 ][ 1 ]

Hg = 0.00800 ug/L

Since result is less than reporting limit.

Hg = ND ug/L



May 14, 2014

Shawn P. Duffy CA-ELAP No.: 2676 CH2M HILL NV Cert. No.: NV-00922

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N012465

RE: PG&E Topock, 423575.MP.02.GM.02

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on April 30, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

glycom do for

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

**CLIENT:** CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 CASE NARRATIVE

**Date:** 14-May-14

Lab Order: N012465

#### SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 218.6R:

Dilution was necessary on samples N012465-024, N012465-025, N012465-027 and N012465-028 due to matrix interference. Samples were analyzed at lower dilution however matrix spikes were not recovered indicating possible matrix interference. Samples were reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 218.6:

Dilution was necessary on samples N012465-015, N012465-016 and N012465-023 due to matrix interference. Samples were analyzed at lower dilution however matrix spikes were not recovered indicating possible matrix interference. Samples were reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 6020 Dissolved:

Dilution was necessary on samples N012465-001, N012465-004, N012465-007, N012465-016, N012465-017, N012465-019, N012465-020, N012465-023, N012465-024 and N012465-027 due to failed Internal Standards when samples were analyzed at no dilution.

Because the results for total dissolved chromium (81.61 ug/L) and hexavalent chromium (101.09 ug/L) for sample N012465-007 (MW-72-080-198) are discrepant, sample from both the total dissolved chromium and hexavalent chromium containers were redigested and analyzed for total dissolved chromium. The results from the redigested samples were 83.409 and 87.404 ug/L, respectively. Since these data confirmed the original result for total dissolved chromium, the original result is reported.

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 CASE NARRATIVE

Lab Order: N012465

Because the results for total dissolved chromium (1.166 ug/L) and hexavalent chromium (0 ug/L) for sample N012465-016 (MW-60BR-245-198) are discrepant, sample from both the total dissolved chromium and hexavalent chromium containers were redigested and analyzed for total dissolved chromium. The results from the redigested samples were 1.237 and 1.744 ug/L, respectively. Since these data confirmed the original result for total dissolved chromium, the original result is reported.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) on QC samples N012460-001A-MS and N012460-001A-MSD are outside recovery criteria for Chromium since the analyte concentration in the sample is disproportionate to the spike level. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) on QC samples N012465-023B-MS and N012465-023B-MSD are outside recovery criteria for some analytes possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 Work Order Sample Summary

**Date:** 14-May-14

Lab Order: N012465
Contract No: 2014-GMP-198-

| Lab Sample ID Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|--------------------------------|--------|------------------------|---------------|---------------|
| N012465-001A MW-124-198        | Water  | 4/24/2014 7:30:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-001B MW-124-198        | Water  | 4/24/2014 7:30:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-001C MW-124-198        | Water  | 4/24/2014 7:30:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-002A MW-35-060-198     | Water  | 4/24/2014 10:33:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-002B MW-35-060-198     | Water  | 4/24/2014 10:33:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-002C MW-35-060-198     | Water  | 4/24/2014 10:33:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-003A MW-35-135-198     | Water  | 4/24/2014 10:19:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-003B MW-35-135-198     | Water  | 4/24/2014 10:19:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-004A MW-40D-198        | Water  | 4/24/2014 12:44:00 PM  | 4/30/2014     | 5/14/2014     |
| N012465-004B MW-40D-198        | Water  | 4/24/2014 12:44:00 PM  | 4/30/2014     | 5/14/2014     |
| N012465-004C MW-40D-198        | Water  | 4/24/2014 12:44:00 PM  | 4/30/2014     | 5/14/2014     |
| N012465-005A MW-65-160-198     | Water  | 4/24/2014 8:55:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-005B MW-65-160-198     | Water  | 4/24/2014 8:55:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-005C MW-65-160-198     | Water  | 4/24/2014 8:55:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-006A MW-71-035-198     | Water  | 4/24/2014 2:00:00 PM   | 4/30/2014     | 5/14/2014     |
| N012465-006B MW-71-035-198     | Water  | 4/24/2014 2:00:00 PM   | 4/30/2014     | 5/14/2014     |
| N012465-006C MW-71-035-198     | Water  | 4/24/2014 2:00:00 PM   | 4/30/2014     | 5/14/2014     |
| N012465-007A MW-72-080-198     | Water  | 4/24/2014 7:56:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-007B MW-72-080-198     | Water  | 4/24/2014 7:56:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-007C MW-72-080-198     | Water  | 4/24/2014 7:56:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-008A MW-19-198         | Water  | 4/28/2014 9:30:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-008B MW-19-198         | Water  | 4/28/2014 9:30:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-009A MW-215-198        | Water  | 4/28/2014 6:15:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-010A MW-216-198        | Water  | 4/28/2014 6:18:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-011A MW-57-070-198     | Water  | 4/28/2014 8:20:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-011B MW-57-070-198     | Water  | 4/28/2014 8:20:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-012A MW-70-105-198     | Water  | 4/28/2014 11:02:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-012B MW-70-105-198     | Water  | 4/28/2014 11:02:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-012C MW-70-105-198     | Water  | 4/28/2014 11:02:00 AM  | 4/30/2014     | 5/14/2014     |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

CLIENT: CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab Order:** N012465 **Contract No:** 2014-GMP-198-

## **Work Order Sample Summary**

| N012465-013A MW-217-198 Water 4/29/2014 5:40:00 AM 4/30/2014 5/14/2014 N012465-014A MW-218-198 Water 4/29/2014 9:42:00 AM 4/30/2014 5/14/2014 N012465-015B MW-24BR-198 Water 4/29/2014 9:42:00 AM 4/30/2014 5/14/2014 N012465-015B MW-24BR-198 Water 4/29/2014 9:42:00 AM 4/30/2014 5/14/2014 N012465-016A MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016B MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016C MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-017A MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019B MW-62-065-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-020A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-2219-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-2219-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-023A MW-2219-198 Water 4/30/2014 7:14:00 AM  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N012465-015A MW-24BR-198 Water 4/29/2014 9:42:00 AM 4/30/2014 5/14/2014 N012465-015B MW-24BR-198 Water 4/29/2014 9:42:00 AM 4/30/2014 5/14/2014 N012465-016A MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016B MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016C MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-017A MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 11:19:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-219-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-219-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-219-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-220-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM |
| N012465-015B MW-24BR-198 Water 4/29/2014 9:42:00 AM 4/30/2014 5/14/2014 N012465-016A MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016B MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016C MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-017A MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-62-065-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/29/2014 5:30:00 AM 4/30/2014 5/14/2014 |
| N012465-016A MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016B MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-016C MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-017A MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM  |
| N012465-016B MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-017A MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 11:9:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A |
| N012465-016C MW-60BR-245-198 Water 4/29/2014 10:54:00 AM 4/30/2014 5/14/2014 N012465-017A MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198                                               |
| N012465-017A MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-022A MW-219-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N |
| N012465-017B MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 |
| N012465-017C MW-61-110-198 Water 4/29/2014 11:40:00 AM 4/30/2014 5/14/2014 N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Wat |
| N012465-018A MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N012465-018B MW-62-065-198 Water 4/29/2014 1:19:00 PM 4/30/2014 5/14/2014 N012465-019A MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019B MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-019C MW-65-225-198 Water 4/29/2014 2:13:00 PM 4/30/2014 5/14/2014 N012465-020A MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020B MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-020C MW-73-080-198 Water 4/29/2014 6:35:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/29/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-021A MW-219-198 Water 4/30/2014 5:36:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014 N012465-022A MW-220-198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| N012465-019A       MW-65-225-198       Water       4/29/2014 2:13:00 PM       4/30/2014       5/14/2014         N012465-019B       MW-65-225-198       Water       4/29/2014 2:13:00 PM       4/30/2014       5/14/2014         N012465-019C       MW-65-225-198       Water       4/29/2014 2:13:00 PM       4/30/2014       5/14/2014         N012465-020A       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020B       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020C       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-021A       MW-219-198       Water       4/30/2014 5:36:00 AM       4/30/2014       5/14/2014         N012465-022A       MW-220-198       Water       4/30/2014 5:30:00 AM       4/30/2014       5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N012465-019B       MW-65-225-198       Water       4/29/2014 2:13:00 PM       4/30/2014       5/14/2014         N012465-019C       MW-65-225-198       Water       4/29/2014 2:13:00 PM       4/30/2014       5/14/2014         N012465-020A       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020B       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020C       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-021A       MW-219-198       Water       4/30/2014 5:36:00 AM       4/30/2014       5/14/2014         N012465-022A       MW-220-198       Water       4/30/2014 5:30:00 AM       4/30/2014       5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N012465-019C       MW-65-225-198       Water       4/29/2014 2:13:00 PM       4/30/2014       5/14/2014         N012465-020A       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020B       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020C       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-021A       MW-219-198       Water       4/30/2014 5:36:00 AM       4/30/2014       5/14/2014         N012465-022A       MW-220-198       Water       4/30/2014 5:30:00 AM       4/30/2014       5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N012465-020A       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020B       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020C       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-021A       MW-219-198       Water       4/30/2014 5:36:00 AM       4/30/2014       5/14/2014         N012465-022A       MW-220-198       Water       4/30/2014 5:30:00 AM       4/30/2014       5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N012465-020B       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-020C       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-021A       MW-219-198       Water       4/30/2014 5:36:00 AM       4/30/2014       5/14/2014         N012465-022A       MW-220-198       Water       4/30/2014 5:30:00 AM       4/30/2014       5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N012465-020C       MW-73-080-198       Water       4/29/2014 6:35:00 AM       4/30/2014       5/14/2014         N012465-021A       MW-219-198       Water       4/30/2014 5:36:00 AM       4/30/2014       5/14/2014         N012465-022A       MW-220-198       Water       4/30/2014 5:30:00 AM       4/30/2014       5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N012465-021A       MW-219-198       Water       4/30/2014       5:36:00 AM       4/30/2014       5/14/2014         N012465-022A       MW-220-198       Water       4/30/2014       5:30:00 AM       4/30/2014       5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N012465-022A MW-220-198 Water 4/30/2014 5:30:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N012465-023A MW-22-198 Water 4/30/2014 7:14:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N012465-023B MW-22-198 Water 4/30/2014 7:14:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N012465-024A MW-52D-198 Water 4/30/2014 11:01:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N012465-024B MW-52D-198 Water 4/30/2014 11:01:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N012465-024C MW-52D-198 Water 4/30/2014 11:01:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N012465-025A MW-52M-198 Water 4/30/2014 12:29:00 PM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N012465-025B MW-52M-198 Water 4/30/2014 12:29:00 PM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N012465-025C MW-52M-198 Water 4/30/2014 12:29:00 PM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N012465-026A MW-52S-198 Water 4/30/2014 10:27:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N012465-026B MW-52S-198 Water 4/30/2014 10:27:00 AM 4/30/2014 5/14/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

CLIENT: CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab Order:** N012465 **Contract No:** 2014-GMP-198-

## **Work Order Sample Summary**

| Lab Sample ID Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|--------------------------------|--------|------------------------|---------------|---------------|
| N012465-026C MW-52S-198        | Water  | 4/30/2014 10:27:00 AM  | 4/30/2014     | 5/14/2014     |
| N012465-027A MW-53D-198        | Water  | 4/30/2014 9:10:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-027B MW-53D-198        | Water  | 4/30/2014 9:10:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-027C MW-53D-198        | Water  | 4/30/2014 9:10:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-028A MW-53M-198        | Water  | 4/30/2014 8:27:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-028B MW-53M-198        | Water  | 4/30/2014 8:27:00 AM   | 4/30/2014     | 5/14/2014     |
| N012465-028C MW-53M-198        | Water  | 4/30/2014 8:27:00 AM   | 4/30/2014     | 5/14/2014     |

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-124-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 7:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-001

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 5700
 0.10
 0.10
 umhos/cm
 1
 5/1/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-35-060-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 10:33:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-002

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 5600
 0.10
 0.10
 umhos/cm
 1
 5/1/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date Analyzed

Print Date: 14-May-14

DF

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-004

Client Sample ID: MW-40D-198

**Collection Date:** 4/24/2014 12:44:00 PM

Matrix: WATER

Units

SPECIFIC CONDUCTANCE

Analyses

**EPA 120.1** 

Qual

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 13000
 0.10
 0.10
 umhos/cm
 1
 5/1/2014

**PQL** 

Result MDL

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-65-160-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 8:55:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012465-005

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 3600
 0.10
 0.10
 umhos/cm
 1
 5/1/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-71-035-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 2:00:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-006

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 7700
 0.10
 umhos/cm
 1
 5/1/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-72-080-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 7:56:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012465-007

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 16000
 0.10
 0.10
 umhos/cm
 1
 5/1/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CH2M HILL

**CLIENT:** Client Sample ID: MW-70-105-198 Lab Order: N012465 Collection Date: 4/28/2014 11:02:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012465-012

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

QC Batch: R93335 RunID: WETCHEM\_140501A PrepDate: Analyst: LCC Specific Conductance 3200 0.10 0.10 umhos/cm 5/1/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

Print Date: 14-May-14

**CLIENT:** CH2M HILL Client Sample ID: MW-60BR-245-198 Lab Order: N012465 Collection Date: 4/29/2014 10:54:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012465-016

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140501A PrepDate: QC Batch: R93335 Analyst: LCC Specific Conductance 16000 0.10 0.10 umhos/cm 5/1/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-61-110-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 11:40:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-017

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 15000
 0.10
 0.10
 umhos/cm
 1
 5/1/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-65-225-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 2:13:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-019

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140501A
 QC Batch:
 R93335
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 12000
 0.10
 0.10
 umhos/cm
 1
 5/1/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

**ASSET Laboratories** 

Print Date: 14-May-14 **CLIENT:** CH2M HILL **Client Sample ID:** MW-73-080-198

Lab Order: N012465 Collection Date: 4/29/2014 6:35:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012465-020

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140501A QC Batch: R93335 PrepDate: Analyst: LCC Specific Conductance 11000 0.10 0.10 umhos/cm 5/1/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories Date:** 14-May-14

**CLIENT:** CH2M HILL

ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

TestCode: 120.1\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012465-019C-DUP Client ID: ZZZZZZ | SampType: DUP  Batch ID: R93335              | TestCode: 120.1_WPGE Units: umhos/cr                   | n Prep Date: Analysis Date: 5/1/2014 | RunNo: 93335<br>SegNo: 1776144               |
|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------|----------------------------------------------|
| Analyte                                       | Result                                       | PQL SPK value SPK Ref Val                              | %REC LowLimit HighLimit RPD Ref Val  | %RPD RPDLimit Qual                           |
| Specific Conductance                          | 11750.000                                    | 0.10                                                   | 11680                                | 0.598 10                                     |
| Carrala ID: NO40405 0000 DUD                  |                                              |                                                        |                                      |                                              |
| Sample ID: N012465-020C-DUP                   | SampType: <b>DUP</b>                         | TestCode: 120.1_WPGE Units: umhos/cr                   | n Prep Date:                         | RunNo: 93335                                 |
| Client ID: ZZZZZZ                             | SampType: <b>DUP</b> Batch ID: <b>R93335</b> | TestCode: 120.1_WPGE Units: umhos/cr TestNo: EPA 120.1 | n Prep Date: Analysis Date: 5/1/2014 | RunNo: <b>93335</b><br>SeqNo: <b>1776146</b> |
| ·                                             |                                              | TestNo: <b>EPA 120.1</b>                               | ·r                                   |                                              |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Client Sample ID: MW-124-198

**ASSET Laboratories** 

**CLIENT:** 

Print Date: 14-May-14

Lab Order: N012465 Collection Date: 4/24/2014 7:30:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012465-001

CH2M HILL

| Analyses               | Res       | sult | MDL   | PQL | Qual Un   | its DF   | Date Analyzed     |
|------------------------|-----------|------|-------|-----|-----------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC     |      |       |     |           |          |                   |
|                        |           |      |       | EP  | A 218.6   |          |                   |
| RunID: IC6_140501A     | QC Batch: | R9   | 3322  |     | PrepDate: |          | Analyst: RB       |
| Hexavalent Chromium    |           | 25   | 0.080 | 1.0 | μg/L      | 5        | 5/1/2014 12:12 PM |
| DISSOLVED METALS BY IC | P-MS      |      |       |     |           |          |                   |
|                        | EPA 3010A |      |       | EP. | A 6020    |          |                   |
| RunID: ICP7_140506A    | QC Batch: | 45   | 580   |     | PrepDate: | 5/2/2014 | Analyst: CEI      |
| Chromium               |           | 22   | 0.030 | 1.0 | μg/L      | 1        | 5/6/2014 03:20 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-35-060-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 10:33:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-002

| Analyses               | Res       | sult | MDL   | PQL | Qual Unit | s DF     | Date Analyzed     |
|------------------------|-----------|------|-------|-----|-----------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC     |      |       |     |           |          |                   |
|                        |           |      |       | EP  | A 218.6   |          |                   |
| RunID: IC6_140501A     | QC Batch: | R9   | 3322  |     | PrepDate: |          | Analyst: RB       |
| Hexavalent Chromium    |           | 25   | 0.080 | 1.0 | μg/L      | 5        | 5/1/2014 10:42 AM |
| DISSOLVED METALS BY IC | P-MS      |      |       |     |           |          |                   |
|                        | EPA 3010A |      |       | EP  | A 6020    |          |                   |
| RunID: ICP7_140506A    | QC Batch: | 455  | 580   |     | PrepDate: | 5/2/2014 | Analyst: CEI      |
| Chromium               |           | 24   | 0.030 | 1.0 | μg/L      | 1        | 5/6/2014 03:25 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-35-135-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 10:19:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-003

| Analyses                | Res       | ult | MDL   | PQL | Qual    | Units | DF       | Date Analyzed     |
|-------------------------|-----------|-----|-------|-----|---------|-------|----------|-------------------|
| HEXAVALENT CHROMIUM E   | BY IC     |     |       |     |         |       |          |                   |
|                         |           |     |       | EP  | A 218.6 |       |          |                   |
| RunID: IC6_140501A      | QC Batch: | R93 | 3322  |     | PrepDa  | ate:  |          | Analyst: RB       |
| Hexavalent Chromium     |           | 29  | 0.080 | 1.0 |         | μg/L  | 5        | 5/1/2014 10:52 AM |
| DISSOLVED METALS BY ICE | P-MS      |     |       |     |         |       |          |                   |
|                         | EPA 3010A |     |       | EP  | A 6020  |       |          |                   |
| RunID: ICP7_140506A     | QC Batch: | 455 | 80    |     | PrepDa  | ate:  | 5/2/2014 | Analyst: CEI      |
| Chromium                |           | 25  | 0.030 | 1.0 |         | μg/L  | 1        | 5/6/2014 03:31 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-40D-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 12:44:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-004

| Analyses               | Result MDL              | PQL | Qual Units | DF       | Date Analyzed     |
|------------------------|-------------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM    | BY IC                   |     |            |          |                   |
|                        |                         | EPA | 218.6      |          |                   |
| RunID: IC6_140501A     | QC Batch: <b>R93322</b> |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium    | 130 0.32                | 4.0 | μg/L       | 20       | 5/1/2014 11:02 AM |
| DISSOLVED METALS BY IC | CP-MS                   |     |            |          |                   |
|                        | EPA 3010A               | EP/ | A 6020     |          |                   |
| RunID: ICP7_140506A    | QC Batch: 45580         |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium               | 110 0.030               | 1.0 | μg/L       | 1        | 5/6/2014 03:36 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-65-160-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 8:55:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-005

| Analyses                | Result MDL              | PQL | Qual Units | DF       | Date Analyzed     |
|-------------------------|-------------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |     |            |          |                   |
|                         |                         | EP  | A 218.6    |          |                   |
| RunID: IC6_140501A      | QC Batch: <b>R93322</b> |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium     | 110 0.32                | 4.0 | μg/L       | 20       | 5/1/2014 11:12 AM |
| DISSOLVED METALS BY ICI | P-MS                    |     |            |          |                   |
|                         | EPA 3010A               | EP  | A 6020     |          |                   |
| RunID: ICP7_140506A     | QC Batch: 45580         |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium                | 95 0.030                | 1.0 | μg/L       | 1        | 5/6/2014 03:42 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

5/6/2014 03:47 PM

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-71-035-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 2:00:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

1.0

0.030

**Lab ID:** N012465-006

Chromium

| Analyses               | Result MDL              | PQL Qual Unit | s DF Date Analyzed           |
|------------------------|-------------------------|---------------|------------------------------|
| HEXAVALENT CHROMIUM    | BY IC                   |               |                              |
|                        |                         | EPA 218.6     |                              |
| RunID: IC6_140501A     | QC Batch: <b>R93322</b> | PrepDate:     | Analyst: RB                  |
| Hexavalent Chromium    | 1.0 0.016               | 0.20 μg/L     | 1 5/1/2014 11:22 AM          |
| DISSOLVED METALS BY IC | P-MS                    |               |                              |
|                        | EPA 3010A               | EPA 6020      |                              |
| RunID: ICP7_140506A    | QC Batch: 45580         | PrepDate:     | 5/2/2014 Analyst: <b>CEI</b> |

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-72-080-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 7:56:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-007

| Analyses               | Result MDL              | PQL | Qual Units | DF       | Date Analyzed     |
|------------------------|-------------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |     |            |          |                   |
|                        |                         | EPA | 218.6      |          |                   |
| RunID: IC6_140501A     | QC Batch: <b>R93322</b> |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium    | 100 0.32                | 4.0 | μg/L       | 20       | 5/1/2014 11:32 AM |
| DISSOLVED METALS BY IC | P-MS                    |     |            |          |                   |
|                        | EPA 3010A               | EPA | A 6020     |          |                   |
| RunID: ICP7_140506A    | QC Batch: 45580         |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium               | 82 0.030                | 1.0 | μg/L       | 1        | 5/6/2014 03:53 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-19-198

**Lab Order:** N012465 **Collection Date:** 4/28/2014 9:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-008

| Analyses                  | Result MDL       | PQL  | Qual Units | DF       | Date Analyzed    |
|---------------------------|------------------|------|------------|----------|------------------|
| HEXAVALENT CHROMIUM       |                  |      |            |          |                  |
|                           |                  | SM 3 | 500-CR B   |          |                  |
| RunID: WETCHEM2_140501A   | QC Batch: R93309 |      | PrepDate:  |          | Analyst: PS      |
| Chromium, Hexavalent      | 550 1.4          | 10   | μg/L       | 1        | 5/1/2014         |
| DISSOLVED METALS BY ICP-N | IS               |      |            |          |                  |
|                           | EPA 3010A        | EP   | A 6020     |          |                  |
| RunID: ICP7_140506A       | QC Batch: 45580  |      | PrepDate:  | 5/2/2014 | Analyst: CEI     |
| Chromium                  | 520 0.15         | 5.0  | μg/L       | 5        | 5/6/2014 06:11 P |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

Client Sample ID: MW-215-198

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012465

1012465 Collection Date: 4/28/2014 6:15:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012465-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140501A
 QC Batch:
 R93322
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 µg/L
 1
 5/1/2014 11:42 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012465

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-010

Client Sample ID: MW-216-198

Collection Date: 4/28/2014 6:18:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140501A
 QC Batch:
 R93322
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 5/1/2014 02:21 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-57-070-198

**Lab Order:** N012465 **Collection Date:** 4/28/2014 8:20:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-011

| Analyses               | Result MDL              | PQL | Qual Units | DF       | Date Analyzed      |
|------------------------|-------------------------|-----|------------|----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |     |            |          |                    |
|                        |                         | EP  | A 218.6    |          |                    |
| RunID: IC6_140501A     | QC Batch: <b>R93322</b> |     | PrepDate:  |          | Analyst: <b>RB</b> |
| Hexavalent Chromium    | 430 0.80                | 10  | μg/L       | 50       | 5/1/2014 02:31 PM  |
| DISSOLVED METALS BY IC | P-MS                    |     |            |          |                    |
|                        | EPA 3010A               | EP. | A 6020     |          |                    |
| RunID: ICP7_140506A    | QC Batch: 45580         |     | PrepDate:  | 5/2/2014 | Analyst: CEI       |
| Chromium               | 460 0.15                | 5.0 | μg/L       | 5        | 5/6/2014 06:17 PM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-70-105-198

**Lab Order:** N012465 **Collection Date:** 4/28/2014 11:02:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-012

| A . 1                   | D 4 MDI                 | DOL | 0 1 11 11  | DE       | D. ( A . I . I    |
|-------------------------|-------------------------|-----|------------|----------|-------------------|
| Analyses                | Result MDL              | PQL | Qual Units | DF       | Date Analyzed     |
| HEXAVALENT CHROMIUM E   | BY IC                   |     |            |          |                   |
|                         |                         | EPA | 218.6      |          |                   |
| RunID: IC6_140501A      | QC Batch: <b>R93322</b> |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium     | 75 0.32                 | 4.0 | μg/L       | 20       | 5/1/2014 02:41 PM |
| DISSOLVED METALS BY ICI | P-MS                    |     |            |          |                   |
|                         | EPA 3010A               | EPA | 6020       |          |                   |
| RunID: ICP7_140506A     | QC Batch: 45580         |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium                | 70 0.030                | 1.0 | μg/L       | 1        | 5/6/2014 04:21 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012465

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012465-013 Client Sample ID: MW-217-198

Collection Date: 4/29/2014 5:40:00 AM

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

RunID: IC6\_140501A QC Batch: R93322 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 1 5/1/2014 02:51 PM μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-218-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 5:48:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-014

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140501A
 QC Batch:
 R93322
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 0.40
 0.016
 0.20
 µg/L
 1
 5/1/2014 03:01 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-24BR-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 9:42:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-015

| Analyses               | Result MDL       | PQL | Qual Units | DF       | Date Analyzed     |
|------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |     |            |          |                   |
|                        |                  | EP  | A 218.6    |          |                   |
| RunID: IC6_140501A     | QC Batch: R93322 |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium    | ND 0.080         | 1.0 | μg/L       | 5        | 5/1/2014 07:08 PM |
| DISSOLVED METALS BY IC | P-MS             |     |            |          |                   |
|                        | EPA 3010A        | EP  | A 6020     |          |                   |
| RunID: ICP7_140506A    | QC Batch: 45580  |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium               | ND 0.030         | 1.0 | μg/L       | 1        | 5/6/2014 04:26 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

**ASSET Laboratories** 

Print Date: 14-May-14

**CLIENT:** CH2M HILL Client Sample ID: MW-60BR-245-198 Lab Order: N012465 Collection Date: 4/29/2014 10:54:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012465-016

| Analyses                | Result MDL              | PQL | Qual Units | DF       | Date Analyzed     |
|-------------------------|-------------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |     |            |          |                   |
|                         |                         | EPA | 218.6      |          |                   |
| RunID: IC6_140501A      | QC Batch: <b>R93322</b> |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium     | ND 0.080                | 1.0 | μg/L       | 5        | 5/1/2014 07:28 PM |
| DISSOLVED METALS BY ICI | P-MS                    |     |            |          |                   |
|                         | EPA 3010A               | EPA | 6020       |          |                   |
| RunID: ICP7_140506A     | QC Batch: 45580         |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium                | 1.2 0.030               | 1.0 | μg/L       | 1        | 5/6/2014 04:32 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-61-110-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 11:40:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-017

| Analyses                                                 | Result MDL       | PQL | Oual Units | DF       | Date Analyzed     |
|----------------------------------------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E                                    | BY IC            |     |            |          |                   |
| TIEXAVALENT STINOSISSISSISSISSISSISSISSISSISSISSISSISSIS | 71.10            | EP  | A 218.6    |          |                   |
| RunID: IC7_140501A                                       | QC Batch: R93328 |     | PrepDate:  |          | Analyst: QBM      |
| Hexavalent Chromium                                      | 470 1.6          | 20  | μg/L       | 100      | 5/1/2014 02:30 PM |
| DISSOLVED METALS BY ICI                                  | P-MS             |     |            |          |                   |
|                                                          | EPA 3010A        | EP. | A 6020     |          |                   |
| RunID: ICP7_140506A                                      | QC Batch: 45580  |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium                                                 | 460 0.15         | 5.0 | μg/L       | 5        | 5/6/2014 07:51 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-62-065-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 1:19:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-018

| Analyses               | Result MDL       | PQL | Qual Units | DF       | Date Analyzed     |
|------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |     |            |          |                   |
|                        |                  | EP  | A 218.6    |          |                   |
| RunID: IC7_140501A     | QC Batch: R93328 |     | PrepDate:  |          | Analyst: QBM      |
| Hexavalent Chromium    | 550 1.6          | 20  | μg/L       | 100      | 5/1/2014 02:40 PM |
| DISSOLVED METALS BY IC | P-MS             |     |            |          |                   |
|                        | EPA 3010A        | EP. | A 6020     |          |                   |
| RunID: ICP7_140506A    | QC Batch: 45580  |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium               | 550 0.15         | 5.0 | μg/L       | 5        | 5/6/2014 07:56 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-65-225-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 2:13:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-019

| Analyses                | Result MDL       | PQL | Qual Units | DF       | Date Analyzed     |
|-------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |          |                   |
|                         |                  | EPA | A 218.6    |          |                   |
| RunID: IC6_140501A      | QC Batch: R93322 |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium     | 460 0.80         | 10  | μg/L       | 50       | 5/1/2014 03:31 PM |
| DISSOLVED METALS BY ICI | P-MS             |     |            |          |                   |
|                         | EPA 3010A        | EP  | A 6020     |          |                   |
| RunID: ICP7_140506A     | QC Batch: 45580  |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium                | 450 0.15         | 5.0 | μg/L       | 5        | 5/6/2014 08:02 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-73-080-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 6:35:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-020

| Analyses                | Result MDL       | PQL Q   | ual Units | DF       | Date Analyzed     |
|-------------------------|------------------|---------|-----------|----------|-------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |         |           |          |                   |
|                         |                  | EPA 218 | 3.6       |          |                   |
| RunID: IC6_140502A      | QC Batch: R93323 |         | PrepDate: |          | Analyst: RB       |
| Hexavalent Chromium     | 53 0.080         | 1.0     | μg/L      | 5        | 5/2/2014 12:39 PM |
| DISSOLVED METALS BY ICI | P-MS             |         |           |          |                   |
|                         | EPA 3010A        | EPA 602 | 20        |          |                   |
| RunID: ICP7_140506A     | QC Batch: 45580  |         | PrepDate: | 5/2/2014 | Analyst: CEI      |
| Chromium                | 48 0.030         | 1.0     | μg/L      | 1        | 5/6/2014 05:44 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date Analyzed

Print Date: 14-May-14

DF

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012465

Lab ID:

Analyses

PG&E Topock, 423575.MP.02.GM.02

**Project:** 

N012465-021

Client Sample ID: MW-219-198

Collection Date: 4/30/2014 5:36:00 AM

Matrix: WATER

Units

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

Qual

RunID: IC6\_140501A QC Batch: R93322 PrepDate: Analyst: RB Hexavalent Chromium ND 0.016 0.20 1 5/1/2014 06:09 PM μg/L

**PQL** 

Result MDL

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-220-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 5:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-022

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140501A
 QC Batch:
 R93322
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 µg/L
 1
 5/1/2014 06:29 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-22-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 7:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-023

| Analyses                | Result MDL       | PQL  | <b>Oual Units</b> | DF       | Date Analyzed     |
|-------------------------|------------------|------|-------------------|----------|-------------------|
| HEXAVALENT CHROMIUM E   | SV IC            | - ~- | <b>Q</b>          |          |                   |
| TILXAVALENT OTIKOWIOW I | 51 10            | EPA  | 218.6             |          |                   |
| RunID: IC6_140502A      | QC Batch: R93323 |      | PrepDate:         |          | Analyst: RB       |
| Hexavalent Chromium     | ND 0.080         | 1.0  | μg/L              | 5        | 5/2/2014 12:19 PM |
| DISSOLVED METALS BY IC  | P-MS             |      |                   |          |                   |
|                         | EPA 3010A        | EPA  | 6020              |          |                   |
| RunID: ICP7_140508B     | QC Batch: 45598  |      | PrepDate:         | 5/7/2014 | Analyst: CEI      |
| Chromium                | ND 0.030         | 1.0  | μg/L              | 1        | 5/8/2014 01:47 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

Print Date: 14-May-14 **CLIENT:** CH2M HILL Client Sample ID: MW-52D-198

Lab Order: N012465 Collection Date: 4/30/2014 11:01:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012465-024

| Analyses       |              | Result        | MDL   | PQL | Qual Units | DF       | Date Analyzed     |
|----------------|--------------|---------------|-------|-----|------------|----------|-------------------|
| HEXAVALENT     | CHROMIUM B   | Y IC          |       |     |            |          |                   |
|                |              |               |       | EPA | A 218.6    |          |                   |
| RunID: IC7_14  | 0501A        | QC Batch: R93 | 328   |     | PrepDate:  |          | Analyst: QBM      |
| Hexavalent Chi | romium       | ND            | 0.080 | 1.0 | μg/L       | 5        | 5/1/2014 11:38 AM |
| DISSOLVED M    | ETALS BY ICP | P-MS          |       |     |            |          |                   |
|                |              | EPA 3010A     |       | EP  | A 6020     |          |                   |
| RunID: ICP7_1  | 40506A       | QC Batch: 455 | 80    |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium       |              | ND            | 0.030 | 1.0 | μg/L       | 1        | 5/6/2014 05:49 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-52M-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 12:29:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-025

| Analyses               | Result MDL       | PQL | Qual Units | DF       | Date Analyzed     |
|------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |     |            |          |                   |
|                        |                  | EP  | A 218.6    |          |                   |
| RunID: IC7_140501A     | QC Batch: R93328 |     | PrepDate:  |          | Analyst: QBM      |
| Hexavalent Chromium    | ND 0.080         | 1.0 | μg/L       | 5        | 5/1/2014 12:18 PM |
| DISSOLVED METALS BY IC | P-MS             |     |            |          |                   |
|                        | EPA 3010A        | EP. | A 6020     |          |                   |
| RunID: ICP7_140506A    | QC Batch: 45580  |     | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Chromium               | ND 0.030         | 1.0 | μg/L       | 1        | 5/6/2014 05:55 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

5/8/2014 03:10 PM

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012465

Chromium

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-026

Client Sample ID: MW-52S-198

μg/L

**Collection Date:** 4/30/2014 10:27:00 AM

Matrix: WATER

| Analyses                | Result MDL       | PQL Qual Units | DF Date Analyzed             |
|-------------------------|------------------|----------------|------------------------------|
| HEXAVALENT CHROMIUM BY  | / IC             |                |                              |
|                         |                  | EPA 218.6      |                              |
| RunID: IC7_140501A      | QC Batch: R93328 | PrepDate:      | Analyst: QBM                 |
| Hexavalent Chromium     | ND 0.016         | 0.20 μg/L      | 1 5/1/2014 01:14 PM          |
| DISSOLVED METALS BY ICP | -MS              |                |                              |
|                         | EPA 3010A        | EPA 6020       |                              |
| RunID: ICP7_140508B     | QC Batch: 45598  | PrepDate:      | 5/7/2014 Analyst: <b>CEI</b> |

1.0

ND

0.030

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012465

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-027

Client Sample ID: MW-53D-198

**Collection Date:** 4/30/2014 9:10:00 AM

Matrix: WATER

| Analyses                | Result MDL       | PQL | Qual Units | DF       | Date Analyzed     |
|-------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |          |                   |
|                         |                  | EPA | 218.6      |          |                   |
| RunID: IC7_140501A      | QC Batch: R93328 |     | PrepDate:  |          | Analyst: QBM      |
| Hexavalent Chromium     | ND 0.080         | 1.0 | μg/L       | 5        | 5/1/2014 12:37 PM |
| DISSOLVED METALS BY ICI | P-MS             |     |            |          |                   |
|                         | EPA 3010A        | EP/ | A 6020     |          |                   |
| RunID: ICP7_140508B     | QC Batch: 45598  |     | PrepDate:  | 5/7/2014 | Analyst: CEI      |
| Chromium                | ND 0.030         | 1.0 | μg/L       | 1        | 5/8/2014 03:16 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-53M-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 8:27:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-028

| Analyses               | Result MDL       | PQL | Qual Units | DF       | Date Analyzed     |
|------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |     |            |          |                   |
|                        |                  | EPA | A 218.6    |          |                   |
| RunID: IC7_140501A     | QC Batch: R93328 |     | PrepDate:  |          | Analyst: QBM      |
| Hexavalent Chromium    | ND 0.080         | 1.0 | μg/L       | 5        | 5/1/2014 01:33 PM |
| DISSOLVED METALS BY IC | P-MS             |     |            |          |                   |
|                        | EPA 3010A        | EPA | A 6020     |          |                   |
| RunID: ICP7_140508B    | QC Batch: 45598  |     | PrepDate:  | 5/7/2014 | Analyst: CEI      |
| Chromium               | ND 0.030         | 1.0 | μg/L       | 1        | 5/8/2014 03:49 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories Date:** 14-May-14

CLIENT: CH2M HILL Work Order: N012465

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

|            | : MB-R93322        | SampType: MBLK          | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93322          |
|------------|--------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: | PBW                | Batch ID: <b>R93322</b> | TestNo: EPA 218.6                | Analysis Date: 5/1/2014             | SeqNo: <b>1775649</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | Chromium           | ND                      | 0.20                             |                                     |                       |
| Sample ID: | : LCS-R93322       | SampType: <b>LCS</b>    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93322</b>   |
| Client ID: | LCSW               | Batch ID: R93322        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775650</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | Chromium           | 4.933                   | 0.20 5.000 0                     | 98.7 90 110                         |                       |
| Sample ID: | : N012465-001A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93322          |
| Client ID: | ZZZZZZ             | Batch ID: R93322        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: 1775661        |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | Chromium           | 24.793                  | 1.0                              | 25.02                               | 0.897 20              |
| Sample ID: | : N012465-001A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93322          |
| Client ID: | ZZZZZZ             | Batch ID: R93322        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775662</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | Chromium           | 49.912                  | 1.0 25.00 25.02                  | 99.6 90 110                         |                       |
| Sample ID  | : N012465-001A-MSD | SampType: MSD           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93322</b>   |
| Client ID: | ZZZZZZ             | Batch ID: R93322        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775663</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent | Chromium           | 49.292                  | 1.0 25.00 25.02                  | 97.1 90 110 49.91                   | 1.25 20               |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: N012465-002A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93322          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775664</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 49.223                  | 1.0 25.00 24.86                  | 97.5 90 110                         |                       |
| Sample ID: N012465-003A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93322          |
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775665</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 53.506                  | 1.0 25.00 28.64                  | 99.4 90 110                         |                       |
| Sample ID: N012465-004A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93322          |
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: EPA 218.6                | Analysis Date: 5/1/2014             | SeqNo: <b>1775666</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 231.214                 | 4.0 100.0 134.0                  | 97.2 90 110                         |                       |
| Sample ID: N012465-005A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93322</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93322        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775667</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 205.368                 | 4.0 100.0 106.0                  | 99.4 90 110                         |                       |
| Sample ID: N012465-006A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93322</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: EPA 218.6                | Analysis Date: 5/1/2014             | SeqNo: <b>1775668</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 2.042                   | 0.20 1.000 1.020                 | 102 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

Work Order:

ANALYTICAL QC SUMMARY REPORT N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 218.6\_WPGE

| Sample ID: N012465-007A-MS                                                           | SampType: MS                                       | TestCode: 218.6_WPGE Units: µg/L                                                                                                                                                                                  | Prep Date:                                                                                                                                                                                                                             | RunNo: 93322                                    |
|--------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Client ID: ZZZZZZ                                                                    | Batch ID: R93322                                   | TestNo: EPA 218.6                                                                                                                                                                                                 | Analysis Date: 5/1/2014                                                                                                                                                                                                                | SeqNo: <b>1775669</b>                           |
| Analyte                                                                              | Result                                             | PQL SPK value SPK Ref Val                                                                                                                                                                                         | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                    | %RPD RPDLimit Qual                              |
| Hexavalent Chromium                                                                  | 202.908                                            | 4.0 100.0 101.1                                                                                                                                                                                                   | 102 90 110                                                                                                                                                                                                                             |                                                 |
| Sample ID: N012465-009A-MS                                                           | SampType: MS                                       | TestCode: 218.6_WPGE Units: μg/L                                                                                                                                                                                  | Prep Date:                                                                                                                                                                                                                             | RunNo: 93322                                    |
| Client ID: ZZZZZZ                                                                    | Batch ID: <b>R93322</b>                            | TestNo: <b>EPA 218.6</b>                                                                                                                                                                                          | Analysis Date: 5/1/2014                                                                                                                                                                                                                | SeqNo: <b>1775672</b>                           |
| Analyte                                                                              | Result                                             | PQL SPK value SPK Ref Val                                                                                                                                                                                         | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                    | %RPD RPDLimit Qual                              |
| Hexavalent Chromium                                                                  | 1.109                                              | 0.20 1.000 0.08130                                                                                                                                                                                                | 103 90 110                                                                                                                                                                                                                             |                                                 |
| Sample ID: N012465-010A-MS                                                           | SampType: MS                                       | TestCode: 218.6_WPGE Units: µg/L                                                                                                                                                                                  | Prep Date:                                                                                                                                                                                                                             | RunNo: 93322                                    |
|                                                                                      |                                                    |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                 |
| Client ID: ZZZZZZ                                                                    | Batch ID: R93322                                   | TestNo: EPA 218.6                                                                                                                                                                                                 | Analysis Date: 5/1/2014                                                                                                                                                                                                                | SeqNo: 1775681                                  |
| Client ID: ZZZZZZ Analyte                                                            | Batch ID: R93322<br>Result                         | TestNo: <b>EPA 218.6</b> PQL SPK value SPK Ref Val                                                                                                                                                                | Analysis Date: 5/1/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                           | SeqNo: 1775681  %RPD RPDLimit Qual              |
|                                                                                      |                                                    |                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                      | ·                                               |
| Analyte                                                                              | Result                                             | PQL SPK value SPK Ref Val                                                                                                                                                                                         | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                    | ·                                               |
| Analyte Hexavalent Chromium                                                          | Result                                             | PQL SPK value SPK Ref Val 0.20 1.000 0.05530                                                                                                                                                                      | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                                                                    | %RPD RPDLimit Qual                              |
| Analyte Hexavalent Chromium  Sample ID: N012465-011A-MS                              | Result 1.053 SampType: MS                          | PQL SPK value SPK Ref Val  0.20 1.000 0.05530  TestCode: 218.6_WPGE Units: μg/L                                                                                                                                   | %REC LowLimit HighLimit RPD Ref Val 99.7 90 110  Prep Date:                                                                                                                                                                            | %RPD RPDLimit Qual                              |
| Analyte  Hexavalent Chromium  Sample ID: N012465-011A-MS  Client ID: ZZZZZZ          | Result 1.053  SampType: MS Batch ID: R93322        | PQL SPK value SPK Ref Val  0.20 1.000 0.05530  TestCode: 218.6_WPGE Units: μg/L  TestNo: EPA 218.6                                                                                                                | %REC LowLimit HighLimit RPD Ref Val  99.7 90 110  Prep Date: Analysis Date: 5/1/2014                                                                                                                                                   | %RPD RPDLimit Qual  RunNo: 93322 SeqNo: 1775682 |
| Analyte  Hexavalent Chromium  Sample ID: N012465-011A-MS  Client ID: ZZZZZZ  Analyte | Result 1.053  SampType: MS Batch ID: R93322 Result | PQL         SPK value         SPK Ref Val           0.20         1.000         0.05530           TestCode: 218.6_WPGE Units: μg/L           TestNo: EPA 218.6           PQL         SPK value         SPK Ref Val | %REC         LowLimit         HighLimit         RPD Ref Val           99.7         90         110           Prep Date:           Analysis Date:         5/1/2014           %REC         LowLimit         HighLimit         RPD Ref Val | %RPD RPDLimit Qual  RunNo: 93322 SeqNo: 1775682 |

#### Qualifiers:

Analyte

Hexavalent Chromium

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

E Value above quantitation range

SPK value SPK Ref Val

75.23

100.0

PQL

4.0

Result

175.048

RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

Holding times for preparation or analysis exceeded

LowLimit HighLimit RPD Ref Val

110

90

%REC

99.8

Spike/Surrogate outside of limits due to matrix interference

%RPD RPDLimit Qual

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

TestCode: 218.6\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012465-013A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93322          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775684</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.074                   | 0.20 1.000 0                     | 107 90 110                          |                       |
| Sample ID: N012465-014A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93322</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775685</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.352                   | 0.20 1.000 0.3982                | 95.4 90 110                         |                       |
| Sample ID: N012465-019A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93322          |
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775686</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 708.765                 | 10 250.0 463.6                   | 98.1 90 110                         |                       |
| Sample ID: N012465-021A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93322</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93322</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775690</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.044                   | 0.20 1.000 0.07670               | 96.7 90 110                         |                       |
| Sample ID: N012465-022A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93322</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93322        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775692</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.017                   | 0.20 1.000 0.06360               | 95.3 90 110                         |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

| TestCode: | 218 6 | WPCF |
|-----------|-------|------|
| resicode: | 410.0 | WPGE |

| Sample ID: N012465-015A-MS                   | SampType: MS                  | TestCode: 218.6_WPGE Units: µg/L                   | Prep Date:                          | RunNo: 93322                                 |
|----------------------------------------------|-------------------------------|----------------------------------------------------|-------------------------------------|----------------------------------------------|
| Client ID: ZZZZZZ                            | Batch ID: R93322              | TestNo: <b>EPA 218.6</b>                           | Analysis Date: 5/1/2014             | SeqNo: <b>1775694</b>                        |
| Analyte                                      | Result                        | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 5.364                         | 1.0 5.000 0                                        | 107 90 110                          |                                              |
|                                              |                               |                                                    |                                     |                                              |
| Sample ID: N012465-016A-MS                   | SampType: MS                  | TestCode: 218.6_WPGE Units: μg/L                   | Prep Date:                          | RunNo: 93322                                 |
| Sample ID: N012465-016A-MS Client ID: ZZZZZZ | SampType: MS Batch ID: R93322 | TestCode: 218.6_WPGE Units: µg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 5/1/2014  | RunNo: <b>93322</b><br>SeqNo: <b>1775696</b> |
| ,                                            | 1 31                          |                                                    | •                                   |                                              |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

TestCode: 218.6\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: MB-R93323        | SampType: MBLK          | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93323          |
|-----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW              | Batch ID: R93323        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/2/2014             | SeqNo: <b>1775705</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93323       | SampType: LCS           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93323          |
| Client ID: LCSW             | Batch ID: <b>R93323</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/2/2014             | SeqNo: <b>1775706</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 5.063                   | 0.20 5.000 0                     | 101 90 110                          |                       |
| Sample ID: N012465-023A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93323          |
| Client ID: ZZZZZZ           | Batch ID: R93323        | TestNo: EPA 218.6                | Analysis Date: 5/2/2014             | SeqNo: 1775708        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 4.907                   | 1.0 5.000 0                      | 98.1 90 110                         |                       |
| Sample ID: N012465-020A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93323          |
| Client ID: ZZZZZZ           | Batch ID: <b>R93323</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/2/2014             | SeqNo: <b>1775710</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 53.182                  | 1.0                              | 53.49                               | 0.587 20              |
| Sample ID: N012465-020A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93323          |
| Client ID: ZZZZZZ           | Batch ID: <b>R93323</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/2/2014             | SeqNo: <b>1775711</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 78.284                  | 1.0 25.00 53.49                  | 99.2 90 110                         |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: N012465-020A-M | SD SampType: MSD | TestCod | de: <b>218.6_WP</b>  | GE Units: μg/L |      | Prep Da     | te:                |             | RunNo: 933        | 23       |      |
|---------------------------|------------------|---------|----------------------|----------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ         | Batch ID: R93323 | TestN   | No: <b>EPA 218.6</b> | i .            |      | Analysis Da | te: <b>5/2/201</b> | 4           | SeqNo: <b>177</b> | 5712     |      |
| Analyte                   | Result           | PQL     | SPK value            | SPK Ref Val    | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Hexavalent Chromium       | 78.733           | 1.0     | 25.00                | 53.49          | 101  | 90          | 110                | 78.28       | 0.573             | 20       |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Hexavalent Chromium   ND   0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                         |                                  |                                     |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL Analysis Date: 5/1/2014 SeqNo: 1775856  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL Not SeqNo: 1775866  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val SeqNo: 1775866  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit RPD Ref Val %RPD RPDLimit QL Not SeqNo: 1775866  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit RPD Ref Val %RPD RPDLimit QL Not SeqNo: 1775871  Sample ID: N012465-026AMS SampType: MS TestCode: 218.6_WPGE Units: µg/L Analysis Date: 5/1/2014 SeqNo: 1775871  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SeqNo: 1775871  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SeqNo: 1775871  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit QL SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val SeqNo: 1775872                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample ID: MB-R93328       | SampType: MBLK          | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93328          |
| Sample ID: LCS-R93328   SampType: LCS   TestCode: 218.6_WPGE   Units: \( \mu g/L \)   Prep Date:   RunNo: 93328   SeqNo: 1775856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Client ID: PBW             | Batch ID: R93328        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775855</b> |
| Sample ID: LCS-R93328   SampType: LCS   TestCode: 218.6_WPGE   Units: \(\mug/L\)   Prep Date:   RunNo: 93328   SeqNo: 1775856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Client ID: LCSW   Batch ID: R93328   TestNo: EPA 218.6   Analysis Date: 5/1/2014   SeqNo: 1775856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hexavalent Chromium        | ND                      | 0.20                             |                                     |                       |
| Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD RPDLimit         Qu           Hexavalent Chromium         4.903         0.20         5.000         0         98.1         90         110           Sample ID: N012465-026AMS         SampType: MS         TestCode: 218.6_WPGE         Units: μg/L         Prep Date:         RunNo: 93328           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD RPDLimit         Qu           Hexavalent Chromium         0.959         0.20         1.000         0         95.9         90         110         %RPD RPDLimit         Qu           Sample ID: N012465-026ADUP         SampType: DUP         TestCode: 218.6_WPGE         Units: μg/L         Prep Date:         RunNo: 93328         RunNo: 93328         RunNo: 93328         Analysis Date: 5/1/2014         SeqNo: 1775871         SeqNo: 1775871         Qu         NB         Qu         NB         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample ID: LCS-R93328      | SampType: <b>LCS</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93328          |
| Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Client ID: LCSW            | Batch ID: R93328        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775856</b> |
| Sample ID: N012465-026AMS         SampType: MS         TestCode: 218.6_WPGE         Units: μg/L         Prep Date:         RunNo: 93328           Client ID: ZZZZZZ         Batch ID: R93328         TestNo: EPA 218.6         Analysis Date: 5/1/2014         SeqNo: 1775866           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD RPDLimit         Qu           Hexavalent Chromium         0.959         0.20         1.000         0         95.9         90         110         NunNo: 93328         RunNo: 93328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Client ID:         ZZZZZZZ         Batch ID:         R93328         TestNo: EPA 218.6         Analysis Date:         5/1/2014         SeqNo:         1775866           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Qu           Hexavalent Chromium         0.959         0.20         1.000         0         95.9         90         110         Prep Date:         RunNo:         93328         RunNo:         93328         Prep Date:         RunNo:         93328         Prep Date:         RunNo:         93328         Prep Date:         RunNo:         9775871         Prep Date:         RunNo:         9775871         Prep Date:         Prep Date:         RunNo:         9775871         Prep Date:         RunNo:         9775871         Prep Date:         RunNo:         9775871         Prep Date:         RunNo:         9775871         Prep Date:         RunNo:         9775872         Prep Date:         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hexavalent Chromium        | 4.903                   | 0.20 5.000 0                     | 98.1 90 110                         |                       |
| Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit         Quality           Hexavalent Chromium         0.959         0.20         1.000         0         95.9         90         110           Sample ID: N012465-026ADUP         SampType: DUP         TestCode: 218.6_WPGE Units: μg/L         Prep Date:         RunNo: 93328           Client ID: ZZZZZZ         Batch ID: R93328         TestNo: EPA 218.6         Analysis Date: 5/1/2014         SeqNo: 1775871           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD RPDLimit         Quality           Hexavalent Chromium         ND         0.20         0         0         0         20           Sample ID: N012465-026AMSD         SampType: MSD         TestCode: 218.6_WPGE Units: μg/L         Prep Date:         RunNo: 93328           Client ID: ZZZZZZZ         Batch ID: R93328         TestNo: EPA 218.6         Analysis Date: 5/1/2014         SeqNo: 1775872           Analyte         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD RPDLim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample ID: N012465-026AMS  | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93328          |
| Hexavalent Chromium         0.959         0.20         1.000         0         95.9         90         110           Sample ID: N012465-026ADUP         SampType: DUP         TestCode: 218.6_WPGE Units: μg/L         Prep Date: RunNo: 93328         RunNo: 93328           Client ID: ZZZZZZ         Batch ID: R93328         TestNo: EPA 218.6         Analysis Date: 5/1/2014         SeqNo: 1775871           Analyte         Result         PQL SPK value SPK Ref Val         %REC LowLimit HighLimit RPD Ref Val         %RPD RPDLimit Quality           Sample ID: N012465-026AMSD         SampType: MSD         TestCode: 218.6_WPGE Units: μg/L         Prep Date: RunNo: 93328         RunNo: 93328           Client ID: ZZZZZZ         Batch ID: R93328         TestNo: EPA 218.6         Analysis Date: 5/1/2014         SeqNo: 1775872           Analyte         Result         PQL SPK value SPK Ref Val         %REC LowLimit HighLimit RPD Ref Val         %RPD RPDLimit Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Client ID: ZZZZZZ          | Batch ID: R93328        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: 1775866        |
| Sample ID: N012465-026ADUP SampType: DUP TestCode: 218.6_WPGE Units: µg/L Prep Date: RunNo: 93328  Client ID: ZZZZZZ Batch ID: R93328 TestNo: EPA 218.6 Analysis Date: 5/1/2014 SeqNo: 1775871  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Question Result PQL Sequence Prep Date: RunNo: 93328  Sample ID: N012465-026AMSD SampType: MSD TestCode: 218.6_WPGE Units: µg/L Prep Date: RunNo: 93328  Client ID: ZZZZZZ Batch ID: R93328 TestNo: EPA 218.6 Analysis Date: 5/1/2014 SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Question Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Republic Repu | Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Client ID: ZZZZZZ Batch ID: R93328 TestNo: EPA 218.6 Analysis Date: 5/1/2014 SeqNo: 1775871  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Question of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of the policy of th | Hexavalent Chromium        | 0.959                   | 0.20 1.000 0                     | 95.9 90 110                         |                       |
| Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Question   Hexavalent Chromium ND 0.20 0 0 0 20  Sample ID: N012465-026AMSD SampType: MSD TestCode: 218.6_WPGE Units: µg/L Prep Date: RunNo: 93328 Client ID: ZZZZZZ Batch ID: R93328 TestNo: EPA 218.6 Analysis Date: 5/1/2014 SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit Question   Republimit Question   Republimit Question   Republimit Question   Republimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit RPD Ref Val %RPD Republimit Question   Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit Question   Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Republimit RPD Ref Val %RPD Ref Val %RPD Republimit RPD Ref Val %RPD Ref Val  | Sample ID: N012465-026ADUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93328</b>   |
| Hexavalent Chromium ND 0.20 0 0 20  Sample ID: N012465-026AMSD SampType: MSD TestCode: 218.6_WPGE Units: μg/L Prep Date: RunNo: 93328  Client ID: ZZZZZZ Batch ID: R93328 TestNo: EPA 218.6 Analysis Date: 5/1/2014 SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Client ID: ZZZZZZ          | Batch ID: R93328        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: 1775871        |
| Sample ID: N012465-026AMSD SampType: MSD TestCode: 218.6_WPGE Units: µg/L Prep Date: RunNo: 93328  Client ID: ZZZZZZ Batch ID: R93328 TestNo: EPA 218.6 Analysis Date: 5/1/2014 SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Client ID: ZZZZZZ Batch ID: R93328 TestNo: EPA 218.6 Analysis Date: 5/1/2014 SeqNo: 1775872  Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hexavalent Chromium        | ND                      | 0.20                             | 0                                   | 0 20                  |
| Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID: N012465-026AMSD | SampType: <b>MSD</b>    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93328</b>   |
| L ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Client ID: ZZZZZZ          | Batch ID: <b>R93328</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775872</b> |
| Hexavalent Chromium 0.958 0.20 1.000 0 95.8 90 110 0.9593 0.146 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hexavalent Chromium        | 0.958                   | 0.20 1.000 0                     | 95.8 90 110 0.9593                  | 0.146 20              |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

PG&E Topock, 423575.MP.02.GM.02 **Project:** 

| Sample ID: N012465-017AMS                   | SampType: MS                  | TestCode: 218.6_WPGE Units: μg/L                   | Prep Date:                          | RunNo: 93328                   |
|---------------------------------------------|-------------------------------|----------------------------------------------------|-------------------------------------|--------------------------------|
| Client ID: ZZZZZZ                           | Batch ID: <b>R93328</b>       | TestNo: <b>EPA 218.6</b>                           | Analysis Date: 5/1/2014             | SeqNo: <b>1775881</b>          |
| Analyte                                     | Result                        | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual             |
| Hexavalent Chromium                         | 966.630                       | 20 500.0 473.0                                     | 98.7 90 110                         |                                |
|                                             |                               |                                                    |                                     |                                |
| Sample ID: N012465-018AMS                   | SampType: MS                  | TestCode: 218.6_WPGE Units: μg/L                   | Prep Date:                          | RunNo: 93328                   |
| Sample ID: N012465-018AMS Client ID: ZZZZZZ | SampType: MS Batch ID: R93328 | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 5/1/2014  | RunNo: 93328<br>SeqNo: 1775882 |
|                                             |                               |                                                    | •                                   |                                |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: MB-R93328      | SampType: MBLK          | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: 93328          |
|---------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW            | Batch ID: R93328        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: 1775819        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93328     | SampType: <b>LCS</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: 93328          |
| Client ID: LCSW           | Batch ID: R93328        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/1/2014             | SeqNo: <b>1775820</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 4.903                   | 0.20 5.000 0                     | 98.1 90 110                         |                       |
| Sample ID: N012465-024AMS | SampType: MS            | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: 93328          |
| Client ID: ZZZZZZ         | Batch ID: R93328        | TestNo: EPA 218.6                | Analysis Date: 5/1/2014             | SeqNo: 1775822        |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 4.785                   | 1.0 5.000 0                      | 95.7 90 110                         |                       |
| Sample ID: N012465-025AMS | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93328</b>   |
| Client ID: ZZZZZZ         | Batch ID: R93328        | TestNo: EPA 218.6                | Analysis Date: 5/1/2014             | SeqNo: <b>1775826</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 4.961                   | 1.0 5.000 0                      | 99.2 90 110                         |                       |
| Sample ID: N012465-027AMS | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: 93328          |
| Client ID: ZZZZZZ         | Batch ID: <b>R93328</b> | TestNo: EPA 218.6                | Analysis Date: 5/1/2014             | SeqNo: <b>1775828</b> |
| Analyte                   | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium       | 4.854                   | 1.0 5.000 0                      | 97.1 90 110                         |                       |

## Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

TestCode: 218.6R\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012465-026AMS                                                   | SampType: MS                                | TestCode: 218.6R_WPG Units: µg/L                                                     | Prep Date:                                                                    | RunNo: 93328                                                                                              |
|-----------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Client ID: ZZZZZZ                                                           | Batch ID: <b>R93328</b>                     | TestNo: <b>EPA 218.6</b>                                                             | Analysis Date: 5/1/2014                                                       | SeqNo: <b>1775830</b>                                                                                     |
| Analyte                                                                     | Result                                      | PQL SPK value SPK Ref Val                                                            | %REC LowLimit HighLimit RPD Ref Val                                           | %RPD RPDLimit Qual                                                                                        |
| Hexavalent Chromium                                                         | 0.959                                       | 0.20 1.000 0                                                                         | 95.9 90 110                                                                   |                                                                                                           |
| Sample ID: N012465-028AMS                                                   | SampType: MS                                | TestCode: 218.6R_WPG Units: μg/L                                                     | Prep Date:                                                                    | RunNo: 93328                                                                                              |
| Client ID: ZZZZZZ                                                           | Batch ID: R93328                            | TestNo: <b>EPA 218.6</b>                                                             | Analysis Date: 5/1/2014                                                       | SeqNo: 1775832                                                                                            |
| Analyte                                                                     | Result                                      | PQL SPK value SPK Ref Val                                                            | %REC LowLimit HighLimit RPD Ref Val                                           | %RPD RPDLimit Qual                                                                                        |
| Hexavalent Chromium                                                         | 4.904                                       | 1.0 5.000 0.1075                                                                     | 95.9 90 110                                                                   |                                                                                                           |
|                                                                             |                                             |                                                                                      |                                                                               |                                                                                                           |
| Sample ID: N012465-026ADUP                                                  | SampType: <b>DUP</b>                        | TestCode: 218.6R_WPG Units: µg/L                                                     | Prep Date:                                                                    | RunNo: <b>93328</b>                                                                                       |
| Sample ID: N012465-026ADUP Client ID: ZZZZZZ                                | SampType: DUP Batch ID: R93328              | TestCode: 218.6R_WPG Units: µg/L TestNo: EPA 218.6                                   | Prep Date: Analysis Date: 5/1/2014                                            | RunNo: <b>93328</b><br>SeqNo: <b>1775835</b>                                                              |
|                                                                             |                                             |                                                                                      | •                                                                             |                                                                                                           |
| Client ID: ZZZZZZ                                                           | Batch ID: <b>R93328</b>                     | TestNo: EPA 218.6                                                                    | Analysis Date: <b>5/1/2014</b>                                                | SeqNo: 1775835                                                                                            |
| Client ID: ZZZZZZ Analyte                                                   | Batch ID: R93328 Result                     | TestNo: <b>EPA 218.6</b> PQL SPK value SPK Ref Val                                   | Analysis Date: 5/1/2014  %REC LowLimit HighLimit RPD Ref Val                  | SeqNo: <b>1775835</b><br>%RPD RPDLimit Qual                                                               |
| Client ID: ZZZZZZ Analyte Hexavalent Chromium                               | Batch ID: R93328  Result  ND                | TestNo: EPA 218.6  PQL SPK value SPK Ref Val  0.20                                   | Analysis Date: 5/1/2014  %REC LowLimit HighLimit RPD Ref Val  0               | SeqNo:         1775835           %RPD         RPDLimit         Qual           0         20                |
| Client ID: ZZZZZZ  Analyte  Hexavalent Chromium  Sample ID: N012465-026AMSD | Batch ID: R93328  Result  ND  SampType: MSD | TestNo: EPA 218.6  PQL SPK value SPK Ref Val  0.20  TestCode: 218.6R_WPG Units: µg/L | Analysis Date: 5/1/2014  ***REC LowLimit HighLimit RPD Ref Val  O  Prep Date: | SeqNo: 1775835           %RPD         RPDLimit         Qual           0         20           RunNo: 93328 |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: LCS-R93309                                                                                 | SampType: <b>LCS</b>                                       | TestCode: 3500_CrBPG Units: µg/L                                                                                                    | Prep Date:                                                                             | RunNo: 93309                                     |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: LCSW                                                                                       | Batch ID: <b>R93309</b>                                    | TestNo: SM 3500-Cr B                                                                                                                | Analysis Date: 5/1/2014                                                                | SeqNo: 1774894                                   |
| Analyte                                                                                               | Result                                                     | PQL SPK value SPK Ref Val                                                                                                           | %REC LowLimit HighLimit RPD Ref Val                                                    | %RPD RPDLimit Qual                               |
| Chromium, Hexavalent                                                                                  | 260.093                                                    | 10 250.0 0                                                                                                                          | 104 85 115                                                                             |                                                  |
| Sample ID: MB-R93309                                                                                  | SampType: MBLK                                             | TestCode: 3500_CrBPG Units: µg/L                                                                                                    | Prep Date:                                                                             | RunNo: 93309                                     |
| Client ID: PBW                                                                                        | Batch ID: R93309                                           | TestNo: SM 3500-Cr B                                                                                                                | Analysis Date: 5/1/2014                                                                | SeqNo: <b>1774895</b>                            |
| Analyte                                                                                               | Result                                                     | PQL SPK value SPK Ref Val                                                                                                           | %REC LowLimit HighLimit RPD Ref Val                                                    | %RPD RPDLimit Qual                               |
|                                                                                                       |                                                            |                                                                                                                                     |                                                                                        |                                                  |
| Chromium, Hexavalent                                                                                  | ND                                                         | 10                                                                                                                                  |                                                                                        |                                                  |
| Chromium, Hexavalent  Sample ID: N012465-008A-MS                                                      | ND SampType: MS                                            | 10 TestCode: 3500_CrBPG Units: μg/L                                                                                                 | Prep Date:                                                                             | RunNo: <b>93309</b>                              |
| ,                                                                                                     |                                                            |                                                                                                                                     | Prep Date: Analysis Date: 5/1/2014                                                     | RunNo: <b>93309</b><br>SeqNo: <b>1774897</b>     |
| Sample ID: N012465-008A-MS                                                                            | SampType: <b>MS</b>                                        | TestCode: 3500_CrBPG Units: μg/L                                                                                                    | •                                                                                      |                                                  |
| Sample ID: N012465-008A-MS Client ID: ZZZZZZ                                                          | SampType: MS Batch ID: R93309                              | TestCode: 3500_CrBPG Units: μg/L TestNo: SM 3500-Cr B                                                                               | Analysis Date: 5/1/2014                                                                | SeqNo: <b>1774897</b>                            |
| Sample ID: N012465-008A-MS Client ID: ZZZZZZ Analyte                                                  | SampType: MS  Batch ID: R93309  Result                     | TestCode: 3500_CrBPG Units: μg/L TestNo: SM 3500-Cr B  PQL SPK value SPK Ref Val                                                    | Analysis Date: 5/1/2014  %REC LowLimit HighLimit RPD Ref Val                           | SeqNo: <b>1774897</b>                            |
| Sample ID: N012465-008A-MS Client ID: ZZZZZZ Analyte Chromium, Hexavalent                             | SampType: MS Batch ID: R93309 Result 800.216               | TestCode: 3500_CrBPG Units: μg/L TestNo: SM 3500-Cr B  PQL SPK value SPK Ref Val  10 250.0 546.2                                    | Analysis Date: 5/1/2014  %REC LowLimit HighLimit RPD Ref Val  102 85 115               | SeqNo: 1774897<br>%RPD RPDLimit Qual             |
| Sample ID: N012465-008A-MS Client ID: ZZZZZZ Analyte Chromium, Hexavalent Sample ID: N012465-008A-MSD | SampType: MS Batch ID: R93309 Result 800.216 SampType: MSD | TestCode: 3500_CrBPG Units: μg/L  TestNo: SM 3500-Cr B  PQL SPK value SPK Ref Val  10 250.0 546.2  TestCode: 3500_CrBPG Units: μg/L | Analysis Date: 5/1/2014  ***REC LowLimit HighLimit RPD Ref Val  102 85 115  Prep Date: | SeqNo: 1774897  %RPD RPDLimit Qual  RunNo: 93309 |

## Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

| Project: PG&E Topock, 423575.MP.02.GM.02 | TestCode: 6020DIS_CrPGE |
|------------------------------------------|-------------------------|
|------------------------------------------|-------------------------|

| Sample ID: MB-45580                                               | SampType: MBLK                                   | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                          | Prep Date: 5/2/2014                                                                           | RunNo: 93353                                                                      |
|-------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Client ID: PBW                                                    | Batch ID: 45580                                  | TestNo: EPA 6020 EPA 3010A                                                                                                                                                 | Analysis Date: 5/6/2014                                                                       | SeqNo: <b>1777634</b>                                                             |
| Analyte                                                           | Result                                           | PQL SPK value SPK Ref Val                                                                                                                                                  | %REC LowLimit HighLimit RPD Ref Val                                                           | %RPD RPDLimit Qual                                                                |
| Chromium                                                          | ND                                               | 1.0                                                                                                                                                                        |                                                                                               |                                                                                   |
| Sample ID: LCS-45580                                              | SampType: LCS                                    | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                          | Prep Date: 5/2/2014                                                                           | RunNo: 93353                                                                      |
| Client ID: LCSW                                                   | Batch ID: 45580                                  | TestNo: EPA 6020 EPA 3010A                                                                                                                                                 | Analysis Date: 5/6/2014                                                                       | SeqNo: <b>1777635</b>                                                             |
| Analyte                                                           | Result                                           | PQL SPK value SPK Ref Val                                                                                                                                                  | %REC LowLimit HighLimit RPD Ref Val                                                           | %RPD RPDLimit Qual                                                                |
| Chromium                                                          | 9.564                                            | 1.0 10.00 0                                                                                                                                                                | 95.6 85 115                                                                                   |                                                                                   |
|                                                                   |                                                  |                                                                                                                                                                            |                                                                                               |                                                                                   |
| Sample ID: N012460-001A-MS                                        | SampType: MS                                     | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                          | Prep Date: 5/2/2014                                                                           | RunNo: <b>93353</b>                                                               |
| Sample ID: N012460-001A-MS Client ID: ZZZZZZ                      | SampType: MS Batch ID: 45580                     | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                                                                                               | Prep Date: <b>5/2/2014</b> Analysis Date: <b>5/6/2014</b>                                     | RunNo: <b>93353</b><br>SeqNo: <b>1777665</b>                                      |
| ,                                                                 | 1 31                                             |                                                                                                                                                                            | ·                                                                                             |                                                                                   |
| Client ID: ZZZZZZ                                                 | Batch ID: <b>45580</b>                           | TestNo: EPA 6020 EPA 3010A                                                                                                                                                 | Analysis Date: <b>5/6/2014</b>                                                                | SeqNo: <b>1777665</b>                                                             |
| Client ID: ZZZZZZ Analyte                                         | Batch ID: <b>45580</b> Result                    | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                      | Analysis Date: 5/6/2014  %REC LowLimit HighLimit RPD Ref Val                                  | SeqNo: 1777665<br>%RPD RPDLimit Qual                                              |
| Client ID: ZZZZZZ Analyte Chromium                                | Batch ID: <b>45580</b> Result  1063.303          | TestNo: EPA 6020                                                                                                                                                           | Analysis Date: 5/6/2014  %REC LowLimit HighLimit RPD Ref Val 280 75 125                       | SeqNo: 1777665  %RPD RPDLimit Qual S                                              |
| Client ID: ZZZZZZ  Analyte  Chromium  Sample ID: N012460-001A-MSD | Batch ID: 45580  Result  1063.303  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           25         10.00         1035           TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: 5/6/2014  %REC LowLimit HighLimit RPD Ref Val  280 75 125  Prep Date: 5/2/2014 | SeqNo: 1777665           %RPD         RPDLimit         Qual           S         S |

## Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020DIS\_CrPGE

| Sample ID: MB-45598                                              | SampType: MBLK                       | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                             | Prep Date: 5/7/2014                                                                                                                               | RunNo: <b>93394</b>                              |
|------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: PBW                                                   | Batch ID: 45598                      | TestNo: EPA 6020 EPA 3010A                                                                                                                                                    | Analysis Date: 5/8/2014                                                                                                                           | SeqNo: <b>1778782</b>                            |
| Analyte                                                          | Result                               | PQL SPK value SPK Ref Val                                                                                                                                                     | %REC LowLimit HighLimit RPD Ref Val                                                                                                               | %RPD RPDLimit Qual                               |
| Chromium                                                         | ND                                   | 1.0                                                                                                                                                                           |                                                                                                                                                   |                                                  |
| Sample ID: LCS-45598                                             | SampType: LCS                        | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                             | Prep Date: 5/7/2014                                                                                                                               | RunNo: 93394                                     |
| Client ID: LCSW                                                  | Batch ID: 45598                      | TestNo: EPA 6020 EPA 3010A                                                                                                                                                    | Analysis Date: 5/8/2014                                                                                                                           | SeqNo: <b>1778783</b>                            |
| Analyte                                                          | Result                               | PQL SPK value SPK Ref Val                                                                                                                                                     | %REC LowLimit HighLimit RPD Ref Val                                                                                                               | %RPD RPDLimit Qual                               |
| Chromium                                                         | 10.058                               | 1.0 10.00 0                                                                                                                                                                   | 101 85 115                                                                                                                                        |                                                  |
|                                                                  |                                      |                                                                                                                                                                               |                                                                                                                                                   |                                                  |
| Sample ID: N012465-023B-MS                                       | SampType: MS                         | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                             | Prep Date: 5/7/2014                                                                                                                               | RunNo: 93394                                     |
| Sample ID: N012465-023B-MS Client ID: ZZZZZZ                     | SampType: MS Batch ID: 45598         | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A                                                                                                                  | Prep Date: 5/7/2014  Analysis Date: 5/8/2014                                                                                                      | RunNo: <b>93394</b><br>SeqNo: <b>1778787</b>     |
| ·                                                                |                                      |                                                                                                                                                                               |                                                                                                                                                   |                                                  |
| Client ID: ZZZZZZ                                                | Batch ID: <b>45598</b>               | TestNo: EPA 6020 EPA 3010A                                                                                                                                                    | Analysis Date: 5/8/2014                                                                                                                           | SeqNo: 1778787                                   |
| Client ID: ZZZZZZ Analyte                                        | Batch ID: 45598  Result              | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                         | Analysis Date: 5/8/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                      | SeqNo: 1778787                                   |
| Client ID: ZZZZZZ Analyte Chromium                               | Batch ID: <b>45598</b> Result  8.799 | TestNo: EPA 6020                                                                                                                                                              | Analysis Date: 5/8/2014  %REC LowLimit HighLimit RPD Ref Val  85.0 75 125                                                                         | SeqNo: <b>1778787</b><br>%RPD RPDLimit Qual      |
| Client ID: ZZZZZZ  Analyte Chromium  Sample ID: N012465-023B-MSD | Result 8.799 SampType: MSD           | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         0.2988           TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: 5/8/2014         %REC       LowLimit       HighLimit       RPD Ref Val         85.0       75       125         Prep Date: 5/7/2014 | SeqNo: 1778787  %RPD RPDLimit Qual  RunNo: 93394 |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: MB-45580                                              | SampType: MBLK                                   | TestCode: 6020RDIS_Cr Units: µg/L                                                                                                                                          | Prep Date: 5/2/2014                                                                                          | RunNo: <b>93353</b>                                                           |
|------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Client ID: PBW                                                   | Batch ID: 45580                                  | TestNo: EPA 6020 EPA 3010A                                                                                                                                                 | Analysis Date: 5/6/2014                                                                                      | SeqNo: 1777714                                                                |
| Analyte                                                          | Result                                           | PQL SPK value SPK Ref Val                                                                                                                                                  | %REC LowLimit HighLimit RPD Ref Val                                                                          | %RPD RPDLimit Qual                                                            |
| Chromium                                                         | ND                                               | 1.0                                                                                                                                                                        |                                                                                                              |                                                                               |
| Sample ID: LCS-45580                                             | SampType: LCS                                    | TestCode: 6020RDIS_Cr Units: μg/L                                                                                                                                          | Prep Date: 5/2/2014                                                                                          | RunNo: <b>93353</b>                                                           |
| Client ID: LCSW                                                  | Batch ID: 45580                                  | TestNo: EPA 6020 EPA 3010A                                                                                                                                                 | Analysis Date: 5/6/2014                                                                                      | SeqNo: 1777715                                                                |
| Analyte                                                          | Result                                           | PQL SPK value SPK Ref Val                                                                                                                                                  | %REC LowLimit HighLimit RPD Ref Val                                                                          | %RPD RPDLimit Qual                                                            |
| Chromium                                                         | 9.564                                            | 1.0 10.00 0                                                                                                                                                                | 95.6 85 115                                                                                                  |                                                                               |
|                                                                  |                                                  |                                                                                                                                                                            |                                                                                                              |                                                                               |
| Sample ID: N012460-001A-MS                                       | SampType: MS                                     | TestCode: 6020RDIS_Cr Units: μg/L                                                                                                                                          | Prep Date: 5/2/2014                                                                                          | RunNo: 93353                                                                  |
| Sample ID: N012460-001A-MS Client ID: ZZZZZZ                     | SampType: MS Batch ID: 45580                     | TestCode: 6020RDIS_Cr Units: µg/L TestNo: EPA 6020 EPA 3010A                                                                                                               | Prep Date: 5/2/2014  Analysis Date: 5/6/2014                                                                 | RunNo: <b>93353</b><br>SeqNo: <b>17777732</b>                                 |
| ,                                                                | . 31                                             |                                                                                                                                                                            | ·                                                                                                            |                                                                               |
| Client ID: ZZZZZZ                                                | Batch ID: <b>45580</b>                           | TestNo: EPA 6020 EPA 3010A                                                                                                                                                 | Analysis Date: 5/6/2014                                                                                      | SeqNo: <b>1777732</b>                                                         |
| Client ID: ZZZZZZ Analyte                                        | Batch ID: <b>45580</b> Result                    | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                      | Analysis Date: 5/6/2014  %REC LowLimit HighLimit RPD Ref Val                                                 | SeqNo: <b>1777732</b><br>%RPD RPDLimit Qual                                   |
| Client ID: ZZZZZZ Analyte Chromium                               | Batch ID: <b>45580</b> Result  1063.303          | TestNo: EPA 6020                                                                                                                                                           | Analysis Date: 5/6/2014  %REC LowLimit HighLimit RPD Ref Val  280 75 125                                     | SeqNo: 1777732<br>%RPD RPDLimit Qual                                          |
| Client ID: ZZZZZZ  Analyte Chromium  Sample ID: N012460-001A-MSD | Batch ID: 45580  Result  1063.303  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           25         10.00         1035           TestCode: 6020RDIS_Cr Units: μg/L | Analysis Date: <b>5/6/2014</b> **NREC LowLimit HighLimit RPD Ref Val  280 75 125  Prep Date: <b>5/2/2014</b> | SeqNo: 1777732         RPDLimit         Qual           S         RunNo: 93353 |

## Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

TestCode: 6020RDIS\_CrPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: ME                                | B-45598         | SampType: MBLK                                | TestCode: 6020RDIS_Cr Units: µg/L                                                                                                                                             | Prep Date: 5/7/2014                                                                                                 | RunNo: 93394                                     |
|----------------------------------------------|-----------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: PB                                | вw              | Batch ID: 45598                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                                    | Analysis Date: 5/8/2014                                                                                             | SeqNo: 1779091                                   |
| Analyte                                      |                 | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                     | %REC LowLimit HighLimit RPD Ref Val                                                                                 | %RPD RPDLimit Qual                               |
| Chromium                                     |                 | ND                                            | 1.0                                                                                                                                                                           |                                                                                                                     |                                                  |
| Sample ID: LC                                | CS-45598        | SampType: <b>LCS</b>                          | TestCode: 6020RDIS_Cr Units: μg/L                                                                                                                                             | Prep Date: 5/7/2014                                                                                                 | RunNo: <b>93394</b>                              |
| Client ID: LC                                | csw             | Batch ID: 45598                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                                    | Analysis Date: 5/8/2014                                                                                             | SeqNo: 1779092                                   |
| Analyte                                      |                 | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                     | %REC LowLimit HighLimit RPD Ref Val                                                                                 | %RPD RPDLimit Qual                               |
| Chromium                                     |                 | 10.058                                        | 1.0 10.00 0                                                                                                                                                                   | 101 85 115                                                                                                          |                                                  |
|                                              |                 |                                               |                                                                                                                                                                               |                                                                                                                     |                                                  |
| Sample ID: N0                                | 012465-023B-MS  | SampType: MS                                  | TestCode: 6020RDIS_Cr Units: µg/L                                                                                                                                             | Prep Date: 5/7/2014                                                                                                 | RunNo: <b>93394</b>                              |
| Sample ID: N0 Client ID: ZZ                  |                 | SampType: MS Batch ID: 45598                  | TestCode: 6020RDIS_Cr Units: µg/L TestNo: EPA 6020 EPA 3010A                                                                                                                  | Prep Date: 5/7/2014 Analysis Date: 5/8/2014                                                                         | RunNo: <b>93394</b><br>SeqNo: <b>1779096</b>     |
|                                              |                 | 1 31                                          |                                                                                                                                                                               | ,                                                                                                                   |                                                  |
| Client ID: ZZ                                |                 | Batch ID: <b>45598</b>                        | TestNo: EPA 6020 EPA 3010A                                                                                                                                                    | Analysis Date: 5/8/2014                                                                                             | SeqNo: 1779096                                   |
| Client ID: ZZ Analyte Chromium               |                 | Batch ID: 45598  Result                       | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                         | Analysis Date: 5/8/2014  %REC LowLimit HighLimit RPD Ref Val                                                        | SeqNo: 1779096                                   |
| Client ID: ZZ Analyte Chromium               | 012465-023B-MSD | Batch ID: <b>45598</b> Result  8.799          | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 0.2988                                                                                                       | Analysis Date: 5/8/2014  %REC LowLimit HighLimit RPD Ref Val  85.0 75 125                                           | SeqNo: 1779096<br>%RPD RPDLimit Qual             |
| Client ID: ZZ Analyte Chromium Sample ID: N0 | 012465-023B-MSD | Batch ID: 45598  Result  8.799  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         0.2988           TestCode: 6020RDIS_Cr Units: μg/L | Analysis Date: <b>5/8/2014</b> ***REC LowLimit HighLimit RPD Ref Val  ***85.0 75 125  ***Prep Date: <b>5/7/2014</b> | SeqNo: 1779096  %RPD RPDLimit Qual  RunNo: 93394 |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 14-May-14

## **ASSET Laboratories**

**CLIENT:** CH2M HILL

Lab Order: N012465

PG&E Topock, 423575.MP.02.GM.02

**Project:** 

Lab ID: N012465-001 Client Sample ID: MW-124-198

Collection Date: 4/24/2014 7:30:00 AM

Matrix: WATER

| Analyses                   | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |  |  |
|----------------------------|---------------|-------|------|------------|----------|-------------------|--|--|
| DISSOLVED METALS BY ICP-MS |               |       |      |            |          |                   |  |  |
|                            | EPA 3010A     |       | EP   | A 6020     |          |                   |  |  |
| RunID: ICP7_140506B        | QC Batch: 455 | 80    |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |  |  |
| Arsenic                    | 1.0           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 03:20 PM |  |  |
| Manganese                  | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 03:20 PM |  |  |
| Molybdenum                 | 11            | 0.76  | 2.5  | μg/L       | 5        | 5/6/2014 06:00 PM |  |  |
| Selenium                   | 0.98          | 0.069 | 0.50 | μg/L       | 1        | 5/6/2014 03:20 PM |  |  |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-35-060-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 10:33:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012465-002

| Analyses              | Result       | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|--------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS        |       |      |            |          |                   |
|                       | EPA 3010A    |       | EP.  | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 45 | 580   |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 1.0          | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 03:25 PM |
| Manganese             | 1.8          | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 03:25 PM |
| Molybdenum            | 9.8          | 0.15  | 0.50 | μg/L       | 1        | 5/6/2014 03:25 PM |
| Selenium              | 1.1          | 0.069 | 0.50 | μg/L       | 1        | 5/6/2014 03:25 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

Lab Order:

CLIENT: CH2M HILL

N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-004

Client Sample ID: MW-40D-198

Collection Date: 4/24/2014 12:44:00 PM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 80    |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 3.9           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 03:36 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 03:36 PM |
| Molybdenum            | 48            | 0.76  | 2.5  | μg/L       | 5        | 5/6/2014 06:06 PM |
| Selenium              | 1.6           | 0.069 | 0.50 | μg/L       | 1        | 5/6/2014 03:36 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

**Lab Order:** N012465 **Project:** PG&E Topo

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-005

Client Sample ID: MW-65-160-198

Collection Date: 4/24/2014 8:55:00 AM

Matrix: WATER

| Analyses                | Result        | MDL   | POL  | Oual Units | DF       | Date Analyzed     |
|-------------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I   |               |       |      | <b>Q</b>   |          | Dute Hilling Zea  |
| DISSOLVED WILLIALS BT 1 | EPA 3010A     |       | EP   | A 6020     |          |                   |
| RunID: ICP7_140506B     | QC Batch: 455 | 580   |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic                 | 0.72          | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 03:42 PM |
| Manganese               | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 03:42 PM |
| Molybdenum              | 27            | 0.15  | 0.50 | μg/L       | 1        | 5/6/2014 03:42 PM |
| Selenium                | 8.2           | 0.069 | 0.50 | μq/L       | 1        | 5/6/2014 03:42 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-71-035-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 2:00:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-006

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP.  | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 80    |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 1.3           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 03:47 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 03:47 PM |
| Molybdenum            | 59            | 0.15  | 0.50 | μg/L       | 1        | 5/6/2014 03:47 PM |
| Selenium              | 3.7           | 0.069 | 0.50 | μg/L       | 1        | 5/6/2014 03:47 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-72-080-198

**Lab Order:** N012465 **Collection Date:** 4/24/2014 7:56:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-007

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP.  | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 80    |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 10            | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 03:53 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 03:53 PM |
| Molybdenum            | 76            | 0.76  | 2.5  | μg/L       | 5        | 5/9/2014 04:15 PM |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5        | 5/9/2014 04:15 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-70-105-198

**Lab Order:** N012465 **Collection Date:** 4/28/2014 11:02:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-012

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 580   |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 4.6           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 04:21 PM |
| Manganese             | 130           | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 04:21 PM |
| Molybdenum            | 100           | 0.15  | 0.50 | μg/L       | 1        | 5/6/2014 04:21 PM |
| Selenium              | 3.1           | 0.069 | 0.50 | μg/L       | 1        | 5/6/2014 04:21 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012465

PG&E Topock, 423575.MP.02.GM.02

**Project:** 

Lab ID: N012465-016

Client Sample ID: MW-60BR-245-198 Collection Date: 4/29/2014 10:54:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP.  | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 80    |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 6.8           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 04:32 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 04:32 PM |
| Molybdenum            | 68            | 0.76  | 2.5  | μg/L       | 5        | 5/6/2014 07:45 PM |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5        | 5/6/2014 07:45 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012465

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-017

Client Sample ID: MW-61-110-198

**Collection Date:** 4/29/2014 11:40:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 580   |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 3.1           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 04:37 PM |
| Manganese             | 89            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 04:37 PM |
| Molybdenum            | 25            | 0.76  | 2.5  | μg/L       | 5        | 5/6/2014 07:51 PM |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5        | 5/6/2014 07:51 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-65-225-198

**Lab Order:** N012465 **Collection Date:** 4/29/2014 2:13:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-019

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 80    |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 2.2           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 05:38 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 05:38 PM |
| Molybdenum            | 39            | 0.76  | 2.5  | μg/L       | 5        | 5/6/2014 08:02 PM |
| Selenium              | 5.2           | 0.069 | 0.50 | μg/L       | 1        | 5/6/2014 05:38 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012465-020

**Collection Date:** 4/29/2014 6:35:00 AM

Matrix: WATER

**Client Sample ID:** MW-73-080-198

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|-------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                   |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 80    |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 1.4           | 0.027 | 0.10 | μg/L       | 1        | 5/6/2014 05:44 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/6/2014 05:44 PM |
| Molybdenum            | 22            | 0.76  | 2.5  | μg/L       | 5        | 5/6/2014 08:07 PM |
| Selenium              | 4.7           | 0.069 | 0.50 | μg/L       | 1        | 5/6/2014 05:44 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-22-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 7:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-023

| Analyses               | Result       | MDL   | PQL  | Qual   | Units | DF       | Date Analyzed     |
|------------------------|--------------|-------|------|--------|-------|----------|-------------------|
| DISSOLVED METALS BY IC | CP-MS        |       |      |        |       |          |                   |
|                        | EPA 3010A    |       | EP   | A 6020 |       |          |                   |
| RunID: ICP7_140508B    | QC Batch: 45 | 598   |      | PrepD  | ate:  | 5/7/2014 | Analyst: CEI      |
| Antimony               | ND           | 0.92  | 2.5  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Arsenic                | 12           | 0.027 | 0.10 |        | μg/L  | 1        | 5/8/2014 01:47 PM |
| Barium                 | 53           | 0.15  | 5.0  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Beryllium              | ND           | 0.051 | 2.5  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Cadmium                | ND           | 0.066 | 2.5  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Cobalt                 | 1.1          | 0.017 | 0.50 |        | μg/L  | 1        | 5/8/2014 01:47 PM |
| Copper                 | ND           | 0.040 | 1.0  |        | μg/L  | 1        | 5/8/2014 01:47 PM |
| Lead                   | ND           | 0.053 | 5.0  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Manganese              | 2100         | 0.64  | 12   |        | μg/L  | 25       | 5/8/2014 02:16 PM |
| Molybdenum             | 38           | 0.76  | 2.5  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Nickel                 | 2.8          | 0.032 | 1.0  |        | μg/L  | 1        | 5/8/2014 01:47 PM |
| Selenium               | 0.55         | 0.069 | 0.50 |        | μg/L  | 1        | 5/8/2014 01:47 PM |
| Silver                 | ND           | 0.47  | 2.5  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Thallium               | ND           | 0.040 | 2.5  |        | μg/L  | 5        | 5/8/2014 01:54 PM |
| Vanadium               | ND           | 0.16  | 1.0  |        | μg/L  | 1        | 5/8/2014 01:47 PM |
| Zinc                   | ND           | 0.23  | 10   |        | μg/L  | 1        | 5/8/2014 01:47 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-52D-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 11:01:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-024

| Analyses              | Result        | MDL  | PQL  | Qual Units | DF       | Date Analyzed     |
|-----------------------|---------------|------|------|------------|----------|-------------------|
| DISSOLVED METALS BY I | CP-MS         |      |      |            |          |                   |
|                       | EPA 3010A     |      | EP   | A 6020     |          |                   |
| RunID: ICP7_140506B   | QC Batch: 455 | 580  |      | PrepDate:  | 5/2/2014 | Analyst: CEI      |
| Arsenic               | 3.3           | 0.13 | 0.50 | μg/L       | 5        | 5/6/2014 08:13 PM |
| Manganese             | 140           | 0.13 | 2.5  | μg/L       | 5        | 5/6/2014 08:13 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-52M-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 12:29:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-025

Analyses Result MDL PQL Qual Units DF Date Analyzed

**DISSOLVED METALS BY ICP-MS** 

EPA 3010A EPA 6020

RunID: ICP7\_140506B QC Batch: 45580 PrepDate: 5/2/2014 Analyst: CEI

Arsenic 1.4 0.027 0.10 µg/L 1 5/6/2014 05:55 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-52S-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 10:27:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-026

Analyses Result MDL PQL Qual Units DF Date Analyzed

**DISSOLVED METALS BY ICP-MS** 

EPA 3010A EPA 6020

RunID: ICP7\_140508B QC Batch: 45598 PrepDate: 5/7/2014 Analyst: CEI

Arsenic 0.21 0.027 0.10 µg/L 1 5/8/2014 03:10 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012465-027 Client Sample ID: MW-53D-198

Collection Date: 4/30/2014 9:10:00 AM

Matrix: WATER

| Analyses                | Result M        | IDL  | PQL  | Qual Unit | s DF     | Date Analyzed     |
|-------------------------|-----------------|------|------|-----------|----------|-------------------|
| DISSOLVED METALS BY ICE | P-MS            |      |      |           |          |                   |
|                         | EPA 3010A       |      | EPA  | A 6020    |          |                   |
| RunID: ICP7_140508B     | QC Batch: 45598 |      |      | PrepDate: | 5/7/2014 | Analyst: CEI      |
| Arsenic                 | 3.4             | 0.13 | 0.50 | μg/L      | 5        | 5/8/2014 03:21 PM |
| Manganese               | 1300            | 0.26 | 5.0  | μg/L      | 10       | 5/8/2014 03:27 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-53M-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 8:27:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-028

| Analyses               | Result        | MDL   | PQL  | Qual    | Units | DF       | Date Analyzed     |
|------------------------|---------------|-------|------|---------|-------|----------|-------------------|
| DISSOLVED METALS BY IC | P-MS          |       |      |         |       |          |                   |
|                        | EPA 3010A     |       | EP   | A 6020  |       |          |                   |
| RunID: ICP7_140508B    | QC Batch: 455 | 98    |      | PrepDat | e:    | 5/7/2014 | Analyst: CEI      |
| Arsenic                | 0.84          | 0.027 | 0.10 | ŀ       | ıg/L  | 1        | 5/8/2014 03:49 PM |
| Manganese              | 280           | 0.13  | 2.5  | ŀ       | ıg/L  | 5        | 5/8/2014 03:32 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Date:** 14-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012465

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: ME | 3-45580        | SampType: MBLK       | TestCod | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te: <b>5/2/201</b> | 4           | RunNo: 933         | 372      |      |
|---------------|----------------|----------------------|---------|---------------------|-------------|------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: PB | W              | Batch ID: 45580      | Test    | lo: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: <b>5/6/201</b> | 4           | SeqNo: <b>17</b> 7 | 77558    |      |
| Analyte       |                | Result               | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Arsenic       |                | ND                   | 0.10    |                     |             |      |             |                    |             |                    |          |      |
| Manganese     |                | ND                   | 0.50    |                     |             |      |             |                    |             |                    |          |      |
| Molybdenum    |                | ND                   | 0.50    |                     |             |      |             |                    |             |                    |          |      |
| Selenium      |                | ND                   | 0.50    |                     |             |      |             |                    |             |                    |          |      |
| Sample ID: LC | S-45580        | SampType: <b>LCS</b> | TestCoo | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te: <b>5/2/201</b> | 4           | RunNo: 933         | 372      |      |
| Client ID: LC | sw             | Batch ID: 45580      | Test    | lo: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: <b>5/6/201</b> | 4           | SeqNo: <b>17</b> 7 | 77559    |      |
| Analyte       |                | Result               | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Arsenic       |                | 9.593                | 0.10    | 10.00               | 0           | 95.9 | 85          | 115                |             |                    |          |      |
| Manganese     |                | 96.739               | 0.50    | 100.0               | 0           | 96.7 | 85          | 115                |             |                    |          |      |
| Molybdenum    |                | 9.813                | 0.50    | 10.00               | 0           | 98.1 | 85          | 115                |             |                    |          |      |
| Selenium      |                | 9.976                | 0.50    | 10.00               | 0           | 99.8 | 85          | 115                |             |                    |          |      |
| Sample ID: N0 | 12460-001A-MS  | SampType: MS         | TestCod | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te: <b>5/2/201</b> | 4           | RunNo: 933         | 372      |      |
| Client ID: ZZ | ZZZZ           | Batch ID: 45580      | TestN   | No: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: <b>5/6/201</b> | 4           | SeqNo: <b>17</b> 7 | 77563    |      |
| Analyte       |                | Result               | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Arsenic       |                | 10.584               | 0.10    | 10.00               | 1.139       | 94.5 | 75          | 125                |             |                    |          |      |
| Molybdenum    |                | 18.534               | 0.50    | 10.00               | 7.993       | 105  | 75          | 125                |             |                    |          |      |
| Selenium      |                | 9.418                | 0.50    | 10.00               | 0.1403      | 92.8 | 75          | 125                |             |                    |          |      |
| Sample ID: N0 | 12460-001A-MSD | SampType: MSD        | TestCod | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te: <b>5/2/201</b> | 4           | RunNo: 933         | 372      |      |
| Client ID: ZZ | ZZZZ           | Batch ID: 45580      | Test    | lo: EPA 6020        | EPA 3010A   |      | Analysis Da | te: <b>5/6/201</b> | 4           | SeqNo: <b>17</b> 7 | 77564    |      |
| Analyte       |                | Result               | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Arsenic       |                | 10.727               | 0.10    | 10.00               | 1.139       | 95.9 | 75          | 125                | 10.58       | 1.34               | 20       |      |
| Molybdenum    |                | 18.481               | 0.50    | 10.00               | 7.993       | 105  | 75          | 125                | 18.53       | 0.287              | 20       |      |
| Molybdenum    |                | 18.481               | 0.50    | 10.00               | 7.993       | 105  | 75          | 125                | 18.53       | 0.287              | 20       |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: N012460-001A-MSD Client ID: ZZZZZZ | SampType: MSD Batch ID: 45580 | TestCode: 6020_DIS TestNo: EPA 6020 |             | Prep Date: 5/2/2014  Analysis Date: 5/6/2014              | RunNo: <b>93372</b><br>SeqNo: <b>1777564</b> |
|-----------------------------------------------|-------------------------------|-------------------------------------|-------------|-----------------------------------------------------------|----------------------------------------------|
| Analyte                                       | Result                        | PQL SPK value                       | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val                       | %RPD RPDLimit Qual                           |
| Selenium                                      | 8.954                         | 0.50 10.00                          | 0.1403      | 88.1 75 125 9.418                                         | 5.06 20                                      |
| Sample ID: N012460-001A-MS Client ID: ZZZZZZ  | SampType: MS Batch ID: 45580  | TestCode: 6020_DIS TestNo: EPA 6020 |             | Prep Date: 5/2/2014  Analysis Date: 5/6/2014              | RunNo: <b>93372</b><br>SeqNo: <b>1777570</b> |
| Analyte                                       | Result                        | PQL SPK value                       | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val                       | %RPD RPDLimit Qual                           |
| Manganese                                     | 410.164                       | 2.5 100.0                           | 316.2       | 94.0 75 125                                               |                                              |
| Sample ID: N012460-001A-MSD Client ID: ZZZZZZ | SampType: MSD Batch ID: 45580 | TestCode: 6020_DIS TestNo: EPA 6020 |             | Prep Date: <b>5/2/2014</b> Analysis Date: <b>5/6/2014</b> | RunNo: <b>93372</b><br>SeqNo: <b>1777571</b> |
| Analyte                                       | Result                        | PQL SPK value                       | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val                       | %RPD RPDLimit Qual                           |
| Manganese                                     | 408.548                       | 2.5 100.0                           | 316.2       | 92.3 75 125 410.2                                         | 0.395 20                                     |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Work Order:

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

N012465

TestCode: 6020\_DIS

| Sample ID: MB-45598 | SampType: MBLK  | TestCod | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | ite: 5/7/201 | 14          | RunNo: 933         | 394      |      |
|---------------------|-----------------|---------|---------------------|-------------|------|-------------|--------------|-------------|--------------------|----------|------|
| Client ID: PBW      | Batch ID: 45598 | TestN   | No: EPA 6020        | EPA 3010A   |      | Analysis Da | ite: 5/8/201 | 14          | SeqNo: <b>17</b> 7 | 79194    |      |
| Analyte             | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Antimony            | ND              | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Arsenic             | ND              | 0.10    |                     |             |      |             |              |             |                    |          |      |
| Barium              | ND              | 1.0     |                     |             |      |             |              |             |                    |          |      |
| Beryllium           | ND              | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Cadmium             | ND              | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Cobalt              | 0.026           | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Copper              | ND              | 1.0     |                     |             |      |             |              |             |                    |          |      |
| Lead                | ND              | 1.0     |                     |             |      |             |              |             |                    |          |      |
| Manganese           | ND              | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Molybdenum          | ND              | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Nickel              | ND              | 1.0     |                     |             |      |             |              |             |                    |          |      |
| Selenium            | ND              | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Silver              | ND              | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Thallium            | 0.008           | 0.50    |                     |             |      |             |              |             |                    |          |      |
| Vanadium            | ND              | 1.0     |                     |             |      |             |              |             |                    |          |      |
| Zinc                | ND              | 10      |                     |             |      |             |              |             |                    |          |      |

| Sample ID: LCS-45598 | SampType: LCS   | TestCo | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te: <b>5/7/201</b> | 4           | RunNo: 933        | 394      |      |
|----------------------|-----------------|--------|---------------------|-------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: LCSW      | Batch ID: 45598 | Test   | No: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: <b>5/8/201</b> | 4           | SeqNo: <b>177</b> | 9195     |      |
| Analyte              | Result          | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Antimony             | 10.632          | 0.50   | 10.00               | 0           | 106  | 85          | 115                |             |                   |          |      |
| Arsenic              | 9.610           | 0.10   | 10.00               | 0           | 96.1 | 85          | 115                |             |                   |          |      |
| Barium               | 106.009         | 1.0    | 100.0               | 0           | 106  | 85          | 115                |             |                   |          |      |
| Beryllium            | 9.925           | 0.50   | 10.00               | 0           | 99.3 | 85          | 115                |             |                   |          |      |
| Cadmium              | 10.406          | 0.50   | 10.00               | 0           | 104  | 85          | 115                |             |                   |          |      |
| Cobalt               | 10.076          | 0.50   | 10.00               | 0           | 101  | 85          | 115                |             |                   |          |      |
| Copper               | 10.227          | 1.0    | 10.00               | 0           | 102  | 85          | 115                |             |                   |          |      |
| Lead                 | 10.600          | 1.0    | 10.00               | 0           | 106  | 85          | 115                |             |                   |          |      |
| Manganese            | 97.448          | 0.50   | 100.0               | 0           | 97.4 | 85          | 115                |             |                   |          |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691
  - www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

TestCode: 6020\_DIS **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: LCS-45598        | SampType: <b>LCS</b> | TestCod | de: <b>6020_DIS</b> | Units: µg/L |          | Prep Da     | te: <b>5/7/201</b> | 4           | RunNo: 933        | 394      |          |  |
|-----------------------------|----------------------|---------|---------------------|-------------|----------|-------------|--------------------|-------------|-------------------|----------|----------|--|
| Client ID: LCSW             | Batch ID: 45598      | TestN   | lo: EPA 6020        | EPA 3010A   |          | Analysis Da | te: <b>5/8/201</b> | 4           | SeqNo: <b>177</b> | 79195    |          |  |
| Analyte                     | Result               | PQL     | SPK value           | SPK Ref Val | %REC     | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual     |  |
| Molybdenum                  | 10.024               | 0.50    | 10.00               | 0           | 100      | 85          | 115                |             |                   |          |          |  |
| Nickel                      | 9.916                | 1.0     | 10.00               | 0           | 99.2     | 85          | 115                |             |                   |          |          |  |
| Selenium                    | 9.794                | 0.50    | 10.00               | 0           | 97.9     | 85          | 115                |             |                   |          |          |  |
| Silver                      | 10.353               | 0.50    | 10.00               | 0           | 104      | 85          | 115                |             |                   |          |          |  |
| Thallium                    | 10.680               | 0.50    | 10.00               | 0           | 107      | 85          | 115                |             |                   |          |          |  |
| Vanadium                    | 10.555               | 1.0     | 10.00               | 0           | 106      | 85          | 115                |             |                   |          |          |  |
| Zinc                        | 104.102              | 10      | 100.0               | 0           | 104      | 85          | 115                |             |                   |          |          |  |
| Sample ID: N012465-023B-MS  | SampType: MS         | TestCod | de: <b>6020_DIS</b> | Units: µg/L | <u> </u> | Prep Da     | te: <b>5/7/201</b> | 4           | RunNo: 933        | 394      | <u> </u> |  |
| Client ID: ZZZZZZ           | Batch ID: 45598      | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   |          | Analysis Da | te: <b>5/8/201</b> | 4           | SeqNo: <b>177</b> | 779199   |          |  |
| Analyte                     | Result               | PQL     | SPK value           | SPK Ref Val | %REC     | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual     |  |
| Arsenic                     | 21.998               | 0.10    | 10.00               | 12.26       | 97.4     | 75          | 125                |             |                   |          |          |  |
| Cobalt                      | 8.856                | 0.50    | 10.00               | 1.085       | 77.7     | 75          | 125                |             |                   |          |          |  |
| Copper                      | ND                   | 1.0     | 10.00               | 0           | 0        | 75          | 125                |             |                   |          | S        |  |
| Nickel                      | 11.561               | 1.0     | 10.00               | 2.788       | 87.7     | 75          | 125                |             |                   |          |          |  |
| Selenium                    | 10.858               | 0.50    | 10.00               | 0.5471      | 103      | 75          | 125                |             |                   |          |          |  |
| Vanadium                    | 10.173               | 1.0     | 10.00               | 0.5798      | 95.9     | 75          | 125                |             |                   |          |          |  |
| Zinc                        | 79.864               | 10      | 100.0               | 0           | 79.9     | 75          | 125                |             |                   |          |          |  |
| Sample ID: N012465-023B-MSD | SampType: MSD        | TestCod | de: <b>6020_DIS</b> | Units: µg/L |          | Prep Da     | te: <b>5/7/201</b> | 4           | RunNo: 933        | 394      |          |  |
| Client ID: ZZZZZZ           | Batch ID: 45598      | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   |          | Analysis Da | te: <b>5/8/201</b> | 4           | SeqNo: <b>177</b> | 79200    |          |  |
| Analyte                     | Result               | PQL     | SPK value           | SPK Ref Val | %REC     | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual     |  |
| Arsenic                     | 22.208               | 0.10    | 10.00               | 12.26       | 99.5     | 75          | 125                | 22.00       | 0.947             | 20       |          |  |
| Cobalt                      | 8.727                | 0.50    | 10.00               | 1.085       | 76.4     | 75          | 125                | 8.856       | 1.46              | 20       |          |  |
| Copper                      | ND                   | 1.0     | 10.00               | 0           | 0        | 75          | 125                | 0           | 0                 | 20       | S        |  |
| Nickel                      | 11.502               | 1.0     | 10.00               | 2.788       | 87.1     | 75          | 125                | 11.56       | 0.513             | 20       |          |  |
| Selenium                    | 11.083               | 0.50    | 10.00               | 0.5471      | 105      | 75          | 125                | 10.86       | 2.05              | 20       |          |  |
| Vanadium                    | 10.091               | 1.0     | 10.00               | 0.5798      | 95.1     | 75          | 125                | 10.17       | 0.809             | 20       |          |  |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691
  - www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: N012465-023B-MSD Client ID: ZZZZZZ |                    | SampType: MSD Batch ID: 45598 |         | de: <b>6020_DIS</b><br>No: <b>EPA 6020</b> | Units: µg/L<br>EPA 3010A |      | Prep Da<br>Analysis Da  | te: <b>5/7/201</b> |             | RunNo: <b>933</b><br>SeqNo: <b>177</b> |          |      |
|-----------------------------------------------|--------------------|-------------------------------|---------|--------------------------------------------|--------------------------|------|-------------------------|--------------------|-------------|----------------------------------------|----------|------|
| Analyte                                       |                    | Result                        | PQL     | SPK value                                  | SPK Ref Val              | %REC | LowLimit                | HighLimit          | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Zinc                                          |                    | 78.932                        | 10      | 100.0                                      | 0                        | 78.9 | 75                      | 125                | 79.86       | 1.17                                   | 20       |      |
| Sample ID                                     | : N012465-023B-MS  | SampType: MS                  | TestCo  | de: <b>6020_DIS</b>                        | Units: µg/L              |      | Prep Da                 | te: <b>5/7/201</b> | 4           | RunNo: 933                             | 394      |      |
| Client ID:                                    | ZZZZZZ             | Batch ID: 45598               | TestN   | No: EPA 6020                               | EPA 3010A                |      | Analysis Da             | te: <b>5/8/201</b> | 4           | SeqNo: <b>177</b>                      | 79203    |      |
| Analyte                                       |                    | Result                        | PQL     | SPK value                                  | SPK Ref Val              | %REC | LowLimit                | HighLimit          | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Antimony                                      |                    | 11.616                        | 2.5     | 10.00                                      | 0                        | 116  | 75                      | 125                |             |                                        |          |      |
| Barium                                        |                    | 164.197                       | 5.0     | 100.0                                      | 52.96                    | 111  | 75                      | 125                |             |                                        |          |      |
| Beryllium                                     |                    | 11.243                        | 2.5     | 10.00                                      | 0                        | 112  | 75                      | 125                |             |                                        |          |      |
| Cadmium                                       |                    | 8.371                         | 2.5     | 10.00                                      | 0                        | 83.7 | 75                      | 125                |             |                                        |          |      |
| Lead                                          |                    | 11.059                        | 5.0     | 10.00                                      | 0                        | 111  | 75                      | 125                |             |                                        |          |      |
| Molybdenu                                     | ım                 | 50.322                        | 2.5     | 10.00                                      | 38.35                    | 120  | 75                      | 125                |             |                                        |          |      |
| Silver                                        |                    | 9.817                         | 2.5     | 10.00                                      | 0                        | 98.2 | 75                      | 125                |             |                                        |          |      |
| Thallium                                      |                    | 12.062                        | 2.5     | 10.00                                      | 0.07308                  | 120  | 75                      | 125                |             |                                        |          |      |
| Sample ID                                     | : N012465-023B-MSD | SampType: MSD                 | TestCod | de: <b>6020_DIS</b>                        | Units: µg/L              |      | Prep Da                 | te: <b>5/7/201</b> | 4           | RunNo: 933                             | 394      |      |
| Client ID:                                    | ZZZZZZ             | Batch ID: 45598               | TestN   | No: EPA 6020                               | EPA 3010A                |      | Analysis Date: 5/8/2014 |                    |             | SeqNo: 1779206                         |          |      |
| Analyte                                       |                    | Result                        | PQL     | SPK value                                  | SPK Ref Val              | %REC | LowLimit                | HighLimit          | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Antimony                                      |                    | 11.623                        | 2.5     | 10.00                                      | 0                        | 116  | 75                      | 125                | 11.62       | 0.0625                                 | 20       |      |
| Barium                                        |                    | 164.165                       | 5.0     | 100.0                                      | 52.96                    | 111  | 75                      | 125                | 164.2       | 0.0194                                 | 20       |      |
| Beryllium                                     |                    | 11.037                        | 2.5     | 10.00                                      | 0                        | 110  | 75                      | 125                | 11.24       | 1.85                                   | 20       |      |
| Cadmium                                       |                    | 8.273                         | 2.5     | 10.00                                      | 0                        | 82.7 | 75                      | 125                | 8.371       | 1.18                                   | 20       |      |
| Lead                                          |                    | 11.064                        | 5.0     | 10.00                                      | 0                        | 111  | 75                      | 125                | 11.06       | 0.0466                                 | 20       |      |
| Molybdenu                                     | ım                 | 49.348                        | 2.5     | 10.00                                      | 38.35                    | 110  | 75                      | 125                | 50.32       | 1.96                                   | 20       |      |
| Silver                                        |                    | 9.874                         | 2.5     | 10.00                                      | 0                        | 98.7 | 75                      | 125                | 9.817       | 0.584                                  | 20       |      |
| Thallium                                      |                    | 11.448                        | 2.5     | 10.00                                      | 0.07308                  | 114  | 75                      | 125                | 12.06       | 5.22                                   | 20       |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118

P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: N012465-023B-MS                | SampType: MS                  | TestCode: 6 | 020_DIS              | Units: µg/L              |      | Prep Dat                 | te: <b>5/7/201</b> | 4           | RunNo: 933                             | 94       |      |
|-------------------------------------------|-------------------------------|-------------|----------------------|--------------------------|------|--------------------------|--------------------|-------------|----------------------------------------|----------|------|
| Client ID: ZZZZZZ                         | Batch ID: 45598               | TestNo: E   | EPA 6020             | EPA 3010A                |      | Analysis Dat             | te: <b>5/8/201</b> | 4           | SeqNo: <b>177</b>                      | 9209     |      |
| Analyte                                   | Result                        | PQL SF      | PK value             | SPK Ref Val              | %REC | LowLimit                 | HighLimit          | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Manganese                                 | 2238.591                      | 12          | 100.0                | 2142                     | 96.8 | 75                       | 125                |             |                                        |          |      |
| Sample ID: N012465-023B-MSD SampType: MSD |                               |             |                      |                          |      |                          |                    |             |                                        |          |      |
| Sample ID: N012465-023B-MSD               | SampType: MSD                 | TestCode: 6 | 020_DIS              | Units: µg/L              |      | Prep Dat                 | te: <b>5/7/201</b> | 4           | RunNo: 933                             | 94       |      |
| ,                                         | SampType: MSD Batch ID: 45598 |             | 6020_DIS<br>EPA 6020 | Units: µg/L<br>EPA 3010A |      | Prep Dat<br>Analysis Dat |                    |             | RunNo: <b>933</b><br>SeqNo: <b>177</b> |          |      |
| ,                                         | 1 31                          | TestNo: E   | EPA 6020             | . •                      | %REC | Analysis Dat             | te: <b>5/8/201</b> |             |                                        |          | Qual |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 14-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-22-198

**Lab Order:** N012465 **Collection Date:** 4/30/2014 7:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012465-023

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE

**EPA 7470A** 

RunID: AA1\_140502A QC Batch: 45583 PrepDate: 5/2/2014 Analyst: PS

Mercury ND 0.038 0.20 µg/L 1 5/2/2014 01:07 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Date:** 14-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012465

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 7470\_W\_DISSPGE

| Sample ID                  | ): MB-45583<br>PBW           | SampType: MBLK Batch ID: 45583         | TestCode: <b>7470_W_DIS</b> Units: μg/L TestNo: <b>EPA 7470A</b>                           | Prep Date: 5/2/2014  Analysis Date: 5/2/2014                                      | RunNo: <b>93325</b><br>SegNo: <b>1775726</b>         |
|----------------------------|------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|
| Analyte                    | FDW                          | Result                                 | PQL SPK value SPK Ref Val                                                                  | %REC LowLimit HighLimit RPD Ref Val                                               | %RPD RPDLimit Qual                                   |
| Mercury                    |                              | ND                                     | 0.20                                                                                       |                                                                                   |                                                      |
| Client ID:                 | : LCS-45583<br>LCSW          | SampType: LCS  Batch ID: 45583  Result | TestCode: <b>7470_W_DIS</b> Units: μg/L TestNo: <b>EPA 7470A</b> PQL SPK value SPK Ref Val | Prep Date: 5/2/2014  Analysis Date: 5/2/2014  %REC LowLimit HighLimit RPD Ref Val | RunNo: 93325<br>SeqNo: 1775727<br>%RPD RPDLimit Qual |
| Mercury                    |                              | 5.055                                  | 0.20 5.000 0                                                                               | 101 85 115                                                                        |                                                      |
| Sample ID Client ID:       | ): N012465-023B-MS<br>ZZZZZZ | SampType: MS Batch ID: 45583           | TestCode: <b>7470_W_DIS</b> Units: μg/L TestNo: <b>EPA 7470A</b>                           | Prep Date: 5/2/2014  Analysis Date: 5/2/2014                                      | RunNo: <b>93325</b><br>SeqNo: <b>1775728</b>         |
| -                          |                              |                                        |                                                                                            | ·                                                                                 |                                                      |
| Client ID: Analyte Mercury | ZZZZZZ  D: N012465-023B-MSD  | Batch ID: 45583  Result                | TestNo: <b>EPA 7470A</b> PQL SPK value SPK Ref Val                                         | Analysis Date: 5/2/2014  %REC LowLimit HighLimit RPD Ref Val                      | SeqNo: 1775728                                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CH2MHILL

## **CHAIN OF CUSTODY RECORD**

4/30/2014 1:16:44 PM

Page 1 OF 3

|                 |                                                                                                           |       |              |                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |           | · -                  |       |
|-----------------|-----------------------------------------------------------------------------------------------------------|-------|--------------|-----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|----------------------|-------|
| Project Name PG | S&E Topoc                                                                                                 | :k    | Container:   | 250 ml<br>Poly              | 2x250<br>ml Poly             | 250 ml<br>Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 ml<br>Poly                 | 500 ml<br>Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 ml<br>Poly                            | 500 ml<br>Poly                   | 500 ml<br>Poly                            | 2x500<br>ml Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250 ml<br>Poly                |           |                      |       |
| Location Topoc  | k                                                                                                         |       |              | (NH4)2S                     | (NH4)2S                      | (NH4)2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HNO3,                          | HNO3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HNO3,                                     | HNO3,                            | HNO3,                                     | HNO3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4°C                           |           |                      |       |
| Project Manager | Jay Piper                                                                                                 | Pres  | servatives:  | 04/NH40<br>H, 4°C           | 04/NH40<br>H, 4°C            | 04/NH40<br>H, 4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4°C                            | 4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4°C                                       | 4°C                              | 4°C                                       | 4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |           |                      |       |
| Sample Manager  | Shawn Du                                                                                                  | ffy   | Filtered:    | Field                       | Field                        | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field                          | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field                                     | Field                            | Field                                     | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                            |           |                      |       |
|                 |                                                                                                           | Hol   | ding Time:   | 28                          | 28                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                       | 180                              | 180                                       | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                            |           |                      |       |
| Turnaround Time | sk Order oject 2014-GMP-198-Q2 rnaround Time 10 Days ipping Date: 4/30/2014 DC Number: 5  DATE TIME Matri |       |              | Cr6 (E218.6) Field Filtered | Cr6 (E218.6R) Field Filtered | Cr6 (SM3500B) Field Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic (6020A) Field Filtered | Metals<br>(6010B/6020A/7470Adis) Field<br>Filtered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered Mn | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Metals (6020A-R) Field Filtered<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Specific Conductance (E120.1) |           | Number of Containers |       |
| MW-124-198      |                                                                                                           | T     | <del></del>  | l x                         |                              | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | x                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                                         | = =                              | ×                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                             | N012465-1 | 3                    | COMME |
| MW-35-060-198   | <del> </del>                                                                                              | +     | <del>-</del> | X                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                         |                                  | ×                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                             | 1 -2      | 3                    |       |
| MW-35-135-198   | 4/24/2014                                                                                                 | 10:19 | 1            | x                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                         |                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -3        | 2                    |       |
| MW-40D-198      | 4/24/2014                                                                                                 | 12:44 | Water        | x                           | -                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | х                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                         |                                  | x                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                             | -4        | 3                    |       |
| MW-65-160-198   | 4/24/2014                                                                                                 | 8:55  | Water        | x                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                         |                                  | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                             | -5        | 3                    |       |
| MW-71-035-198   | 4/24/2014                                                                                                 | 14:00 | Water        | х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                                         |                                  | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                             | -6        | 3                    |       |
| MW-72-080-198   | 4/24/2014                                                                                                 | 7:56  | Water        | х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                                         |                                  | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                             | -7        | 3                    |       |
| MW-19-198       | 4/28/2014                                                                                                 | 9:30  | Water        |                             |                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                         |                                  |                                           | A COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMPANY OF THE COMP |                               | -8        | 2                    |       |
| MW-215-198      | 4/28/2014                                                                                                 | 6:15  | Water        | Х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -9        | dieze.               |       |
| MW-216-198      | 4/28/2014                                                                                                 | 6:18  | Water        | Х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -10       | eash                 |       |
| MW-57-070-198   | 4/28/2014                                                                                                 | 8:20  | Water        | Х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                         |                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -11       | 2                    |       |
| MW-70-105-198   | 4/28/2014                                                                                                 | 11:02 | Water        | Х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                                         |                                  | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                             | -12       | 3                    |       |
| MW-217-198      | 4/29/2014                                                                                                 | 5:40  | Water        | Х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -13       | 1                    |       |
| MW-218-198      | 4/29/2014                                                                                                 | 5:48  | Water        | х                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                           |                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | V -124    | 1                    |       |
|                 |                                                                                                           | ·     |              | <u> </u>                    |                              | <del>(</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                  | ······································    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                             |           | **                   | BEL   |

Signatures Date/Time 4-30-14 Approved by Sampled by Relinquished by Received by Relinquished by Received by

**Shipping Details** Method of Shipment:

On ice: (es) no 1.9, 2.1, 1.1°C

Airbill No: Airbill No: / / / / / / / Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

ATTN:

Sample Custody

and Marlon

Report Copy to

Shawn Duffy

(530) 229-3303

Special Instructions:

April 9 to May 15, 2014

91

| CH         | #2    | <b>PM</b> | Æ.  |       | 100 | 8 |
|------------|-------|-----------|-----|-------|-----|---|
| 400-400 MG | 36 AS |           | 新期装 | 28 28 | 8   | 8 |

### **CHAIN OF CUSTODY RECORD**

4/30/2014 1:16:45 PM

Page 2 OF 3

| Project Name Po                            | -                                                                                                                                                                     | k     | Container   | 250 mi<br>Poly              | 2x250<br>ml Poly             | 250 ml<br>Poly               | 500 ml<br>Poly                 | 500 ml<br>Poly                                     | 500 ml<br>Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 ml<br>Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500 ml<br>Poly | 2x500<br>ml Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250 ml<br>Poly                |                                                                                  |                      |         |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-----------------------------|------------------------------|------------------------------|--------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------|----------------------|---------|
| Location Topoc                             |                                                                                                                                                                       | Pres  | servatives: | (NH4)2S<br>04/NH40          |                              | (NH4)2S                      | HNO3,<br>4°C                   | HNO3,<br>4°C                                       | HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HNO3,<br>4°C   | HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4°C                           |                                                                                  |                      |         |
| Project Manager                            |                                                                                                                                                                       | .ee   |             | H, 4°C                      | H, 4°C                       | H, 4°C                       |                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | V sales a sandad Novaldida                                                       |                      |         |
| Sample Manager                             | Snawn bu                                                                                                                                                              | -     | Filtered:   | ļ                           | Field<br>28                  | Field<br>28                  | Field<br>180                   | Field<br>180                                       | Field<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Field<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field<br>180   | Field<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>28                      | * Where brovides of morribe                                                      |                      |         |
| Task Order Project 2014-GM Turnaround Time | oject 2014-GMP-198-Q2 irnaround Time 10 Days ipping Date: 4/30/2014  OC Number: 5  DATE TIME Matri V-24BR-198 4/29/2014 9:42 Wate V-60BR-245-198 4/29/2014 10:54 Wate |       | ding Time:  | Cr6 (E218.6) Field Filtered | Cr6 (E218.6R) Field Filtered | Cr6 (SM3500B) Field Filtered | Arsenic (6020A) Field Filtered | Metals<br>(6010B/6020A/7470Adis) Field<br>Filtered | Metals (6020A) Field Filtered<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metals (6020A) Field Filtered Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Metals (6020A-R) Field Filtered<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Specific Conductance (E120.1) | * Where provided w/moltiple bottles for Crlo + metals, please analyze 1 + hold 1 | Number of Containers |         |
|                                            | 1                                                                                                                                                                     | -     | -           | ļ                           |                              |                              | <u> </u>                       | <u>a</u>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T              | ă.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                             |                                                                                  |                      | COMMENT |
|                                            | 4/29/2014                                                                                                                                                             | 9:42  | Water       | Х                           |                              | <u></u>                      |                                |                                                    | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | NO12465-15                                                                       | 2                    |         |
| MW-60BR-245-198                            | 4/29/2014                                                                                                                                                             | 10:54 | Water       | х                           |                              |                              | Х                              |                                                    | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                             | 1 -6                                                                             | 3                    |         |
| MW-61-110-198                              | 4/29/2014                                                                                                                                                             | 11:40 | Water       | x                           |                              |                              | Х                              |                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                             | -17                                                                              | 3                    |         |
| MW-62-065-198                              | 4/29/2014                                                                                                                                                             | 13:19 | Water       | х                           |                              |                              |                                |                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -18                                                                              | 2                    |         |
| MW-65-225-198                              | 4/29/2014                                                                                                                                                             | 14:13 | Water       | ×                           |                              |                              | Х                              |                                                    | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х                             | -19                                                                              | 3                    |         |
| MW-73-080-198                              | 4/29/2014                                                                                                                                                             | 6:35  | Water       | х                           |                              |                              | X                              |                                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | х              | de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constitución de la constit | х                             | -20                                                                              | 3                    |         |
| MW-219-198                                 | 4/30/2014                                                                                                                                                             | 5:36  | Water       | х                           |                              |                              |                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -21                                                                              | A.                   |         |
| MW-220-198                                 | 4/30/2014                                                                                                                                                             | 5:30  | Water       | х                           |                              |                              |                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -22                                                                              | 1                    |         |
| MW-22-198                                  | 4/30/2014                                                                                                                                                             | 7:14  | Water       | х                           |                              |                              |                                | х                                                  | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | -23                                                                              | 2                    |         |
| MW-52D-198                                 | 4/30/2014                                                                                                                                                             | 11:01 | Water       |                             | х                            |                              | Х                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | ж                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | -24                                                                              | 5                    | *       |
| MW-52M-198                                 | 4/30/2014                                                                                                                                                             | 12:29 | Water       |                             | х                            |                              | Х                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | -25                                                                              | 5                    | *       |
| MW-52S-198                                 | 4/30/2014                                                                                                                                                             | 10:27 | Water       |                             | х                            |                              | Х                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | -26                                                                              | 5                    | *       |
| MW-53D-198                                 | 4/30/2014                                                                                                                                                             | 9:10  | Water       |                             | х                            |                              | Х                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | -27                                                                              | 5                    | *       |
| WW-53M-198                                 | 4/30/2014                                                                                                                                                             | 8:27  | Water       |                             | х                            |                              | Х                              | of the same                                        | TO A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | V -28                                                                            | 5                    | * NGL   |
| Approved by                                |                                                                                                                                                                       | Sign  | atures      |                             | Date                         | Time                         |                                |                                                    | Shippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng Deta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ils            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Special Instructions:                                                            | 76                   | , 7     |

Date/Time Signatures Approved by 4-30-14 Sampled by Relinquished by Received by Relinquished by Received by

**Shipping Details** Method of Shipment: courier

On Ice: /yes Airbill No:

Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

ATTN:

April 9 to May 15, 2014

Sample Custody and

Report Copy to Marlon (530) 229-3303

Shawn Duffy

## **ASSET Laboratories**

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

| If you have any questions of                               | or further instruction, please contact our Pr | roject Coordinator at (702 | ) 307-2659.  |               |
|------------------------------------------------------------|-----------------------------------------------|----------------------------|--------------|---------------|
| Cooler Received/Opened On:                                 | 4/30/2014                                     | Workorder:                 | N012465      |               |
| Rep sample Temp (Deg C):                                   | 1.1, 1.9, 2.1                                 | IR Gun ID:                 | 2            |               |
| Temp Blank:                                                | ☐ Yes ✓ No                                    |                            |              |               |
| Carrier name:                                              | ATL                                           |                            |              |               |
| Last 4 digits of Tracking No.:                             | NA                                            | Packing Material Used:     | None         |               |
| Cooling process:                                           | ✓ Ice ☐ Ice Pack ☐ Dry Ice                    | Other None                 |              |               |
|                                                            | Sample Receip                                 | t Checklist                |              |               |
| 1. Shipping container/cooler in                            | good condition?                               | Yes 🗹                      | No 🗌         | Not Present   |
| 2. Custody seals intact, signed,                           | l, dated on shippping container/cooler?       | Yes                        | No 🗌         | Not Present 🗹 |
| 3. Custody seals intact on sample                          | iple bottles?                                 | Yes                        | No 🗌         | Not Present ✓ |
| 4. Chain of custody present?                               |                                               | Yes 🔽                      | No 🗌         |               |
| 5. Sampler's name present in C                             | COC?                                          | Yes 🗸                      | No 🗌         |               |
| 6. Chain of custody signed whe                             | en relinquished and received?                 | Yes 🗹                      | No 🗌         |               |
| 7. Chain of custody agrees with                            | h sample labels?                              | Yes 🗸                      | No 🗌         |               |
| 8. Samples in proper container                             | /bottle?                                      | Yes 🗸                      | No 🗌         |               |
| 9. Sample containers intact?                               |                                               | Yes 🗸                      | No 🗌         |               |
| 10. Sufficient sample volume for                           | or indicated test?                            | Yes 🗹                      | No 🗌         |               |
| 11. All samples received within                            | n holding time?                               | Yes 🗹                      | No $\square$ |               |
| 12. Temperature of rep sample                              | e or Temp Blank within acceptable limit?      | Yes 🗹                      | No 🗌         | NA $\square$  |
| 13. Water - VOA vials have zer                             | ro headspace?                                 | Yes                        | No $\square$ | NA 🗸          |
| 14. Water - pH acceptable upor<br>Example: pH > 12 for (CN | •                                             | Yes 🗸                      | No 🗌         | NA $\square$  |
| 15. Did the bottle labels indicate                         | te correct preservatives used?                | Yes 🗹                      | No 🗆         | NA $\square$  |
| 16. Were there Non-Conformar                               | nce issues at login?<br>as Client notified?   | Yes ☐<br>Yes ☐             | No □<br>No □ | NA 🗹<br>NA 🗸  |
| Comments: Received 2 COC                                   | cs. COCs were labeled page 1 of 3 and page 2  | of 2.                      |              |               |

Checklist Completed By MBC MBC 5/1/2014

Reviewed By:



## **Sample Control**

From: amanda cortes [amanda.cortes@assetlaboratories.com]

**Sent:** Friday, May 02, 2014 10:23 AM

To: 'Sample Control' Subject: FW: GMP Topock

### Forwarding.

From: Shawn.Duffy@CH2M.com [mailto:Shawn.Duffy@CH2M.com]

**Sent:** Friday, May 02, 2014 10:08 AM

**To:** <u>Barry.Collom@CH2M.com</u>; <u>amanda.cortes@assetlaboratories.com</u>

Cc: marlon@atl-labs.com
Subject: RE: GMP Topock

Yes, Title 22 plus Mn.

### Shawn

From: Collom, Barry/RIV

**Sent:** Friday, May 02, 2014 9:47 AM **To:** amanda cortes; Duffy, Shawn/RDD

Cc: 'Marlon Cartin'

Subject: RE: GMP Topock

#### Hi Amanda.

This appears to be the result of a glitch in our electronic data collection and sample management program, which generates the COC's.

According to our planned sampling table for this event (PST), MW-22 needs to be analyzed for title 22 metals.

Do you need an amended COC for your records?

Shawn, do you concur?

Thanks for your attention to detail Amanda!

### В.

Barry E. Collom
PG&E Topock Site Coordinator

### CH2M HILL

1770 Iowa Ave. Suite 200 Riverside, CA 92507 Direct 760.326.2708 Fax 714.424.2022 Mobile 541.740.3250 Barry.Collom@ch2mhill.com

Privileged and Confidential

From: amanda cortes [mailto:amanda.cortes@assetlaboratories.com]

**Sent:** Friday, May 02, 2014 8:16 AM

To: Duffy, Shawn/RDD

Cc: Collom, Barry/RIV; 'Marlon Cartin'

Subject: GMP Topock

Good Morning, Shawn.

On one of the COCs we received on Wednesday, a sample named MW-22-198, has a metal method toggled for 6010/6020/7470. However, there are no analytes toggled. Per historical data for this well, the analytes are full list. Please confirm.

Thank you,
Amanda Cortes

Advanced Technology Laboratories, Inc.

# dba ASSET Laboratories

3151 W. Post Road Las Vegas NV 89118

www.assetlaboratories.com

Tel: (702)307-2659 Ext. 404

Fax (702) 307-2691

**Asset Laboratories** is a full-service woman owned environmental laboratory providing organic and inorganic analyses of soil, water, wastewater, storm water and hazardous waste samples. Asset Laboratories is certified by the State of California, NELAP-Oregon, and the State of Nevada. It is also a certified UDBE, SBE and DBE. **Asset Laboratories** takes pride in providing our customers with quick turnaround time, excellent customer service and defensible data while offering very competitive rates.

This message is intended for the use of the individual or entity to which it is addressed. This may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and delete the original message. Thank you.

## **Sample Calculation**

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L = A * DF$ 

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For N012465-019A concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 9.2721 \* 50  
= 463.605

Reporting result in two significant figures,

$$Cr^{+6}$$
,  $\mu g/L = 460$ 

Nancy 5/13/2014

## **Sample Calculation**

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L = A * DF$ 

where:

A =  $\mu$ g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For N012465-028A concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L = 0.0215 * 5$ 

Since PQL is  $\frac{0.20}{0.20} \mu g/L$ ,

$$Cr^{+6}$$
,  $\mu g/L = ND$ 

Nancy 5/13/2014

### **SAMPLE CALCULATION**

METHOD: SM 3500-Cr B

**TEST NAME**: Hexavalent Chromium by Colorimetric Method

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in ug/L, in the original sample as follows:

Hexavalent Chromium, ug/L = A \* DF

Where:

A= ug/L, UV-VIS Hexavalent Chromium calculated concentration

DF= dilution factor

For NO12465-008A, concentration in ug/L is calculated as follows:

Hexavalent Chromium, ug/L = 546.224 \*1

= 546.224 ug/L

Reporting result in 2 significant figures,

Hexavalent Chromium, ug/L = 550

Narry 5/14/2014

## **Sample Calculation**

METHOD: EPA 6020

**TEST NAME:** Heavy Metals by ICP-MS

**MATRIX:** Aqueous

FORMULA:

Calculate the Molybdenum concentration, in ug/L, in the original sample as follows:

Molybdenum, ug/L = A \* DF \* PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample **N012465-002B**, the concentration in ug/L is calculated as follows:

Molybdenum, ug/L = 9.80662870762474 \* 1 \* (25/25)

= 9.80662870762474

Reporting results in two significant figures,

Molybdenum, ug/L = 9.8

Nancy 5/13/2014

### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012465

 Test Method:
 EPA 6020

 Analysis Date:
 5/6/2014

Matrix: Water
Batch No.: 45580

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to As, Mo & Se. The calculated values are <25X RL. PS @ 2x & 5X passed criteria.

| Sample ID            | Analyte    | Units | Calc Val    | OQual | SAMPRefVal    | %DIFF | %DIFFlimit |
|----------------------|------------|-------|-------------|-------|---------------|-------|------------|
| N012460-001A-DT 5X   | Arsenic    | μg/L  | 1.21644668  | NA    | 1.138694889   | 6.83% | 10         |
| N012460-001A-DT 25X  | Manganese  | μg/L  | 323.0243233 | PASS  | 316.2123386   | 2.15% | 10         |
| N012460-001A-DT 5X   | Molybdenum | μg/L  | 8.260898746 | NA    | 7.993011793   | 3.35% | 10         |
| N012460-001A-DT 25X  | Selenium   | μg/L  | 0           | NA    | <b>Q</b> 0.14 | 100 % | 10         |
| N012460-001A-DT 125X | Chromium   | μg/L  | 1116.103533 | PASS  | 1035.352825   | 7.80% | 10         |

Note: NA - Not applicable

Many 5/

5/14/2014

#### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012465

 Test Method:
 EPA 6020

 Analysis Date:
 5/8/2014

Matrix: Water
Batch No.: 45598

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Cr, Co, Ni, Se, V & Zn. The calculated value is <25X RL. PS @ 2x passed criteria. DT is not applicable to Cu. PS @2x also failed.

Dilution test is not applicable to Cu, Sb, Ba, Be, Cd, Pb, Ag & Tl. The calculated values are <25X RL. PS @ 5x passed criteria.

| Dilution test is not applicable | to Mo. The calculated | d value is ≺25X RL. | DT failed for N | 10.   |             |          |            |
|---------------------------------|-----------------------|---------------------|-----------------|-------|-------------|----------|------------|
| Sample ID                       | Analyte               | Units               | Calc Val        | OQual | SAMPRefVal  | %DIFF    | %DIFFlimit |
| N012465-023B-DT 5X              | Arsenic               | μg/L                | 12.44829615     | PASS  | 12.25507867 | 1.58%    | 10         |
| N012465-023B-DT 5X              | Chromium              | μg/L                | 0.325162724     | NA    | 0.298832756 | 8.81%    | 10         |
| N012465-023B-DT 5X              | Cobalt                | μg/L                | 1.339294631     | NA    | 1.08546765  | 23.38%   | 10         |
| N012465-023B-DT 25X             | 5X Copper             | μg/L                | 0               | NA    | 0           |          | 10         |
| N012465-023B-DT 5X              | Nickel                | μg/L                | 3.300704769     | NA    | 2.787795982 | 18.40%   | 10         |
| N012465-023B-DT 5X              | Selenium              | μg/L                | 0.433358902     | NA    | 0.54714434  | 20.80%   | 10         |
| N012465-023B-DT 5X              | Vanadium              | μg/L                | 0               | NA    | 0.57977244  | 100.00%  | 10         |
| N012465-023B-DT 5X              | Zinc                  | μg/L                | 0               | NA    | 0           |          | 10         |
| N012465-023B-DT 25X             | Antimony              | μg/L                | 0               | NA    | 0           |          | 10         |
| N012465-023B-DT 25X             | Barium                | μg/L                | 55.6475858      | NA    | 52.95984317 | 5.08%    | 10         |
| N012465-023B-DT 25X             | Beryllium             | μg/L                | 0               | NA    | 0           |          | 10         |
| N012465-023B-DT 25X             | Cadmium               | μg/L                | 0               | NA    | 0           |          | 10         |
| N012465-023B-DT 25X             | Lead                  | μg/L                | 0               | NA    | 0           |          | 10         |
| N012465-023B-DT 25X             | Molybdenum            | μg/L                | 45.93154436     | NA    | 38.35131498 | 19.77%   | 10         |
| N012465-023B-DT 25X             | Silver                | μg/L                | 0               | NA    | 0           |          | 10         |
| N012465-023B-DT 25X             | Thallium              | μg/L                | 1.685030487     | NA    | 0.073078422 | 2205.78% | 10         |
| N012465-023B-DT 125X            | Manganese             | μg/L                | 2242.879724     | PASS  | 2141.790339 | 4.72%    | 10         |

Note: NA - Not applicable

Many 5/14/2014

ASSET Laboratories

Date: 13-May-14

**CLIENT:** CH2M HILL

Work Order:

N012465

**Project:** PG&E Topock, 423575.MP.02.GM.02

## ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012460-001A-PS | SampType: <b>PS</b> | TestCode: 6020_DIS | Units: µg/L | Prep Date:                          | RunNo: <b>93372</b>   |  |  |  |
|----------------------------|---------------------|--------------------|-------------|-------------------------------------|-----------------------|--|--|--|
| Client ID: ZZZZZZ          | Batch ID: 45580     | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: <b>5/6/2014</b>      | SeqNo: <b>1777562</b> |  |  |  |
| Analyte                    | Result              | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |  |  |  |
| Arsenic                    | 21.346              | 0.20 20.00         | 1.139       | 101 80 120                          |                       |  |  |  |
| Molybdenum                 | 30.407              | 1.0 20.00          | 7.993       | 112 80 120                          |                       |  |  |  |
| Selenium                   | 20.058              | 1.0 20.00          | 0.1403      | 99.6 80 120                         |                       |  |  |  |
| Sample ID: N012460-001A-PS | SampType: <b>PS</b> | TestCode: 6020_DIS | Units: µg/L | Prep Date:                          | RunNo: <b>93372</b>   |  |  |  |
| Client ID: ZZZZZZ          | Batch ID: 45580     | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/6/2014             | SeqNo: <b>1777569</b> |  |  |  |
| Analyte                    | Result              | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |  |  |  |
| Manganese                  | 844.238             | 2.5 500.0          | 316.2       | 106 80 120                          |                       |  |  |  |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL

Work Order: N012465

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

## ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012465-023B-PS        | SampType: <b>PS</b> | TestCod | de: <b>6020_DIS</b> | Units: µg/L | Units: µg/L Prep Date: |                      |                    |             |                    | RunNo: <b>93394</b> |      |  |
|-----------------------------------|---------------------|---------|---------------------|-------------|------------------------|----------------------|--------------------|-------------|--------------------|---------------------|------|--|
| Client ID: ZZZZZZ                 | Batch ID: 45598     | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   |                        | Analysis Da          | te: <b>5/8/201</b> | 4           | SeqNo: 177         | 79198               |      |  |
| Analyte                           | Result              | PQL     | SPK value           | SPK Ref Val | %REC                   | LowLimit             | HighLimit          | RPD Ref Val | %RPD               | RPDLimit            | Qual |  |
| Arsenic                           | 33.709              | 0.20    | 20.00               | 12.26       | 107                    | 80                   | 120                |             |                    |                     |      |  |
| Cobalt                            | 18.303              | 1.0     | 20.00               | 1.085       | 86.1                   | 80                   | 120                |             |                    |                     |      |  |
| Copper                            | 9.963               | 2.0     | 20.00               | 0           | 49.8                   | 75                   | 125                |             |                    |                     | S    |  |
| Nickel                            | 21.772              | 2.0     | 20.00               | 2.788       | 94.9                   | 80                   | 120                |             |                    |                     |      |  |
| Selenium                          | 20.983              | 1.0     | 20.00               | 0.5471      | 102                    | 80                   | 120                |             |                    |                     |      |  |
| Vanadium                          | 21.078              | 2.0     | 20.00               | 0.5798      | 102                    | 80                   | 120                |             |                    |                     |      |  |
| Zinc                              | 179.211             | 20      | 200.0               | 0           | 89.6                   | 80                   | 120                |             |                    |                     |      |  |
| Sample ID: <b>N012465-023B-PS</b> | SampType: <b>PS</b> | TestCod | de: <b>6020_DIS</b> | Units: µg/L | Prep Date:             |                      |                    |             | RunNo: 933         | 394                 |      |  |
| Client ID: ZZZZZZ                 | Batch ID: 45598     | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   |                        | Analysis Date: 5/8/2 |                    | 4           | SeqNo: <b>17</b> 7 | 79202               |      |  |
| Analyte                           | Result              | PQL     | SPK value           | SPK Ref Val | %REC                   | LowLimit             | HighLimit          | RPD Ref Val | %RPD               | RPDLimit            | Qual |  |
| Antimony                          | 59.347              | 2.5     | 50.00               | 0           | 119                    | 80                   | 120                |             |                    |                     |      |  |
| Barium                            | 603.582             | 5.0     | 500.0               | 52.96       | 110                    | 80                   | 120                |             |                    |                     |      |  |
| Beryllium                         | 57.782              | 2.5     | 50.00               | 0           | 116                    | 80                   | 120                |             |                    |                     |      |  |
| Cadmium                           | 51.418              | 2.5     | 50.00               | 0           | 103                    | 80                   | 120                |             |                    |                     |      |  |
| Lead                              | 58.843              | 5.0     | 50.00               | 0           | 118                    | 80                   | 120                |             |                    |                     |      |  |
| Molybdenum                        | 99.537              | 2.5     | 50.00               | 38.35       | 122                    | 80                   | 120                |             |                    |                     | S    |  |
| Silver                            | 52.367              | 2.5     | 50.00               | 0           | 105                    | 80                   | 120                |             |                    |                     |      |  |
| Thallium                          | 55.086              | 2.5     | 50.00               | 0.07308     | 110                    | 80                   | 120                |             |                    |                     |      |  |
| Sample ID: <b>N012465-023B-PS</b> | SampType: <b>PS</b> | TestCod | de: <b>6020_DIS</b> | Units: µg/L |                        | Prep Da              | te:                |             | RunNo: 933         | 394                 |      |  |
| Client ID: ZZZZZZ                 | Batch ID: 45598     | TestN   | lo: <b>EPA 6020</b> | EPA 3010A   |                        | Analysis Da          | te: <b>5/8/201</b> | 4           | SeqNo: <b>17</b> 7 | 79208               |      |  |
| Analyte                           | Result              | PQL     | SPK value           | SPK Ref Val | %REC                   | LowLimit             | HighLimit          | RPD Ref Val | %RPD               | RPDLimit            | Qual |  |
| Manganese                         | 4503.352            | 12      | 2500                | 2142        | 94.5                   | 80                   | 120                |             |                    |                     |      |  |
|                                   |                     |         |                     |             |                        |                      |                    |             |                    |                     |      |  |

## MS/MSD of Molybdenum is within criteria

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Many

5/14/2014

N012465

PG&E Topock, 423575.MP.02.GM.02 **Project:** 

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012460-001A-PS Client ID: ZZZZZZ | SampType: PS Batch ID: 45580 |     | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A |             |      | Prep Da<br>Analysis Da | te: <b>5/6/2014</b>   | RunNo: <b>93353</b><br>SeqNo: <b>1777664</b> |          |      |  |
|----------------------------------------------|------------------------------|-----|--------------------------------------------------------------|-------------|------|------------------------|-----------------------|----------------------------------------------|----------|------|--|
| Analyte                                      | Result                       | PQL | SPK value                                                    | SPK Ref Val | %REC | LowLimit               | HighLimit RPD Ref Val | %RPD                                         | RPDLimit | Qual |  |
| Chromium                                     | 1312.039                     | 25  | 250.0                                                        | 1035        | 111  | 80                     | 120                   | _                                            | _        |      |  |

### Qualifiers:

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**Project:** 

N012465

TestCode: 6020DIS\_CrPGE PG&E Topock, 423575.MP.02.GM.02

| Sample ID: <b>N012465-023B-PS</b> | SampType: <b>PS</b> | TestCod | de: <b>6020DIS_</b> 0      | CrP Units: μg/L |                         | Prep Da  | te:       |             | RunNo: 933            | 394      |      |
|-----------------------------------|---------------------|---------|----------------------------|-----------------|-------------------------|----------|-----------|-------------|-----------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45598     | TestN   | TestNo: EPA 6020 EPA 3010A |                 | Analysis Date: 5/8/2014 |          |           | 4           | SeqNo: <b>1778786</b> |          |      |
| Analyte                           | Result              | PQL     | SPK value                  | SPK Ref Val     | %REC                    | LowLimit | HighLimit | RPD Ref Val | %RPD                  | RPDLimit | Qual |
| Chromium                          | 18.829              | 2.0     | 20.00                      | 0.2988          | 92.7                    | 80       | 120       |             |                       |          |      |

### Qualifiers:

Analyte detected in the associated Method Blank В

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

Value above quantitation range

RPD outside accepted recovery limits Calculations are based on raw values

Holding times for preparation or analysis exceeded

ANALYTICAL QC SUMMARY REPORT

Spike/Surrogate outside of limits due to matrix interference

N012465

PG&E Topock, 423575.MP.02.GM.02 **Project:** 

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020RDIS\_CrPGE

| Sample ID: N012460-001A-PS | SampType: <b>PS</b> | TestCod | TestCode: 6020RDIS_Cr Units: µg/L |             |      | Prep Da                 | te:       |             | RunNo: 933 |                       |      |  |
|----------------------------|---------------------|---------|-----------------------------------|-------------|------|-------------------------|-----------|-------------|------------|-----------------------|------|--|
| Client ID: ZZZZZZ          | Batch ID: 45580     | TestN   | TestNo: EPA 6020 EPA 3010A        |             |      | Analysis Date: 5/6/2014 |           |             |            | SeqNo: <b>1777731</b> |      |  |
| Analyte                    | Result              | PQL     | SPK value                         | SPK Ref Val | %REC | LowLimit                | HighLimit | RPD Ref Val | %RPD       | RPDLimit              | Qual |  |
| Chromium                   | 1312 039            | 25      | 250.0                             | 1035        | 111  | 80                      | 120       |             |            |                       |      |  |

### Qualifiers:

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

N012465

PG&E Topock, 423575.MP.02.GM.02 **Project:** 

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020RDIS\_CrPGE

| Sample ID: N012465-023B-PS Client ID: ZZZZZZ | SampType: PS Batch ID: 45598 |     | le: <b>6020RDIS</b><br>lo: <b>EPA 6020</b> | _Cr Units: µg/L<br>EPA 3010A |      | Prep Da<br>Analysis Da | te: <b>5/8/2014</b>   | RunNo: <b>93</b> :<br>SeqNo: <b>17</b> |          |      |
|----------------------------------------------|------------------------------|-----|--------------------------------------------|------------------------------|------|------------------------|-----------------------|----------------------------------------|----------|------|
| Analyte                                      | Result                       | PQL | SPK value                                  | SPK Ref Val                  | %REC | LowLimit               | HighLimit RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Chromium                                     | 18 829                       | 2.0 | 20.00                                      | 0.2988                       | 92 7 | 80                     | 120                   | _                                      |          |      |

### Qualifiers:

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

 Work Order No.:
 N012465

 Test Method:
 EPA 7470 A

 Matrix:
 Aqueous

### FORMULA:

Calculate the Mercury concentration in ug/L in the original sample as follows:

Hg = [ A ][ DF ]

where:

A = ug/L, instrument calculated concentration DF = dilution factor

For: N012465-023B

The concentration in ug/L is calculated as follows:

Hg = [ A ][ DF ]

Hg = [ -0.09820 ][ 1 ]

Hg = -0.09820 ug/L

Since result is less than reporting limit.

Hg = ND ug/L

May 22, 2014

Shawn P. Duffy
CA-ELAP No.:2676
CH2M HILL
NV Cert. No.:NV-00922

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N012512

RE: PG&E Topock, 423575.MP.02.GM.02

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 08, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

glasmas for

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

### **ASSET Laboratories**

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 CASE NARRATIVE

**Date:** 22-May-14

Lab Order: N012512

### SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 218.6:

Dilution was necessary on samples N012512-016 and N012512-024 due to matrix interference. Samples were analyzed at lower dilution however matrix spikes were not recovered indicating possible matrix interference. Samples were reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 6020\_Dissolved:

Dilution was necessary on samples N012512-011, N012512-012, N012512-013, N012512-018, N012512-022, N012512-024 and N012512-025 due to failed Internal Standards when samples were analyzed at no dilution.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for Chromium since the analyte concentration in the sample is disproportionate to the spike level. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for some analytes possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

## **ASSET Laboratories**

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 Work Order Sample Summary

**Date:** 22-May-14

**Lab Order:** N012512 **Contract No:** 2014-GMP-198-

| Lab Sample ID Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|--------------------------------|--------|------------------------|---------------|---------------|
| N012512-001A MW-12-198         | Water  | 5/1/2014 12:14:00 PM   | 5/8/2014      | 5/22/2014     |
| N012512-001B MW-12-198         | Water  | 5/1/2014 12:14:00 PM   | 5/8/2014      | 5/22/2014     |
| N012512-001C MW-12-198         | Water  | 5/1/2014 12:14:00 PM   | 5/8/2014      | 5/22/2014     |
| N012512-002A MW-127-198        | Water  | 5/1/2014 7:00:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-002B MW-127-198        | Water  | 5/1/2014 7:00:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-002C MW-127-198        | Water  | 5/1/2014 7:00:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-003A MW-60-125-198     | Water  | 5/1/2014 1:31:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-003B MW-60-125-198     | Water  | 5/1/2014 1:31:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-003C MW-60-125-198     | Water  | 5/1/2014 1:31:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-004A MW-66-165-198     | Water  | 5/1/2014 10:32:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-004B MW-66-165-198     | Water  | 5/1/2014 10:32:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-004C MW-66-165-198     | Water  | 5/1/2014 10:32:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-005A MW-69-195-198     | Water  | 5/1/2014 8:52:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-005B MW-69-195-198     | Water  | 5/1/2014 8:52:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-005C MW-69-195-198     | Water  | 5/1/2014 8:52:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-006A MW-74-240-198     | Water  | 5/1/2014 8:10:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-006B MW-74-240-198     | Water  | 5/1/2014 8:10:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-006C MW-74-240-198     | Water  | 5/1/2014 8:10:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-007A MW-221-198        | Water  | 5/5/2014 6:00:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-008A MW-222-198        | Water  | 5/5/2014 6:05:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-009A MW-26-198         | Water  | 5/5/2014 11:24:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-009B MW-26-198         | Water  | 5/5/2014 11:24:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-009C MW-26-198         | Water  | 5/5/2014 11:24:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-010A MW-67-185-198     | Water  | 5/5/2014 1:48:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-010B MW-67-185-198     | Water  | 5/5/2014 1:48:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-010C MW-67-185-198     | Water  | 5/5/2014 1:48:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-011A MW-67-260-198     | Water  | 5/5/2014 1:06:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-011B MW-67-260-198     | Water  | 5/5/2014 1:06:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-011C MW-67-260-198     | Water  | 5/5/2014 1:06:00 PM    | 5/8/2014      | 5/22/2014     |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

CLIENT: CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab Order: N012512
Contract No: 2014-GMP-198-

## **Work Order Sample Summary**

| Lab Sample ID C | lient Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|-----------------|-----------------|--------|------------------------|---------------|---------------|
| N012512-012A MW | V-70BR-225-198  | Water  | 5/5/2014 9:04:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-012B MW | V-70BR-225-198  | Water  | 5/5/2014 9:04:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-012C MW | V-70BR-225-198  | Water  | 5/5/2014 9:04:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-013A MW | V-128-198       | Water  | 5/6/2014 8:30:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-013B MW | V-128-198       | Water  | 5/6/2014 8:30:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-013C MW | V-128-198       | Water  | 5/6/2014 8:30:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-014A MW | V-223-198       | Water  | 5/6/2014 5:15:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-015A MW | V-58BR-198      | Water  | 5/6/2014 11:18:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-015B MW | V-58BR-198      | Water  | 5/6/2014 11:18:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-016A MW | V-64BR-198      | Water  | 5/6/2014 2:05:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-016B MW | V-64BR-198      | Water  | 5/6/2014 2:05:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-017A MW | V-67-225-198    | Water  | 5/6/2014 8:32:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-017B MW | V-67-225-198    | Water  | 5/6/2014 8:32:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-017C MW | V-67-225-198    | Water  | 5/6/2014 8:32:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-018A MW | V-68-240-198    | Water  | 5/6/2014 7:38:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-018B MW | V-68-240-198    | Water  | 5/6/2014 7:38:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-018C MW | V-68-240-198    | Water  | 5/6/2014 7:38:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-019A MW | V-20-070-198    | Water  | 5/7/2014 10:17:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-019B MW | V-20-070-198    | Water  | 5/7/2014 10:17:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-019C MW | V-20-070-198    | Water  | 5/7/2014 10:17:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-020A MW | V-20-100-198    | Water  | 5/7/2014 11:46:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-020B MW | V-20-100-198    | Water  | 5/7/2014 11:46:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-020C MW | V-20-100-198    | Water  | 5/7/2014 11:46:00 AM   | 5/8/2014      | 5/22/2014     |
| N012512-021A MW | V-224-198       | Water  | 5/7/2014 5:30:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-022A MW | V-59-100-198    | Water  | 5/7/2014 8:23:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-022B MW | V-59-100-198    | Water  | 5/7/2014 8:23:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-022C MW | V-59-100-198    | Water  | 5/7/2014 8:23:00 AM    | 5/8/2014      | 5/22/2014     |
| N012512-023A MW | V-62-110-198    | Water  | 5/7/2014 1:50:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-023B MW | V-62-110-198    | Water  | 5/7/2014 1:50:00 PM    | 5/8/2014      | 5/22/2014     |
| N012512-023C MW | V-62-110-198    | Water  | 5/7/2014 1:50:00 PM    | 5/8/2014      | 5/22/2014     |
|                 |                 |        |                        |               |               |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

CLIENT: CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab Order:** N012512 **Contract No:** 2014-GMP-198-

## **Work Order Sample Summary**

| Lab Sample ID | Client Sample ID | Matrix | Collection Date     | Date Received | Date Reported |
|---------------|------------------|--------|---------------------|---------------|---------------|
| N012512-024A  | MW-62-190-198    | Water  | 5/7/2014 2:05:00 PM | 5/8/2014      | 5/22/2014     |
| N012512-024B  | MW-62-190-198    | Water  | 5/7/2014 2:05:00 PM | 5/8/2014      | 5/22/2014     |
| N012512-024C  | MW-62-190-198    | Water  | 5/7/2014 2:05:00 PM | 5/8/2014      | 5/22/2014     |
| N012512-025A  | MW-66-230-198    | Water  | 5/7/2014 7:14:00 AM | 5/8/2014      | 5/22/2014     |
| N012512-025B  | MW-66-230-198    | Water  | 5/7/2014 7:14:00 AM | 5/8/2014      | 5/22/2014     |
| N012512-025C  | MW-66-230-198    | Water  | 5/7/2014 7:14:00 AM | 5/8/2014      | 5/22/2014     |
| N012512-026A  | MW-225-198       | Water  | 5/8/2014 9:45:00 AM | 5/8/2014      | 5/22/2014     |

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-12-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 12:14:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-001

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 6000
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-127-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-002

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 3800
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** 

Print Date: 22-May-14

**CLIENT:** CH2M HILL Client Sample ID: MW-60-125-198 Lab Order: N012512 Collection Date: 5/1/2014 1:31:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-003

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

QC Batch: R93384 RunID: WETCHEM\_140508B PrepDate: Analyst: LCC Specific Conductance 7700 0.10 0.10 umhos/cm 5/8/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-66-165-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 10:32:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-004

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 3800
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-69-195-198

 Lab Order:
 N012512
 Collection Date: 5/1/2014 8:52:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-005

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 3100
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

Lab Order:

CLIENT: CH2M HILL

CH2M HILL Client Sample ID: MW-74-240-198
N012512 Collection Date: 5/1/2014 8:10:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-006

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 800
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-26-198

**Lab Order:** N012512 **Collection Date:** 5/5/2014 11:24:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 3600
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-67-185-198

 Lab Order:
 N012512
 Collection Date: 5/5/2014 1:48:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-010

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 5000
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-67-260-198

 Lab Order:
 N012512
 Collection Date: 5/5/2014 1:06:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-011

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 15000
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012512-012

Client Sample ID: MW-70BR-225-198

**Collection Date:** 5/5/2014 9:04:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 12000
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-128-198

**Lab Order:** N012512 **Collection Date:** 5/6/2014 8:30:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012512-013

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 14000
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-67-225-198

 Lab Order:
 N012512
 Collection Date: 5/6/2014 8:32:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-017

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 6300
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-68-240-198

**Lab Order:** N012512 **Collection Date:** 5/6/2014 7:38:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-018

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 14000
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-20-070-198

**Lab Order:** N012512 **Collection Date:** 5/7/2014 10:17:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-019

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 1600
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-20-100-198

**Lab Order:** N012512 **Collection Date:** 5/7/2014 11:46:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-020

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 2400
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

Lab Order:

CLIENT: CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

N012512

**Lab ID:** N012512-022

Client Sample ID: MW-59-100-198

**Collection Date:** 5/7/2014 8:23:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 9600
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

Print Date: 22-May-14 CH2M HILL

**CLIENT:** Client Sample ID: MW-62-110-198 Lab Order: N012512 Collection Date: 5/7/2014 1:50:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-023

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

QC Batch: R93384 RunID: WETCHEM\_140508B PrepDate: Analyst: LCC Specific Conductance 8000 0.10 0.10 umhos/cm 5/8/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CH2M HILL

**CLIENT: Client Sample ID:** MW-62-190-198 Lab Order: N012512 Collection Date: 5/7/2014 2:05:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-024

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140508B PrepDate: QC Batch: R93384 Analyst: LCC Specific Conductance 16000 0.10 0.10 umhos/cm 5/8/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

LIENT: CH2M HILL Client Sample ID: MW-66-230-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-66-230-198

 Lab Order:
 N012512
 Collection Date: 5/7/2014 7:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-025

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140508B
 QC Batch:
 R93384
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 17000
 0.10
 0.10
 umhos/cm
 1
 5/8/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories

Date: 22-May-14

TestCode: 120.1\_WPGE Units: umhos/cm

CLIENT: CH2M HILL Work Order: N012512

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

Sample ID: N012512-012C-DUP SampType: DUP

| Prep Date: | RunNo: 93384 |
|------------|--------------|

TestCode: 120.1 WPGE

| Client ID: ZZZZZZ                             | Batch ID: <b>R93384</b>        | TestNo: <b>EPA 120.1</b>                          | Analysis Date: 5/8/2014                  | SeqNo: <b>1778416</b>                        |
|-----------------------------------------------|--------------------------------|---------------------------------------------------|------------------------------------------|----------------------------------------------|
| Analyte                                       | Result                         | PQL SPK value SPK Ref Val                         | %REC LowLimit HighLimit RPD              | Ref Val %RPD RPDLimit Qual                   |
| Specific Conductance                          | 11640.000                      | 0.10                                              |                                          | 11630 0.0859 10                              |
| Sample ID: N012512-025C-DUP Client ID: ZZZZZZ | SampType: DUP Batch ID: R93384 | TestCode: 120.1_WPGE Units: umh TestNo: EPA 120.1 | Os/cm Prep Date: Analysis Date: 5/8/2014 | RunNo: <b>93384</b><br>SeqNo: <b>1778426</b> |
| Analyte                                       | Result                         | PQL SPK value SPK Ref Val                         | %REC LowLimit HighLimit RPD              | Ref Val %RPD RPDLimit Qual                   |
| Specific Conductance                          | 17220.000                      | 0.10                                              |                                          | 17250 0.174 10                               |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

- E Value above quantitation range
- R RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Client Sample ID: MW-12-198

**ASSET Laboratories** 

**CLIENT:** 

Print Date: 22-May-14

Lab Order: N012512 Collection Date: 5/1/2014 12:14:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-001

CH2M HILL

| Analyses                  | Result MDL       | PQL   | Qual Units | DF       | Date Analyzed      |
|---------------------------|------------------|-------|------------|----------|--------------------|
| HEXAVALENT CHROMIUM       |                  |       |            |          |                    |
|                           |                  | SM 35 | 00-CR B    |          |                    |
| RunID: WETCHEM_140516B    | QC Batch: R93492 |       | PrepDate:  |          | Analyst: PS        |
| Chromium, Hexavalent      | 2400 6.9         | 50    | μg/L       | 5        | 5/16/2014          |
| DISSOLVED METALS BY ICP-N | MS               |       |            |          |                    |
|                           | EPA 3010A        | EP/   | A 6020     |          |                    |
| RunID: ICP7_140513B       | QC Batch: 45642  |       | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Chromium                  | 2200 0.76        | 25    | μg/L       | 25       | 5/13/2014 01:19 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

5/14/2014 03:10 PM

Print Date: 22-May-14

10

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-127-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

750

0.30

**Lab ID:** N012512-002

Chromium

Result MDL **PQL** Units DF Analyses Qual **Date Analyzed HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 720 1.6 20 100 5/9/2014 04:22 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140514A QC Batch: 45641 PrepDate: 5/9/2014 Analyst: CEI

10

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

5/14/2014 04:18 PM

10

**ASSET Laboratories** 

Print Date: 22-May-14

**CLIENT:** CH2M HILL Client Sample ID: MW-60-125-198 Lab Order: N012512 Collection Date: 5/1/2014 1:31:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

1100

0.30

Lab ID: N012512-003

Chromium

Result MDL **PQL** Units DF Analyses Qual **Date Analyzed HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 1200 1.6 20 100 5/9/2014 04:41 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140514A PrepDate: 5/9/2014 Analyst: CEI

10

μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Holding times for preparation or analysis exceeded Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

10

μg/L

5/14/2014 04:23 PM

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-66-165-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 10:32:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

720

0.30

**Lab ID:** N012512-004

Chromium

| Analyses               | Result MDL       | PQL | Qual Units | DF       | Date Analyzed     |
|------------------------|------------------|-----|------------|----------|-------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |     |            |          |                   |
|                        |                  | EP  | A 218.6    |          |                   |
| RunID: IC7_140509A     | QC Batch: R93418 |     | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium    | 750 1.6          | 20  | μg/L       | 100      | 5/9/2014 10:19 AM |
| DISSOLVED METALS BY IC | P-MS             |     |            |          |                   |
|                        | EPA 3010A        | EP. | A 6020     |          |                   |
| RunID: ICP7_140514A    | QC Batch: 45641  |     | PrepDate:  | 5/9/2014 | Analyst: CEI      |

10

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

5/14/2014 04:29 PM

10

**ASSET Laboratories** 

Print Date: 22-May-14

**CLIENT:** CH2M HILL Client Sample ID: MW-69-195-198 Lab Order: N012512 Collection Date: 5/1/2014 8:52:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

1000

0.30

Lab ID: N012512-005

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140513A QC Batch: R93435 PrepDate: Analyst: RB Hexavalent Chromium 1000 1.6 20 100 5/13/2014 10:26 AM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140514A PrepDate: 5/9/2014 Analyst: CEI

10

μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Holding times for preparation or analysis exceeded Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

5/13/2014 05:05 PM

Print Date: 22-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-74-240-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 8:10:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

**Lab ID:** N012512-006

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 5/9/2014 05:00 PM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140513B QC Batch: 45641 PrepDate: 5/9/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012512

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012512-007 Client Sample ID: MW-221-198

Collection Date: 5/5/2014 6:00:00 AM

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

QC Batch: R93405 RunID: IC6\_140508B PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 1 5/8/2014 09:57 PM μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** 

**CLIENT:** 

Print Date: 22-May-14

Lab Order: N012512 Collection Date: 5/5/2014 6:05:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-008

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

CH2M HILL

**EPA 218.6** 

Client Sample ID: MW-222-198

QC Batch: R93405 RunID: IC6\_140508B Analyst: RB PrepDate: Hexavalent Chromium 0.016 0.20 1 5/8/2014 10:37 PM μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 22-May-14

Client Sample ID: MW-26-198

**ASSET Laboratories** 

CLIENT: CH2M HILL

**Lab Order:** N012512 **Collection Date:** 5/5/2014 11:24:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012512-009

| Analyses                  | Result MDL              | PQL  | Qual Units | DF       | Date Analyzed      |
|---------------------------|-------------------------|------|------------|----------|--------------------|
| HEXAVALENT CHROMIUM       |                         |      |            |          |                    |
|                           |                         | SM 3 | 500-CR B   |          |                    |
| RunID: WETCHEM_140516B    | QC Batch: <b>R93492</b> |      | PrepDate:  |          | Analyst: PS        |
| Chromium, Hexavalent      | 2200 6.9                | 50   | μg/L       | 5        | 5/16/2014          |
| DISSOLVED METALS BY ICP-M | MS                      |      |            |          |                    |
|                           | EPA 3010A               | EP   | A 6020     |          |                    |
| RunID: ICP7_140514A       | QC Batch: 45641         |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Chromium                  | 2200 0.76               | 25   | μg/L       | 25       | 5/14/2014 04:34 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

25

μg/L

5/14/2014 04:45 PM

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-67-185-198

**Lab Order:** N012512 **Collection Date:** 5/5/2014 1:48:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

2500

0.76

**Lab ID:** N012512-010

Chromium

Result MDL **PQL** Units DF Analyses Qual **Date Analyzed HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 2300 8.0 100 500 5/9/2014 10:48 AM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140514A PrepDate: 5/9/2014 Analyst: CEI

25

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

25

μg/L

5/14/2014 05:07 PM

**ASSET Laboratories** 

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-67-260-198

 Lab Order:
 N012512
 Collection Date: 5/5/2014 1:06:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

1900

0.76

**Lab ID:** N012512-011

Chromium

Result MDL **PQL** Units DF Analyses Qual **Date Analyzed HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 2000 8.0 100 500 5/9/2014 10:59 AM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140514A PrepDate: 5/9/2014 Analyst: CEI

25

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012512-012

Chromium

Client Sample ID: MW-70BR-225-198

Print Date: 22-May-14

25

5/14/2014 05:18 PM

**Collection Date:** 5/5/2014 9:04:00 AM

Matrix: WATER

μg/L

| Analyses               | Result MDL       | PQL   | Qual Units | DF       | Date Analyzed     |
|------------------------|------------------|-------|------------|----------|-------------------|
| HEXAVALENT CHROMIUM    | BY IC            |       |            |          |                   |
|                        |                  | EPA 2 | 218.6      |          |                   |
| RunID: IC7_140509A     | QC Batch: R93418 |       | PrepDate:  |          | Analyst: RB       |
| Hexavalent Chromium    | 2400 8.0         | 100   | μg/L       | 500      | 5/9/2014 11:09 AM |
| DISSOLVED METALS BY IC | P-MS             |       |            |          |                   |
|                        | EPA 3010A        | EPA 6 | 6020       |          |                   |
| RunID: ICP7_140514A    | QC Batch: 45641  |       | PrepDate:  | 5/9/2014 | Analyst: CEI      |

25

2500

0.76

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

25

μg/L

5/14/2014 05:29 PM

**ASSET Laboratories** 

Print Date: 22-May-14

**CLIENT:** CH2M HILL Client Sample ID: MW-128-198 Lab Order: N012512 Collection Date: 5/6/2014 8:30:00 AM

2100

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

0.76

Lab ID: N012512-013

Chromium

Result MDL **PQL** DF Analyses Qual Units Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 2200 8.0 100 500 5/9/2014 02:57 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140514A PrepDate: 5/9/2014 Analyst: CEI

25

Qualifiers: Analyte detected in the associated Method Blank

> Holding times for preparation or analysis exceeded Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

Lab Order:

CLIENT: CH2M HILL

CH2M HILL Client Sample ID: MW-223-198
N012512 Collection Date: 5/6/2014 5:15:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-014

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140508B
 QC Batch:
 R93405
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 5/8/2014 10:56 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

5/13/2014 04:15 PM

Print Date: 22-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-58BR-198

**Lab Order:** N012512 **Collection Date:** 5/6/2014 11:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

**Lab ID:** N012512-015

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 0.87 0.016 0.20 5/9/2014 11:18 AM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140513B QC Batch: 45641 PrepDate: 5/9/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL Client Sample ID: MW-64BR-198

Lab Order: N012512 Collection Date: 5/6/2014 2:05:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-016

| Analyses                | Result MDL       | PQL | Qual Units | DF       | Date Analyzed      |
|-------------------------|------------------|-----|------------|----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |     |            |          |                    |
|                         |                  | EP  | A 218.6    |          |                    |
| RunID: IC7_140509A      | QC Batch: R93418 |     | PrepDate:  |          | Analyst: RB        |
| Hexavalent Chromium     | ND 0.080         | 1.0 | μg/L       | 5        | 5/9/2014 06:59 PM  |
| DISSOLVED METALS BY ICI | P-MS             |     |            |          |                    |
|                         | EPA 3010A        | EP  | A 6020     |          |                    |
| RunID: ICP7_140513B     | QC Batch: 45641  |     | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0 | μg/L       | 1        | 5/13/2014 04:21 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

25

μg/L

5/15/2014 05:06 PM

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-67-225-198

**Lab Order:** N012512 **Collection Date:** 5/6/2014 8:32:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

3300

0.76

**Lab ID:** N012512-017

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 3200 8.0 100 500 5/9/2014 11:37 AM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140515A PrepDate: 5/9/2014 Analyst: CEI

25

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation rangeNot Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 22-May-14

25

μg/L

5/14/2014 05:46 PM

**ASSET Laboratories** 

LIENT: CH2M HILL Client Sample ID: MW-68-240-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-68-240-198

 Lab Order:
 N012512
 Collection Date: 5/6/2014 7:38:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

2100

0.76

**Lab ID:** N012512-018

Chromium

Result MDL **PQL** DF Analyses Qual Units Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 2200 8.0 100 500 5/9/2014 03:06 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140514A PrepDate: 5/9/2014 Analyst: CEI

25

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-20-070-198

**Lab Order:** N012512 **Collection Date:** 5/7/2014 10:17:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-019

| Analyses                 | Result MDL              | PQL  | Qual Units | DF       | Date Analyzed      |
|--------------------------|-------------------------|------|------------|----------|--------------------|
| HEXAVALENT CHROMIUM      |                         |      |            |          |                    |
|                          |                         | SM 3 | 500-CR B   |          |                    |
| RunID: WETCHEM_140516B   | QC Batch: <b>R93492</b> |      | PrepDate:  |          | Analyst: PS        |
| Chromium, Hexavalent     | 2200 6.9                | 50   | μg/L       | 5        | 5/16/2014          |
| DISSOLVED METALS BY ICP- | MS                      |      |            |          |                    |
|                          | EPA 3010A               | EP.  | A 6020     |          |                    |
| RunID: ICP7_140514A      | QC Batch: 45641         |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Chromium                 | 2400 0.76               | 25   | μg/L       | 25       | 5/14/2014 05:51 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-20-100-198

**Lab Order:** N012512 **Collection Date:** 5/7/2014 11:46:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-020

| Analyses                 | Result MDL       | PQL   | Qual Units | DF       | Date Analyzed      |
|--------------------------|------------------|-------|------------|----------|--------------------|
| HEXAVALENT CHROMIUM      |                  |       |            |          |                    |
|                          |                  | SM 35 | 500-CR B   |          |                    |
| RunID: WETCHEM_140516B   | QC Batch: R93492 |       | PrepDate:  |          | Analyst: PS        |
| Chromium, Hexavalent     | 2900 6.9         | 50    | μg/L       | 5        | 5/16/2014          |
| DISSOLVED METALS BY ICP- | MS               |       |            |          |                    |
|                          | EPA 3010A        | EPA   | A 6020     |          |                    |
| RunID: ICP7_140514A      | QC Batch: 45641  |       | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Chromium                 | 2900 0.76        | 25    | μg/L       | 25       | 5/14/2014 06:08 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-224-198

**Lab Order:** N012512 **Collection Date:** 5/7/2014 5:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-021

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140508B
 QC Batch:
 R93405
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 5/8/2014 11:16 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 22-May-14

25

μg/L

5/14/2014 06:19 PM

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-59-100-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-59-100-198

 Lab Order:
 N012512
 Collection Date: 5/7/2014 8:23:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

4000

0.76

**Lab ID:** N012512-022

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 4000 8.0 100 500 5/9/2014 03:16 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45641 RunID: ICP7\_140514A PrepDate: 5/9/2014 Analyst: CEI

25

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

10

**ASSET Laboratories** 

Chromium

**CLIENT:** CH2M HILL Client Sample ID: MW-62-110-198 Lab Order: N012512 Collection Date: 5/7/2014 1:50:00 PM

0.30

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-023

Result MDL **PQL** Units DF Analyses Qual **Date Analyzed HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 910 1.6 20 100 5/9/2014 05:22 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140514A QC Batch: 45641 PrepDate: 5/9/2014 Analyst: CEI 940 5/14/2014 06:24 PM

10

μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Holding times for preparation or analysis exceeded Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CH2M HILL

**CLIENT: Client Sample ID:** MW-62-190-198 Lab Order: N012512 Collection Date: 5/7/2014 2:05:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-024

| Analyses                | Result MDL       | PQL | Qual Units | DF       | Date Analyzed      |
|-------------------------|------------------|-----|------------|----------|--------------------|
| HEXAVALENT CHROMIUM B   | SY IC            |     |            |          |                    |
|                         |                  | EP  | A 218.6    |          |                    |
| RunID: IC7_140509A      | QC Batch: R93418 |     | PrepDate:  |          | Analyst: RB        |
| Hexavalent Chromium     | ND 0.080         | 1.0 | μg/L       | 5        | 5/9/2014 07:19 PM  |
| DISSOLVED METALS BY ICE | P-MS             |     |            |          |                    |
|                         | EPA 3010A        | EP. | A 6020     |          |                    |
| RunID: ICP7_140513B     | QC Batch: 45641  |     | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0 | μg/L       | 1        | 5/13/2014 05:16 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

LIENT: CH2M HILL Client Sample ID: MW-66-230-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-66-230-198

 Lab Order:
 N012512
 Collection Date: 5/7/2014 7:14:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-025

Result MDL **PQL** Units DF Analyses Qual **Date Analyzed HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC7\_140509A QC Batch: R93418 PrepDate: Analyst: RB Hexavalent Chromium 6700 200 1000 5/9/2014 04:03 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** 

RunID: ICP7\_140514A QC Batch: 45641 PrepDate: 5/9/2014 Analyst: CEI

Chromium 6700 1.5 50 µg/L 50 5/14/2014 06:41 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012512-026

Client Sample ID: MW-225-198

**Collection Date:** 5/8/2014 9:45:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140508B
 QC Batch:
 R93405
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND 0.016
 0.20
 µg/L
 1 5/8/2014 11:36 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Date: 22-May-14 **ASSET Laboratories** 

CLIENT: CH2M HILL Work Order: N012512

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: MB-R93405       | SampType: <b>MBLK</b>   | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: <b>R93405</b> | TestNo: EPA 218.6                | Analysis Date: 5/8/2014             | SeqNo: <b>1779780</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.052                   | 0.20                             |                                     |                       |
| Sample ID: LCS-R93405      | SampType: <b>LCS</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: LCSW            | Batch ID: <b>R93405</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: 1779781        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4.878                   | 0.20 5.000 0                     | 97.6 90 110                         |                       |
| Sample ID: N012509-029A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93405</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: <b>1779783</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.960                   | 0.20 1.000 0                     | 96.0 90 110                         |                       |
| Sample ID: N012509-030A-MS | S SampType: MS          | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93405</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: <b>1779787</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.962                   | 0.20 1.000 0                     | 96.2 90 110                         |                       |
| Sample ID: N012509-031A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93405        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: <b>1779789</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.013                   | 0.20 1.000 0                     | 101 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 423575.MP.02.GM.02

TestCode: 218.6\_WPGE

| Sample ID: N012509-034A-MS        | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
|-----------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: <b>R93405</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: 1779791        |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.012                   | 0.20 1.000 0                     | 101 90 110                          |                       |
| Sample ID: N012509-034A-DUP       | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93405</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: <b>1779792</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | ND                      | 0.20                             | 0                                   | 0 20                  |
| Sample ID: N012509-034A-MSD       | SampType: MSD           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93405        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: <b>1779793</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 0.973                   | 0.20 1.000 0                     | 97.2 90 110 1.012                   | 3.93 20               |
| Sample ID: N012512-007A-MS        | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93405        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: <b>1779795</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.048                   | 0.20 1.000 0                     | 105 90 110                          |                       |
| Sample ID: <b>N012512-008A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93405</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93405</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/8/2014             | SeqNo: <b>1779799</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 0.956                   | 0.20 1.000 0                     | 95.6 90 110                         |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: N012512-014A-MS                   | SampType: MS                   | TestCode: 218.6_WPGE Units: µg/L                      | Prep Date:                          | RunNo: 93405                                 |
|----------------------------------------------|--------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------------------------|
| Client ID: ZZZZZZ                            | Batch ID: R93405               | TestNo: <b>EPA 218.6</b>                              | Analysis Date: 5/8/2014             | SeqNo: 1779801                               |
| Analyte                                      | Result                         | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 1.041                          | 0.20 1.000 0                                          | 104 90 110                          |                                              |
| Sample ID: N012512-021A-MS Client ID: ZZZZZZ | SampType: MS Batch ID: R93405  | TestCode: 218.6_WPGE Units: μg/L<br>TestNo: EPA 218.6 | Prep Date: Analysis Date: 5/8/2014  | RunNo: 93405<br>SeqNo: 1779803               |
| Analyte                                      | Result                         | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 1.021                          | 0.20 1.000 0                                          | 102 90 110                          |                                              |
| Sample ID: N012512-026A-MS Client ID: ZZZZZZ | SampType: MS  Batch ID: R93405 | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6    | Prep Date: Analysis Date: 5/8/2014  | RunNo: <b>93405</b><br>SeqNo: <b>1779805</b> |
| Analyte                                      | Result                         | PQL SPK value SPK Ref Val                             | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                           |
| Hexavalent Chromium                          | 1.011                          | 0.20 1.000 0                                          | 101 90 110                          |                                              |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012512 Project: PG&E Topock, 423575.MP.02.GM.02

TestCode: 218.6\_WPGE

| Sample ID: MB-R93418       | SampType: MBLK          | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781468        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93418      | SampType: LCS           | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93418          |
| Client ID: LCSW            | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781469        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 5.030                   | 0.20 5.000 0                     | 101 90 110                          |                       |
| Sample ID: N012512-004A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93418          |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781478        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1234.520                | 20 500.0 748.4                   | 97.2 90 110                         |                       |
| Sample ID: N012512-010A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93418        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781479        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4758.300                | 100 2500 2322                    | 97.4 90 110                         |                       |
| Sample ID: N012512-011A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: <b>1781480</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4497.100                | 100 2500 1991                    | 100 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012512

**Project:** 

TestCode: 218.6\_WPGE PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012512-012A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93418        |
|-----------------------------|-------------------------|----------------------------------|-------------------------------------|---------------------|
| Client ID: ZZZZZZ           | Batch ID: R93418        | TestNo: EPA 218.6                | Analysis Date: 5/9/2014             | SeqNo: 1781481      |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium         | 4863.450                | 100 2500 2434                    | 97.2 90 110                         |                     |
| Sample ID: N012512-015A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b> |
| Client ID: ZZZZZZ           | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781482      |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium         | 1.798                   | 0.20 1.000 0.8704                | 92.8 90 110                         |                     |
| Sample ID: N012512-017A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93418</b> |
| Client ID: ZZZZZZ           | Batch ID: R93418        | TestNo: EPA 218.6                | Analysis Date: 5/9/2014             | SeqNo: 1781483      |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium         | 5514.450                | 100 2500 3175                    | 93.6 90 110                         |                     |
| Sample ID: N012512-004A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b> |
| Client ID: ZZZZZZ           | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781484      |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium         | 738.070                 | 20                               | 748.4                               | 1.39 20             |
| Sample ID: N012512-004A-MSD | SampType: MSD           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b> |
| Client ID: ZZZZZZ           | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781485      |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual  |
| Hexavalent Chromium         | 1230.520                | 20 500.0 748.4                   | 96.4 90 110 1235                    | 0.325 20            |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: N012512-025A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93418          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: <b>5/9/2014</b>      | SeqNo: <b>1781494</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 11859.000               | 200 5000 6724                    | 103 90 110                          |                       |
| Sample ID: N012512-002A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93418          |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: EPA 218.6                | Analysis Date: 5/9/2014             | SeqNo: 1781496        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1230.420                | 20 500.0 723.3                   | 101 90 110                          |                       |
| Sample ID: N012512-003A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: EPA 218.6                | Analysis Date: 5/9/2014             | SeqNo: 1781498        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1677.390                | 20 500.0 1164                    | 103 90 110                          |                       |
| Sample ID: N012512-006A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: EPA 218.6                | Analysis Date: 5/9/2014             | SeqNo: 1781500        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.144                   | 0.20 1.000 0.1690                | 97.5 90 110                         |                       |
| Sample ID: N012512-023A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: <b>1781502</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1391.650                | 20 500.0 912.9                   | 95.8 90 110                         |                       |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012512

TestCode: 218.6\_WPGE **Project:** PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012512-013A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: 93418          |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: EPA 218.6                | Analysis Date: <b>5/9/2014</b>      | SeqNo: <b>1781505</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4699.150                | 100 2500 2203                    | 99.8 90 110                         |                       |
| Sample ID: N012512-018A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781506        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4665.500                | 100 2500 2165                    | 100 90 110                          |                       |
| Sample ID: N012512-022A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: R93418        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781507        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 6514.750                | 100 2500 3977                    | 102 90 110                          |                       |
| Sample ID: N012512-016A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781509        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 5.230                   | 1.0 5.000 0.1005                 | 103 90 110                          |                       |
| Sample ID: N012512-024A-MS | SampType: <b>MS</b>     | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93418</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93418</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/9/2014             | SeqNo: 1781511        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 5.022                   | 1.0 5.000 0.08300                | 98.8 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: MB-R93435 Client ID: PBW           | SampType: MBLK Batch ID: R93435              | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 5/13/2014 | RunNo: 93435<br>SeqNo: 1782367 |
|-----------------------------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------|--------------------------------|
| Analyte                                       | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual             |
| Hexavalent Chromium                           | 0.026                                        | 0.20                                               |                                     |                                |
| Sample ID: LCS-R93435                         | SampType: <b>LCS</b>                         | TestCode: 218.6_WPGE Units: µg/L                   | Prep Date:                          | RunNo: <b>93435</b>            |
| Client ID: LCSW                               | Batch ID: <b>R93435</b>                      | TestNo: <b>EPA 218.6</b>                           | Analysis Date: 5/13/2014            | SeqNo: 1782368                 |
| Analyte                                       | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual             |
| Hexavalent Chromium                           | 5.031                                        | 0.20 5.000 0                                       | 101 90 110                          |                                |
| Sample ID: N012536-001I-DUP Client ID: ZZZZZZ | SampType: <b>DUP</b> Batch ID: <b>R93435</b> | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 5/13/2014 | RunNo: 93435<br>SeqNo: 1782370 |
| Analyte                                       | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual             |
| Hexavalent Chromium                           | ND                                           | 0.20                                               | 0                                   | 0 20                           |
| Sample ID: N012512-005A-MS Client ID: ZZZZZZ  | SampType: MS Batch ID: R93435                | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 5/13/2014 | RunNo: 93435<br>SeqNo: 1782372 |
| Analyte                                       | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual             |
| Hexavalent Chromium                           | 1530.800                                     | 20 500.0 1041                                      | 98.0 90 110                         |                                |
| Sample ID: N012534-003A-MS Client ID: ZZZZZZ  | SampType: MS Batch ID: R93435                | TestCode: 218.6_WPGE Units: μg/L TestNo: EPA 218.6 | Prep Date: Analysis Date: 5/13/2014 | RunNo: 93435<br>SeqNo: 1782374 |
| Analyte                                       | Result                                       | PQL SPK value SPK Ref Val                          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual             |
| Hexavalent Chromium                           | 2.869                                        | 0.20 1.000 1.876                                   | 99.4 90 110                         |                                |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: N012534-003A-MSD                  | SampType: MSD                 | TestCod | de: <b>218.6_WP</b>           | GE Units: μg/L |      | Prep Da                | te:                 |                           | RunNo: 934                              | 135      |      |
|----------------------------------------------|-------------------------------|---------|-------------------------------|----------------|------|------------------------|---------------------|---------------------------|-----------------------------------------|----------|------|
| Client ID: ZZZZZZ                            | Batch ID: R93435              | TestN   | No: <b>EPA 218.6</b>          | 6              |      | Analysis Da            | te: <b>5/13/2</b> 0 | 114                       | SeqNo: 178                              | 32375    |      |
| Analyte                                      | Result                        | PQL     | SPK value                     | SPK Ref Val    | %REC | LowLimit               | HighLimit           | RPD Ref Val               | %RPD                                    | RPDLimit | Qual |
| Hexavalent Chromium                          | 2.870                         | 0.20    | 1.000                         | 1.876          | 99.5 | 90                     | 110                 | 2.869                     | 0.0314                                  | 20       |      |
|                                              |                               |         |                               |                |      |                        |                     |                           |                                         |          |      |
| Sample ID: N012536-001I-MS                   | SampType: MS                  | TestCod | de: <b>218.6_WP</b>           | GE Units: µg/L |      | Prep Da                | te:                 |                           | RunNo: 934                              | 135      |      |
| Sample ID: N012536-001I-MS Client ID: ZZZZZZ | SampType: MS Batch ID: R93435 |         | de: 218.6_WP<br>No: EPA 218.6 |                |      | Prep Da<br>Analysis Da |                     | 014                       | RunNo: <b>93</b> 4<br>SeqNo: <b>178</b> |          |      |
| ,                                            | . ,,                          |         | –<br>No: <b>EPA 218.6</b>     |                | %REC | Analysis Da            | te: <b>5/13/2</b> 0 | <b>014</b><br>RPD Ref Val |                                         |          | Qual |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 3500\_CrBPGE

| Sample ID: LCS-R93492                                                         | SampType: LCS                                     | TestCode: 3500_CrBPG Units: µg/L                                                                                                                                   | Prep Date:                                                                                     | RunNo: <b>93492</b>                                  |
|-------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Client ID: LCSW                                                               | Batch ID: <b>R93492</b>                           | TestNo: SM 3500-Cr B                                                                                                                                               | Analysis Date: 5/16/2014                                                                       | SeqNo: <b>1784495</b>                                |
| Analyte                                                                       | Result                                            | PQL SPK value SPK Ref Val                                                                                                                                          | %REC LowLimit HighLimit RPD Ref Val                                                            | %RPD RPDLimit Qual                                   |
| Chromium, Hexavalent                                                          | 102.351                                           | 10 100.0 0                                                                                                                                                         | 102 85 115                                                                                     |                                                      |
| Sample ID: MB-R93492<br>Client ID: PBW                                        | SampType: MBLK Batch ID: R93492                   | TestCode: 3500_CrBPG Units: µg/L TestNo: SM 3500-Cr B                                                                                                              | Prep Date: Analysis Date: 5/16/2014                                                            | RunNo: <b>93492</b><br>SeqNo: <b>1784496</b>         |
| Analyte                                                                       | Result                                            | PQL SPK value SPK Ref Val                                                                                                                                          | %REC LowLimit HighLimit RPD Ref Val                                                            | %RPD RPDLimit Qual                                   |
| Chromium, Hexavalent                                                          | ND                                                | 10                                                                                                                                                                 |                                                                                                |                                                      |
|                                                                               |                                                   |                                                                                                                                                                    |                                                                                                |                                                      |
| Sample ID: N012512-009A-MS                                                    | SampType: <b>MS</b>                               | TestCode: 3500_CrBPG Units: μg/L                                                                                                                                   | Prep Date:                                                                                     | RunNo: <b>93492</b>                                  |
| Sample ID: N012512-009A-MS Client ID: ZZZZZZ                                  | SampType: MS Batch ID: R93492                     | TestCode: 3500_CrBPG Units: μg/L TestNo: SM 3500-Cr B                                                                                                              | Prep Date: Analysis Date: 5/16/2014                                                            | RunNo: <b>93492</b><br>SeqNo: <b>1784503</b>         |
|                                                                               |                                                   |                                                                                                                                                                    | •                                                                                              |                                                      |
| Client ID: ZZZZZZ                                                             | Batch ID: <b>R93492</b>                           | TestNo: SM 3500-Cr B                                                                                                                                               | Analysis Date: 5/16/2014                                                                       | SeqNo: 1784503                                       |
| Client ID: ZZZZZZ Analyte                                                     | Batch ID: R93492  Result                          | TestNo: SM 3500-Cr B  PQL SPK value SPK Ref Val                                                                                                                    | Analysis Date: 5/16/2014  %REC LowLimit HighLimit RPD Ref Val                                  | SeqNo: 1784503                                       |
| Client ID: ZZZZZZ  Analyte  Chromium, Hexavalent                              | Batch ID: <b>R93492</b> Result  3333.755          | TestNo: SM 3500-Cr B  PQL SPK value SPK Ref Val  50 1250 2174                                                                                                      | Analysis Date: 5/16/2014  %REC LowLimit HighLimit RPD Ref Val  92.8 85 115                     | SeqNo: <b>1784503</b><br>%RPD RPDLimit Qual          |
| Client ID: ZZZZZZ  Analyte  Chromium, Hexavalent  Sample ID: N012512-009A-MSD | Batch ID: R93492  Result  3333.755  SampType: MSD | TestNo: SM 3500-Cr B           PQL         SPK value         SPK Ref Val           50         1250         2174           TestCode: 3500_CrBPG         Units: μg/L | Analysis Date: <b>5/16/2014</b> ***REC LowLimit HighLimit RPD Ref Val  92.8 85 115  Prep Date: | SeqNo: 1784503<br>%RPD RPDLimit Qual<br>RunNo: 93492 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020DIS\_CrPGE

| Sample ID: <b>MB-45641</b>                                     | SampType: MBLK                                  | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                           | Prep Date: 5/9/2014                                                                                              | RunNo: <b>93464</b>                                                |
|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Client ID: PBW                                                 | Batch ID: 45641                                 | TestNo: EPA 6020 EPA 3010A                                                                                                                                                  | Analysis Date: 5/13/2014                                                                                         | SeqNo: 1783669                                                     |
| Analyte                                                        | Result                                          | PQL SPK value SPK Ref Val                                                                                                                                                   | %REC LowLimit HighLimit RPD Ref Val                                                                              | %RPD RPDLimit Qual                                                 |
| Chromium                                                       | ND                                              | 1.0                                                                                                                                                                         |                                                                                                                  |                                                                    |
| Sample ID: LCS-45641                                           | SampType: LCS                                   | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                           | Prep Date: 5/9/2014                                                                                              | RunNo: <b>93464</b>                                                |
| Client ID: LCSW                                                | Batch ID: 45641                                 | TestNo: <b>EPA 6020 EPA 3010A</b>                                                                                                                                           | Analysis Date: 5/13/2014                                                                                         | SeqNo: <b>1783670</b>                                              |
| Analyte                                                        | Result                                          | PQL SPK value SPK Ref Val                                                                                                                                                   | %REC LowLimit HighLimit RPD Ref Val                                                                              | %RPD RPDLimit Qual                                                 |
| Chromium                                                       | 9.517                                           | 1.0 10.00 0                                                                                                                                                                 | 95.2 85 115                                                                                                      |                                                                    |
|                                                                |                                                 |                                                                                                                                                                             |                                                                                                                  |                                                                    |
| Sample ID: N012512-002B-MS                                     | SampType: MS                                    | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                           | Prep Date: 5/9/2014                                                                                              | RunNo: <b>93479</b>                                                |
| Sample ID: N012512-002B-MS Client ID: ZZZZZZ                   | SampType: MS Batch ID: 45641                    | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                                                                                                | Prep Date: 5/9/2014  Analysis Date: 5/14/2014                                                                    | RunNo: <b>93479</b><br>SeqNo: <b>1784238</b>                       |
|                                                                |                                                 |                                                                                                                                                                             | ·                                                                                                                |                                                                    |
| Client ID: ZZZZZZ                                              | Batch ID: <b>45641</b>                          | TestNo: EPA 6020 EPA 3010A                                                                                                                                                  | Analysis Date: 5/14/2014                                                                                         | SeqNo: 1784238                                                     |
| Client ID: ZZZZZZ Analyte                                      | Batch ID: 45641  Result                         | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                       | Analysis Date: 5/14/2014  %REC LowLimit HighLimit RPD Ref Val                                                    | SeqNo: 1784238  %RPD RPDLimit Qual                                 |
| Client ID: ZZZZZZ Analyte Chromium                             | Batch ID: <b>45641</b> Result  859.336          | TestNo: EPA 6020                                                                                                                                                            | Analysis Date: 5/14/2014  %REC LowLimit HighLimit RPD Ref Val  1120 75 125                                       | SeqNo: 1784238  %RPD RPDLimit Qual  S                              |
| Client ID: ZZZZZZ Analyte Chromium Sample ID: N012512-002B-MSD | Batch ID: 45641  Result  859.336  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           10         10.00         747.0           TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: <b>5/14/2014</b> ***REC LowLimit HighLimit RPD Ref Val  1120 75 125  **Prep Date: <b>5/9/2014</b> | SeqNo: 1784238         RPDLimit         Qual           S         S |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020DIS\_CrPGE

| Sample ID: MB-45642                                               | SampType: MBLK                                  | TestCode: 6020DIS_CrP Units: µg/L                                                                       | Prep Date: 5/9/2014                                                                                              | RunNo: <b>93464</b>                                                                            |
|-------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Client ID: PBW                                                    | Batch ID: 45642                                 | TestNo: <b>EPA 6020 EPA 3010A</b>                                                                       | Analysis Date: 5/13/2014                                                                                         | SeqNo: <b>1783653</b>                                                                          |
| Analyte                                                           | Result                                          | PQL SPK value SPK Ref Val                                                                               | %REC LowLimit HighLimit RPD Ref Val                                                                              | %RPD RPDLimit Qual                                                                             |
| Chromium                                                          | ND                                              | 1.0                                                                                                     |                                                                                                                  |                                                                                                |
| Sample ID: LCS-45642                                              | SampType: LCS                                   | TestCode: 6020DIS_CrP Units: µg/L                                                                       | Prep Date: 5/9/2014                                                                                              | RunNo: <b>93464</b>                                                                            |
| Client ID: LCSW                                                   | Batch ID: 45642                                 | TestNo: EPA 6020 EPA 3010A                                                                              | Analysis Date: 5/13/2014                                                                                         | SeqNo: 1783654                                                                                 |
| Analyte                                                           | Result                                          | PQL SPK value SPK Ref Val                                                                               | %REC LowLimit HighLimit RPD Ref Val                                                                              | %RPD RPDLimit Qual                                                                             |
| Chromium                                                          | 9.610                                           | 1.0 10.00 0                                                                                             | 96.1 85 115                                                                                                      |                                                                                                |
|                                                                   |                                                 |                                                                                                         |                                                                                                                  |                                                                                                |
| Sample ID: N012512-001B-MS                                        | SampType: MS                                    | TestCode: 6020DIS_CrP Units: µg/L                                                                       | Prep Date: 5/9/2014                                                                                              | RunNo: <b>93464</b>                                                                            |
| Sample ID: N012512-001B-MS Client ID: ZZZZZZ                      | SampType: MS Batch ID: 45642                    | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                            | Prep Date: 5/9/2014  Analysis Date: 5/13/2014                                                                    | RunNo: <b>93464</b><br>SeqNo: <b>1783665</b>                                                   |
| •                                                                 | . 21                                            |                                                                                                         | ,                                                                                                                |                                                                                                |
| Client ID: ZZZZZZ                                                 | Batch ID: <b>45642</b>                          | TestNo: EPA 6020 EPA 3010A                                                                              | Analysis Date: 5/13/2014                                                                                         | SeqNo: 1783665                                                                                 |
| Client ID: ZZZZZZ Analyte                                         | Batch ID: <b>45642</b> Result                   | TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val                                                    | Analysis Date: 5/13/2014  %REC LowLimit HighLimit RPD Ref Val                                                    | SeqNo: <b>1783665</b> %RPD RPDLimit Qual                                                       |
| Client ID: ZZZZZZ Analyte Chromium                                | Batch ID: <b>45642</b> Result  2471.550         | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  25 10.00 2191                                    | Analysis Date: <b>5/13/2014</b> %REC LowLimit HighLimit RPD Ref Val  2810 75 125                                 | SeqNo: 1783665<br>%RPD RPDLimit Qual                                                           |
| Client ID: ZZZZZZ  Analyte  Chromium  Sample ID: N012512-001B-MSD | Batch ID: 45642  Result 2471.550  SampType: MSD | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  25 10.00 2191  TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: <b>5/13/2014</b> ***REC LowLimit HighLimit RPD Ref Val  2810 75 125  **Prep Date: <b>5/9/2014</b> | SeqNo: 1783665           %RPD         RPDLimit         Qual           S           RunNo: 93464 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 22-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-12-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 12:14:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-001

| Analyses               | Result       | MDL    | PQL  | Qual Units | b DF     | Date Analyzed      |
|------------------------|--------------|--------|------|------------|----------|--------------------|
| DISSOLVED METALS BY IC | P-MS         |        |      |            |          |                    |
|                        | EPA 3010A    |        | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A    | QC Batch: 45 | 642    |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Antimony               | ND           | 0.18   | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Arsenic                | 38           | 0.027  | 0.10 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Barium                 | 54           | 0.030  | 1.0  | μg/L       | 1        | 5/13/2014 12:46 PM |
| Beryllium              | ND           | 0.010  | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Cadmium                | ND           | 0.013  | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Cobalt                 | ND           | 0.017  | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Copper                 | ND           | 0.040  | 1.0  | μg/L       | 1        | 5/13/2014 12:46 PM |
| Lead                   | ND           | 0.011  | 1.0  | μg/L       | 1        | 5/13/2014 12:46 PM |
| Manganese              | ND           | 0.026  | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Molybdenum             | 11           | 0.15   | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Nickel                 | ND           | 0.032  | 1.0  | μg/L       | 1        | 5/13/2014 12:46 PM |
| Selenium               | 16           | 0.069  | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Silver                 | ND           | 0.094  | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Thallium               | ND           | 0.0080 | 0.50 | μg/L       | 1        | 5/13/2014 12:46 PM |
| Vanadium               | 16           | 0.16   | 1.0  | μg/L       | 1        | 5/13/2014 12:46 PM |
| Zinc                   | ND           | 0.23   | 10   | μg/L       | 1        | 5/13/2014 12:46 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012512-002

Client Sample ID: MW-127-198

**Collection Date:** 5/1/2014 7:00:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 1.3           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 03:09 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 03:09 PM |
| Molybdenum            | 5.8           | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 03:09 PM |
| Selenium              | 35            | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 03:09 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012512-003 Client Sample ID: MW-60-125-198

Print Date: 22-May-14

Collection Date: 5/1/2014 1:31:00 PM

Matrix: WATER

| Analyses               | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|------------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |       |      |            |          |                    |
|                        | EPA 3010A     |       | EPA  | A 6020     |          |                    |
| RunID: ICP7_140513A    | QC Batch: 456 | 41    |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic                | 1.5           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 03:14 PM |
| Manganese              | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 03:14 PM |
| Molybdenum             | 18            | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 03:14 PM |
| Selenium               | 5.7           | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 03:14 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012512-004 Client Sample ID: MW-66-165-198

Collection Date: 5/1/2014 10:32:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 1.2           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 03:20 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 03:20 PM |
| Molybdenum            | 5.6           | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 03:20 PM |
| Selenium              | 34            | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 03:20 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-69-195-198

**Lab Order:** N012512 **Collection Date:** 5/1/2014 8:52:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-005

| Analyses              | Result        | MDL       | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-----------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |           |      |            |          |                    |
|                       | EPA 3010A     | EPA 3010A |      | EPA 6020   |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 41        |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 2.3           | 0.027     | 0.10 | μg/L       | 1        | 5/13/2014 03:25 PM |
| Manganese             | ND            | 0.026     | 0.50 | μg/L       | 1        | 5/13/2014 03:25 PM |
| Molybdenum            | 84            | 0.15      | 0.50 | μg/L       | 1        | 5/13/2014 03:25 PM |
| Selenium              | 12            | 0.069     | 0.50 | μg/L       | 1        | 5/13/2014 03:25 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL Lab Order: N012512

Client Sample ID: MW-74-240-198
Collection Date: 5/1/2014 8:10:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02

Matrix: WATER

**Lab ID:** N012512-006

| Analyses              | Result        | MDL       | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-----------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |           |      |            |          |                    |
|                       | EPA 3010A     | EPA 3010A |      | EPA 6020   |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641       |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 12            | 0.027     | 0.10 | μg/L       | 1        | 5/13/2014 03:31 PM |
| Manganese             | ND            | 0.026     | 0.50 | μg/L       | 1        | 5/13/2014 05:05 PM |
| Molybdenum            | 48            | 0.15      | 0.50 | μg/L       | 1        | 5/13/2014 03:31 PM |
| Selenium              | 1.9           | 0.069     | 0.50 | μg/L       | 1        | 5/13/2014 03:31 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012512

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012512-009

Client Sample ID: MW-26-198

**Collection Date:** 5/5/2014 11:24:00 AM

Matrix: WATER

| Analyses              | Result        | MDL       | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-----------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |           |      |            |          |                    |
|                       | EPA 3010A     | EPA 3010A |      | EPA 6020   |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 41        |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 1.7           | 0.027     | 0.10 | μg/L       | 1        | 5/13/2014 03:36 PM |
| Manganese             | ND            | 0.026     | 0.50 | μg/L       | 1        | 5/13/2014 03:36 PM |
| Molybdenum            | 30            | 0.15      | 0.50 | μg/L       | 1        | 5/13/2014 03:36 PM |
| Selenium              | 49            | 0.069     | 0.50 | μg/L       | 1        | 5/13/2014 03:36 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012512

PG&E Topock, 423575.MP.02.GM.02

**Project:** 

Lab ID: N012512-010

Print Date: 22-May-14

Collection Date: 5/5/2014 1:48:00 PM

Matrix: WATER

Client Sample ID: MW-67-185-198

| Analyses                | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-------------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY ICF | P-MS          |       |      |            |          |                    |
|                         | EPA 3010A     |       | EPA  | A 6020     |          |                    |
| RunID: ICP7_140513A     | QC Batch: 456 | 41    |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic                 | 1.5           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 03:42 PM |
| Manganese               | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 03:42 PM |
| Molybdenum              | 8.9           | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 03:42 PM |
| Selenium                | 240           | 0.34  | 2.5  | μg/L       | 5        | 5/14/2014 04:40 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Lab Order: N012512

CH2M HILL Client Sample ID: MW-67-260-198
N012512 Collection Date: 5/5/2014 1:06:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012512-011

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 11            | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 03:59 PM |
| Manganese             | 58            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 03:59 PM |
| Molybdenum            | 72            | 0.76  | 2.5  | μg/L       | 5        | 5/14/2014 05:02 PM |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5        | 5/14/2014 05:02 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

Client Sample ID: MW-70BR-225-198

Collection Date: 5/5/2014 9:04:00 AM

### **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012512

**Project:** 

PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-012

| Analyses               | Result        | MDL   | POL  | Oual Units | DF       | Date Analyzed      |
|------------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I  |               |       |      | <b>Q</b>   |          |                    |
| DISSOLVED WIETALS BY I | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A    | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic                | 1.9           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 04:04 PM |
| Manganese              | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 04:04 PM |
| Molybdenum             | 17            | 0.76  | 2.5  | μg/L       | 5        | 5/14/2014 05:13 PM |
| Selenium               | 2.5           | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 04:04 PM |

Qualifiers: B Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012512

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012512-013

Client Sample ID: MW-128-198

Collection Date: 5/6/2014 8:30:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 1.8           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 04:10 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 04:10 PM |
| Molybdenum            | 20            | 0.76  | 2.5  | μg/L       | 5        | 5/14/2014 05:24 PM |
| Selenium              | 5.1           | 0.34  | 2.5  | μg/L       | 5        | 5/14/2014 05:24 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-58BR-198

**Lab Order:** N012512 **Collection Date:** 5/6/2014 11:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-015

Analyses Result MDL PQL Qual Units DF Date Analyzed

**DISSOLVED METALS BY ICP-MS** 

EPA 3010A EPA 6020

RunID: ICP7\_140513A QC Batch: 45641 PrepDate: 5/9/2014 Analyst: CEI

Arsenic 1.0 0.027 0.10 μg/L 1 5/13/2014 04:15 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

LIENT: CH2M HILL Client Sample ID: MW-64BR-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-64BR-198

 Lab Order:
 N012512
 Collection Date: 5/6/2014 2:05:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012512-016

Analyses Result MDL PQL Qual Units DF Date Analyzed

**DISSOLVED METALS BY ICP-MS** 

EPA 3010A EPA 6020

RunlD: ICP7\_140513A QC Batch: 45641 PrepDate: 5/9/2014 Analyst: CEI

Arsenic 2.9 0.027 0.10 μg/L 1 5/13/2014 04:21 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

Lab Order:

CLIENT: CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.GM.02

N012512

**Lab ID:** N012512-017

Client Sample ID: MW-67-225-198

**Collection Date:** 5/6/2014 8:32:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | POL  | Oual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I |               |       |      | <b>4</b>   |          |                    |
| DISSOLVED WIETALS BY  | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 3.1           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 04:26 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 04:26 PM |
| Molybdenum            | 37            | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 04:26 PM |
| Selenium              | 75            | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 04:26 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-68-240-198

**Lab Order:** N012512 **Collection Date:** 5/6/2014 7:38:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012512-018

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 1.9           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 04:32 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 04:32 PM |
| Molybdenum            | 20            | 0.76  | 2.5  | μg/L       | 5        | 5/14/2014 05:40 PM |
| Selenium              | 4.3           | 0.34  | 2.5  | μg/L       | 5        | 5/14/2014 05:40 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

NO Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL **Client Sample ID:** MW-20-070-198

Lab Order: N012512 Collection Date: 5/7/2014 10:17:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-019

| Analyses               | Result       | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |  |  |  |  |
|------------------------|--------------|-------|------|------------|----------|--------------------|--|--|--|--|
| DISSOLVED METALS BY IC | P-MS         |       |      |            |          |                    |  |  |  |  |
|                        | EPA 3010A    |       |      |            | EPA 6020 |                    |  |  |  |  |
| RunID: ICP7_140513A    | QC Batch: 45 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |  |  |  |  |
| Molybdenum             | 51           | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 04:37 PM |  |  |  |  |
| Selenium               | 5.0          | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 04:37 PM |  |  |  |  |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL Client Sample ID: MW-20-100-198

Lab Order: N012512 Collection Date: 5/7/2014 11:46:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

Lab ID: N012512-020

| Analyses               | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|------------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |       |      |            |          |                    |
|                        | EPA 3010A     |       |      | A 6020     |          |                    |
| RunID: ICP7_140513A    | QC Batch: 456 | 41    |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Molybdenum             | 4.1           | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 04:43 PM |
| Selenium               | 6.6           | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 04:43 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

## **ASSET Laboratories**

**Project:** 

**CLIENT:** CH2M HILL Lab Order: N012512

PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012512-022

Print Date: 22-May-14

Collection Date: 5/7/2014 8:23:00 AM

Matrix: WATER

Client Sample ID: MW-59-100-198

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 2.1           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 04:48 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 04:48 PM |
| Molybdenum            | 5.4           | 0.76  | 2.5  | μg/L       | 5        | 5/14/2014 06:13 PM |
| Selenium              | 4.0           | 0.34  | 2.5  | μg/L       | 5        | 5/15/2014 05:10 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 22-May-14

Client Sample ID: MW-62-110-198

## **ASSET Laboratories**

CLIENT: CH2M HILL Lab Order: N012512

N012512 Collection Date: 5/7/2014 1:50:00 PM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012512-023

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 6.0           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 05:10 PM |
| Manganese             | 71            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 05:10 PM |
| Molybdenum            | 48            | 0.15  | 0.50 | μg/L       | 1        | 5/13/2014 05:10 PM |
| Selenium              | 3.1           | 0.069 | 0.50 | μg/L       | 1        | 5/13/2014 05:10 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 22-May-14

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012512-024 **Client Sample ID:** MW-62-190-198

Collection Date: 5/7/2014 2:05:00 PM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 3.6           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 05:16 PM |
| Manganese             | 440           | 0.13  | 2.5  | μg/L       | 5        | 5/14/2014 06:30 PM |
| Molybdenum            | 61            | 0.76  | 2.5  | μg/L       | 5        | 5/14/2014 06:30 PM |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5        | 5/14/2014 06:30 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

## **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012512

PG&E Topock, 423575.MP.02.GM.02

**Project:** 

Lab ID: N012512-025

Print Date: 22-May-14

Collection Date: 5/7/2014 7:14:00 AM

Matrix: WATER

**Client Sample ID:** MW-66-230-198

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF       | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |          |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |          |                    |
| RunID: ICP7_140513A   | QC Batch: 456 | 641   |      | PrepDate:  | 5/9/2014 | Analyst: CEI       |
| Arsenic               | 8.5           | 0.027 | 0.10 | μg/L       | 1        | 5/13/2014 05:21 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1        | 5/13/2014 05:21 PM |
| Molybdenum            | 81            | 0.76  | 2.5  | μg/L       | 5        | 5/14/2014 06:35 PM |
| Selenium              | 11            | 0.34  | 2.5  | μg/L       | 5        | 5/14/2014 06:35 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 22-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012512

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| ` T             | T 10 1 6                                                                                                                                                                            | II ''            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 1 -12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SampType: MBLK  | -                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Batch ID: 45641 | TestNo: EPA                                                                                                                                                                         | 6020 EPA 3010A   | Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lysis Date: 5/13/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SeqNo: 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3534                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Result          | PQL SPK va                                                                                                                                                                          | alue SPK Ref Val | %REC Lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wLimit HighLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RPDLimit                                                                               | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ND              | 0.10                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND              | 0.50                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND              | 0.50                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND              | 0.50                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SampType: LCS   | TestCode: 6020_                                                                                                                                                                     | DIS Units: μg/L  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prep Date: 5/9/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RunNo: 934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Batch ID: 45641 | TestNo: EPA                                                                                                                                                                         | 6020 EPA 3010A   | Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lysis Date: 5/13/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SeqNo: 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3535                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Result          | PQL SPK va                                                                                                                                                                          | alue SPK Ref Val | %REC Lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wLimit HighLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RPDLimit                                                                               | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9.804           | 0.10 10                                                                                                                                                                             | .00 0            | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 97.695          | 0.50 10                                                                                                                                                                             | 0.0              | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.766           | 0.50 10                                                                                                                                                                             | .00 0            | 97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.731           | 0.50 10                                                                                                                                                                             | .00 0            | 97.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SampType: MS    | TestCode: 6020_                                                                                                                                                                     | DIS Units: μg/L  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prep Date: 5/9/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RunNo: 934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Batch ID: 45641 | TestNo: EPA                                                                                                                                                                         | 6020 EPA 3010A   | Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lysis Date: 5/13/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SeqNo: <b>178</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3563                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Result          | PQL SPK va                                                                                                                                                                          | alue SPK Ref Val | %REC Lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wLimit HighLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RPDLimit                                                                               | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11.125          | 0.10 10                                                                                                                                                                             | .00 1.325        | 98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 73.539          | 0.50 10                                                                                                                                                                             | 0.0              | 73.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 17.363          | 0.50 10                                                                                                                                                                             | .00 5.831        | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 46.074          | 0.50 10                                                                                                                                                                             | .00 35.40        | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SampType: MSD   | TestCode: 6020_                                                                                                                                                                     | DIS Units: μg/L  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prep Date: 5/9/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RunNo: 934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Batch ID: 45641 | TestNo: EPA                                                                                                                                                                         | 6020 EPA 3010A   | Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lysis Date: <b>5/13/201</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SeqNo: 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33564                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Result          | PQL SPK va                                                                                                                                                                          | alue SPK Ref Val | %REC Lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wLimit HighLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD Ref Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RPDLimit                                                                               | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                                                                                                                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | Result  ND ND ND ND RampType: LCS Batch ID: 45641 Result  9.804 97.695 9.766 9.731  RampType: MS Batch ID: 45641 Result  11.125 73.539 17.363 46.074  RampType: MSD Batch ID: 45641 | Result           | Batch ID: 45641         TestNo: EPA 6020         EPA 3010A           Result         PQL         SPK value         SPK Ref Val           ND         0.10         ND         0.50           ND         0.50         ND         0.50           ND         0.50         Units: μg/L           Batch ID: 45641         TestCode: 6020_DIS         Units: μg/L           Result         PQL         SPK value         SPK Ref Val           9.804         0.10         10.00         0           97.695         0.50         10.00         0           9.766         0.50         10.00         0           9.731         0.50         10.00         0           Batch ID: 45641         TestCode: 6020_DIS         Units: μg/L           Result         PQL         SPK value         SPK Ref Val           11.125         0.10         10.00         1.325           73.539         0.50         10.00         5.831           46.074         0.50         10.00         35.40    TestCode: 6020_DIS  Units: μg/L  EPA 3010A | Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Anal           Result         PQL         SPK value         SPK Ref Val         %REC         Lo           ND         0.10         ND         0.50         ND         0.50         ND         0.50           ND         0.50         ND         0.50         Units: μg/L         F         F           RampType: LCS         TestCode: 6020_DIS         Units: μg/L         F         F         F           Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Anal         Anal         REC         Lo         P         P         N         N         REC         Lo         P         P         N         N         N         REC         Lo         N         N         N         REC         Lo         N         N         N         REC         Lo         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <t< td=""><td>Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date:         5/13/201           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         High Limit           ND         0.10         ND         0.50         ND         0.50         ND         0.50           ND         0.50         ND         0.50         ND         0.50         Prep Date:         5/9/2014           Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date:         5/13/201           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         High Limit           9.804         0.10         10.00         0         98.0         85         115           97.695         0.50         100.0         0         97.7         85         115           9.731         0.50         10.00         0         97.3         85         115           sampType: MS         TestCode: 6020_DIS         Units: μg/L         Prep Date: 5/9/2014           Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date: 5/13/201           Result         PQL         SPK value         SPK Ref Val</td><td>Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date:         5/13/2014           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         High Limit         RPD Ref Val           ND         0.10         ND         0.50         ND         ND</td><td>  Batch ID: 45641   TestNo: EPA 6020   EPA 3010A   Analysis Date: 5/13/2014   SeqNo: 176    </td><td>Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date: 5/13/2014         SeqNo: 1783534           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           ND         0.50         0.50         ND         ND         0.50         ND         ND         0.50         ND         ND         0.50         ND         ND</td></t<> | Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date:         5/13/201           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         High Limit           ND         0.10         ND         0.50         ND         0.50         ND         0.50           ND         0.50         ND         0.50         ND         0.50         Prep Date:         5/9/2014           Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date:         5/13/201           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         High Limit           9.804         0.10         10.00         0         98.0         85         115           97.695         0.50         100.0         0         97.7         85         115           9.731         0.50         10.00         0         97.3         85         115           sampType: MS         TestCode: 6020_DIS         Units: μg/L         Prep Date: 5/9/2014           Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date: 5/13/201           Result         PQL         SPK value         SPK Ref Val | Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date:         5/13/2014           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         High Limit         RPD Ref Val           ND         0.10         ND         0.50         ND         ND | Batch ID: 45641   TestNo: EPA 6020   EPA 3010A   Analysis Date: 5/13/2014   SeqNo: 176 | Batch ID: 45641         TestNo: EPA 6020         EPA 3010A         Analysis Date: 5/13/2014         SeqNo: 1783534           Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         RPD Ref Val         %RPD         RPDLimit           ND         0.50         0.50         ND         ND         0.50         ND         ND         0.50         ND         ND         0.50         ND         ND |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 6020\_DIS

| Sample ID: N012512-002B-MSD | SampType: MSD   | TestCode: 6020_DIS |           | Units: µg/L | Prep Date: 5/9/2014      |          |           | 4           | RunNo: 934            |          |      |
|-----------------------------|-----------------|--------------------|-----------|-------------|--------------------------|----------|-----------|-------------|-----------------------|----------|------|
| Client ID: ZZZZZZ           | Batch ID: 45641 | TestNo: EPA 6020   |           | EPA 3010A   | Analysis Date: 5/13/2014 |          |           | 14          | SeqNo: <b>1783564</b> |          |      |
| Analyte                     | Result          | PQL                | SPK value | SPK Ref Val | %REC                     | LowLimit | HighLimit | RPD Ref Val | %RPD                  | RPDLimit | Qual |
| Manganese                   | 72.897          | 0.50               | 100.0     | 0           | 72.9                     | 75       | 125       | 73.54       | 0.877                 | 20       | S    |
| Molybdenum                  | 17.477          | 0.50               | 10.00     | 5.831       | 116                      | 75       | 125       | 17.36       | 0.654                 | 20       |      |
| Selenium                    | 48.356          | 0.50               | 10.00     | 35.40       | 130                      | 75       | 125       | 46.07       | 4.83                  | 20       | S    |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012512 **Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020\_DIS

| Sample ID: MB-45642 | SampType: MBLK  | TestCode: 6020_DIS |                            | Units: µg/L |      | Prep Da                  | ate: <b>5/9/201</b> | 4           | RunNo: 934 | <b>1</b> 51           | •    |  |
|---------------------|-----------------|--------------------|----------------------------|-------------|------|--------------------------|---------------------|-------------|------------|-----------------------|------|--|
| Client ID: PBW      | Batch ID: 45642 | TestNo             | TestNo: EPA 6020 EPA 3010A |             |      | Analysis Date: 5/13/2014 |                     |             |            | SeqNo: <b>1783509</b> |      |  |
| Analyte             | Result          | PQL                | SPK value                  | SPK Ref Val | %REC | LowLimit                 | HighLimit           | RPD Ref Val | %RPD       | RPDLimit              | Qual |  |
| Antimony            | ND              | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Arsenic             | ND              | 0.10               |                            |             |      |                          |                     |             |            |                       |      |  |
| Barium              | ND              | 1.0                |                            |             |      |                          |                     |             |            |                       |      |  |
| Beryllium           | ND              | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Cadmium             | ND              | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Cobalt              | 0.031           | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Copper              | 0.051           | 1.0                |                            |             |      |                          |                     |             |            |                       |      |  |
| Lead                | ND              | 1.0                |                            |             |      |                          |                     |             |            |                       |      |  |
| Manganese           | ND              | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Molybdenum          | ND              | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Nickel              | ND              | 1.0                |                            |             |      |                          |                     |             |            |                       |      |  |
| Selenium            | ND              | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Silver              | ND              | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Thallium            | 0.027           | 0.50               |                            |             |      |                          |                     |             |            |                       |      |  |
| Vanadium            | ND              | 1.0                |                            |             |      |                          |                     |             |            |                       |      |  |
| Zinc                | ND              | 10                 |                            |             |      |                          |                     |             |            |                       |      |  |

| Sample ID: LCS-45642 | SampType: LCS   | TestCo | de: <b>6020_DIS</b> | Units: µg/L | ·    |          |           | 4           | RunNo: <b>93451</b><br>SeqNo: <b>1783510</b> |          |      |
|----------------------|-----------------|--------|---------------------|-------------|------|----------|-----------|-------------|----------------------------------------------|----------|------|
| Client ID: LCSW      | Batch ID: 45642 | Testi  | No: <b>EPA 6020</b> | EPA 3010A   |      |          |           | 14          |                                              |          |      |
| Analyte              | Result          | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit | HighLimit | RPD Ref Val | %RPD                                         | RPDLimit | Qual |
| Antimony             | 10.241          | 0.50   | 10.00               | 0           | 102  | 85       | 115       |             |                                              |          |      |
| Arsenic              | 10.029          | 0.10   | 10.00               | 0           | 100  | 85       | 115       |             |                                              |          |      |
| Barium               | 105.503         | 1.0    | 100.0               | 0           | 106  | 85       | 115       |             |                                              |          |      |
| Beryllium            | 10.094          | 0.50   | 10.00               | 0           | 101  | 85       | 115       |             |                                              |          |      |
| Cadmium              | 10.391          | 0.50   | 10.00               | 0           | 104  | 85       | 115       |             |                                              |          |      |
| Cobalt               | 9.671           | 0.50   | 10.00               | 0           | 96.7 | 85       | 115       |             |                                              |          |      |
| Copper               | 9.931           | 1.0    | 10.00               | 0           | 99.3 | 85       | 115       |             |                                              |          |      |
| Lead                 | 10.452          | 1.0    | 10.00               | 0           | 105  | 85       | 115       |             |                                              |          |      |
| Manganese            | 96.944          | 0.50   | 100.0               | 0           | 96.9 | 85       | 115       |             |                                              |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values
- 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691
  - www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012512

TestCode: 6020\_DIS Project: PG&E Topock, 423575.MP.02.GM.02

| Sample ID: LCS-45642<br>Client ID: LCSW | SampType: LCS  Batch ID: 45642 |      | de: 6020_DIS<br>No: EPA 6020 |             | Prep Date: <b>5/9/2014</b> Analysis Date: <b>5/13/2014</b> |          |           |             | RunNo: <b>934</b><br>SeqNo: <b>178</b> |          |      |
|-----------------------------------------|--------------------------------|------|------------------------------|-------------|------------------------------------------------------------|----------|-----------|-------------|----------------------------------------|----------|------|
| Analyte                                 | Result                         | PQL  | SPK value                    | SPK Ref Val | %REC                                                       | LowLimit | HighLimit | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Molybdenum                              | 9.665                          | 0.50 | 10.00                        | 0           | 96.7                                                       | 85       | 115       |             |                                        |          |      |
| Nickel                                  | 9.965                          | 1.0  | 10.00                        | 0           | 99.6                                                       | 85       | 115       |             |                                        |          |      |
| Selenium                                | 9.375                          | 0.50 | 10.00                        | 0           | 93.7                                                       | 85       | 115       |             |                                        |          |      |
| Silver                                  | 10.006                         | 0.50 | 10.00                        | 0           | 100                                                        | 85       | 115       |             |                                        |          |      |
| Thallium                                | 10.481                         | 0.50 | 10.00                        | 0           | 105                                                        | 85       | 115       |             |                                        |          |      |
| Vanadium                                | 10.013                         | 1.0  | 10.00                        | 0           | 100                                                        | 85       | 115       |             |                                        |          |      |
| Zinc                                    | 107.410                        | 10   | 100.0                        | 0           | 107                                                        | 85       | 115       |             |                                        |          |      |

| Sample ID: N012512-001B-MS | SampType: MS    | TestCo | de: <b>6020_DIS</b> | Units: µg/L | Prep Date: 5/9/2014 |              | RunNo: 934        | 151         |                   |          |      |
|----------------------------|-----------------|--------|---------------------|-------------|---------------------|--------------|-------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45642 | Testi  | No: EPA 6020        | EPA 3010A   |                     | Analysis Dat | e: <b>5/13/20</b> | 14          | SeqNo: <b>178</b> | 33514    |      |
| Analyte                    | Result          | PQL    | SPK value           | SPK Ref Val | %REC                | LowLimit     | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Antimony                   | 10.165          | 0.50   | 10.00               | 0           | 102                 | 75           | 125               |             |                   |          |      |
| Arsenic                    | 48.064          | 0.10   | 10.00               | 38.39       | 96.8                | 75           | 125               |             |                   |          |      |
| Barium                     | 153.248         | 1.0    | 100.0               | 54.41       | 98.8                | 75           | 125               |             |                   |          |      |
| Beryllium                  | 12.966          | 0.50   | 10.00               | 0           | 130                 | 75           | 125               |             |                   |          | S    |
| Cadmium                    | 9.270           | 0.50   | 10.00               | 0           | 92.7                | 75           | 125               |             |                   |          |      |
| Cobalt                     | 7.948           | 0.50   | 10.00               | 0           | 79.5                | 75           | 125               |             |                   |          |      |
| Copper                     | 4.755           | 1.0    | 10.00               | 0           | 47.5                | 75           | 125               |             |                   |          | S    |
| Lead                       | 10.661          | 1.0    | 10.00               | 0           | 107                 | 75           | 125               |             |                   |          |      |
| Manganese                  | 50.858          | 0.50   | 100.0               | 0           | 50.9                | 75           | 125               |             |                   |          | S    |
| Molybdenum                 | 22.330          | 0.50   | 10.00               | 11.39       | 109                 | 75           | 125               |             |                   |          |      |
| Nickel                     | 9.195           | 1.0    | 10.00               | 0.06677     | 91.3                | 75           | 125               |             |                   |          |      |
| Selenium                   | 24.411          | 0.50   | 10.00               | 16.06       | 83.6                | 75           | 125               |             |                   |          |      |
| Silver                     | 9.103           | 0.50   | 10.00               | 0           | 91.0                | 75           | 125               |             |                   |          |      |
| Thallium                   | 10.997          | 0.50   | 10.00               | 0.04598     | 110                 | 75           | 125               |             |                   |          |      |
| Vanadium                   | 25.713          | 1.0    | 10.00               | 16.29       | 94.2                | 75           | 125               |             |                   |          |      |
| Zinc                       | 90.721          | 10     | 100.0               | 3.817       | 86.9                | 75           | 125               |             |                   |          |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118

P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020\_DIS

| Sample ID: N012512-001B-MSD | SampType: MSD   | TestCo | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat     | te: <b>5/9/201</b> | 4           | RunNo: 934 | 151      |      |
|-----------------------------|-----------------|--------|---------------------|-------------|------|--------------|--------------------|-------------|------------|----------|------|
| Client ID: ZZZZZZ           | Batch ID: 45642 | Test   | No: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Dat | te: <b>5/13/20</b> | 14          | SeqNo: 178 | 33515    |      |
| Analyte                     | Result          | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Antimony                    | 10.251          | 0.50   | 10.00               | 0           | 103  | 75           | 125                | 10.17       | 0.839      | 20       |      |
| Arsenic                     | 48.835          | 0.10   | 10.00               | 38.39       | 104  | 75           | 125                | 48.06       | 1.59       | 20       |      |
| Barium                      | 154.466         | 1.0    | 100.0               | 54.41       | 100  | 75           | 125                | 153.2       | 0.792      | 20       |      |
| Beryllium                   | 13.541          | 0.50   | 10.00               | 0           | 135  | 75           | 125                | 12.97       | 4.34       | 20       | S    |
| Cadmium                     | 9.283           | 0.50   | 10.00               | 0           | 92.8 | 75           | 125                | 9.270       | 0.140      | 20       |      |
| Cobalt                      | 7.908           | 0.50   | 10.00               | 0           | 79.1 | 75           | 125                | 7.948       | 0.516      | 20       |      |
| Copper                      | 4.572           | 1.0    | 10.00               | 0           | 45.7 | 75           | 125                | 4.755       | 3.93       | 20       | S    |
| Lead                        | 10.736          | 1.0    | 10.00               | 0           | 107  | 75           | 125                | 10.66       | 0.705      | 20       |      |
| Manganese                   | 49.095          | 0.50   | 100.0               | 0           | 49.1 | 75           | 125                | 50.86       | 3.53       | 20       | S    |
| Molybdenum                  | 22.750          | 0.50   | 10.00               | 11.39       | 114  | 75           | 125                | 22.33       | 1.86       | 20       |      |
| Nickel                      | 9.230           | 1.0    | 10.00               | 0.06677     | 91.6 | 75           | 125                | 9.195       | 0.377      | 20       |      |
| Selenium                    | 25.482          | 0.50   | 10.00               | 16.06       | 94.3 | 75           | 125                | 24.41       | 4.29       | 20       |      |
| Silver                      | 9.148           | 0.50   | 10.00               | 0           | 91.5 | 75           | 125                | 9.103       | 0.493      | 20       |      |
| Thallium                    | 10.984          | 0.50   | 10.00               | 0.04598     | 109  | 75           | 125                | 11.00       | 0.119      | 20       |      |
| Vanadium                    | 26.301          | 1.0    | 10.00               | 16.29       | 100  | 75           | 125                | 25.71       | 2.26       | 20       |      |
| Zinc                        | 89.901          | 10     | 100.0               | 3.817       | 86.1 | 75           | 125                | 90.72       | 0.909      | 20       |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

5/13/2014 11:05 AM

Print Date: 22-May-14

**ASSET Laboratories** 

Mercury

**CLIENT:** CH2M HILL Client Sample ID: MW-12-198

Lab Order: N012512 Collection Date: 5/1/2014 12:14:00 PM

0.015

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER Lab ID: N012512-001

ND

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE **EPA 7470A** 

RunID: AA1\_140513C QC Batch: 45659 PrepDate: 5/13/2014 Analyst: LCC

0.20

μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Date: 22-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012512

ANALYTICAL QC SUMMARY REPORT

TestCode: 7470\_W\_DISSPGE

**Project:** PG&E Topock, 423575.MP.02.GM.02

5.087

0.20

5.000

| Sample ID: MB-45659 Client ID: PBW   | SampType: MBLK Batch ID: 45659 | TestCode: <b>7470_W_DIS</b> Units: μg/L TestNo: <b>EPA 7470A</b> |                                                |                                              |  |  |  |  |
|--------------------------------------|--------------------------------|------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|--|--|--|--|
| Analyte                              | Result                         | PQL SPK value SPK Ref Val                                        | %REC LowLimit HighLimit RPD Ref Val            | %RPD RPDLimit Qual                           |  |  |  |  |
| Mercury                              | ND                             | 0.20                                                             |                                                |                                              |  |  |  |  |
| Sample ID: LCS-45659 Client ID: LCSW | SampType: LCS Batch ID: 45659  | TestCode: <b>7470_W_DIS</b> Units: μg/L TestNo: <b>EPA 7470A</b> | Prep Date: 5/13/2014  Analysis Date: 5/13/2014 | RunNo: <b>93439</b><br>SeqNo: <b>1782343</b> |  |  |  |  |
| Analyte                              | Result                         | PQL SPK value SPK Ref Val                                        | %REC LowLimit HighLimit RPD Ref Val            | %RPD RPDLimit Qual                           |  |  |  |  |

| Sample ID: N012512-001B-MS Client ID: ZZZZZZ | SampType: MS Batch ID: 45659 | TestCode: <b>7470_W_DIS</b> Units: µg/L TestNo: <b>EPA 7470A</b> |           |             |      | •        | te: 5/13/20 <sup>4</sup> |             | RunNo: <b>93439</b><br>SeqNo: <b>1782344</b> |          |      |
|----------------------------------------------|------------------------------|------------------------------------------------------------------|-----------|-------------|------|----------|--------------------------|-------------|----------------------------------------------|----------|------|
| Analyte                                      | Result                       | PQL                                                              | SPK value | SPK Ref Val | %REC | LowLimit | HighLimit                | RPD Ref Val | %RPD                                         | RPDLimit | Qual |
| Mercury                                      | 5.212                        | 0.20                                                             | 5.000     | 0           | 104  | 75       | 125                      |             |                                              |          |      |

0

102

85

115

| Sample ID: | : N012512-001B-MSD | SampType: MSD                                   | TestCod | de: <b>7470_W_</b> D | OIS Units: μg/L |             | Prep Dat           | te: <b>5/13/20</b> | 14             | RunNo: <b>934</b> | 39       |      |
|------------|--------------------|-------------------------------------------------|---------|----------------------|-----------------|-------------|--------------------|--------------------|----------------|-------------------|----------|------|
| Client ID: | ZZZZZZ             | Batch ID: <b>45659</b> TestNo: <b>EPA 7470A</b> |         |                      | ,               | Analysis Da | te: <b>5/13/20</b> | 14                 | SeqNo: 1782345 |                   |          |      |
| Analyte    |                    | Result                                          | PQL     | SPK value            | SPK Ref Val     | %REC        | LowLimit           | HighLimit          | RPD Ref Val    | %RPD              | RPDLimit | Qual |
| Mercury    |                    | 5.179                                           | 0.20    | 5.000                | 0               | 104         | 75                 | 125                | 5.212          | 0.627             | 20       |      |

#### Qualifiers:

Mercury

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

### **CHAIN OF CUSTODY RECORD**

5/8/2014 12:11:51 PM

Page 1 OF 2

| Crite & IWITIIL                                                                          | · Blaco             |       |                          |                                                |                                                |                                |                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                               |                                                              |      |                |                                              | 11.0111                                 |                                               |                                           |   | -                    | fine     |
|------------------------------------------------------------------------------------------|---------------------|-------|--------------------------|------------------------------------------------|------------------------------------------------|--------------------------------|--------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|--------------------------------------------------------------|------|----------------|----------------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------|---|----------------------|----------|
| Project Name Po<br>Location Topoc<br>Project Manager                                     | k                   |       | Container:<br>ervatives: | 250 ml<br>Poly<br>(NH4)2S<br>04/NH40<br>H, 4°C | 250 ml<br>Poly<br>(NH4)2S<br>04/NH40<br>H, 4°C | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 ml<br>Poly<br>HNO3,<br>4°C            | 250 ml<br>Poly<br>4°C         | * anal                                                       | ,    | 0              | 1.16                                         | 22 u                                    | u le l                                        | SHM                                       | 1 |                      |          |
| Sample Manager                                                                           |                     | ffy   | Filtered:                |                                                | Field                                          | Field                          | Field                          | Field                                     | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field                                     | NA                            | * "INAU                                                      | 4 00 | 401            | JITE                                         | De Ac a.                                |                                               | <i>3</i> ' '                              |   |                      | <u> </u> |
| _                                                                                        |                     |       | ling Time:               | L                                              | 28                                             | 180                            |                                | 180                                       | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180                                       | 28                            |                                                              |      |                |                                              |                                         |                                               |                                           |   |                      |          |
| Project Number Task Order Project 2014-GM Turnaround Time Shipping Date: 5 COC Number: 7 | P-198-Q2<br>10 Days | 3     | 1.02                     | Cr6 (E218.6) Field Filtered                    | Cr6 (SM3500B) Field Filtered                   | Arsenic (6020A) Field Filtered | Metals<br>Metals<br>Filtered   | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered<br>Mo,Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Specific Conductance (E120.1) |                                                              |      |                |                                              |                                         |                                               |                                           |   | Number of Containers | COMMENTS |
| MW-12-198                                                                                | 5/1/2014            | 12:14 | Water                    |                                                | х                                              |                                | х                              | Х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | Х                             | ŃΙ                                                           | )125 | 12-            | 1                                            | *************************************** | niir enemaar enemana maarasii.                |                                           |   | 3                    |          |
| MW-127-198                                                                               | 5/1/2014            | 7:00  | Water                    | х                                              |                                                | х                              |                                | х                                         | 011111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | х                                         | ж                             |                                                              | 1    | و سب           |                                              |                                         |                                               |                                           |   | 3                    |          |
| MW-60-125-198                                                                            | 5/1/2014            | 13:31 | Water                    | х                                              |                                                | х                              |                                | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х                                         | х                             |                                                              |      | - 5            | 3                                            |                                         |                                               |                                           |   | 3                    |          |
| MW-66-165-198                                                                            | 5/1/2014            | 10:32 | Water                    | Х                                              | -                                              | х                              |                                | х                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Х                                         | Х                             |                                                              |      | - 1            | 1                                            |                                         |                                               |                                           |   | 3                    |          |
| MW-69-195-198                                                                            | 5/1/2014            | 8:52  | Water                    | Х                                              |                                                | х                              | -                              | Х                                         | MO WALLES AND A SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND | х                                         | Х                             |                                                              |      | - <u>E</u>     | <u> </u>                                     |                                         |                                               |                                           |   | 3                    |          |
| MW-74-240-198                                                                            | 5/1/2014            | 8:10  | Water                    | Х                                              |                                                | х                              |                                | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | х                                         | Х                             |                                                              |      | -(             | P                                            |                                         | ***************************************       |                                           | - | 3                    |          |
| MW-221-198                                                                               | 5/5/2014            | 6:00  | Water                    | х                                              |                                                |                                |                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                               | NCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                       |      |                |                                              |                                         | <del>(**)</del>                               |                                           |   | 1                    |          |
| MW-222-198                                                                               | 5/5/2014            | 6:05  | Water                    | x                                              |                                                |                                |                                |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                               |                                                              | - D  | - 8            | 3                                            |                                         |                                               |                                           |   | 1                    |          |
| MW-26-198                                                                                | 5/5/2014            | 11:24 | Water                    |                                                | х                                              | Х                              |                                | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                         | Х                             | ······································                       |      | - 0            |                                              |                                         |                                               |                                           |   | 3                    |          |
| MW-67-185-198                                                                            | 5/5/2014            | 13:48 | Water                    | Х                                              |                                                | х                              |                                | Х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                         | Х                             |                                                              |      | <del>-</del> 1 | 0                                            |                                         |                                               |                                           |   | 3                    |          |
| MW-67-260-198                                                                            | 5/5/2014            | 13:06 | Water                    | x                                              |                                                | х                              |                                | Х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                         | Х                             |                                                              |      | ا مند          |                                              |                                         |                                               | gele kyndrocymolem Alektricy i kontorolim |   | 3                    |          |
| MW-70BR-225-198                                                                          | 5/5/2014            | 9:04  | Water                    | х                                              |                                                | Х                              |                                | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                         | Х                             |                                                              |      |                | 12                                           |                                         |                                               |                                           |   | 3                    |          |
| MW-128-198                                                                               | 5/6/2014            | 8:30  | Water                    | x                                              |                                                | х                              | <del> </del>                   | х                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Х                                         | Х                             | <del>maka mara</del> wasa <del>ya da sa sa sa sa sa sa</del> |      |                | 13                                           |                                         |                                               |                                           |   | 3                    |          |
| MW-223-198                                                                               | 5/6/2014            | 5:15  | Water                    | -                                              | +                                              |                                | <del> </del>                   | <del> </del>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                               |                                                              |      |                | <u>.                                    </u> |                                         | <del>aki empirakajakan para para para j</del> | -                                         |   | 1                    | <u> </u> |

|                 | // Signatures |     | Date/Ti  | ne   |
|-----------------|---------------|-----|----------|------|
| Approved by     | 11 1          |     | 5-8-14   | •    |
| Sampled by      |               |     | 1215     |      |
| Relinquished by | 1/1/2         | **  |          |      |
| Received by     |               |     | 08may 14 | 1215 |
| Relinquished    | 35 .          |     | osmaye   | 1448 |
| Received by     | AMAMAA PA     | tos | 5/8/14   | 1448 |
|                 | <u> </u>      |     |          |      |

**Shipping Details** 

Method of Shipment: courier

On Ice: (es) no 3.8/ Airbill No:

Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

ATTN:

Sample Custody and

Marlon

April 9 to May 15, 2014

Special Instructions:

Report Copy to Shawn Duffy (530) 229-3303 **CH2MHILL** 

### **CHAIN OF CUSTODY RECORD**

5/8/2014 12:11:51 PM

Page 2 OF 2

|                                                                                                         | - Chinase           |       |            |                              |                              |                                |                                                    |                                           |                                        |                                           |                               |                            |                      |        |
|---------------------------------------------------------------------------------------------------------|---------------------|-------|------------|------------------------------|------------------------------|--------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------|----------------------------|----------------------|--------|
| Project Name Po                                                                                         | =                   | k     | Container: | Poly                         | 250 ml<br>Poly               | 500 ml<br>Poly                 | 500 ml<br>Poly                                     | 500 ml<br>Poly                            | 500 mi<br>Poly                         | 500 ml<br>Poly                            | 250 ml<br>Poly                |                            |                      |        |
| L <b>ocation</b> Topoc<br>P <mark>roject Manager</mark>                                                 |                     | Pres  | ervatives: | (NH4)2S<br>O4/NH4O<br>H, 4°C | (NH4)2S<br>O4/NH4O<br>H, 4°C | HNO3,<br>4°C                   | HNO3,<br>4°C                                       | HNO3,<br>4°C                              | HNO3,<br>4°C                           | HNO3,<br>4°C                              | 4°C                           |                            |                      |        |
| Sample Manager                                                                                          | Shawn Du            | ffy   | Filtered:  | Field                        | Field                        | Field                          | Field                                              | Field                                     | Field                                  | Field                                     | NA                            |                            |                      |        |
|                                                                                                         |                     | Holo  | ding Time: | 28                           | 28                           | 180                            | 180                                                | 180                                       | 180                                    | 180                                       | 28                            |                            |                      |        |
| Project Number<br>Task Order<br>Project 2014-GM<br>Turnaround Time<br>Shipping Date: 5<br>COC Number: 7 | P-198-Q2<br>10 Days | s     | Matrix     | Cr6 (E218.6) Field Filtered  | Cr6 (SM3500B) Field Filtered | Arsenic (6020A) Field Filtered | Metals<br>(6010B/6020A/7470Adis) Field<br>Filtered | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Specific Conductance (E120.1) |                            | Number of Containers | СОММЕН |
| MW-58BR-198                                                                                             | 5/6/2014            | 11:18 | Water      | x                            |                              | Х                              |                                                    | Х                                         |                                        |                                           |                               | N012512-15                 | 2                    |        |
| MW-64BR-198                                                                                             | 5/6/2014            | 14:05 | Water      | х                            |                              | Х                              |                                                    | х                                         |                                        |                                           |                               | 1 -16                      | 2                    |        |
| MW-67-225-198                                                                                           | 5/6/2014            | 8:32  | Water      | x                            |                              | х                              |                                                    | х                                         |                                        | Х                                         | ×                             | -17                        | 3                    |        |
| MW-68-240-198                                                                                           | 5/6/2014            | 7:38  | Water      | x                            |                              | Х                              |                                                    | х                                         |                                        | Х                                         | х                             | -18                        | 3                    |        |
| MW-20-070-198                                                                                           | 5/7/2014            | 10:17 | Water      |                              | х                            |                                |                                                    | Х                                         | Х                                      |                                           | Х                             | -19                        | 3                    |        |
| MW-20-100-198                                                                                           | 5/7/2014            | 11:46 | Water      |                              | х                            |                                |                                                    | х                                         | х                                      | <u></u>                                   | Х                             | -20                        | 3                    |        |
| MW-224-198                                                                                              | 5/7/2014            | 5:30  | Water      | х                            |                              |                                | <del></del>                                        |                                           |                                        |                                           |                               | -21                        | 1                    |        |
| MW-59-100-198                                                                                           | 5/7/2014            | 8:23  | Water      | x                            |                              | Х                              |                                                    | х                                         |                                        | Х                                         | х                             | -22                        | 3                    |        |
| MW-62-110-198                                                                                           | 5/7/2014            | 13:50 | Water      | l x                          |                              | Х                              |                                                    | х                                         |                                        | Х                                         | Х                             | -23                        | 3                    |        |
| MW-62-190-198                                                                                           | 5/7/2014            | 14:05 | Water      | х                            |                              | х                              |                                                    | Х                                         |                                        | Х                                         | Х                             | - 24                       | 3                    |        |
| MW-66-230-198                                                                                           | 5/7/2014            | 7:14  | Water      | х                            |                              | Х                              |                                                    | х                                         |                                        | Х                                         | х                             | -25                        | 3                    |        |
| MW-225-198                                                                                              | 5/8/2014            | 9:45  | Water      | ×                            |                              |                                |                                                    |                                           |                                        |                                           |                               | V -26                      | 1                    |        |
|                                                                                                         | \$                  | 4     |            | <del>[</del>                 |                              |                                |                                                    |                                           |                                        | ***************************************   |                               | TOTAL NUMBER OF CONTAINERS | 66                   |        |

Approved by
Sampled by
Relinquished by
Received by
Rec

**Shipping Details** 

Method of Shipment: courier

On Ice: (6) no 3.8 1/2.6°C Airbill No: IP#2

Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

ATTN:

Special Instructions:
April 9 to May 15, 2014

Sample Custody

and Marion

Report Copy to Shawn i

Shawn Duffy (530) 229-3303

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

| If you have any questions or                               | r further inst                   | truction, please | e contact our Pr | oject Coord | linator at (702 | 2) 307-2659. |             |          |
|------------------------------------------------------------|----------------------------------|------------------|------------------|-------------|-----------------|--------------|-------------|----------|
| Cooler Received/Opened On:                                 | 5/8/2014                         |                  |                  |             | Workorder:      | N012512      |             |          |
| Rep sample Temp (Deg C):                                   | 3.8, 2.6                         |                  |                  |             | IR Gun ID:      | 2            |             |          |
| Temp Blank:                                                | ☐ Yes                            | <b>✓</b> No      |                  |             |                 |              |             |          |
| Carrier name:                                              | ATL                              |                  |                  |             |                 |              |             |          |
| Last 4 digits of Tracking No.:                             | Na                               |                  |                  | Packing     | Material Used:  | None         |             |          |
| Cooling process:                                           | <b>✓</b> Ice                     | ☐ Ice Pack       | Dry Ice          | Other       | ☐ None          |              |             |          |
|                                                            |                                  | Sa               | ımple Receipt    | : Checklist |                 |              |             |          |
| 1. Shipping container/cooler in                            | good conditio                    | n?               |                  |             | Yes 🗸           | No 🗆         | Not Present |          |
| 2. Custody seals intact, signed,                           | dated on shi                     | ppping containe  | r/cooler?        |             | Yes $\square$   | No 🗆         | Not Present | <b>✓</b> |
| 3. Custody seals intact on samp                            | ple bottles?                     |                  |                  |             | Yes $\square$   | No $\square$ | Not Present | ✓        |
| 4. Chain of custody present?                               |                                  |                  |                  |             | Yes 🗸           | No $\square$ |             |          |
| 5. Sampler's name present in C                             | OC?                              |                  |                  |             | Yes 🗸           | No $\square$ |             |          |
| 6. Chain of custody signed whe                             | n relinquishe                    | d and received?  |                  |             | Yes 🗹           | No 🗌         |             |          |
| 7. Chain of custody agrees with                            | sample labe                      | ls?              |                  |             | Yes 🗹           | No $\square$ |             |          |
| 8. Samples in proper container/                            | bottle?                          |                  |                  |             | Yes 🗹           | No 🗌         |             |          |
| 9. Sample containers intact?                               |                                  |                  |                  |             | Yes 🗸           | No $\square$ |             |          |
| 10. Sufficient sample volume for                           | or indicated te                  | est?             |                  |             | Yes 🗸           | No $\square$ |             |          |
| 11. All samples received within                            | holding time                     | ?                |                  |             | Yes 🗸           | No $\square$ |             |          |
| 12. Temperature of rep sample                              | or Temp Bla                      | nk within accept | able limit?      |             | Yes 🗸           | No 🗆         | NA          |          |
| 13. Water - VOA vials have zero                            | o headspace                      | ?                |                  |             | Yes             | No 🗆         | NA          | ✓        |
| 14. Water - pH acceptable upor<br>Example: pH > 12 for (CN | •                                | r Metals         |                  |             | Yes 🗹           | No 🗆         | NA          |          |
| 15. Did the bottle labels indicate                         | e correct pres                   | servatives used? |                  |             | Yes 🗸           | No $\square$ | NA          |          |
| 16. Were there Non-Conformar Wa                            | nce issues at<br>as Client notif |                  |                  |             | Yes  Yes        | No □<br>No □ | NA<br>NA    |          |
| Comments:                                                  |                                  |                  |                  |             |                 |              |             |          |

AC ACOTO 5/8/2014

Checklist Completed By

**199** 05

# **Sample Calculation**

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L = A * DF$ 

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For **N012512-025A** concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 6.7243 \* 1000 = 6724.3

Reporting result in two significant figures,

$$Cr^{+6}$$
,  $\mu g/L = 6700$ 

Narry 5/22/2014

# **Sample Calculation**

METHOD: EPA 3500-Cr B

TEST NAME: HEXAVALENT CHROMIUM BY Colorimetric Method

**MATRIX:** Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

Hexavalent Chromium,  $\mu g/L = A * DF$ 

where:

A = ug/L, UV-VIS Hexavalent Chromium calculated concentration DF = dilution factor

For **N012512-001A**, concentration in  $\mu$ g/L is calculated as follows:

Hexavalent Chromium,  $\mu$ g/L = 484.481\* 5 = 2422.405ug/L

Reporting results in two significant figures,

Hexavalent Chromium, μg/L = 2400 ug/L

## **Sample Calculation**

METHOD: EPA 6020

**TEST NAME:** Heavy Metals by ICP-MS

**MATRIX:** Aqueous

FORMULA:

Calculate the Selenium concentration, in ug/L, in the original sample as follows:

Selenium, ug/L = A \* DF \* PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N012512-002B, the concentration in ug/L is calculated as follows:

Selenium, ug/L = 35.395287916808 \* 1 \* (25/25)

= 35.395287916808

Reporting result in two significant figures,

Selenium, ug/L = 35

Many 5/22/2014

**ICP-Metals in Water Dilution Test Summary** 

Work Order No.: N012512 Test Method: EPA 6020 Analysis Date: 5/13/2014

Matrix: Water Batch No.: 45642

Instrument ID: ICP-MS #2 Agilent 7700x Instrument Description:

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Be, Sb, Cd, Co, Pb, Mo, Ni, Ag, Tl, V & Z. The calculated values are <25X RL. PS @ 2x passed criteria. Dilution test is not applicable to Cu & Mn. The calculated values are <25X RL. PS @ 5x passed criteria.

| Sample ID                       | Analyte    | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF   | %DIFFlimit |
|---------------------------------|------------|-------|-------------|-------|-------------|---------|------------|
| N012512-001B-DT 5X              | Antimony   | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 5X              | Arsenic    | μg/L  | 40.88488106 | PASS  | 38.38694402 | 6.51%   | 10         |
| N012512-001B-DT 5X              | Barium     | μg/L  | 57.15383384 | PASS  | 54.41467729 | 5.03%   | 10         |
| N012512-001B-DT 5X              | Beryllium  | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 5X              | Cadmium    | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 5X              | Cobalt     | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 5X              | Lead       | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 5X              | Molybdenum | μg/L  | 11.40401114 | NA    | 11.38553272 | 0.16%   | 10         |
| N012512-001B-DT 5X              | Nickel     | μg/L  | 0.3837519   | NA    | 0.066766084 | 474.77% | 10         |
| N012512-001B-DT 5X              | Selenium   | μg/L  | 16.60955383 | PASS  | 16.05534048 | 3.45%   | 10         |
| N012512-001B-DT 5X              | Silver     | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 5X              | Thallium   | μg/L  | 0.08702369  | NA    | 0.045977084 | 89.28%  | 10         |
| N012512-001B-DT 5X              | Vanadium   | μg/L  | 17.3939646  | NA    | 16.29048998 | 6.77%   | 10         |
| N012512-001B-DT 5X              | Zinc       | μg/L  | 5.264808024 | NA    | 3.816794679 | 37.94%  | 10         |
| N012512-001B-DT <del>25</del> X | Copper     | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 25X             | Manganese  | μg/L  | 0           | NA    | 0           |         | 10         |
| N012512-001B-DT 125X            | Chromium   | μg/L  | 2183.791932 | PASS  | 2190.846895 | 0.32%   | 10         |

Note: NA - Not applicable

5/22/2014

5х 5х

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012512

 Test Method:
 EPA 6020

 Analysis Date:
 5/13/2014

Matrix: Water
Batch No.: 45641

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to As, Mn & Mo. The calculated values are <25X RL. PS @ 2x passed criteria

Dilution test failed in Se.

| Sample ID          | Analyte    | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF  | %DIFFlimit |
|--------------------|------------|-------|-------------|-------|-------------|--------|------------|
| N012512-002B-DT 5X | Arsenic    | μg/L  | 1.312302816 | NA    | 1.325070456 | 0.96%  | 10         |
| N012512-002B-DT 5X | Manganese  | μg/L  | 0           | NA    | 0           |        | 10         |
| N012512-002B-DT 5X | Molybdenum | μg/L  | 9.48979154  | NA    | 5.831411233 | 62.74% | 10         |
| N012512-002B-DT 5X | Selenium   | μq/L  | 41.29245332 | FAIL  | 35.39528792 | 16.66% | 10         |

Note: NA - Not applicable

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012512

 Test Method:
 EPA 6020

 Analysis Date:
 5/14/2014

Matrix: Water
Batch No.: 45641

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

| Sample ID           | Analyte  | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF | %DIFFlimit |
|---------------------|----------|-------|-------------|-------|-------------|-------|------------|
| N012512-002B-DT 50X | Chromium | μg/L  | 785.0774732 | PASS  | 747.0091698 | 5.10% | 10         |

Note: NA - Not applicable

ASSET Laboratories

Date: 20-May-14

CLIENT: CH2M HILL

Work Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012512-002B-PS | SampType: <b>PS</b> | TestCod | de: <b>6020_DIS</b> | Units: µg/L Prep Date: |                                 |          | te:       | RunNo: <b>93451</b> |                       |          |      |  |
|----------------------------|---------------------|---------|---------------------|------------------------|---------------------------------|----------|-----------|---------------------|-----------------------|----------|------|--|
| Client ID: ZZZZZZ          | Batch ID: 45641     | TestN   | lo: <b>EPA 6020</b> | EPA 3010A              | EPA 3010A Analysis Date: 5/13/2 |          |           | 14                  | SeqNo: <b>1783562</b> |          |      |  |
| Analyte                    | Result              | PQL     | SPK value           | SPK Ref Val            | %REC                            | LowLimit | HighLimit | RPD Ref Val         | %RPD                  | RPDLimit | Qual |  |
| Arsenic                    | 21.843              | 0.20    | 20.00               | 1.325                  | 103                             | 80       | 120       |                     |                       |          |      |  |
| Manganese                  | 166.547             | 1.0     | 200.0               | 0                      | 83.3                            | 80       | 120       |                     |                       |          |      |  |
| Molybdenum                 | 29.584              | 1.0     | 20.00               | 5.831                  | 119                             | 80       | 120       |                     |                       |          |      |  |
| Selenium                   | 61.216              | 1.0     | 20.00               | 35.40                  | 129                             | 80       | 120       |                     |                       |          | S    |  |

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N012512

**Project:** PG&E Topock, 423575.MP.02.GM.02

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012512-001B-PS | SampType: <b>PS</b> | TestCod | de: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te:                |             | RunNo: 934        | <b>1</b> 51 |      |
|----------------------------|---------------------|---------|---------------------|-------------|------|-------------|--------------------|-------------|-------------------|-------------|------|
| Client ID: ZZZZZZ          | Batch ID: 45642     | TestN   | No: <b>EPA 6020</b> | EPA 3010A   |      | Analysis Da | te: <b>5/13/20</b> | 14          | SeqNo: <b>178</b> | 33513       |      |
| Analyte                    | Result              | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit    | Qual |
| Antimony                   | 21.221              | 1.0     | 20.00               | 0           | 106  | 80          | 120                |             |                   |             |      |
| Arsenic                    | 60.652              | 0.20    | 20.00               | 38.39       | 111  | 80          | 120                |             |                   |             |      |
| Barium                     | 264.087             | 2.0     | 200.0               | 54.41       | 105  | 80          | 120                |             |                   |             |      |
| Beryllium                  | 23.787              | 1.0     | 20.00               | 0           | 119  | 80          | 120                |             |                   |             |      |
| Cadmium                    | 19.664              | 1.0     | 20.00               | 0           | 98.3 | 80          | 120                |             |                   |             |      |
| Cobalt                     | 17.224              | 1.0     | 20.00               | 0           | 86.1 | 80          | 120                |             |                   |             |      |
| Copper                     | 14.440              | 2.0     | 20.00               | 0           | 72.2 | 75          | 125                |             |                   |             | S    |
| Lead                       | 21.936              | 2.0     | 20.00               | 0           | 110  | 80          | 120                |             |                   |             |      |
| Manganese                  | 142.213             | 1.0     | 200.0               | 0           | 71.1 | 75          | 125                |             |                   |             | S    |
| Molybdenum                 | 34.639              | 1.0     | 20.00               | 11.39       | 116  | 80          | 120                |             |                   |             |      |
| Nickel                     | 19.205              | 2.0     | 20.00               | 0.06677     | 95.7 | 80          | 120                |             |                   |             |      |
| Selenium                   | 35.579              | 1.0     | 20.00               | 16.06       | 97.6 | 80          | 120                |             |                   |             |      |
| Silver                     | 19.197              | 1.0     | 20.00               | 0           | 96.0 | 80          | 120                |             |                   |             |      |
| Thallium                   | 20.020              | 1.0     | 20.00               | 0.04598     | 99.9 | 80          | 120                |             |                   |             |      |
| Vanadium                   | 37.945              | 2.0     | 20.00               | 16.29       | 108  | 80          | 120                |             |                   |             |      |
| Zinc                       | 186.823             | 20      | 200.0               | 3.817       | 91.5 | 80          | 120                |             |                   |             |      |

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

**Project:** 

N012512 PG&E Topock, 423575.MP.02.GM.02 ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012512-002B-PS                     | SampType: PS                  |       | _                   | CrP Units: µg/L          |      | Prep Da |                                            | RunNo: 93 |                   |      |
|------------------------------------------------|-------------------------------|-------|---------------------|--------------------------|------|---------|--------------------------------------------|-----------|-------------------|------|
| Client ID: ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ | Batch ID: <b>45641</b> Result | TestN | lo: <b>EPA 6020</b> | EPA 3010A<br>SPK Ref Val | %REC | ,       | te: <b>5/14/2014</b> HighLimit RPD Ref Val | SeqNo: 17 | 84237<br>RPDLimit | Qual |
| Chromium                                       | 32.176                        | 10    | 100.0               | 747.0                    | -715 | 80      | 120                                        | 701 C     | N DEIIIII         | S    |

DT@50x is within criteria



5/22/2014

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012512-001B-PS Client ID: ZZZZZZ | SampType: PS  Batch ID: 45642 |     | le: <b>6020DIS_0</b> | CrP Units: μg/L<br>EPA 3010A |      | Prep Da<br>Analysis Da | te: <b>5/13/20</b> 1 | 14          | RunNo: 934<br>SegNo: 178 |          |      |
|----------------------------------------------|-------------------------------|-----|----------------------|------------------------------|------|------------------------|----------------------|-------------|--------------------------|----------|------|
| Analyte                                      | Result                        | PQL |                      | SPK Ref Val                  | %REC | ,                      |                      | RPD Ref Val | %RPD                     | RPDLimit | Qual |
| Chromium                                     | 2626.853                      | 25  | 250.0                | 2191                         | 174  | 80                     | 120                  |             |                          |          | S    |

DT @125x is within criteria

Nancy

5/22/2014

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

### Advanced Technology Laboratories, Inc.

### **Sample Calculation**

| Work Order No.: | N012512  |
|-----------------|----------|
| Test Method:    | EPA 7470 |
| Matrix:         | Aqueous  |

### FORMULA:

Calculate the Mercury concentration in ug/L in the original sample as follows:

where:

A = ug/L, instrument calculated concentration DF = dilution factor

For: **N012512-001B** 

The concentration in ug/L is calculated as follows:

Since result is less than reporting limit.

$$Hg = ND ug/L$$



May 29, 2014

Shawn P. Duffy CA-ELAP No.: 2676 CH2M HILL NV Cert. No.: NV-00922

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N012552

RE: PG&E Topock, 423575.MP.08.WM

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 14, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

glycom do for

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.08.WM CASE NARRATIVE

**Date:** 29-May-14

Lab Order: N012552

#### SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 218.6

Dilution was necessary for sample N012552-002 due to matrix interference. Sample was analyzed at lower dilution however matrix spike was not recovered indicating possible matrix interference. Sample was reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 6020\_Dissolved:

Because the results for total dissolved chromium (13.764 ug/L) and hexavalent chromium (17.236 ug/L) for sample N012552-002 (MW-38d-198) are discrepant, sample from both the total dissolved chromium and hexavalent chromium containers were redigested and analyzed for total dissolved chromium. The results from the redigested samples were 13.412 and 14.720 ug/L, respectively. Since these data confirmed the original result for total dissolved chromium, the original result is reported.

Dilution was necessary on sample N012552-002 due to failed Internal Standard when sample was analyzed at no dilution.

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.08.WM Work Order Sample Summary

**Date:** 29-May-14

Lab Order: N012552

Contract No: 2014-GMP-198B

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012552-001A  | MW-38s-198       | Water  | 5/14/2014 10:10:00 AM  | 5/14/2014     | 5/29/2014     |
| N012552-001B  | MW-38s-198       | Water  | 5/14/2014 10:10:00 AM  | 5/14/2014     | 5/29/2014     |
| N012552-001C  | MW-38s-198       | Water  | 5/14/2014 10:10:00 AM  | 5/14/2014     | 5/29/2014     |
| N012552-001D  | MW-38s-198       | Water  | 5/14/2014 10:10:00 AM  | 5/14/2014     | 5/29/2014     |
| N012552-001E  | MW-38s-198       | Water  | 5/14/2014 10:10:00 AM  | 5/14/2014     | 5/29/2014     |
| N012552-002A  | MW-38d-198       | Water  | 5/14/2014 1:18:00 PM   | 5/14/2014     | 5/29/2014     |
| N012552-002B  | MW-38d-198       | Water  | 5/14/2014 1:18:00 PM   | 5/14/2014     | 5/29/2014     |
| N012552-002C  | MW-38d-198       | Water  | 5/14/2014 1:18:00 PM   | 5/14/2014     | 5/29/2014     |
| N012552-002D  | MW-38d-198       | Water  | 5/14/2014 1:18:00 PM   | 5/14/2014     | 5/29/2014     |
| N012552-002E  | MW-38d-198       | Water  | 5/14/2014 1:18:00 PM   | 5/14/2014     | 5/29/2014     |

Print Date: 29-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-001

Client Sample ID: MW-38s-198

**Collection Date:** 5/14/2014 10:10:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**TOTAL FILTERABLE RESIDUE** 

SM2540C

 RunID:
 WETCHEM\_140515D
 QC Batch:
 45691
 PrepDate:
 5/15/2014
 Analyst:
 LCC

 Total Dissolved Solids (Residue,
 950
 10
 10
 mg/L
 1
 5/15/2014 01:23 PM

Filterable)

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 29-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-002

Client Sample ID: MW-38d-198

Collection Date: 5/14/2014 1:18:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**TOTAL FILTERABLE RESIDUE** 

SM2540C

 RunID:
 WETCHEM\_140515D
 QC Batch:
 45691
 PrepDate:
 5/15/2014
 Analyst:
 LCC

 Total Dissolved Solids (Residue,
 14000
 200
 200
 mg/L
 1
 5/15/2014 01:23 PM

Filterable)

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Date: 29-May-14

**CLIENT:** CH2M HILL Work Order: N012552

ANALYTICAL QC SUMMARY REPORT

PG&E Topock, 423575.MP.08.WM **Project:** 

|  | TestCode: | 160.1 | 2540C | $\mathbf{W}$ |
|--|-----------|-------|-------|--------------|
|--|-----------|-------|-------|--------------|

| Sample ID: MB-45691              | SampType: MBLK         | TestCode: 160.1_2540C_ Units: mg/L | Prep Date: 5/15/2014                | RunNo: <b>93490</b>   |
|----------------------------------|------------------------|------------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW                   | Batch ID: <b>45691</b> | TestNo: SM2540C                    | Analysis Date: <b>5/15/2014</b>     | SeqNo: <b>1784450</b> |
| Analyte                          | Result                 | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Total Dissolved Solids (Resid    | ue, Filtera ND         | 10                                 |                                     |                       |
| Sample ID: LCS-45691             | SampType: <b>LCS</b>   | TestCode: 160.1_2540C_ Units: mg/L | Prep Date: 5/15/2014                | RunNo: <b>93490</b>   |
| Client ID: LCSW                  | Batch ID: 45691        | TestNo: SM2540C                    | Analysis Date: 5/15/2014            | SeqNo: 1784451        |
| Analyte                          | Result                 | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Total Dissolved Solids (Resid    | ue, Filtera 959.000    | 10 1000 0                          | 95.9 80 120                         |                       |
| Sample ID: <b>N012552-001C-D</b> | UP SampType: DUP       | TestCode: 160.1_2540C_ Units: mg/L | Prep Date: 5/15/2014                | RunNo: <b>93490</b>   |
| Client ID: ZZZZZZ                | Batch ID: 45691        | TestNo: SM2540C                    | Analysis Date: 5/15/2014            | SeqNo: <b>1784453</b> |
| Analyte                          | Result                 | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Total Dissolved Solids (Resid    | ue, Filtera 959.000    | 10                                 | 953.0                               | 0.628 5               |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

5/16/2014 01:52 PM

Print Date: 29-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-38s-198

**Lab Order:** N012552 **Collection Date:** 5/14/2014 10:10:00 AM

0.030

2.1

Project: PG&E Topock, 423575.MP.08.WM Matrix: WATER

**Lab ID:** N012552-001

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140515A QC Batch: R93491 PrepDate: Analyst: RB Hexavalent Chromium 0.016 0.20 5/15/2014 10:38 AM μg/L 1 **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140516A QC Batch: 45694 PrepDate: 5/16/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 29-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-002

Client Sample ID: MW-38d-198

Collection Date: 5/14/2014 1:18:00 PM

Matrix: WATER

| Analyses               | Result         | MDL   | PQL | Qual Units | DF        | Date Analyzed      |
|------------------------|----------------|-------|-----|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC          |       |     |            |           |                    |
|                        |                |       | EPA | A 218.6    |           |                    |
| RunID: IC6_140515A     | QC Batch: R934 | 91    |     | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | 17             | 0.080 | 1.0 | μg/L       | 5         | 5/15/2014 01:19 PM |
| DISSOLVED METALS BY IC | P-MS           |       |     |            |           |                    |
|                        | EPA 3010A      |       | EP  | A 6020     |           |                    |
| RunID: ICP7_140516A    | QC Batch: 4569 | 4     |     | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Chromium               | 14             | 0.030 | 1.0 | μg/L       | 1         | 5/16/2014 01:58 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Date: 29-May-14

CLIENT: CH2M HILL Work Order: N012552

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.08.WM TestCode: 218.6\_WPGE

| Sample ID: MB-R934         | SampType: MBLK          | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                        | RunNo: 93491          |
|----------------------------|-------------------------|----------------------------------|-----------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014          | SeqNo: <b>1784461</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref V | al %RPD RPDLimit Qual |
| Hexavalent Chromium        | 0.038                   | 0.20                             |                                   |                       |
| Sample ID: LCS-R934        | 91 SampType: LCS        | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                        | RunNo: <b>93491</b>   |
| Client ID: LCSW            | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014          | SeqNo: <b>1784462</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref V | al %RPD RPDLimit Qual |
| Hexavalent Chromium        | 4.969                   | 0.20 5.000 0                     | 99.4 90 110                       |                       |
| Sample ID: N012552-        | OO1A-MS SampType: MS    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                        | RunNo: 93491          |
| Client ID: ZZZZZZ          | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014          | SeqNo: <b>1784464</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref V | al %RPD RPDLimit Qual |
| Hexavalent Chromium        | 2.461                   | 0.20 1.000 1.463                 | 99.8 90 110                       |                       |
| Sample ID: <b>N012553-</b> | DO6A-MS SampType: MS    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                        | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014          | SeqNo: <b>1784466</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref V | al %RPD RPDLimit Qual |
| Hexavalent Chromium        | 1.136                   | 0.20 1.000 0.1138                | 102 90 110                        |                       |
| Sample ID: N012553-        | D12A-MS SampType: MS    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                        | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014          | SeqNo: 1784470        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref V | al %RPD RPDLimit Qual |
| Hexavalent Chromium        | 0.968                   | 0.20 1.000 0                     | 96.8 90 110                       |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.08.WM TestCode: 218.6\_WPGE

| Sample ID: N012553-013A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93491</b>   |
|-----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: 1784472        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.006                   | 0.20 1.000 0                     | 101 90 110                          |                       |
| Sample ID: N012552-002A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: 1784474        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 42.214                  | 1.0 25.00 17.24                  | 99.9 90 110                         |                       |
| Sample ID: N012552-001A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: 1784475        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.466                   | 0.20                             | 1.463                               | 0.178 20              |
| Sample ID: N012552-001A-MSD | SampType: MSD           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: 1784476        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 2.430                   | 0.20 1.000 1.463                 | 96.6 90 110 2.461                   | 1.28 20               |
| Sample ID: N012553-007A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784480</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 5.799                   | 1.0 5.000 0.6205                 | 104 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.08.WM TestCode: 218.6\_WPGE

| Sample ID: N012553-008A-MS        | SampType: MS            | TestCode | e: <b>218.6_WP</b>  | GE Units: μg/L |      | Prep Da     | te:                  | RunNo: 934 | 191      |      |
|-----------------------------------|-------------------------|----------|---------------------|----------------|------|-------------|----------------------|------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: R93491        | TestNo   | o: <b>EPA 218.6</b> |                |      | Analysis Da | te: <b>5/15/2014</b> | SeqNo: 178 | 34482    |      |
| Analyte                           | Result                  | PQL      | SPK value           | SPK Ref Val    | %REC | LowLimit    | HighLimit RPD Ref Va | ıl %RPD    | RPDLimit | Qual |
| Hexavalent Chromium               | 5.447                   | 1.0      | 5.000               | 0              | 109  | 90          | 110                  |            |          |      |
| Sample ID: <b>N012553-005A-MS</b> | SampType: MS            | TestCode | e: <b>218.6_WP</b>  | GE Units: μg/L |      | Prep Da     | te:                  | RunNo: 934 | 191      |      |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93491</b> | TestNo   | o: <b>EPA 218.6</b> |                |      | Analysis Da | te: <b>5/15/2014</b> | SeqNo: 178 | 34484    |      |
| Analyte                           | Result                  | PQL      | SPK value           | SPK Ref Val    | %REC | LowLimit    | HighLimit RPD Ref Va | ıl %RPD    | RPDLimit | Qual |
| Hexavalent Chromium               | 19714.400               | 400      | 10000               | 9965           | 97.5 | 90          | 110                  |            | -        |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.08.WM TestCode: 6020DIS\_CrPGE

| Sample ID: MB-45694                                            | SampType: MBLK                                 | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                                    | Prep Date: 5/16/2014                                                                                          | RunNo: <b>93509</b>                                                              |
|----------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Client ID: PBW                                                 | Batch ID: 45694                                | TestNo: EPA 6020 EPA 3010A                                                                                                                                                           | Analysis Date: 5/16/2014                                                                                      | SeqNo: <b>1785267</b>                                                            |
| Analyte                                                        | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                           | %RPD RPDLimit Qual                                                               |
| Chromium                                                       | ND                                             | 1.0                                                                                                                                                                                  |                                                                                                               |                                                                                  |
| Sample ID: LCS-45694                                           | SampType: <b>LCS</b>                           | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                                    | Prep Date: 5/16/2014                                                                                          | RunNo: <b>93509</b>                                                              |
| Client ID: LCSW                                                | Batch ID: 45694                                | TestNo: EPA 6020 EPA 3010A                                                                                                                                                           | Analysis Date: 5/16/2014                                                                                      | SeqNo: <b>1785268</b>                                                            |
| Analyte                                                        | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                           | %RPD RPDLimit Qual                                                               |
| Chromium                                                       | 9.659                                          | 1.0 10.00 0                                                                                                                                                                          | 96.6 85 115                                                                                                   |                                                                                  |
|                                                                |                                                |                                                                                                                                                                                      |                                                                                                               |                                                                                  |
| Sample ID: N012552-001B-MS                                     | SampType: MS                                   | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                                    | Prep Date: 5/16/2014                                                                                          | RunNo: <b>93509</b>                                                              |
| Sample ID: N012552-001B-MS Client ID: ZZZZZZ                   | SampType: MS Batch ID: 45694                   | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A                                                                                                                         | Prep Date: 5/16/2014  Analysis Date: 5/16/2014                                                                | RunNo: 93509<br>SeqNo: 1785285                                                   |
| ,                                                              | 1 31                                           |                                                                                                                                                                                      |                                                                                                               |                                                                                  |
| Client ID: ZZZZZZ                                              | Batch ID: <b>45694</b>                         | TestNo: EPA 6020 EPA 3010A                                                                                                                                                           | Analysis Date: 5/16/2014                                                                                      | SeqNo: <b>1785285</b>                                                            |
| Client ID: ZZZZZZ Analyte                                      | Batch ID: <b>45694</b> Result  11.118          | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                                                                                                | Analysis Date: 5/16/2014  %REC LowLimit HighLimit RPD Ref Val                                                 | SeqNo: <b>1785285</b>                                                            |
| Client ID: ZZZZZZ Analyte Chromium                             | Batch ID: <b>45694</b> Result  11.118          | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 2.100                                                                                                               | Analysis Date: 5/16/2014  %REC LowLimit HighLimit RPD Ref Val  90.2 75 125                                    | SeqNo: 1785285<br>%RPD RPDLimit Qual                                             |
| Client ID: ZZZZZZ Analyte Chromium Sample ID: N012552-001B-MSD | Batch ID: 45694  Result  11.118  SampType: MSD | TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         2.100           TestCode: 6020DIS_CrP         Units: μg/L | Analysis Date: <b>5/16/2014</b> %REC LowLimit HighLimit RPD Ref Val  90.2 75 125  Prep Date: <b>5/16/2014</b> | SeqNo: 1785285         %RPD         RPDLimit         Qual           RunNo: 93509 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 29-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-001

Client Sample ID: MW-38s-198

**Collection Date:** 5/14/2014 10:10:00 AM

Matrix: WATER

| Analyses                           | Result I       | MDL | PQL | Qual   | Units | DF | Date Analyzed |
|------------------------------------|----------------|-----|-----|--------|-------|----|---------------|
| ALKALINITY, SPECIATED              |                |     |     |        |       |    |               |
|                                    |                |     | SM  | 2320 B |       |    |               |
| RunID: WETCHEM_140516D             | QC Batch: R934 | 95  |     | PrepDa | ate:  |    | Analyst: LCC  |
| Alkalinity, Bicarbonate (As CaCO3) | 190            | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |
| Alkalinity, Carbonate (As CaCO3)   | ND             | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |
| Alkalinity, Hydroxide (As CaCO3)   | ND             | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |
| Alkalinity, Total (As CaCO3)       | 190            | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 29-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-002

Client Sample ID: MW-38d-198

**Collection Date:** 5/14/2014 1:18:00 PM

Matrix: WATER

| Analyses                           | Result         | MDL | PQL | Qual   | Units | DF | Date Analyzed |
|------------------------------------|----------------|-----|-----|--------|-------|----|---------------|
| ALKALINITY, SPECIATED              |                |     |     |        |       |    |               |
|                                    |                |     | SM  | 2320 B |       |    |               |
| RunID: WETCHEM_140516D             | QC Batch: R934 | 495 |     | PrepDa | ate:  |    | Analyst: LCC  |
| Alkalinity, Bicarbonate (As CaCO3) | 31             | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |
| Alkalinity, Carbonate (As CaCO3)   | ND             | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |
| Alkalinity, Hydroxide (As CaCO3)   | ND             | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |
| Alkalinity, Total (As CaCO3)       | 31             | 1.2 | 5.0 |        | mg/L  | 1  | 5/16/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Date: 29-May-14

**CLIENT:** CH2M HILL Work Order: N012552

# ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 423575.MP.08.WM

| TestCode: | 2320 | $\mathbf{W}$ | SP |  |
|-----------|------|--------------|----|--|
|-----------|------|--------------|----|--|

| Sample ID: LCS-R93495             | SampType: LCS           | TestCoo | de: <b>2320_W_S</b> | P Units: mg/L  |      | Prep Da     | te:          |             | RunNo: 93 | 495      |      |
|-----------------------------------|-------------------------|---------|---------------------|----------------|------|-------------|--------------|-------------|-----------|----------|------|
| Client ID: LCSW                   | Batch ID: R93495        | TestN   | No: SM 2320 E       | 3              |      | Analysis Da | ite: 5/16/20 | 14          | SeqNo: 17 | 84527    |      |
| Analyte                           | Result                  | PQL     | SPK value           | SPK Ref Val    | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Alkalinity, Bicarbonate (As CaCC  | 99.558                  | 5.0     | 100.0               | 0              | 99.6 | 85          | 115          |             |           |          |      |
| Alkalinity, Total (As CaCO3)      | 103.982                 | 5.0     | 100.0               | 0              | 104  | 85          | 115          |             |           |          |      |
| Sample ID: MB-R93495              | SampType: MBLK          | TestCod | de: <b>2320_W_S</b> | SP Units: mg/L |      | Prep Da     | te:          |             | RunNo: 93 | 495      |      |
| Client ID: PBW                    | Batch ID: <b>R93495</b> | TestN   | No: SM 2320 E       | 3              |      | Analysis Da | ite: 5/16/20 | 14          | SeqNo: 17 | 84528    |      |
| Analyte                           | Result                  | PQL     | SPK value           | SPK Ref Val    | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Alkalinity, Bicarbonate (As CaCC  | 03) 2.212               | 5.0     |                     |                |      |             |              |             |           |          |      |
| Alkalinity, Carbonate (As CaCO    | 3) ND                   | 5.0     |                     |                |      |             |              |             |           |          |      |
| Alkalinity, Hydroxide (As CaCO3   | ) ND                    | 5.0     |                     |                |      |             |              |             |           |          |      |
| Alkalinity, Total (As CaCO3)      | 2.212                   | 5.0     |                     |                |      |             |              |             |           |          |      |
| Sample ID: N012552-001C-DUF       | SampType: <b>DUP</b>    | TestCod | de: <b>2320_W_S</b> | SP Units: mg/L |      | Prep Da     | te:          |             | RunNo: 93 | 495      |      |
| Client ID: ZZZZZZ                 | Batch ID: R93495        | TestN   | No: SM 2320 E       | 3              |      | Analysis Da | ite: 5/16/20 | 14          | SeqNo: 17 | 84530    |      |
| Analyte                           | Result                  | PQL     | SPK value           | SPK Ref Val    | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD      | RPDLimit | Qua  |
| Alkalinity, Bicarbonate (As CaCC  | 03) 190.265             | 5.0     |                     |                |      |             |              | 190.3       | 0         | 30       |      |
| Alkalinity, Carbonate (As CaCO3   | 3) ND                   | 5.0     |                     |                |      |             |              | 0           | 0         | 30       |      |
| Alkalinity, Hydroxide (As CaCO3   | ) ND                    | 5.0     |                     |                |      |             |              | 0           | 0         | 30       |      |
| Alkalinity, Total (As CaCO3)      | 190.265                 | 5.0     |                     |                |      |             |              | 190.3       | 0         | 30       |      |
| Sample ID: <b>N012552-002C-MS</b> | SampType: MS            | TestCod | de: <b>2320_W_S</b> | P Units: mg/L  |      | Prep Da     | te:          |             | RunNo: 93 | 495      |      |
| Client ID: ZZZZZZ                 | Batch ID: R93495        | TestN   | No: SM 2320 E       | 3              |      | Analysis Da | ite: 5/16/20 | 14          | SeqNo: 17 | 84532    |      |
| Analyte                           | Result                  | PQL     | SPK value           | SPK Ref Val    | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Alkalinity, Bicarbonate (As CaCC  | 03) 128.319             | 5.0     | 100.0               | 30.97          | 97.3 | 75          | 125          | _           |           |          |      |
|                                   | 128.319                 | 5.0     | 100.0               | 30.97          | 97.3 | 75          | 125          |             |           |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.08.WM TestCode: 2320\_W\_SP

| Sample ID: N012552-002C-MSD        | SampType: <b>MSD</b>    | TestCod | de: <b>2320_W_S</b> | P Units: mg/L |      | Prep Dat    | te:                |             | RunNo: 934 | 195      |      |
|------------------------------------|-------------------------|---------|---------------------|---------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: ZZZZZZ                  | Batch ID: <b>R93495</b> | TestN   | No: SM 2320 E       | 3             |      | Analysis Da | te: <b>5/16/20</b> | 14          | SeqNo: 178 | 34533    |      |
| Analyte                            | Result                  | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Alkalinity, Bicarbonate (As CaCO3) | 128.319                 | 5.0     | 100.0               | 30.97         | 97.3 | 75          | 125                | 128.3       | 0          | 20       |      |
| Alkalinity, Total (As CaCO3)       | 128.319                 | 5.0     | 100.0               | 30.97         | 97.3 | 75          | 125                | 128.3       | 0          | 20       |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 29-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-001

Client Sample ID: MW-38s-198

**Collection Date:** 5/14/2014 10:10:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

NITRATE/NITRITE-N BY CADMIUM REDUCTION

SM4500-NO3F

 RunID:
 WETCHEM\_140527C
 QC Batch:
 R93602
 PrepDate:
 Analyst:
 PS

 Nitrate/Nitrite as N
 0.57
 0.022
 0.050
 mg/L
 1
 5/27/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 29-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-002

Client Sample ID: MW-38d-198

Collection Date: 5/14/2014 1:18:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

NITRATE/NITRITE-N BY CADMIUM REDUCTION

SM4500-NO3F

 RunID:
 WETCHEM\_140527C
 QC Batch:
 R93602
 PrepDate:
 Analyst:
 PS

 Nitrate/Nitrite as N
 0.087
 0.022
 0.050
 mg/L
 1
 5/27/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories Date:** 29-May-14

**CLIENT:** CH2M HILL Work Order: N012552

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.08.WM TestCode: 4500N03F\_W

| Sample ID: MB-R93602                                                          | SampType: MBLK                  | TestCode: 4500N03F_W Units: mg/L                                                                                                                       | Prep Date:                                                                                                                                               | RunNo: 93602                                       |
|-------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Client ID: PBW                                                                | Batch ID: R93602                | TestNo: <b>SM4500-NO3</b>                                                                                                                              | Analysis Date: 5/27/2014                                                                                                                                 | SeqNo: <b>1788430</b>                              |
| Analyte                                                                       | Result                          | PQL SPK value SPK Ref Val                                                                                                                              | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                                 |
| Nitrate/Nitrite as N                                                          | ND                              | 0.050                                                                                                                                                  |                                                                                                                                                          |                                                    |
| Sample ID: LCS-R93602                                                         | SampType: LCS                   | TestCode: 4500N03F_W Units: mg/L                                                                                                                       | Prep Date:                                                                                                                                               | RunNo: 93602                                       |
| Client ID: LCSW                                                               | Batch ID: R93602                | TestNo: <b>SM4500-NO3</b>                                                                                                                              | Analysis Date: 5/27/2014                                                                                                                                 | SeqNo: 1788431                                     |
| Analyte                                                                       | Result                          | PQL SPK value SPK Ref Val                                                                                                                              | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                                 |
| Nitrate/Nitrite as N                                                          | 0.959                           | 0.050 1.000 0                                                                                                                                          | 95.9 85 115                                                                                                                                              |                                                    |
|                                                                               |                                 |                                                                                                                                                        |                                                                                                                                                          |                                                    |
| Sample ID: <b>N012552-001D-MS</b>                                             | SampType: MS                    | TestCode: 4500N03F_W Units: mg/L                                                                                                                       | Prep Date:                                                                                                                                               | RunNo: <b>93602</b>                                |
| Sample ID: N012552-001D-MS Client ID: ZZZZZZ                                  | SampType: MS Batch ID: R93602   | TestCode: 4500N03F_W Units: mg/L TestNo: SM4500-NO3                                                                                                    | Prep Date: Analysis Date: 5/27/2014                                                                                                                      | RunNo: 93602<br>SeqNo: 1788439                     |
| •                                                                             |                                 |                                                                                                                                                        | •                                                                                                                                                        |                                                    |
| Client ID: ZZZZZZ                                                             | Batch ID: <b>R93602</b>         | TestNo: <b>SM4500-NO3</b>                                                                                                                              | Analysis Date: <b>5/27/2014</b>                                                                                                                          | SeqNo: <b>1788439</b>                              |
| Client ID: ZZZZZZ Analyte                                                     | Batch ID: R93602<br>Result      | TestNo: SM4500-NO3 PQL SPK value SPK Ref Val                                                                                                           | Analysis Date: 5/27/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                            | SeqNo: <b>1788439</b>                              |
| Client ID: ZZZZZZ Analyte Nitrate/Nitrite as N                                | Batch ID: R93602  Result  1.619 | TestNo: <b>SM4500-NO3</b> PQL SPK value SPK Ref Val  0.050 1.000 0.5706                                                                                | Analysis Date: <b>5/27/2014</b> %REC LowLimit HighLimit RPD Ref Val  105 85 115                                                                          | SeqNo: 1788439<br>%RPD RPDLimit Qual               |
| Client ID: ZZZZZZ  Analyte  Nitrate/Nitrite as N  Sample ID: N012552-001D-MSD | Result 1.619 SampType: MSD      | TestNo: SM4500-NO3           PQL         SPK value         SPK Ref Val           0.050         1.000         0.5706   TestCode: 4500N03F_W Units: mg/L | Analysis Date: 5/27/2014           %REC         LowLimit         HighLimit         RPD Ref Val           105         85         115           Prep Date: | SeqNo: 1788439<br>%RPD RPDLimit Qual  RunNo: 93602 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 29-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-001

Client Sample ID: MW-38s-198

**Collection Date:** 5/14/2014 10:10:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140516A   | QC Batch: 456 | 694   |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Arsenic               | 11            | 0.027 | 0.10 | μg/L       | 1         | 5/16/2014 01:52 PM |
| Manganese             | 220           | 0.13  | 2.5  | μg/L       | 5         | 5/16/2014 03:17 PM |
| Molybdenum            | 40            | 0.15  | 0.50 | μg/L       | 1         | 5/16/2014 01:52 PM |
| Selenium              | ND            | 0.069 | 0.50 | μg/L       | 1         | 5/16/2014 01:52 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 29-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012552

**Project:** PG&E Topock, 423575.MP.08.WM

**Lab ID:** N012552-002

Client Sample ID: MW-38d-198

**Collection Date:** 5/14/2014 1:18:00 PM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140516A   | QC Batch: 456 | 694   |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Arsenic               | 6.5           | 0.027 | 0.10 | μg/L       | 1         | 5/16/2014 01:58 PM |
| Manganese             | 160           | 0.026 | 0.50 | μg/L       | 1         | 5/16/2014 01:58 PM |
| Molybdenum            | 85            | 0.76  | 2.5  | μg/L       | 5         | 5/20/2014 12:33 PM |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5         | 5/20/2014 12:33 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Date: 29-May-14

**CLIENT:** CH2M HILL Work Order: N012552

## ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.08.WM

| TestCode:  | 6020     | DIC   |  |
|------------|----------|-------|--|
| resit one. | 1111/21/ | 1/1/5 |  |

| Sample ID: MB-45694         | SampType: MBLK       | TestCode: 60 | 20_DIS  | Units: µg/L |      | Prep Da     | te: <b>5/16/2</b> 0 | 14          | RunNo: 93  | 509      |      |
|-----------------------------|----------------------|--------------|---------|-------------|------|-------------|---------------------|-------------|------------|----------|------|
| Client ID: PBW              | Batch ID: 45694      | TestNo: EI   | PA 6020 | EPA 3010A   |      | Analysis Da | te: <b>5/16/2</b> 0 | 114         | SeqNo: 178 | 35130    |      |
| Analyte                     | Result               | PQL SP       | K value | SPK Ref Val | %REC | LowLimit    | HighLimit           | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Arsenic                     | ND                   | 0.10         |         |             |      |             |                     |             |            |          |      |
| Manganese                   | ND                   | 0.50         |         |             |      |             |                     |             |            |          |      |
| Molybdenum                  | ND                   | 0.50         |         |             |      |             |                     |             |            |          |      |
| Selenium                    | ND                   | 0.50         |         |             |      |             |                     |             |            |          |      |
| Sample ID: LCS-45694        | SampType: <b>LCS</b> | TestCode: 60 | 20_DIS  | Units: µg/L |      | Prep Da     | te: <b>5/16/2</b> 0 | )14         | RunNo: 93  | 509      |      |
| Client ID: LCSW             | Batch ID: 45694      | TestNo: EI   | PA 6020 | EPA 3010A   |      | Analysis Da | te: <b>5/16/2</b> 0 | 14          | SeqNo: 178 | 35131    |      |
| Analyte                     | Result               | PQL SP       | K value | SPK Ref Val | %REC | LowLimit    | HighLimit           | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Arsenic                     | 9.840                | 0.10         | 10.00   | 0           | 98.4 | 85          | 115                 |             |            |          |      |
| Manganese                   | 99.171               | 0.50         | 100.0   | 0           | 99.2 | 85          | 115                 |             |            |          |      |
| Molybdenum                  | 9.819                | 0.50         | 10.00   | 0           | 98.2 | 85          | 115                 |             |            |          |      |
| Selenium                    | 9.624                | 0.50         | 10.00   | 0           | 96.2 | 85          | 115                 |             |            |          |      |
| Sample ID: N012552-001B-MS  | SampType: MS         | TestCode: 60 | 20_DIS  | Units: µg/L |      | Prep Da     | te: <b>5/16/2</b> 0 | )14         | RunNo: 93  | 509      |      |
| Client ID: ZZZZZZ           | Batch ID: 45694      | TestNo: El   | PA 6020 | EPA 3010A   |      | Analysis Da | te: <b>5/16/2</b> 0 | 114         | SeqNo: 178 | 35148    |      |
| Analyte                     | Result               | PQL SP       | K value | SPK Ref Val | %REC | LowLimit    | HighLimit           | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Arsenic                     | 20.651               | 0.10         | 10.00   | 11.48       | 91.8 | 75          | 125                 |             |            |          |      |
| Molybdenum                  | 51.358               | 0.50         | 10.00   | 40.02       | 113  | 75          | 125                 |             |            |          |      |
| Selenium                    | 9.910                | 0.50         | 10.00   | 0.1867      | 97.2 | 75          | 125                 |             |            |          |      |
| Sample ID: N012552-001B-MSD | SampType: MSD        | TestCode: 60 | 20_DIS  | Units: µg/L | ·    | Prep Da     | te: <b>5/16/2</b> 0 | )14         | RunNo: 93  | 509      |      |
| Client ID: ZZZZZZ           | Batch ID: 45694      | TestNo: EI   | PA 6020 | EPA 3010A   |      | Analysis Da | te: <b>5/16/2</b> 0 | 14          | SeqNo: 178 | 35149    |      |
| Analyte                     | Result               | PQL SP       | K value | SPK Ref Val | %REC | LowLimit    | HighLimit           | RPD Ref Val | %RPD       | RPDLimit | Qual |
|                             |                      |              |         |             |      |             |                     |             |            |          |      |
| Arsenic                     | 21.064               | 0.10         | 10.00   | 11.48       | 95.9 | 75          | 125                 | 20.65       | 1.98       | 20       |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits
- Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118
- P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
  - Spike/Surrogate outside of limits due to matrix interference

# CLIENT: CH2M HILL Work Order: N012552

Client ID: ZZZZZZ

Analyte

Manganese

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

Analysis Date: 5/16/2014

75

95.5

%REC LowLimit HighLimit RPD Ref Val

125

306.7

**Project:** PG&E Topock, 423575.MP.08.WM

Batch ID: 45694

Result

310.506

| Sample ID: N012552-001B-MSD | SampType: MSD          |          | e: 6020_DIS        | Units: µg/L |      | •            | e: 5/16/20         |             | RunNo: 935        |          |      |
|-----------------------------|------------------------|----------|--------------------|-------------|------|--------------|--------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ           | Batch ID: <b>45694</b> | restivo  | D: EPA 6020        | EPA 3010A   |      | Analysis Dat | .e. 5/16/20        | 114         | SeqNo: 178        | 5149     |      |
| Analyte                     | Result                 | PQL      | SPK value          | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Selenium                    | 9.974                  | 0.50     | 10.00              | 0.1867      | 97.9 | 75           | 125                | 9.910       | 0.643             | 20       |      |
| Sample ID: N012552-001B-MS  | SampType: MS           | TestCode | e: <b>6020_DIS</b> | Units: µg/L |      | Prep Dat     | e: <b>5/16/2</b> 0 | 14          | RunNo: 935        | 609      |      |
| Client ID: ZZZZZZ           | Batch ID: 45694        | TestNo   | D: EPA 6020        | EPA 3010A   |      | Analysis Dat | e: <b>5/16/2</b> 0 | 14          | SeqNo: <b>178</b> | 5154     |      |
| Analyte                     | Result                 | PQL      | SPK value          | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Manganese                   | 306.660                | 2.5      | 100.0              | 215.0       | 91.6 | 75           | 125                |             |                   |          |      |
| Sample ID: N012552-001B-MSD | SampType: MSD          | TestCode | e: 6020_DIS        | Units: µg/L |      | Prep Dat     | e: <b>5/16/2</b> 0 | 14          | RunNo: 935        | 09       |      |

**EPA 3010A** 

215.0

SPK value SPK Ref Val

100.0

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

TestNo: EPA 6020

PQL

2.5

R RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

SeqNo: 1785157

%RPD

1.25

RPDLimit Qual

20

| - |   | - | - |    |    |   |
|---|---|---|---|----|----|---|
| C | n | 4 | N | 71 | LL | • |

## **CHAIN OF CUSTODY RECORD**

| Page | 1 | OF | 1 |
|------|---|----|---|
|      |   |    |   |

|                       |                                          |                                                                                            |                                                                            |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 250 ml<br>Poly        | 500 ml<br>Poly                           | 500 ml<br>Poly                                                                             | 500 ml<br>Poly                                                             | 500 ml<br>Poly                          | 2x1<br>Liter                            | 2x1<br>Liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2x1<br>Liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125 ml<br>Poły                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Liter<br>Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (NH4)2SC<br>8:4/NH4OH | HN03,                                    | HNO3,                                                                                      | HNO3,<br>4°C                                                               | HNO3,                                   | 4°C                                     | 4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H2SO4,<br>pH<2, 4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H2SO4,<br>pH<2, 4°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4°C                   |                                          |                                                                                            |                                                                            |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | Field                                    | Field                                                                                      | Field                                                                      | Field                                   | NA                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28                    | 180                                      | 180                                                                                        | 180                                                                        | 180                                     | /                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                          |                                                                                            | 3                                                                          | 3                                       | Anio                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 _                   | 2                                        | ္က ≸                                                                                       | etals                                                                      | etals                                   | ns (E                                   | ⅎ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rate/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Į,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ) g                   | senic                                    | ,K,M                                                                                       | (602                                                                       | (602                                    | ~ §                                     | DS (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 218                   | (60)                                     | 601C                                                                                       | 9.<br>F                                                                    | <u>&amp;</u>                            | 함                                       | SM28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS) e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (6)<br>F              | 20A)                                     | ,Fe <sub>7</sub>                                                                           |                                                                            |                                         | <b>₩</b>                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| "                     | #                                        |                                                                                            | λion                                                                       | ō<br><b>∑</b>                           | e,S                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ĸ l                   |                                          |                                                                                            |                                                                            | n,Se                                    | ılfate                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (£)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                          |                                                                                            |                                                                            |                                         | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| r X                   | ×                                        | X                                                                                          | X                                                                          | X                                       | X                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO[2552-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| X                     | X                                        | X                                                                                          | X                                                                          | X                                       | X                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 火                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                          |                                                                                            |                                                                            |                                         | -                                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | Poly (NH4)2SC 4/NH40H 4°C d: Field e: 28 | Poly Poly (NH4)2SO HNO3, 4°C 4°C 4°C 4°C 4°C 4°C 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | Poly Poly Poly Poly (NH4)2SO HN03, 4°C 4°C 4°C 4°C 4°C 4°C 4°C 4°C 4°C 4°C | Poly Poly Poly Poly Poly Poly Poly Poly | Poly Poly Poly Poly Poly Poly Poly Poly | Poly Poly Poly Poly Poly Poly Liter  (NH-M2SO) HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, HN03, H | Poly Poly Poly Poly Poly Liter Liter (H14)2SO (H14)2SO (H103, H103,  Poly Poly Poly Poly Poly Liter Liter Liter Liter (Interdiction of the Poly (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO (INHA)2SO ( | Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Litter   Litter   Litter   Litter   Poly   P | Poly Poly Poly Poly Poly Poly Poly Liter Liter Liter Poly Poly Poly (NHH)2SO HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, HNO3, H | Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly | Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   Poly   River   Poly   Poly   River   Poly   Poly   Poly   Poly   Poly   River   Poly   River   Poly   Poly   Poly   Poly   Poly   Poly   River   Poly   
|                 | ∕Signatures | Date/Time   | Shipping Details                       |                                                       | Special Instructions: |    |
|-----------------|-------------|-------------|----------------------------------------|-------------------------------------------------------|-----------------------|----|
| Approved by     | // .        | 5-14-14     |                                        | ATTN:                                                 | ,                     |    |
| Sampled by      |             | 1350        | Method of Shipment: FedEx              |                                                       | 1                     |    |
| Relinquished by | DYL         | • • •       | On Ice: (es) / no 2.44                 | Sample Custody                                        |                       |    |
| Received by     | Buryalog    | J/14/1 1810 | Airbill No:                            | and                                                   | Report Copy to        |    |
| Relinquished by | forda larg  | 5/17/19/160 | Lab Name: ADVANCED TECHNOLOGY LABORATO | Marlon                                                | Shawn Duffy           |    |
| Received by     | Buyald      | 3-14141600  | Lab Phone: (702) 307-2659              | Applied March Co. Co. Co. Co. Co. Co. Co. Co. Co. Co. | (530) 229-3303        |    |
|                 |             |             |                                        | 1                                                     |                       | 27 |

## **ASSET Laboratories**

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

| If you have any questions of                               | or further i                 | nstruction, plea    | se contact our | Project Coo | rdinator at (70  | 2) 307-2659  |             |          |
|------------------------------------------------------------|------------------------------|---------------------|----------------|-------------|------------------|--------------|-------------|----------|
| Cooler Received/Opened On:                                 | 5/14/2014                    | 1                   |                |             | Workorder:       | N012552      |             |          |
| Rep sample Temp (Deg C):                                   | 2.4                          |                     |                |             | IR Gun ID:       | 2            |             |          |
| Temp Blank:                                                | ☐ Yes                        | ✓ No                |                |             |                  |              |             |          |
| Carrier name:                                              | ATL                          |                     |                |             |                  |              |             |          |
| Last 4 digits of Tracking No.:                             | NA                           |                     |                | Packin      | g Material Used: | None         |             |          |
| Cooling process:                                           | <b>✓</b> Ice                 | ☐ Ice Pack          | ☐ Dry Ice      | Other       | ☐ None           |              |             |          |
|                                                            |                              | <u>S:</u>           | ample Receip   | t Checklis  | <u>t</u>         |              |             |          |
| 1. Shipping container/cooler in g                          | good condition               | on?                 |                |             | Yes 🗹            | No 🗆         | Not Present |          |
| 2. Custody seals intact, signed,                           | dated on sh                  | nippping container/ | cooler?        |             | Yes              | No 🗆         | Not Present | <b>~</b> |
| 3. Custody seals intact on samp                            | ole bottles?                 |                     |                |             | Yes              | No 🗆         | Not Present | <b>~</b> |
| 4. Chain of custody present?                               |                              |                     |                |             | Yes 🗹            | No 🗆         |             |          |
| 5. Sampler's name present in C                             | OC?                          |                     |                |             | Yes 🗸            | No 🗌         |             |          |
| 6. Chain of custody signed whe                             | n relinquish                 | ed and received?    |                |             | Yes 🗹            | No $\square$ |             |          |
| 7. Chain of custody agrees with                            | sample labe                  | els?                |                |             | Yes 🗹            | No $\square$ |             |          |
| 8. Samples in proper container/                            | bottle?                      |                     |                |             | Yes 🗸            | No $\square$ |             |          |
| 9. Sample containers intact?                               |                              |                     |                |             | Yes 🗸            | No $\square$ |             |          |
| 10. Sufficient sample volume fo                            | r indicated to               | est?                |                |             | Yes 🗹            | No $\square$ |             |          |
| 11. All samples received within                            | holding time                 | ?                   |                |             | Yes 🗹            | No $\square$ |             |          |
| 12. Temperature of rep sample                              | or Temp Bla                  | ank within acceptal | ole limit?     |             | Yes 🗸            | No 🗌         | NA          |          |
| 13. Water - VOA vials have zero                            | o headspace                  | e?                  |                |             | Yes              | No $\square$ | NA          | <b>✓</b> |
| 14. Water - pH acceptable upor<br>Example: pH > 12 for (CN | •                            | or Metals           |                |             | Yes 🗹            | No 🗆         | NA          |          |
| 15. Did the bottle labels indicate                         | correct pre                  | servatives used?    |                |             | Yes 🗸            | No 🗌         | NA          |          |
| 16. Were there Non-Conforman                               | ice issues a<br>as Client no |                     |                |             | Yes ☐<br>Yes ☐   | No 🗌<br>No 🗌 | NA<br>NA    |          |
| Comments:                                                  |                              |                     |                |             |                  |              |             |          |

Reviewed By: 05/20/14

Checklist Completed By:

## **SAMPLE CALCULATION**

METHOD: SM 2540C

**TEST NAME:** Total Filterable Residue

**MATRIX:** Water

FORMULA:

Calculate TDS concentration in mg/L, in the original sample as follows:

TDS, mg/L = 
$$(\underline{A-B})*1000000$$
  
C

Where:

A = weight in g of dish + residue after drying

B = weight of dish in g

C = volume of sample used in mL

For **N012552-001C,** TDS concentration in mg/L is calculated as follows:

TDS, mg/L = 
$$(60.4193-60.3240)*1000000$$
  
100  
953 mg/L

Reporting result in two significant figures,



## WHERE:

A = weight in grams of dish + residue after drying
B = weight of dish in grams
C = volume of sample used in mL

| Date Started: 5/15/2014  |     |         |         |      |           |           |              | TDS/CONDUCTIVITY |
|--------------------------|-----|---------|---------|------|-----------|-----------|--------------|------------------|
| Date Finished: 5/26/2014 | vol | initial | final   | calc | prep fact | TDS, mg/L | CONDUCTIVITY | RATIO            |
| MB-45691                 | 100 | 64.0007 | 64.0009 | 2    | 1         | 2.00      |              |                  |
| LCS-45691                | 100 | 62.1297 | 62.2256 | 959  | 1         | 959.00    |              |                  |
| N012552-001C             | 100 | 60.324  | 60.4193 | 953  | 1         | 953.00    | 1576         | 0.60             |
| N012552-001C-DUP         | 100 | 60.3503 | 60.4462 | 959  | 1         | 959.00    | 1576         | 0.61             |
| N012552-002C             | 5   | 63.7862 | 63.8555 | 693  | 20        | 13860.00  | 19820        | 0.70             |



## **Sample Calculation**

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L = A * DF$ 

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For N012552-002A concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 3.4472 \* 5  
= 17.236

Reporting result in two significant figures,

$$Cr^{+6}$$
,  $\mu g/L = 17$ 

Nancy 5/

## Sample ID: N012552-001C @ pH 8.04

A. Standardization of Sulfuric Acid (titrant):

Normality of acid = (A)(B)/(53.00)(C)

Where:

A, grams weighed for Na<sub>2</sub>CO<sub>3</sub> solution (Na<sub>2</sub>CO<sub>3</sub> Standardization Solution)

B, mL Na2CO3 solution taken for titration, and

C, ml of sulfuric acid used to inflection point

Spike Standards

 $Na_2CO_3$  Standardization Solution, ACS Grade (1.00 ml = 2500ug as CaCO<sub>3</sub>): Dissolve 2.650 grams of  $Na_2CO_3$  in distilled water and dilute to 1 liter.

**LCS/MS/MSD Stock** NaHCO<sub>3</sub>, ACS Grade (1.00 ml = 5000 ug as CaCO<sub>3</sub>): Dissolve 0.8398 grams of NaHCO<sub>3</sub> in distilled water and dilute to 1 liter.

Therefore,

Normality of Acid = (2.65g/L) (5mL) / (53.00) (11.30mL)

= 0.02212 N

B. CALCULATION OF ALKALINITY (for a 50 ml sample)

Total Alkalinity (as  $CaCO_3$ ),  $mg/L = M_{vol.} * N H_2SO_4 * DF * 1000$ 

Where:

M<sub>vol</sub>, volume titrant used to reach pH 4.5, ml

N, Normality of H<sub>2</sub>SO<sub>4</sub>

DF, Dilution Factor = (50 ml) / (Vol. of Sample used)

Therefore.

Total Alkalinity (as  $CaCO_3$ ), mg/L = (8.60) (0.02212 N) (1) \* 1000

= 190.2 mg/L

Reporting results in two significant figures,

= 190.00 mg/L as CaCO3



## C. SPECIATED ALKALINITY:

Phenolphthalein Alkalinity

P alkalinity, mg/L as 
$$CaCO_3 = P_{vol.} * N H_2SO_4 * DF * 1000$$
  
= (0) (0.02212 N) (1) \* 1000  
= **0**

**Total Alkalinity** 

T alkalinity, mg/L as 
$$CaCO_3 = M_{vol.} * N H_2SO_4 * DF * 1000$$
  
= (8.60 mL) (0.02212) (1) \* 1000  
= 190.2 mg/L as CaCO3

Where:

 $\begin{array}{ll} P_{\text{vol.}} & \text{- volume titrant used to reach pH 8.3, ml} \\ M_{\text{vol.}} & \text{- volume titrant used to reach pH 4.5, ml} \end{array}$ 

N - Normality of H<sub>2</sub>SO<sub>4</sub>

DF - Dilution Factor = (50 ml) / (Vol. of Sample used)

Then OH, CO<sub>3</sub>, HCO<sub>3</sub> alkalinities as CaCO<sub>3</sub> will be calculated as follows:

| Result of Titration | OH Alkalinity as CaCO <sub>3</sub> | CO <sub>3</sub> Alkalinity as CaCO <sub>3</sub> | HCO <sub>3</sub> Alkalinity as CaCO <sub>3</sub> |
|---------------------|------------------------------------|-------------------------------------------------|--------------------------------------------------|
| P = 0               | 0                                  | 0                                               | T                                                |
| P < ½ T             | 0                                  | 2P                                              | T – 2P                                           |
| P = ½ T             | 0                                  | 2P                                              | 0                                                |
| P > ½ T             | 2P – T                             | 2(T – P)                                        | 0                                                |
| P = T               | T                                  | 0                                               | 0                                                |

Therefore,

OH Alkalinity as CaCO<sub>3</sub> = 0

 $CO_3$  Alkalinity as  $CaCO_3 = 0$ 

HCO<sub>3</sub> Alkalinity as CaCO<sub>3</sub> = 190.00 mg/L

Reporting results in two significant figures,

OH Alkalinity as CaCO<sub>3</sub> = 0

 $CO_3$  Alkalinity as  $CaCO_3 = 0$ 

HCO<sub>3</sub> Alkalinity as CaCO<sub>3</sub> = 190. mg/L



## **Sample Calculation**

**METHOD**: SM4500N03

**TEST NAME:** Nitrate by Cadmium Reduction

**MATRIX**: Water

FORMULA:

Calculate the Nitrate concentration, in mg/L, in the original sample as follows:

Nitrate, 
$$mg/L = A * DF$$

where:

For **N012552-001D**, concentration in  $\mu$ g/L is calculated as follows:

Nitrate, mg /L = 
$$0.5706*1$$

$$= 0.5706 \text{ mg/L}$$

Reporting results in two significant figures,

Nitrate, mg/L = 
$$0.57$$
 mg/L

Nancy 5/29/2014

## **Sample Calculation**

METHOD: EPA 6020

**TEST NAME:** Heavy Metals by ICP-MS

**MATRIX:** Aqueous

## FORMULA:

Calculate the Manganese concentration, in ug/L, in the original sample as follows:

Manganese, ug/L = A \* DF \* PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample **N012552-002B**, the concentration in ug/L is calculated as follows:

Manganese, ug/L = 157.285954065691 \* 1 \* (25/25)

= 157.285954065691

Reporting result in two significant figures,

Manganese, ug/L = 160

Narry 5/27/2014

### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012552

 Test Method:
 EPA 6020

 Analysis Date:
 5/16/2014

Matrix: Water
Batch No.: 45694

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Se & Cr. The calculated values are <25X RL. PS @ 2x passed criteria

| Sample ID           | Analyte    | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF   | %DIFFlimit |
|---------------------|------------|-------|-------------|-------|-------------|---------|------------|
| N012552-001B-DT 5X  | Arsenic    | μg/L  | 11.39194113 | PASS  | 11.47517973 | 0.73%   | 10         |
| N012552-001B-DT 25X | Manganese  | μg/L  | 232.0858824 | PASS  | 215.047108  | 7.92%   | 10         |
| N012552-001B-DT 5X  | Molybdenum | μg/L  | 42.04314414 | PASS  | 40.02419904 | 5.04%   | 10         |
| N012552-001B-DT 5X  | Selenium   | μg/L  | 0           | NA    | 0.186681825 | 100.00% | 10         |
| N012552-001B-DT 5X  | Chromium   | μg/L  | 3.242231122 | NA    | 2.099779292 | 54.41%  | 10         |

Note: NA - Not applicable

**ASSET Laboratories Date:** 21-May-14

**CLIENT:** CH2M HILL Work Order:

N012552

**Project:** PG&E Topock, 423575.MP.08.WM

## ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012552-001B-PS        | SampType: <b>PS</b> | TestCode: 6020_DIS | Units: µg/L | Prep Date:                        | RunNo: <b>93509</b>   |
|-----------------------------------|---------------------|--------------------|-------------|-----------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: 45694     | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/16/2014          | SeqNo: <b>1785147</b> |
| Analyte                           | Result              | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref V | al %RPD RPDLimit Qual |
| Arsenic                           | 31.232              | 0.20 20.00         | 11.48       | 98.8 80 120                       |                       |
| Molybdenum                        | 62.877              | 1.0 20.00          | 40.02       | 114 80 120                        |                       |
| Selenium                          | 21.215              | 1.0 20.00          | 0.1867      | 105 80 120                        |                       |
| Sample ID: <b>N012552-001B-PS</b> | SampType: <b>PS</b> | TestCode: 6020_DIS | Units: µg/L | Prep Date:                        | RunNo: <b>93509</b>   |
| Client ID: ZZZZZZ                 | Batch ID: 45694     | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/16/2014          | SeqNo: <b>1785153</b> |
| Analyte                           | Result              | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref V | al %RPD RPDLimit Qual |
| Manganese                         | 721.828             | 2.5 500.0          | 215.0       | 101 80 120                        |                       |

### Qualifiers:

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N012552

**Project:** 

N012552 PG&E Topock, 423575.MP.08.WM ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012552-001B-PS Client ID: ZZZZZZ | SampType: <b>PS</b> Batch ID: <b>45694</b> |     | de: <b>6020DIS_0</b><br>No: <b>EPA 6020</b> | CrP Units: μg/L<br>EPA 3010A |      | Prep Da<br>Analysis Da | te:<br>te: <b>5/16/20</b> 1 | 14          | RunNo: <b>93</b> !<br>SeqNo: <b>17</b> 8 |          |      |
|----------------------------------------------|--------------------------------------------|-----|---------------------------------------------|------------------------------|------|------------------------|-----------------------------|-------------|------------------------------------------|----------|------|
| Analyte                                      | Result                                     | PQL | SPK value                                   | SPK Ref Val                  | %REC | LowLimit               | HighLimit                   | RPD Ref Val | %RPD                                     | RPDLimit | Qual |
| Chromium                                     | 21.232                                     | 2.0 | 20.00                                       | 2.100                        | 95.7 | 80                     | 120                         |             |                                          |          |      |

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits
Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

May 29, 2014

Shawn P. Duffy
CH2M HILL
CA-ELAP No.: 2676
NV Cert. No.: NV-00922

155 Grand Avenue, Suite 1000

Oakland, CA 94612 TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N012553

RE: PG&E Topock, 423575.MP.02.GM.02

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 14, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

glasm to for

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

### **ASSET Laboratories**

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 CASE NARRATIVE

**Date:** 28-May-14

Lab Order: N012553

### SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 218.6

Dilution was necessary for samples N012553-007 and N012553-008 due to matrix interference. Samples were analyzed at lower dilutions however matrix spikes were not recovered indicating possible matrix interference. Samples were reported at dilution that meet matrix spike recovery limit.

Analytical Comments for EPA 6020\_Dissolved:

Dilution was necessary on samples N012553-004, N012553-007 and N012553-008 due to failed Internal Standard when samples were analyzed at no dilution.

## **ASSET Laboratories**

CLIENT: CH2M HILL

Project: PG&E Topock, 423575.MP.02.GM.02 Work Order Sample Summary

**Date:** 28-May-14

Lab Order: N012553

**Contract No:** 2014-GMP-198-

| Lab Sample ID Client Sample ID | Matrix | Collection Date       | Date Received | Date Reported |
|--------------------------------|--------|-----------------------|---------------|---------------|
| N012553-001A MW-20-130-198     | Water  | 5/12/2014 12:26:00 PM | 5/14/2014     | 5/29/2014     |
| N012553-001B MW-20-130-198     | Water  | 5/12/2014 12:26:00 PM | 5/14/2014     | 5/29/2014     |
| N012553-001C MW-20-130-198     | Water  | 5/12/2014 12:26:00 PM | 5/14/2014     | 5/29/2014     |
| N012553-002A MW-31-060-198     | Water  | 5/12/2014 9:30:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-002B MW-31-060-198     | Water  | 5/12/2014 9:30:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-003A MW-50-200-198     | Water  | 5/12/2014 8:34:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-003B MW-50-200-198     | Water  | 5/12/2014 8:34:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-004A MW-51-198         | Water  | 5/12/2014 11:12:00 AM | 5/14/2014     | 5/29/2014     |
| N012553-004B MW-51-198         | Water  | 5/12/2014 11:12:00 AM | 5/14/2014     | 5/29/2014     |
| N012553-004C MW-51-198         | Water  | 5/12/2014 11:12:00 AM | 5/14/2014     | 5/29/2014     |
| N012553-005A MW-68-180-198     | Water  | 5/12/2014 7:00:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-005B MW-68-180-198     | Water  | 5/12/2014 7:00:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-005C MW-68-180-198     | Water  | 5/12/2014 7:00:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-006A MW-226-198        | Water  | 5/13/2014 6:20:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-007A MW-66BR-270-198   | Water  | 5/13/2014 9:40:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-007B MW-66BR-270-198   | Water  | 5/13/2014 9:40:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-007C MW-66BR-270-198   | Water  | 5/13/2014 9:40:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-008A MW-68BR-280-198   | Water  | 5/13/2014 8:40:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-008B MW-68BR-280-198   | Water  | 5/13/2014 8:40:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-008C MW-68BR-280-198   | Water  | 5/13/2014 8:40:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-009A TW-01-198         | Water  | 5/13/2014 11:56:00 AM | 5/14/2014     | 5/29/2014     |
| N012553-009B TW-01-198         | Water  | 5/13/2014 11:56:00 AM | 5/14/2014     | 5/29/2014     |
| N012553-009C TW-01-198         | Water  | 5/13/2014 11:56:00 AM | 5/14/2014     | 5/29/2014     |
| N012553-010A MW-10-198         | Water  | 5/14/2014 7:18:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-010B MW-10-198         | Water  | 5/14/2014 7:18:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-010C MW-10-198         | Water  | 5/14/2014 7:18:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-011A MW-120-198        | Water  | 5/14/2014 7:00:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-011B MW-120-198        | Water  | 5/14/2014 7:00:00 AM  | 5/14/2014     | 5/29/2014     |
| N012553-011C MW-120-198        | Water  | 5/14/2014 7:00:00 AM  | 5/14/2014     | 5/29/2014     |

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

**CLIENT:** CH2M HILL

**Work Order Sample Summary** Project: PG&E Topock, 423575.MP.02.GM.02

Lab Order: N012553 **Contract No:** 2014-GMP-198-

| Lab Sample ID Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|--------------------------------|--------|------------------------|---------------|---------------|
| N012553-012A MW-227-198        | Water  | 5/14/2014 6:30:00 AM   | 5/14/2014     | 5/29/2014     |
| N012553-013A MW-228-198        | Water  | 5/14/2014 1:33:00 PM   | 5/14/2014     | 5/29/2014     |

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-20-130-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 12:26:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-001

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

 RunID:
 WETCHEM\_140515B
 QC Batch:
 R93473
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 9900 0.10 0.10 0.10 umhos/cm
 1 5/15/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-51-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 11:12:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-004

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140515B
 QC Batch:
 R93473
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 9900
 0.10
 0.10
 umhos/cm
 1
 5/15/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-68-180-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-005

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140515B
 QC Batch:
 R93473
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 3000 0.10 0.10 umhos/cm
 1 5/15/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL Lab Order: N012553

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012553-007 Client Sample ID: MW-66BR-270-198

Collection Date: 5/13/2014 9:40:00 AM

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140515B PrepDate: QC Batch: R93473 Analyst: LCC Specific Conductance 15000 0.10 0.10 umhos/cm 5/15/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Lab Order: N012553

CH2M HILL Client Sample ID: MW-68BR-280-198
N012553 Collection Date: 5/13/2014 8:40:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012553-008

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

EPA 120.1

 RunID:
 WETCHEM\_140515B
 QC Batch:
 R93473
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 19000
 0.10
 0.10
 umhos/cm
 1
 5/15/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: TW-01-198

**Lab Order:** N012553 **Collection Date:** 5/13/2014 11:56:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

**EPA 120.1** 

 RunID:
 WETCHEM\_140515B
 QC Batch:
 R93473
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 6000
 0.10
 0.10
 umhos/cm
 1
 5/15/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-10-198

**Lab Order:** N012553 **Collection Date:** 5/14/2014 7:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-010

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140515B
 QC Batch:
 R93473
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 2400
 0.10
 0.10
 umhos/cm
 1
 5/15/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Lab Order: N012553

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012553-011 Client Sample ID: MW-120-198

Collection Date: 5/14/2014 7:00:00 AM

Matrix: WATER

Result MDL **PQL** Units DF Analyses Qual Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

QC Batch: R93473 RunID: WETCHEM\_140515B PrepDate: Analyst: LCC Specific Conductance 2400 0.10 0.10 umhos/cm 5/15/2014 1

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories Date:** 28-May-14

**CLIENT:** CH2M HILL

Work Order:

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

N012553

TestCode: 120.1\_WPGE

| Sample ID: N012553-011C-DI | UP SampType: DUP        | TestCod | de: <b>120.1_WP</b>   | GE Units: umh | os/cm | Prep Da     | ite:         |             | RunNo: 934        | 173      |      |
|----------------------------|-------------------------|---------|-----------------------|---------------|-------|-------------|--------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: <b>R93473</b> | TestN   | No: <b>EPA 120.</b> 1 |               |       | Analysis Da | ate: 5/15/20 | 114         | SeqNo: <b>178</b> | 34043    |      |
| Analyte                    | Result                  | PQL     | SPK value             | SPK Ref Val   | %REC  | LowLimit    | HighLimit    | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Specific Conductance       | 2430.000                | 0.10    |                       |               |       |             |              | 2410        | 0.826             | 10       |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-20-130-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 12:26:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-001

| Analyses                  | Result MDL       | PQL   | Qual Units | DF        | Date Analyzed      |
|---------------------------|------------------|-------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM       |                  |       |            |           |                    |
|                           |                  | SM 35 | 00-CR B    |           |                    |
| RunID: WETCHEM_140516B    | QC Batch: R93492 |       | PrepDate:  |           | Analyst: PS        |
| Chromium, Hexavalent      | 9100 28          | 200   | μg/L       | 20        | 5/16/2014          |
| DISSOLVED METALS BY ICP-I | MS               |       |            |           |                    |
|                           | EPA 3010A        | EP#   | A 6020     |           |                    |
| RunID: ICP7_140520A       | QC Batch: 45694  |       | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Chromium                  | 9000 3.0         | 100   | μg/L       | 100       | 5/20/2014 12:39 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-31-060-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 9:30:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-002

| Analyses                 | Result MDL       | POL  | Oual Units | b DF      | Date Analyzed      |
|--------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM      | 11000010 11122   | - 4- | Quui Cinus |           | 2400 111141,204    |
| TIEXAVALENT OTROMION     |                  | SM 3 | 500-CR B   |           |                    |
| RunID: WETCHEM_140515E   | QC Batch: R93493 |      | PrepDate:  |           | Analyst: PS        |
| Chromium, Hexavalent     | 270 1.4          | 10   | μg/L       | 1         | 5/15/2014          |
| DISSOLVED METALS BY ICP- | MS               |      |            |           |                    |
|                          | EPA 3010A        | EP.  | A 6020     |           |                    |
| RunID: ICP7_140516A      | QC Batch: 45694  |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Chromium                 | 270 0.15         | 5.0  | μg/L       | 5         | 5/16/2014 05:07 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-50-200-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 8:34:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 **Matrix:** WATER

**Lab ID:** N012553-003

| Analyses                  | Result MDL       | PQL   | Qual Units | DF        | Date Analyzed      |
|---------------------------|------------------|-------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM       |                  |       |            |           |                    |
|                           |                  | SM 38 | 500-CR B   |           |                    |
| RunID: WETCHEM_140516B    | QC Batch: R93492 |       | PrepDate:  |           | Analyst: <b>PS</b> |
| Chromium, Hexavalent      | 7400 14          | 100   | μg/L       | 10        | 5/16/2014          |
| DISSOLVED METALS BY ICP-I | MS               |       |            |           |                    |
|                           | EPA 3010A        | EP    | A 6020     |           |                    |
| RunID: ICP7_140516A       | QC Batch: 45694  |       | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Chromium                  | 7200 1.5         | 50    | μg/L       | 50        | 5/16/2014 05:12 PI |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-51-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 11:12:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-004

| Analyses                  | Result MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|---------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM       |                  |      |            |           |                    |
|                           |                  | SM 3 | 500-CR B   |           |                    |
| RunID: WETCHEM_140516B    | QC Batch: R93492 |      | PrepDate:  |           | Analyst: PS        |
| Chromium, Hexavalent      | 4800 14          | 100  | μg/L       | 10        | 5/16/2014          |
| DISSOLVED METALS BY ICP-I | MS               |      |            |           |                    |
|                           | EPA 3010A        | EP.  | A 6020     |           |                    |
| RunID: ICP7_140516A       | QC Batch: 45694  |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Chromium                  | 4700 1.5         | 50   | μg/L       | 50        | 5/16/2014 05:18 PI |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

100

μg/L

5/16/2014 05:23 PM

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-68-180-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

11000

3.0

**Lab ID:** N012553-005

Chromium

Result MDL **PQL** DF Analyses Qual Units **Date Analyzed HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140515A QC Batch: R93491 PrepDate: Analyst: RB Hexavalent Chromium 10000 400 2000 5/15/2014 02:59 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** QC Batch: 45694 RunID: ICP7\_140516A PrepDate: 5/16/2014 Analyst: CEI

100

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-226-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-226-198

 Lab Order:
 N012553
 Collection Date: 5/13/2014 6:20:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-006

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140515A
 QC Batch:
 R93491
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 5/15/2014 11:19 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

5/16/2014 02:49 PM

Print Date: 28-May-14

1

**ASSET Laboratories** 

**CLIENT:** CH2M HILL

Client Sample ID: MW-66BR-270-198 Lab Order: N012553 Collection Date: 5/13/2014 9:40:00 AM

**Project:** PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

Lab ID: N012553-007

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140515A QC Batch: R93491 PrepDate: Analyst: RB Hexavalent Chromium 0.080 1.0 5 5/15/2014 02:19 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140516A QC Batch: 45694 PrepDate: 5/16/2014 Analyst: CEI

1.0

μg/L

Qualifiers: Analyte detected in the associated Method Blank

> Holding times for preparation or analysis exceeded Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out DO

Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

5/16/2014 02:54 PM

Print Date: 28-May-14

1

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-68BR-280-198

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-68BR-280-198

 Lab Order:
 N012553
 Collection Date: 5/13/2014 8:40:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

ND

0.030

**Lab ID:** N012553-008

Chromium

Result MDL **PQL** Units DF Analyses Qual Date Analyzed **HEXAVALENT CHROMIUM BY IC EPA 218.6** RunID: IC6\_140515A QC Batch: R93491 PrepDate: Analyst: RB Hexavalent Chromium 0.080 1.0 5 5/15/2014 02:39 PM μg/L **DISSOLVED METALS BY ICP-MS EPA 3010A EPA 6020** RunID: ICP7\_140516A QC Batch: 45694 PrepDate: 5/16/2014 Analyst: CEI

1.0

μg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: TW-01-198

**Lab Order:** N012553 **Collection Date:** 5/13/2014 11:56:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-009

| Analyses                 | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed     |
|--------------------------|-------------------------|------|------------|-----------|-------------------|
| HEXAVALENT CHROMIUM      |                         |      |            |           |                   |
|                          |                         | SM 3 | 500-CR B   |           |                   |
| RunID: WETCHEM_140516B   | QC Batch: <b>R93492</b> |      | PrepDate:  |           | Analyst: PS       |
| Chromium, Hexavalent     | 2800 6.9                | 50   | μg/L       | 5         | 5/16/2014         |
| DISSOLVED METALS BY ICP- | MS                      |      |            |           |                   |
|                          | EPA 3010A               | EP   | A 6020     |           |                   |
| RunID: ICP7_140516A      | QC Batch: 45694         |      | PrepDate:  | 5/16/2014 | Analyst: CEI      |
| Chromium                 | 2700 0.76               | 25   | μg/L       | 25        | 5/16/2014 05:40 P |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-10-198

**Lab Order:** N012553 **Collection Date:** 5/14/2014 7:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-010

| Analyses                  | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|---------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM       |                         |      |            |           |                    |
|                           |                         | SM 3 | 500-CR B   |           |                    |
| RunID: WETCHEM_140515E    | QC Batch: <b>R93493</b> |      | PrepDate:  |           | Analyst: PS        |
| Chromium, Hexavalent      | 260 1.4                 | 10   | μg/L       | 1         | 5/15/2014          |
| DISSOLVED METALS BY ICP-I | MS                      |      |            |           |                    |
|                           | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140516A       | QC Batch: 45694         |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Chromium                  | 250 0.15                | 5.0  | μg/L       | 5         | 5/16/2014 05:45 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-120-198

**Lab Order:** N012553 **Collection Date:** 5/14/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-011

| Analyses                  | Result MDL       | PQL  | Qual Units | s DF      | Date Analyzed      |
|---------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM       |                  |      |            |           |                    |
|                           |                  | SM 3 | 500-CR B   |           |                    |
| RunID: WETCHEM_140515E    | QC Batch: R93493 |      | PrepDate:  |           | Analyst: PS        |
| Chromium, Hexavalent      | 260 1.4          | 10   | μg/L       | 1         | 5/15/2014          |
| DISSOLVED METALS BY ICP-I | MS               |      |            |           |                    |
|                           | EPA 3010A        | EP   | A 6020     |           |                    |
| RunID: ICP7_140516A       | QC Batch: 45694  |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Chromium                  | 260 0.15         | 5.0  | μg/L       | 5         | 5/16/2014 06:02 PI |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012553

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012553-012

Client Sample ID: MW-227-198

Collection Date: 5/14/2014 6:30:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140515A
 QC Batch:
 R93491
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 5/15/2014 12:39 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012553

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012553-013

Client Sample ID: MW-228-198

Collection Date: 5/14/2014 1:33:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140515A
 QC Batch:
 R93491
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 5/15/2014 12:59 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories Date:** 28-May-14

CLIENT: CH2M HILL Work Order: N012553

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 218.6\_WPGE

| Sample ID: MB-R93491       | SampType: MBLK          | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93491</b>   |
|----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: <b>5/15/2014</b>     | SeqNo: <b>1784461</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.038                   | 0.20                             |                                     |                       |
| Sample ID: LCS-R93491      | SampType: LCS           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: LCSW            | Batch ID: R93491        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: 1784462        |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 4.969                   | 0.20 5.000 0                     | 99.4 90 110                         |                       |
| Sample ID: N012552-001A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: 93491          |
| Client ID: ZZZZZZ          | Batch ID: <b>R93491</b> | TestNo: EPA 218.6                | Analysis Date: 5/15/2014            | SeqNo: <b>1784464</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 2.461                   | 0.20 1.000 1.463                 | 99.8 90 110                         |                       |
| Sample ID: N012553-006A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784466</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 1.136                   | 0.20 1.000 0.1138                | 102 90 110                          |                       |
| Sample ID: N012553-012A-MS | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ          | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784470</b> |
| Analyte                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium        | 0.968                   | 0.20 1.000 0                     | 96.8 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118

P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

# ANALYTICAL QC SUMMARY REPORT

Work Order: N012553

**Project:** 

TestCode: 218.6\_WPGE PG&E Topock, 423575.MP.02.GM.02

| Sample ID: N012553-013A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
|-----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: 1784472        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.006                   | 0.20 1.000 0                     | 101 90 110                          |                       |
| Sample ID: N012552-002A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784474</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 42.214                  | 1.0 25.00 17.24                  | 99.9 90 110                         |                       |
| Sample ID: N012552-001A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6_WPGE Units: μg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93491        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784475</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.466                   | 0.20                             | 1.463                               | 0.178 20              |
| Sample ID: N012552-001A-MSD | SampType: MSD           | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93491</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784476</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 2.430                   | 0.20 1.000 1.463                 | 96.6 90 110 2.461                   | 1.28 20               |
| Sample ID: N012553-007A-MS  | SampType: MS            | TestCode: 218.6_WPGE Units: µg/L | Prep Date:                          | RunNo: <b>93491</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93491        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784480</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 5.799                   | 1.0 5.000 0.6205                 | 104 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012553

ANALYTICAL QC SUMMARY REPORT

PG&E Topock, 423575.MP.02.GM.02 **Project:** 

| Sample ID: N012553-008A-MS                           | SampType: MS                  | TestCode: 218.6_WPGE Units                   | E: μg/L Prep    | Date:                    | RunNo: 93491                                 |      |
|------------------------------------------------------|-------------------------------|----------------------------------------------|-----------------|--------------------------|----------------------------------------------|------|
| Client ID: ZZZZZZ                                    | Batch ID: R93491              | TestNo: EPA 218.6 Analysis Date: 5/15/2014   |                 | Date: 5/15/2014          | SeqNo: <b>1784482</b>                        |      |
| Analyte                                              | Result                        | PQL SPK value SPK Ref                        | Val %REC LowLim | it HighLimit RPD Ref Val | %RPD RPDLimit                                | Qual |
| Hexavalent Chromium                                  | 5.447                         | 1.0 5.000                                    | 0 109 9         | 0 110                    |                                              |      |
|                                                      |                               |                                              |                 |                          |                                              |      |
| Sample ID: N012553-005A-MS                           | SampType: MS                  | TestCode: 218.6_WPGE Units                   | E: μg/L Prep    | Date:                    | RunNo: <b>93491</b>                          |      |
| ·                                                    | SampType: MS Batch ID: R93491 | TestCode: 218.6_WPGE Units TestNo: EPA 218.6 |                 | Date: 5/15/2014          | RunNo: <b>93491</b><br>SeqNo: <b>1784484</b> |      |
| Sample ID: N012553-005A-MS Client ID: ZZZZZZ Analyte |                               | -                                            | Analysis        | Date: <b>5/15/2014</b>   | SeqNo: <b>1784484</b>                        | Qual |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# CLIENT: CH2M HILL

ANALYTICAL QC SUMMARY REPORT

Work Order: N012553

PG&E Topock, 423575.MP.02.GM.02

3377.265

50

Project:

TestCode: 3500\_CrBPGE

| Sample ID: LCS-R93492       | SampType: LCS    | TestCode: 3500_CrBPG Units: µg/L | Prep Date:                          | RunNo: 93492          |
|-----------------------------|------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: LCSW             | Batch ID: R93492 | TestNo: SM 3500-Cr B             | Analysis Date: 5/16/2014            | SeqNo: <b>1784495</b> |
| Analyte                     | Result           | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Chromium, Hexavalent        | 102.351          | 10 100.0 0                       | 102 85 115                          |                       |
| Sample ID: MB-R93492        | SampType: MBLK   | TestCode: 3500_CrBPG Units: µg/L | Prep Date:                          | RunNo: <b>93492</b>   |
| Client ID: PBW              | Batch ID: R93492 | TestNo: SM 3500-Cr B             | Analysis Date: 5/16/2014            | SeqNo: <b>1784496</b> |
| Analyte                     | Result           | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Chromium, Hexavalent        | ND               | 10                               |                                     |                       |
| Sample ID: N012512-009A-MS  | SampType: MS     | TestCode: 3500_CrBPG Units: µg/L | Prep Date:                          | RunNo: <b>93492</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93492 | TestNo: SM 3500-Cr B             | Analysis Date: 5/16/2014            | SeqNo: <b>1784503</b> |
| Analyte                     | Result           | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Chromium, Hexavalent        | 3333.755         | 50 1250 2174                     | 92.8 85 115                         |                       |
| Sample ID: N012512-009A-MSE | SampType: MSD    | TestCode: 3500_CrBPG Units: μg/L | Prep Date:                          | RunNo: <b>93492</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93492 | TestNo: SM 3500-Cr B             | Analysis Date: 5/16/2014            | SeqNo: <b>1784504</b> |
| Analyte                     | Result           | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |

2174

96.3

85

115

#### Qualifiers:

Chromium, Hexavalent

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

1250

R RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com H Holding times for preparation or analysis exceeded

3334

1.30

20

S Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL Work Order: N012553

# ANALYTICAL QC SUMMARY REPORT

Project: PG&E Topock, 423575.MP.02.GM.02 TestCode: 3500\_CrBPGE

| Sample ID: LCS-R93493                                                         | SampType: LCS                           | TestCode: 3500_CrBPG Units: μg/L                                                                  | Prep Date:                                                                               | RunNo: <b>93493</b>                              |
|-------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: LCSW                                                               | Batch ID: R93493                        | TestNo: SM 3500-Cr B                                                                              | Analysis Date: 5/15/2014                                                                 | SeqNo: <b>1784514</b>                            |
| Analyte                                                                       | Result                                  | PQL SPK value SPK Ref Val                                                                         | %REC LowLimit HighLimit RPD Ref Val                                                      | %RPD RPDLimit Qual                               |
| Chromium, Hexavalent                                                          | 96.829                                  | 10 100.0 0                                                                                        | 96.8 85 115                                                                              |                                                  |
| Sample ID: MB-R93493                                                          | SampType: MBLK                          | TestCode: 3500_CrBPG Units: μg/L                                                                  | Prep Date:                                                                               | RunNo: <b>93493</b>                              |
| Client ID: PBW                                                                | Batch ID: <b>R93493</b>                 | TestNo: SM 3500-Cr B                                                                              | Analysis Date: 5/15/2014                                                                 | SeqNo: <b>1784515</b>                            |
| Analyte                                                                       | Result                                  | PQL SPK value SPK Ref Val                                                                         | %REC LowLimit HighLimit RPD Ref Val                                                      | %RPD RPDLimit Qual                               |
| Chromium, Hexavalent                                                          | ND                                      | 10                                                                                                |                                                                                          |                                                  |
|                                                                               |                                         |                                                                                                   |                                                                                          |                                                  |
| Sample ID: N012553-011A-MS                                                    | SampType: MS                            | TestCode: 3500_CrBPG Units: μg/L                                                                  | Prep Date:                                                                               | RunNo: <b>93493</b>                              |
| Sample ID: N012553-011A-MS Client ID: ZZZZZZ                                  | SampType: MS Batch ID: R93493           | TestCode: 3500_CrBPG Units: μg/L TestNo: SM 3500-Cr B                                             | Prep Date: Analysis Date: 5/15/2014                                                      | RunNo: <b>93493</b><br>SeqNo: <b>1784519</b>     |
| ·                                                                             |                                         |                                                                                                   | •                                                                                        |                                                  |
| Client ID: ZZZZZZ                                                             | Batch ID: <b>R93493</b>                 | TestNo: SM 3500-Cr B                                                                              | Analysis Date: 5/15/2014                                                                 | SeqNo: 1784519                                   |
| Client ID: ZZZZZZ Analyte                                                     | Batch ID: R93493  Result                | TestNo: <b>SM 3500-Cr B</b> PQL SPK value SPK Ref Val                                             | Analysis Date: 5/15/2014  %REC LowLimit HighLimit RPD Ref Val                            | SeqNo: 1784519                                   |
| Client ID: ZZZZZZ  Analyte  Chromium, Hexavalent                              | Batch ID: <b>R93493</b> Result  510.913 | TestNo: <b>SM 3500-Cr B</b> PQL SPK value SPK Ref Val  10 250.0 261.7                             | Analysis Date: 5/15/2014  %REC LowLimit HighLimit RPD Ref Val  99.7 85 115               | SeqNo: <b>1784519</b><br>%RPD RPDLimit Qual      |
| Client ID: ZZZZZZ  Analyte  Chromium, Hexavalent  Sample ID: N012553-011A-MSD | Result 510.913  SampType: MSD           | TestNo: SM 3500-Cr B  PQL SPK value SPK Ref Val  10 250.0 261.7  TestCode: 3500_CrBPG Units: μg/L | Analysis Date: 5/15/2014  ***REC LowLimit HighLimit RPD Ref Val  99.7 85 115  Prep Date: | SeqNo: 1784519  %RPD RPDLimit Qual  RunNo: 93493 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

#### **CLIENT:** CH2M HILL

ANALYTICAL QC SUMMARY REPORT

Work Order: N012553 Project: PG&E Topock, 423575.MP.02.GM.02

TestCode: 6020DIS\_CrPGE

| Sample ID: MB-45694 Client ID: PBW                               | SampType: MBLK Batch ID: 45694                 | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                              | Prep Date: 5/16/2014  Analysis Date: 5/16/2014                                                                | RunNo: <b>93509</b><br>SeqNo: <b>1785267</b>     |
|------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Analyte                                                          | Result                                         | PQL SPK value SPK Ref Val                                                                                 | %REC LowLimit HighLimit RPD Ref Val                                                                           | %RPD RPDLimit Qual                               |
| Chromium                                                         | ND                                             | 1.0                                                                                                       |                                                                                                               |                                                  |
| Sample ID: LCS-45694<br>Client ID: LCSW                          | SampType: LCS Batch ID: 45694                  | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                              | Prep Date: 5/16/2014  Analysis Date: 5/16/2014                                                                | RunNo: <b>93509</b><br>SeqNo: <b>1785268</b>     |
| Analyte                                                          | Result                                         | PQL SPK value SPK Ref Val                                                                                 | %REC LowLimit HighLimit RPD Ref Val                                                                           | %RPD RPDLimit Qual                               |
| Chromium                                                         | 9.659                                          | 1.0 10.00 0                                                                                               | 96.6 85 115                                                                                                   |                                                  |
|                                                                  |                                                |                                                                                                           |                                                                                                               |                                                  |
| Sample ID: N012552-001B-MS                                       | SampType: MS                                   | TestCode: 6020DIS_CrP Units: μg/L                                                                         | Prep Date: 5/16/2014                                                                                          | RunNo: <b>93509</b>                              |
| Sample ID: N012552-001B-MS Client ID: ZZZZZZ                     | SampType: MS Batch ID: 45694                   | TestCode: 6020DIS_CrP Units: µg/L TestNo: EPA 6020 EPA 3010A                                              | Prep Date: 5/16/2014  Analysis Date: 5/16/2014                                                                | RunNo: <b>93509</b><br>SeqNo: <b>1785285</b>     |
|                                                                  |                                                |                                                                                                           | •                                                                                                             |                                                  |
| Client ID: ZZZZZZ                                                | Batch ID: <b>45694</b>                         | TestNo: EPA 6020 EPA 3010A                                                                                | Analysis Date: 5/16/2014                                                                                      | SeqNo: <b>1785285</b>                            |
| Client ID: ZZZZZZ Analyte                                        | Batch ID: <b>45694</b> Result                  | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val                                                     | Analysis Date: 5/16/2014  %REC LowLimit HighLimit RPD Ref Val                                                 | SeqNo: <b>1785285</b>                            |
| Client ID: ZZZZZZ  Analyte Chromium  Sample ID: N012552-001B-MSD | Batch ID: 45694  Result  11.118  SampType: MSD | TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 2.100  TestCode: 6020DIS_CrP Units: μg/L | Analysis Date: <b>5/16/2014</b> %REC LowLimit HighLimit RPD Ref Val  90.2 75 125  Prep Date: <b>5/16/2014</b> | SeqNo: 1785285  %RPD RPDLimit Qual  RunNo: 93509 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-10-198

**Lab Order:** N012553 **Collection Date:** 5/14/2014 7:18:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-010

Analyses Result MDL PQL Qual Units DF Date Analyzed

**ANIONS BY ION CHROMATOGRAPHY** 

**EPA 300.0** 

 RunID:
 IC2\_140515A
 QC Batch:
 R93482
 PrepDate:
 Analyst:
 RB

 Fluoride
 4.5
 0.055
 0.50
 mg/L
 5
 5/15/2014 10:41 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

O Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: MW-120-198

**Lab Order:** N012553 **Collection Date:** 5/14/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-011

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

**EPA 300.0** 

 RunID:
 IC2\_140515A
 QC Batch:
 R93482
 PrepDate:
 Analyst:
 RB

 Fluoride
 4.5
 0.055
 0.50
 mg/L
 5
 5/15/2014 10:54 AM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories Date:** 28-May-14

CLIENT: CH2M HILL Work Order: N012553

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02 TestCode: 300\_W\_FPGE

|            | : MB-R93482_F      | SampType: MBLK          | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: 93482          |
|------------|--------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: | PBW                | Batch ID: <b>R93482</b> | TestNo: <b>EPA 300.0</b>         | Analysis Date: <b>5/15/2014</b>     | SeqNo: <b>1784283</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | ND                      | 0.10                             |                                     |                       |
| Sample ID  | : LCS-R93482_F     | SampType: <b>LCS</b>    | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: <b>93482</b>   |
| Client ID: | LCSW               | Batch ID: R93482        | TestNo: <b>EPA 300.0</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784284</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | 2.404                   | 0.10 2.500 0                     | 96.2 90 110                         |                       |
| Sample ID  | : N012553-010C-DUP | SampType: <b>DUP</b>    | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: 93482          |
| Client ID: | ZZZZZZ             | Batch ID: R93482        | TestNo: <b>EPA 300.0</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784287</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | 4.540                   | 0.50                             | 4.455                               | 1.89 20               |
| Sample ID  | : N012553-010C-MS  | SampType: MS            | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: <b>93482</b>   |
| Client ID: | ZZZZZZ             | Batch ID: R93482        | TestNo: <b>EPA 300.0</b>         | Analysis Date: 5/15/2014            | SeqNo: 1784288        |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | 16.490                  | 0.50 12.50 4.455                 | 96.3 80 120                         |                       |
| Sample ID  | : N012553-010C-MSD | SampType: MSD           | TestCode: 300_W_FPGE Units: mg/L | Prep Date:                          | RunNo: <b>93482</b>   |
| Client ID: | ZZZZZZ             | Batch ID: <b>R93482</b> | TestNo: <b>EPA 300.0</b>         | Analysis Date: 5/15/2014            | SeqNo: <b>1784289</b> |
| Analyte    |                    | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Fluoride   |                    | 16.370                  | 0.50 12.50 4.455                 | 95.3 80 120 16.49                   | 0.730 20              |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 28-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-20-130-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 12:26:00 PM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-001

| Analyses                   | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |  |  |
|----------------------------|---------------|-------|------|------------|-----------|--------------------|--|--|
| DISSOLVED METALS BY ICP-MS |               |       |      |            |           |                    |  |  |
|                            | EPA 3010A     |       | EP   | A 6020     |           |                    |  |  |
| RunID: ICP7_140516A        | QC Batch: 456 | 694   |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |  |  |
| Arsenic                    | 5.0           | 0.027 | 0.10 | μg/L       | 1         | 5/16/2014 02:03 PM |  |  |
| Manganese                  | ND            | 0.026 | 0.50 | μg/L       | 1         | 5/16/2014 02:03 PM |  |  |
| Molybdenum                 | 41            | 0.15  | 0.50 | μg/L       | 1         | 5/16/2014 02:03 PM |  |  |
| Selenium                   | 27            | 0.069 | 0.50 | μg/L       | 1         | 5/16/2014 02:03 PM |  |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 28-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL

Lab Order: N012553

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012553-004

Client Sample ID: MW-51-198

**Collection Date:** 5/12/2014 11:12:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140516A   | QC Batch: 456 | 694   |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Arsenic               | 3.9           | 0.027 | 0.10 | μg/L       | 1         | 5/16/2014 02:20 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1         | 5/16/2014 02:20 PM |
| Molybdenum            | 44            | 0.15  | 0.50 | μg/L       | 1         | 5/16/2014 02:20 PM |
| Selenium              | 16            | 0.34  | 2.5  | μg/L       | 5         | 5/22/2014 01:37 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

### **ASSET Laboratories**

CLIENT: CH2M HILL Client Sample ID: MW-68-180-198

**Lab Order:** N012553 **Collection Date:** 5/12/2014 7:00:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-005

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140516A   | QC Batch: 456 | 694   |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Arsenic               | 2.9           | 0.027 | 0.10 | μg/L       | 1         | 5/16/2014 02:43 PM |
| Manganese             | ND            | 0.026 | 0.50 | μg/L       | 1         | 5/16/2014 02:43 PM |
| Molybdenum            | 39            | 0.15  | 0.50 | μg/L       | 1         | 5/16/2014 02:43 PM |
| Selenium              | 13            | 0.069 | 0.50 | μg/L       | 1         | 5/16/2014 02:43 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Print Date: 28-May-14

Client Sample ID: MW-66BR-270-198

Collection Date: 5/13/2014 9:40:00 AM

### **ASSET Laboratories**

Lab ID:

**CLIENT:** CH2M HILL Lab Order: N012553

PG&E Topock, 423575.MP.02.GM.02

**Project:** 

N012553-007

Matrix: WATER

**PQL** DF Analyses Result MDL Units **Date Analyzed** Qual **DISSOLVED METALS BY ICP-MS** 

|                     | EPA 3010A     |       | EPA  | A 6020    |           |                    |
|---------------------|---------------|-------|------|-----------|-----------|--------------------|
| RunID: ICP7_140516A | QC Batch: 456 | 94    |      | PrepDate: | 5/16/2014 | Analyst: CEI       |
| Arsenic             | ND            | 0.13  | 0.50 | μg/L      | 5         | 5/16/2014 05:29 PM |
| Manganese           | ND            | 0.026 | 0.50 | μg/L      | 1         | 5/16/2014 02:49 PM |
| Molybdenum          | 13            | 0.76  | 2.5  | μg/L      | 5         | 5/16/2014 05:29 PM |
| Selenium            | ND            | 1.7   | 12   | μg/L      | 25        | 5/20/2014 12:43 PM |

Qualifiers: Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

### **ASSET Laboratories**

**CLIENT:** CH2M HILL Lab Order: N012553

**Project:** PG&E Topock, 423575.MP.02.GM.02

Lab ID: N012553-008 Client Sample ID: MW-68BR-280-198

Collection Date: 5/13/2014 8:40:00 AM

Matrix: WATER

| Analyses              | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS         |       |      |            |           |                    |
|                       | EPA 3010A     |       | EP.  | A 6020     |           |                    |
| RunID: ICP7_140516A   | QC Batch: 456 | 694   |      | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Arsenic               | 1.3           | 0.13  | 0.50 | μg/L       | 5         | 5/16/2014 05:34 PM |
| Manganese             | 39            | 0.026 | 0.50 | μg/L       | 1         | 5/16/2014 02:54 PM |
| Molybdenum            | 73            | 0.76  | 2.5  | μg/L       | 5         | 5/16/2014 05:34 PM |
| Selenium              | ND            | 0.34  | 2.5  | μg/L       | 5         | 5/16/2014 05:34 PM |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: TW-01-198

**Lab Order:** N012553 **Collection Date:** 5/13/2014 11:56:00 AM

Project: PG&E Topock, 423575.MP.02.GM.02 Matrix: WATER

**Lab ID:** N012553-009

| Analyses                | Result MD       | L PQL   | Qual Units | DF        | Date Analyzed      |
|-------------------------|-----------------|---------|------------|-----------|--------------------|
| DISSOLVED METALS BY ICP | P-MS            |         |            |           |                    |
|                         | EPA 3010A       |         | EPA 6020   |           |                    |
| RunID: ICP7_140516A     | QC Batch: 45694 |         | PrepDate:  | 5/16/2014 | Analyst: CEI       |
| Molybdenum              | 15 0.1          | 5 0.50  | μg/L       | 1         | 5/16/2014 03:00 PM |
| Selenium                | 17 0.0          | 69 0.50 | μg/L       | 1         | 5/16/2014 03:00 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

D Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012553

**Project:** 

PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012553-010

Client Sample ID: MW-10-198

**Collection Date:** 5/14/2014 7:18:00 AM

Matrix: WATER

| Analyses               | Result         | MDL   | PQL  | Qual Unit | s DF      | Date Analyzed      |
|------------------------|----------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS           |       |      |           |           |                    |
|                        | EPA 3010A      |       | EPA  | A 6020    |           |                    |
| RunID: ICP7_140516A    | QC Batch: 4569 | 94    |      | PrepDate: | 5/16/2014 | Analyst: CEI       |
| Molybdenum             | 28             | 0.15  | 0.50 | μg/L      | 1         | 5/16/2014 03:06 PM |
| Selenium               | 5.9            | 0.069 | 0.50 | μg/L      | 1         | 5/16/2014 03:06 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 28-May-14

**ASSET Laboratories** 

CLIENT: CH2M HILL

Lab Order: N012553

Collecti

**Project:** PG&E Topock, 423575.MP.02.GM.02

**Lab ID:** N012553-011

Client Sample ID: MW-120-198

**Collection Date:** 5/14/2014 7:00:00 AM

Matrix: WATER

| Analyses                | Result         | MDL   | PQL  | Qual Unit | s DF      | Date Analyzed      |
|-------------------------|----------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY ICI | P-MS           |       |      |           |           |                    |
|                         | EPA 3010A      |       | EP#  | A 6020    |           |                    |
| RunID: ICP7_140516A     | QC Batch: 4569 | )4    |      | PrepDate: | 5/16/2014 | Analyst: CEI       |
| Molybdenum              | 28             | 0.15  | 0.50 | μg/L      | 1         | 5/16/2014 03:11 PM |
| Selenium                | 6.4            | 0.069 | 0.50 | μg/L      | 1         | 5/16/2014 03:11 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Date:** 28-May-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order: N012553

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

| TestCode:  | 6020 | DIC   |  |
|------------|------|-------|--|
| resit one: | muzu | 171.5 |  |

| Sample ID: MB-45694         | SampType: MBLK       | TestCode: 6020_DIS | Units: μg/L | Prep Date: 5/16/2014      | 4 RunNo: 93509                 |
|-----------------------------|----------------------|--------------------|-------------|---------------------------|--------------------------------|
| Client ID: PBW              | Batch ID: 45694      | TestNo: EPA 602    | D EPA 3010A | Analysis Date: 5/16/2014  | 4 SeqNo: <b>1785130</b>        |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit F | RPD Ref Val %RPD RPDLimit Qual |
| Arsenic                     | ND                   | 0.10               |             |                           |                                |
| Manganese                   | ND                   | 0.50               |             |                           |                                |
| Molybdenum                  | ND                   | 0.50               |             |                           |                                |
| Selenium                    | ND                   | 0.50               |             |                           |                                |
| Sample ID: LCS-45694        | SampType: <b>LCS</b> | TestCode: 6020_DIS | Units: μg/L | Prep Date: 5/16/2014      | 4 RunNo: 93509                 |
| Client ID: LCSW             | Batch ID: 45694      | TestNo: EPA 602    | D EPA 3010A | Analysis Date: 5/16/2014  | 4 SeqNo: 1785131               |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit F | RPD Ref Val %RPD RPDLimit Qual |
| Arsenic                     | 9.840                | 0.10 10.00         | 0           | 98.4 85 115               |                                |
| Manganese                   | 99.171               | 0.50 100.0         | 0           | 99.2 85 115               |                                |
| Molybdenum                  | 9.819                | 0.50 10.00         | 0           | 98.2 85 115               |                                |
| Selenium                    | 9.624                | 0.50 10.00         | 0           | 96.2 85 115               |                                |
| Sample ID: N012552-001B-MS  | SampType: MS         | TestCode: 6020_DIS | Units: μg/L | Prep Date: 5/16/2014      | 4 RunNo: 93509                 |
| Client ID: ZZZZZZ           | Batch ID: 45694      | TestNo: EPA 602    | D EPA 3010A | Analysis Date: 5/16/2014  | 4 SeqNo: 1785148               |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit F | RPD Ref Val %RPD RPDLimit Qual |
| Arsenic                     | 20.651               | 0.10 10.00         | 11.48       | 91.8 75 125               |                                |
| Molybdenum                  | 51.358               | 0.50 10.00         | 40.02       | 113 75 125                |                                |
| Selenium                    | 9.910                | 0.50 10.00         | 0.1867      | 97.2 75 125               |                                |
| Sample ID: N012552-001B-MSD | SampType: MSD        | TestCode: 6020_DIS | Units: μg/L | Prep Date: 5/16/2014      | 4 RunNo: 93509                 |
| Client ID: ZZZZZZ           | Batch ID: 45694      | TestNo: EPA 602    | D EPA 3010A | Analysis Date: 5/16/2014  | 4 SeqNo: 1785149               |
| Analyte                     | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit F | RPD Ref Val %RPD RPDLimit Qual |
| Arsenic                     | 21.064               | 0.10 10.00         | 11.48       | 95.9 75 125               | 20.65 1.98 20                  |
| Molybdenum                  | 51.844               | 0.50 10.00         | 40.02       | 118 75 125                | 51.36 0.943 20                 |
|                             |                      |                    |             |                           |                                |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012553

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.GM.02

| TestCode: 6020_DIS |   |
|--------------------|---|
|                    | - |

| Sample ID: N012552-001B-MSD | SampType: MSD       | TestCode: 6020_DIS | Units: µg/L | Prep Date: 5/16/2014                | RunNo: <b>93509</b>   |
|-----------------------------|---------------------|--------------------|-------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ           | Batch ID: 45694     | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/16/2014            | SeqNo: 1785149        |
| Analyte                     | Result              | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Selenium                    | 9.974               | 0.50 10.00         | 0.1867      | 97.9 75 125 9.910                   | 0.643 20              |
| Sample ID: N012552-001B-MS  | SampType: <b>MS</b> | TestCode: 6020_DIS | Units: µg/L | Prep Date: 5/16/2014                | RunNo: <b>93509</b>   |
| Client ID: ZZZZZZ           | Batch ID: 45694     | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/16/2014            | SeqNo: <b>1785154</b> |
| Analyte                     | Result              | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Manganese                   | 306.660             | 2.5 100.0          | 215.0       | 91.6 75 125                         |                       |
| Sample ID: N012552-001B-MSD | SampType: MSD       | TestCode: 6020_DIS | Units: µg/L | Prep Date: 5/16/2014                | RunNo: <b>93509</b>   |
| Client ID: ZZZZZZ           | Batch ID: 45694     | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/16/2014            | SeqNo: <b>1785157</b> |
| Analyte                     | Result              | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Manganese                   | 310.506             | 2.5 100.0          | 215.0       | 95.5 75 125 306.7                   | 1.25 20               |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out Advanced Technology Laboratories, Inc.

**ASSET Laboratories** 

- E Value above quantitation range
- RPD outside accepted recovery limits

Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

| - |   | - | -  | - |     |  |
|---|---|---|----|---|-----|--|
|   | - | æ | rv | / | 711 |  |

# **CHAIN OF CUSTODY RECORD**

5/14/2014 1:44:29 PM

Page 1 OF 1

| CHZIVINIL                                                                                | <u> </u>                       |         |                           |                                      |                              |                                |                                           |                                        |                                           |                          |                               | 3/4/2014 1.44.29 PM Page 1 | <u> </u>             | <u> </u> |
|------------------------------------------------------------------------------------------|--------------------------------|---------|---------------------------|--------------------------------------|------------------------------|--------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------|-------------------------------|----------------------------|----------------------|----------|
| Project Name PG<br>Location Topoc<br>Project Manager                                     | k                              |         | Container:<br>servatives: | 250 mi<br>Poly<br>(NH4)2S<br>O4/NH4O | 04/NH40                      | 500 ml<br>Poly<br>HNO3,<br>4°C | 500 ml<br>Poly<br>HNO3,<br>4°C            | 500 ml<br>Poly<br>HNO3,<br>4°C         | 500 ml<br>Poły<br>HNO3,<br>4°C            | 250 ml<br>Poly<br>4°C    | 250 ml<br>Poly<br>4°C         |                            |                      |          |
| Sample Manager                                                                           |                                | ffv     |                           | H, 4°C                               | H, 4°C                       |                                | <b>—</b>                                  |                                        |                                           |                          |                               |                            |                      |          |
| oampie manager                                                                           | Jilawii Du                     |         | Filtered:<br>ding Time:   | Field<br>28                          | Field<br>28                  | Field<br>180                   | Field<br>180                              | Field<br>180                           | Field<br>180                              | NA<br>28                 | NA<br>28                      |                            |                      |          |
| Project Number Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: A | P-198-Q2<br>10 Days<br>/3/2014 | P.02.GM |                           | Cr6 (E218.6) Field Filtered          | Cr6 (SM3500B) Field Filtered | Arsenic (6020A) Field Filtered | Metals (6020A) Field Filtered<br>Chromium | Metals (6020A) Field Filtered<br>Mo,Se | Metals (6020A) Field Filtered<br>Mo,Se,Mn | Anions (E300.0) Fluoride | Specific Conductance (E120.1) |                            | Number of Containers | COMMEN   |
| MW-20-130-198                                                                            | 5/12/2014                      | 12:26   | Water                     |                                      | х                            | x                              | х                                         |                                        | х                                         |                          | х                             | 4012553-1                  | 3                    |          |
| MW-31-060-198                                                                            | 5/12/2014                      | 9:30    | Water                     |                                      | х                            |                                | х                                         |                                        |                                           |                          |                               | 1 -2                       | 2                    |          |
| MW-50-200-198                                                                            | 5/12/2014                      | 8:34    | Water                     |                                      | х                            |                                | х                                         |                                        |                                           |                          |                               | -3                         | 2                    |          |
| MW-51-198                                                                                | 5/12/2014                      | 11:12   | Water                     |                                      | x                            | x                              | х                                         |                                        | х                                         |                          | х                             | -4                         | 3                    |          |
| MW-68-180-198                                                                            | 5/12/2014                      | 7:00    | Water                     | х                                    |                              | х                              | х                                         |                                        | х                                         |                          | х                             | -5                         | 3                    | ~~~~     |
| MW-226-198                                                                               | 5/13/2014                      | 6:20    | Water                     | X                                    |                              |                                |                                           |                                        |                                           |                          |                               | - 6                        | 1                    |          |
| MW-66BR-270-198                                                                          | 5/13/2014                      | 9:40    | Water                     | x                                    |                              | x                              | х                                         |                                        | х                                         |                          | х                             | -7                         | 3                    |          |
| MW-68BR-280-198                                                                          | 5/13/2014                      | 8:40    | Water                     | X                                    |                              | x                              | x                                         |                                        | x                                         |                          | x                             | c c                        | 3                    |          |
| TW-01-198                                                                                | 5/13/2014                      | 11:56   |                           |                                      | x                            |                                | x                                         | х                                      |                                           |                          | x                             | a                          | 3                    |          |
| MW-10-198                                                                                | 5/14/2014                      | 7:18    | Water                     |                                      | X                            |                                | ×                                         | x                                      |                                           | x                        | x                             | - 10                       | 3                    |          |
| MW-120-198                                                                               | 5/14/2014                      | 7:00    | Water                     |                                      | X                            |                                | x                                         | X                                      |                                           | ×                        | ×                             | - 11                       | 3                    |          |
| MW-227-198                                                                               | 5/14/2014                      | 6:30    | Water                     |                                      | ^                            |                                | ^                                         |                                        |                                           | ^                        | ^_                            | -12                        | 1                    |          |
| MW-228-198                                                                               |                                |         |                           | X                                    |                              |                                |                                           |                                        |                                           |                          |                               |                            | -                    |          |
| 1111-220-130                                                                             | 5/14/2014                      | 13:33   | Water                     | X                                    |                              |                                |                                           |                                        |                                           |                          |                               | <del>-</del> - 3           | 1                    |          |
|                                                                                          |                                |         |                           |                                      |                              |                                |                                           |                                        |                                           |                          |                               | TOTAL NUMBER OF CONTAINERS | 31                   |          |

Approved by Sampled by Relinquished by Received by Relinquished by Received by

Date/Time 5-14-14 /350 Signatures

**Method of Shipment:** On Ice:

**FedEx** (yes / no 2 -Airbill No:

Lab Name: ADVANCED TECHNOLOGY LABORATO Lab Phone: (702) 307-2659

**Shipping Details** 

ATTN:

Sample Custody

and Marlon Report Copy to **Shawn Duffy** (530) 229-3303

Special Instructions: April 9 to May 15, 2014

49

# **ASSET Laboratories**

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

| If you have any questions of       | or further in                | nstruction, plea    | se contact our | Project Coo  | rdinator at (70  | 2) 307-2659. |             |              |
|------------------------------------|------------------------------|---------------------|----------------|--------------|------------------|--------------|-------------|--------------|
| Cooler Received/Opened On:         | 5/14/2014                    | ļ                   |                |              | Workorder:       | N012553      |             |              |
| Rep sample Temp (Deg C):           | 2.4, 2.7                     |                     |                |              | IR Gun ID:       | 2            |             |              |
| Temp Blank:                        | Yes                          | ✓ No                |                |              |                  |              |             |              |
| Carrier name:                      | ATL                          |                     |                |              |                  |              |             |              |
| Last 4 digits of Tracking No.:     | NA                           |                     |                | Packing      | g Material Used: | None         |             |              |
| Cooling process:                   | <b>✓</b> Ice                 | ☐ Ice Pack          | Dry Ice        | Other        | ☐ None           |              |             |              |
|                                    |                              | <u>Sa</u>           | ample Receip   | t Checklis   | <u>t</u>         |              |             |              |
| 1. Shipping container/cooler in g  | good condition               | on?                 |                |              | Yes 🗸            | No $\square$ | Not Present |              |
| 2. Custody seals intact, signed,   | dated on sh                  | ippping container/  | cooler?        |              | Yes              | No $\square$ | Not Present | ✓            |
| 3. Custody seals intact on samp    | ole bottles?                 |                     |                |              | Yes              | No $\square$ | Not Present | $\checkmark$ |
| 4. Chain of custody present?       |                              |                     |                | Yes 🗸        | No $\square$     |              |             |              |
| 5. Sampler's name present in C     | OC?                          |                     | Yes 🗹          | No 🗌         |                  |              |             |              |
| 6. Chain of custody signed whe     | n relinquishe                | ed and received?    | Yes 🗹          | No $\square$ |                  |              |             |              |
| 7. Chain of custody agrees with    | sample labe                  | els?                |                | Yes 🗹        | No 🗌             |              |             |              |
| 8. Samples in proper container/l   | bottle?                      |                     |                | Yes 🗹        | No $\square$     |              |             |              |
| 9. Sample containers intact?       |                              |                     |                |              | Yes 🗸            | No $\square$ |             |              |
| 10. Sufficient sample volume fo    | r indicated te               | est?                |                | Yes 🗹        | No $\square$     |              |             |              |
| 11. All samples received within    | holding time                 | ?                   |                |              | Yes 🗸            | No $\square$ |             |              |
| 12. Temperature of rep sample      | or Temp Bla                  | ank within acceptal | ole limit?     |              | Yes 🗸            | No 🗆         | NA          |              |
| 13. Water - VOA vials have zero    | headspace                    | 9?                  |                |              | Yes              | No 🗆         | NA          | ✓            |
| 14. Water - pH acceptable upor     | •                            |                     |                |              | Yes 🗸            | No 🗌         | NA          |              |
| Example: pH > 12 for (CN           |                              |                     |                |              |                  | $\Box$       |             |              |
| 15. Did the bottle labels indicate | •                            |                     |                |              | Yes 🔽            | No 🗌         | NA          |              |
| 16. Were there Non-Conforman W     | ce issues at<br>as Client no |                     |                |              | Yes ☐            | No ☐<br>No ☐ | NA<br>NA    |              |
| Comments:                          |                              |                     |                |              |                  |              |             |              |
|                                    |                              |                     |                |              |                  |              |             |              |
|                                    |                              |                     |                |              |                  |              |             |              |
|                                    |                              |                     |                |              |                  |              |             |              |
|                                    |                              |                     |                |              |                  |              |             |              |

Checklist Completed By: MBC MBC 5/15/2014

Reviewed By: 05/20/14

**METHOD:** EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L = A * DF$ 

where:

A = 
$$\mu$$
g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For N012553-005A concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 4.9825 \* 2000  
= 9965

Reporting result in two significant figures,

$$Cr^{+6}$$
,  $\mu g/L = 10000$ 

Many 5/27/2014

METHOD: EPA 300.0

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: Water

FORMULA:

Calculate the Fluoride concentration, in mg/L, in the original sample as follows:

Fluoride, 
$$mg/L = A * DF$$

where:

A = mg/L, IC calculated concentration DF = dilution factor

For **N012553-011C** concentration in mg/L is calculated as follows:

Fluoride, mg/L = 0.901 \* 5

= 4.505

Reporting result in two significant figures,

Fluoride, mg/L = 4.5

Nancy 5/28/2014

METHOD: EPA 3500-Cr B

TEST NAME: HEXAVALENT CHROMIUM BY Colorimetric Method

**MATRIX:** Water

# FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

Hexavalent Chromium,  $\mu$ g/L = A \* DF

where:

A = ug/L, UV-VIS Hexavalent Chromium calculated concentration DF = dilution factor

For **N012553-002A**, concentration in  $\mu$ g/L is calculated as follows:

Hexavalent Chromium,  $\mu$ g/L = 272.621\* 1 = 272.621 ug/L

Reporting results in two significant figures,

Hexavalent Chromium, μg/L = 270 ug/L

Narry 5/28/2014

METHOD: EPA 6020

**TEST NAME:** Heavy Metals by ICP-MS

**MATRIX:** Aqueous

FORMULA:

Calculate the Molybdenum concentration, in ug/L, in the original sample as follows:

Molybdenum, ug/L = A \* DF \* PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample **N012553-004B**, the concentration in ug/L is calculated as follows:

Molybdenum, ug/L = 44.4377573111758 \* 1 \* (25/25)

= 44.4377573111758

Reporting result in two significant figures,

Molybdenum, ug/L = 44

Nancy 5/27/2014

### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012553

 Test Method:
 EPA 6020

 Analysis Date:
 5/16/2014

Matrix: Water
Batch No.: 45694

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Se & Cr. The calculated values are <25X RL. PS @ 2x passed criteria

| Sample ID           | Analyte    | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF   | %DIFFlimit |
|---------------------|------------|-------|-------------|-------|-------------|---------|------------|
| N012552-001B-DT 5X  | Arsenic    | μg/L  | 11.39194113 | PASS  | 11.47517973 | 0.73%   | 10         |
| N012552-001B-DT 25X | Manganese  | μg/L  | 232.0858824 | PASS  | 215.047108  | 7.92%   | 10         |
| N012552-001B-DT 5X  | Molybdenum | μg/L  | 42.04314414 | PASS  | 40.02419904 | 5.04%   | 10         |
| N012552-001B-DT 5X  | Selenium   | μg/L  | 0           | NA    | 0.186681825 | 100.00% | 10         |
| N012552-001B-DT 5X  | Chromium   | μg/L  | 3.242231122 | NA    | 2.099779292 | 54.41%  | 10         |

Note: NA - Not applicable

ASSET Laboratories

Date: 26-May-14

CLIENT: CH2M HILL Work Order: N012553

N012553

**Project:** PG&E Topock, 423575.MP.02.GM.02

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012552-001B-PS        | SampType: <b>PS</b> | TestCode: 6020_DIS |                    | Units: µg/L |                          | Prep Da  | te:                  | RunNo: <b>93509</b>   |      |
|-----------------------------------|---------------------|--------------------|--------------------|-------------|--------------------------|----------|----------------------|-----------------------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45694     | TestNo             | o: <b>EPA 6020</b> | EPA 3010A   | Analysis Date: 5/16/2014 |          |                      | SeqNo: <b>1785147</b> |      |
| Analyte                           | Result              | PQL                | SPK value          | SPK Ref Val | %REC                     | LowLimit | HighLimit RPD Ref Va | al %RPD RPDLimit      | Qual |
| Arsenic                           | 31.232              | 0.20               | 20.00              | 11.48       | 98.8                     | 80       | 120                  |                       |      |
| Molybdenum                        | 62.877              | 1.0                | 20.00              | 40.02       | 114                      | 80       | 120                  |                       |      |
| Selenium                          | 21.215              | 1.0                | 20.00              | 0.1867      | 105                      | 80       | 120                  |                       |      |
| Sample ID: <b>N012552-001B-PS</b> | SampType: PS        | TestCode           | e: <b>6020_DIS</b> | Units: µg/L | Prep Date:               |          |                      | RunNo: <b>93509</b>   |      |
| Client ID: ZZZZZZ                 | Batch ID: 45694     | TestNo             | o: <b>EPA 6020</b> | EPA 3010A   | Analysis Date: 5/16/2014 |          |                      | SeqNo: <b>1785153</b> |      |
| Analyte                           | Result              | PQL                | SPK value          | SPK Ref Val | %REC                     | LowLimit | HighLimit RPD Ref Va | al %RPD RPDLimit      | Qual |
| Manganese                         | 721.828             | 2.5                | 500.0              | 215.0       | 101                      | 80       | 120                  |                       |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N012553

**Project:** 

N012553 PG&E Topock, 423575.MP.02.GM.02

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012552-001B-PS Client ID: ZZZZZZ | SampType: PS Batch ID: 45694 |     | le: <b>6020DIS_</b><br>lo: <b>EPA 6020</b> | CrP Units: µg/L<br>EPA 3010A | Prep Date: Analysis Date: 5/16/2014 |          |                       | RunNo: <b>93509</b><br>SeqNo: <b>1785284</b> |          |      |
|----------------------------------------------|------------------------------|-----|--------------------------------------------|------------------------------|-------------------------------------|----------|-----------------------|----------------------------------------------|----------|------|
| Analyte                                      | Result                       | PQL | SPK value                                  | SPK Ref Val                  | %REC                                | LowLimit | HighLimit RPD Ref Val | %RPD                                         | RPDLimit | Qual |
| Chromium                                     | 21.232                       | 2.0 | 20.00                                      | 2.100                        | 95.7                                | 80       | 120                   | _                                            | _        |      |

### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

June 09, 2014

Shawn P. Duffy CA-ELAP No.: 2676

CH2M HILL NV Cert. No.: NV-00922

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N012607

RE: PG&E Topock, 423575.MP.02.RM

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 22, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

gygesmudo for

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

# ASSET Laboratories Date: 09-Jun-14

**CLIENT:** CH2M HILL

Project: PG&E Topock, 423575.MP.02.RM CASE NARRATIVE

Lab Order: N012607

### SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time except for pH. pH testing is specified to be performed in the field within 15 minutes of sampling; sample was received and analyzed past the regulatory holding time.

# **ASSET Laboratories**

**CLIENT:** CH2M HILL

**Project:** PG&E Topock, 423575.MP.02.RM

Lab Order: N012607

Contract No: 2014-RMP-196

# **Work Order Sample Summary**

**Date:** 09-Jun-14

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012607-001A  | C-BNS-D-196      | Water  | 5/21/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-001B  | C-BNS-D-196      | Water  | 5/21/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-001C  | C-BNS-D-196      | Water  | 5/21/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-001D  | C-BNS-D-196      | Water  | 5/21/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-001E  | C-BNS-D-196      | Water  | 5/21/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-002A  | C-I-3-D-196      | Water  | 5/21/2014 8:56:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-002B  | C-I-3-D-196      | Water  | 5/21/2014 8:56:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-002C  | C-I-3-D-196      | Water  | 5/21/2014 8:56:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-002D  | C-I-3-D-196      | Water  | 5/21/2014 8:56:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-002E  | C-I-3-D-196      | Water  | 5/21/2014 8:56:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-003A  | C-I-3-S-196      | Water  | 5/21/2014 9:06:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-003B  | C-I-3-S-196      | Water  | 5/21/2014 9:06:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-003C  | C-I-3-S-196      | Water  | 5/21/2014 9:06:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-003D  | C-I-3-S-196      | Water  | 5/21/2014 9:06:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-003E  | C-I-3-S-196      | Water  | 5/21/2014 9:06:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-004A  | C-MAR-D-196      | Water  | 5/21/2014 11:46:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-004B  | C-MAR-D-196      | Water  | 5/21/2014 11:46:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-004C  | C-MAR-D-196      | Water  | 5/21/2014 11:46:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-004D  | C-MAR-D-196      | Water  | 5/21/2014 11:46:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-004E  | C-MAR-D-196      | Water  | 5/21/2014 11:46:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-005A  | C-MAR-S-196      | Water  | 5/21/2014 11:54:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-005B  | C-MAR-S-196      | Water  | 5/21/2014 11:54:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-005C  | C-MAR-S-196      | Water  | 5/21/2014 11:54:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-005D  | C-MAR-S-196      | Water  | 5/21/2014 11:54:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-005E  | C-MAR-S-196      | Water  | 5/21/2014 11:54:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-006A  | C-MW-80-196      | Water  | 5/21/2014 8:00:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-007A  | C-MW-81-196      | Water  | 5/21/2014 8:40:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-008A  | C-R22A-D-196     | Water  | 5/21/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-008B  | C-R22A-D-196     | Water  | 5/21/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014      |

Advanced Technology Laboratories, Inc.

3151 W. Post Rd, lease Vieges, NV 89118
P: 702.307.2659 F: 702.307.2691
www.assetlaboratories.com

**Project:** PG&E Topock, 423575.MP.02.RM

Lab Order: N012607 Contract No: 2014-RMP-196

| Lab Sample ID Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|--------------------------------|--------|------------------------|---------------|---------------|
| N012607-008C C-R22A-D-196      | Water  | 5/21/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-008D C-R22A-D-196      | Water  | 5/21/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-008E C-R22A-D-196      | Water  | 5/21/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-009A C-R22A-S-196      | Water  | 5/21/2014 10:12:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-009B C-R22A-S-196      | Water  | 5/21/2014 10:12:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-009C C-R22A-S-196      | Water  | 5/21/2014 10:12:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-009D C-R22A-S-196      | Water  | 5/21/2014 10:12:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-009E C-R22A-S-196      | Water  | 5/21/2014 10:12:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-010A C-R27-D-196       | Water  | 5/21/2014 11:06:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-010B C-R27-D-196       | Water  | 5/21/2014 11:06:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-010C C-R27-D-196       | Water  | 5/21/2014 11:06:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-010D C-R27-D-196       | Water  | 5/21/2014 11:06:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-010E C-R27-D-196       | Water  | 5/21/2014 11:06:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-011A C-R27-S-196       | Water  | 5/21/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-011B C-R27-S-196       | Water  | 5/21/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-011C C-R27-S-196       | Water  | 5/21/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-011D C-R27-S-196       | Water  | 5/21/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-011E C-R27-S-196       | Water  | 5/21/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-012A C-TAZ-D-196       | Water  | 5/21/2014 8:10:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-012B C-TAZ-D-196       | Water  | 5/21/2014 8:10:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-012C C-TAZ-D-196       | Water  | 5/21/2014 8:10:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-012D C-TAZ-D-196       | Water  | 5/21/2014 8:10:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-012E C-TAZ-D-196       | Water  | 5/21/2014 8:10:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-013A C-TAZ-S-196       | Water  | 5/21/2014 8:26:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-013B C-TAZ-S-196       | Water  | 5/21/2014 8:26:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-013C C-TAZ-S-196       | Water  | 5/21/2014 8:26:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-013D C-TAZ-S-196       | Water  | 5/21/2014 8:26:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-013E C-TAZ-S-196       | Water  | 5/21/2014 8:26:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-014A R63-196           | Water  | 5/21/2014 9:32:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-014B R63-196           | Water  | 5/21/2014 9:32:00 AM   | 5/22/2014     | 6/9/2014      |
|                                |        |                        |               |               |

**Project:** PG&E Topock, 423575.MP.02.RM

Lab Order: N012607 Contract No: 2014-RMP-196

| Lab Sample ID Clie | ent Sample ID | Matrix | <b>Collection Date</b> | Date Received | <b>Date Reported</b> |
|--------------------|---------------|--------|------------------------|---------------|----------------------|
| N012607-014C R63-1 | 96            | Water  | 5/21/2014 9:32:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-014D R63-1 | 96            | Water  | 5/21/2014 9:32:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-014E R63-1 | 96            | Water  | 5/21/2014 9:32:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-015A RMP-  | AB1-196       | Water  | 5/21/2014 2:00:00 PM   | 5/22/2014     | 6/9/2014             |
| N012607-016A C-CO  | N-D-196       | Water  | 5/22/2014 9:44:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-016B C-CO  | N-D-196       | Water  | 5/22/2014 9:44:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-016C C-CO  | N-D-196       | Water  | 5/22/2014 9:44:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-016D C-CO  | N-D-196       | Water  | 5/22/2014 9:44:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-016E C-CO  | N-D-196       | Water  | 5/22/2014 9:44:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-017A C-CO  | N-S-196       | Water  | 5/22/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-017B C-CO  | N-S-196       | Water  | 5/22/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-017C C-CO  | N-S-196       | Water  | 5/22/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-017D C-CO  | N-S-196       | Water  | 5/22/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-017E C-CO  | N-S-196       | Water  | 5/22/2014 10:00:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-018A C-MV  | V-82-196      | Water  | 5/22/2014 8:16:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-019A C-MV  | V-83-196      | Water  | 5/22/2014 8:42:00 AM   | 5/22/2014     | 6/9/2014             |
| N012607-020A C-NR  | 1-D-196       | Water  | 5/22/2014 10:26:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-020B C-NR  | 1-D-196       | Water  | 5/22/2014 10:26:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-020C C-NR  | 1-D-196       | Water  | 5/22/2014 10:26:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-020D C-NR  | 1-D-196       | Water  | 5/22/2014 10:26:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-020E C-NR  | 1-D-196       | Water  | 5/22/2014 10:26:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-021A C-NR  | 1-S-196       | Water  | 5/22/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-021B C-NR  | 1-S-196       | Water  | 5/22/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-021C C-NR  | 1-S-196       | Water  | 5/22/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-021D C-NR  | 1-S-196       | Water  | 5/22/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-021E C-NR  | 1-S-196       | Water  | 5/22/2014 10:40:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-022A C-NR  | 3-D-196       | Water  | 5/22/2014 11:04:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-022B C-NR  | 3-D-196       | Water  | 5/22/2014 11:04:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-022C C-NR  | 3-D-196       | Water  | 5/22/2014 11:04:00 AM  | 5/22/2014     | 6/9/2014             |
| N012607-022D C-NR  | 3-D-196       | Water  | 5/22/2014 11:04:00 AM  | 5/22/2014     | 6/9/2014             |
|                    |               |        |                        |               |                      |

**Project:** PG&E Topock, 423575.MP.02.RM

Lab Order: N012607 Contract No: 2014-RMP-196

| Lab Sample ID | Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|---------------|------------------|--------|------------------------|---------------|---------------|
| N012607-022E  | C-NR3-D-196      | Water  | 5/22/2014 11:04:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-023A  | C-NR3-S-196      | Water  | 5/22/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-023B  | C-NR3-S-196      | Water  | 5/22/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-023C  | C-NR3-S-196      | Water  | 5/22/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-023D  | C-NR3-S-196      | Water  | 5/22/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-023E  | C-NR3-S-196      | Water  | 5/22/2014 11:20:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-024A  | C-NR4-D-196      | Water  | 5/22/2014 11:50:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-024B  | C-NR4-D-196      | Water  | 5/22/2014 11:50:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-024C  | C-NR4-D-196      | Water  | 5/22/2014 11:50:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-024D  | C-NR4-D-196      | Water  | 5/22/2014 11:50:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-024E  | C-NR4-D-196      | Water  | 5/22/2014 11:50:00 AM  | 5/22/2014     | 6/9/2014      |
| N012607-025A  | C-NR4-S-196      | Water  | 5/22/2014 12:02:00 PM  | 5/22/2014     | 6/9/2014      |
| N012607-025B  | C-NR4-S-196      | Water  | 5/22/2014 12:02:00 PM  | 5/22/2014     | 6/9/2014      |
| N012607-025C  | C-NR4-S-196      | Water  | 5/22/2014 12:02:00 PM  | 5/22/2014     | 6/9/2014      |
| N012607-025D  | C-NR4-S-196      | Water  | 5/22/2014 12:02:00 PM  | 5/22/2014     | 6/9/2014      |
| N012607-025E  | C-NR4-S-196      | Water  | 5/22/2014 12:02:00 PM  | 5/22/2014     | 6/9/2014      |
| N012607-026A  | R-19-196         | Water  | 5/22/2014 8:50:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-026B  | R-19-196         | Water  | 5/22/2014 8:50:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-026C  | R-19-196         | Water  | 5/22/2014 8:50:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-026D  | R-19-196         | Water  | 5/22/2014 8:50:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-026E  | R-19-196         | Water  | 5/22/2014 8:50:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-027A  | R-28-196         | Water  | 5/22/2014 8:24:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-027B  | R-28-196         | Water  | 5/22/2014 8:24:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-027C  | R-28-196         | Water  | 5/22/2014 8:24:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-027D  | R-28-196         | Water  | 5/22/2014 8:24:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-027E  | R-28-196         | Water  | 5/22/2014 8:24:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-028A  | RMP-AB2-196      | Water  | 5/22/2014 12:30:00 PM  | 5/22/2014     | 6/9/2014      |
| N012607-029A  | RRB-196          | Water  | 5/22/2014 9:12:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-029B  | RRB-196          | Water  | 5/22/2014 9:12:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-029C  | RRB-196          | Water  | 5/22/2014 9:12:00 AM   | 5/22/2014     | 6/9/2014      |
|               |                  |        |                        |               |               |

**Project:** PG&E Topock, 423575.MP.02.RM

Lab Order: N012607 Contract No: 2014-RMP-196

| Lab Sample ID Client Sample ID | Matrix | <b>Collection Date</b> | Date Received | Date Reported |
|--------------------------------|--------|------------------------|---------------|---------------|
| N012607-029D RRB-196           | Water  | 5/22/2014 9:12:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-029E RRB-196           | Water  | 5/22/2014 9:12:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-030A SW1-196           | Water  | 5/22/2014 6:58:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-030B SW1-196           | Water  | 5/22/2014 6:58:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-030C SW1-196           | Water  | 5/22/2014 6:58:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-031A SW2-196           | Water  | 5/22/2014 6:40:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-031B SW2-196           | Water  | 5/22/2014 6:40:00 AM   | 5/22/2014     | 6/9/2014      |
| N012607-031C SW2-196           | Water  | 5/22/2014 6:40:00 AM   | 5/22/2014     | 6/9/2014      |

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-BNS-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-001

**ASSET Laboratories** 

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 860
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26910 www.assetlaboratories.com

Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-I-3-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:56:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-002

**ASSET Laboratories** 

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 860 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В Analyte detected in the associated Method Blank

Н

Spike/Surrogate outside of limits due to matrix interference

Holding times for preparation or analysis exceeded

Surrogate Diluted Out

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

P: 702.307.2659

3151 W. Post Rd, Las Vegas, NV 89118 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-I-3-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-003

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunlD:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 580
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Oiluted Out

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26912 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-MAR-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:46:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-004

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 920
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-MAR-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:54:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-005

**ASSET Laboratories** 

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 920
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Ana

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26914

Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R22A-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 10:00:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-008

**ASSET Laboratories** 

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 870 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Е Value above quantitation range

> Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R22A-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 10:12:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-009 Lab ID:

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 870 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Print Date:** 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-010

**ASSET Laboratories** 

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 870
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26917 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-011

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 870
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:10:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-012

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 880
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyt

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26919 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-TAZ-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:26:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-013

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 890 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В Analyte detected in the associated Method Blank

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Н Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R63-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-014

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 880
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2692 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-CON-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 9:44:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-016

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 890 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В Analyte detected in the associated Method Blank

Н

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-CON-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 10:00:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-017

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 880 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:26:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-020

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 880
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2692 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR1-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 10:40:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-021

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 890 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR3-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:04:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-022

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 890 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR3-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-023

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 880
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26927 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR4-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:50:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-024

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 880 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR4-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 12:02:00 PM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-025

**PQL** DF **Analyses** Result MDL Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 890 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: R-19-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 8:50:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-026

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

RunID: WETCHEM\_140523B QC Batch: R93558 PrepDate: Analyst: LCC 880 5/23/2014 Specific Conductance 0.10 0.10 umhos/cm

Qualifiers: В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R-28-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 8:24:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-027

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunlD:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 890
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26931 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: RRB-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 9:12:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-029

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 900
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Value above quantitation range

Е

Advanced Technology Laboratories, Inc.

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26932 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: SW1-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 6:58:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-030

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 900
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers: B

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2693

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: SW2-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 6:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-031

Analyses Result MDL PQL Qual Units DF Date Analyzed

**SPECIFIC CONDUCTANCE** 

**EPA 120.1** 

 RunID:
 WETCHEM\_140523B
 QC Batch:
 R93558
 PrepDate:
 Analyst:
 LCC

 Specific Conductance
 900
 0.10
 0.10
 umhos/cm
 1
 5/23/2014

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26934

Date: 09-Jun-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL

Work Order: N012607

PG&E Topock, 423575.MP.02.RM **Project:** 

# ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1\_WPGE

| Sample ID: N012607-012D-DUP        | SampType: <b>DUP</b>    | TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 93558                   |      |
|------------------------------------|-------------------------|--------------------------------------------------------------------------------|------|
| Client ID: ZZZZZZ                  | Batch ID: <b>R93558</b> | TestNo: <b>EPA 120.1</b> Analysis Date: <b>5/23/2014</b> SeqNo: <b>1786924</b> |      |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q  | Qual |
| Specific Conductance               | 882.000                 | 0.10 884.0 0.227 10                                                            |      |
| Sample ID: <b>N012607-025D-DUP</b> | SampType: <b>DUP</b>    | TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 93558                   |      |
| Client ID: ZZZZZZ                  | Batch ID: <b>R93558</b> | TestNo: <b>EPA 120.1</b> Analysis Date: <b>5/23/2014</b> SeqNo: <b>1786936</b> |      |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q  | Qual |
| Specific Conductance               | 887.000                 | 0.10 889.0 0.225 10                                                            |      |
| Sample ID: <b>N012607-031C-DUP</b> | SampType: <b>DUP</b>    | TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 93558                   |      |
| Client ID: ZZZZZZ                  | Batch ID: R93558        | TestNo: <b>EPA 120.1</b> Analysis Date: <b>5/23/2014</b> SeqNo: <b>1786942</b> |      |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Q  | Qual |
| Specific Conductance               | 898.000                 | 0.10 896.0 0.223 10                                                            |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba **ASSET Laboratories** 

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-BNS-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-001

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| РН                           |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| pH                           | 8.2           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26936 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-I-3-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:56:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-002

| Analyses                     | Result N        | MDL  | PQL     | Qual    | Units    | DF | Date Analyzed |
|------------------------------|-----------------|------|---------|---------|----------|----|---------------|
| РН                           |                 |      | SM4     | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R9355 | 57   | O.III-4 | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3             | 0.10 | 0.10    | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25              | 0.10 | 0.10    | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting LimitResults are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26937 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-I-3-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-003

| Analyses                     | Result        | MDL         | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|-------------|------|---------|----------|----|---------------|
| PH                           |               |             |      |         |          |    |               |
|                              |               |             | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | <b>3557</b> |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26938 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-MAR-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:46:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-004

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| РН                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 7.9           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26939 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: C-MAR-S-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/21/2014 11:54:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-005

**ASSET Laboratories** 

| Analyses                     | Result         | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|----------------|------|------|---------|----------|----|---------------|
| РН                           |                |      |      |         |          |    |               |
|                              |                |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R935 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 7.8            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25             | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc. ASSET Laboratories** 

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R22A-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:00:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-008

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| РН                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

ASSET Laboratories

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2694 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R22A-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:12:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-009

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| PH                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2694 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-010

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| PH                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26943 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-011

**ASSET Laboratories** 

| Analyses                     | Result M        | <b>IDL</b> | PQL     | Qual    | Units    | DF | Date Analyzed       |
|------------------------------|-----------------|------------|---------|---------|----------|----|---------------------|
| РН                           |                 |            | SM4     | 500-H+B |          |    |                     |
| RunID: WETCHEM_140523A       | QC Batch: R9355 | 57         | O.III-4 | Prep    | Date:    |    | Analyst: <b>LCC</b> |
| рН                           | 8.3             | 0.10       | 0.10    | Н       | pH Units | 1  | 5/23/2014           |
| Temp. at time of pH Analysis | 25              | 0.10       | 0.10    | Н       | pH Units | 1  | 5/23/2014           |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Oiluted Out

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26944 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:10:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-012

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| PH                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26945 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:26:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-013

**ASSET Laboratories** 

| Analyses                     | Result        | MDL         | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|-------------|------|---------|----------|----|---------------|
| PH                           |               |             |      |         |          |    |               |
|                              |               |             | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | <b>3557</b> |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26946 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R63-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-014

| Analyses                     | Result        | MDL         | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|-------------|------|---------|----------|----|---------------|
| PH                           |               |             |      |         |          |    |               |
|                              |               |             | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | <b>3557</b> |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26947 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-CON-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 9:44:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-016

**ASSET Laboratories** 

| Analyses                     | Result        | MDL         | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|-------------|------|---------|----------|----|---------------|
| PH                           |               |             |      |         |          |    |               |
|                              |               |             | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | <b>3557</b> |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10        | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26948 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: C-CON-S-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 10:00:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-017

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| PH                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**ASSET Laboratories** 

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 09-Jun-14

Client Sample ID: C-NR1-D-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 10:26:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-020

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| PH                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 F: 702.307.269**5**0 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-021

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| РН                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26951 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: C-NR3-D-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 11:04:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-022

**ASSET Laboratories** 

| Analyses                     | Result        | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|------|------|---------|----------|----|---------------|
| PH                           |               |      |      |         |          |    |               |
|                              |               |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | 557  |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

Н

Spike/Surrogate outside of limits due to matrix interference

Holding times for preparation or analysis exceeded

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 F: 702.307.269**5**2 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR3-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-023

**ASSET Laboratories** 

| Analyses                     | Result        | MDL                     | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|-------------------------|------|---------|----------|----|---------------|
| PH                           |               |                         | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | QC Batch: <b>R93557</b> |      |         | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10                    | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10                    | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

Re

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26953 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: C-NR4-D-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 11:50:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-024

**ASSET Laboratories** 

| Analyses | s                      | Result                  | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|----------|------------------------|-------------------------|------|------|---------|----------|----|---------------|
| PH       |                        |                         |      |      |         |          |    |               |
|          |                        |                         |      | SM4  | 500-H+B |          |    |               |
| RunID:   | WETCHEM_140523A        | QC Batch: <b>R93557</b> |      |      | Prep    | Date:    |    | Analyst: LCC  |
| рН       |                        | 8.3                     | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp.    | at time of pH Analysis | 25                      | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out **Advanced Technology Laboratories, Inc.**  Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 F: 702.307.269**5**4 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR4-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 12:02:00 PM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-025

**ASSET Laboratories** 

| Analyses | s                      | Result                  | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|----------|------------------------|-------------------------|------|------|---------|----------|----|---------------|
| PH       |                        |                         |      |      |         |          |    |               |
|          |                        |                         |      | SM4  | 500-H+B |          |    |               |
| RunID:   | WETCHEM_140523A        | QC Batch: <b>R93557</b> |      |      | Prep    | Date:    |    | Analyst: LCC  |
| рН       |                        | 8.3                     | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp.    | at time of pH Analysis | 25                      | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26955 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R-19-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 8:50:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-026

**ASSET Laboratories** 

| Analyses                     | Result                  | MDL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|-------------------------|------|------|---------|----------|----|---------------|
| РН                           |                         |      |      |         |          |    |               |
|                              |                         |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: <b>R93557</b> |      |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3                     | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25                      | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26956 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: R-28-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 8:24:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-027

**ASSET Laboratories** 

| Analyses                     | Result        | MDL                     | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|-------------------------|------|---------|----------|----|---------------|
| PH                           |               |                         |      |         |          |    |               |
|                              |               |                         | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | QC Batch: <b>R93557</b> |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.3           | 0.10                    | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10                    | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**ASSET Laboratories** 

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: RRB-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 9:12:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-029

**ASSET Laboratories** 

| Analyses                     | Result        | MDL                     | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|---------------|-------------------------|------|---------|----------|----|---------------|
| PH                           |               |                         |      |         |          |    |               |
|                              |               |                         | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R93 | QC Batch: <b>R93557</b> |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.2           | 0.10                    | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25            | 0.10                    | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26958 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: SW1-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 6:58:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-030

**ASSET Laboratories** 

| Analyses                     | Result M                | 1DL  | PQL  | Qual    | Units    | DF | Date Analyzed |
|------------------------------|-------------------------|------|------|---------|----------|----|---------------|
| РН                           |                         |      | SM4  | 500-H+B |          |    |               |
| RunID: WETCHEM_140523A       | QC Batch: <b>R93557</b> |      |      | Prep    | Date:    |    | Analyst: LCC  |
| рН                           | 8.0                     | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25                      | 0.10 | 0.10 | Н       | pH Units | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

Н

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 F: 702.307.269**5**9 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: SW2-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 6:40:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-031

**ASSET Laboratories** 

| Analyses                     | Result         | MDL   | PQL       | Qual    | Units                | DF | Date Analyzed |
|------------------------------|----------------|-------|-----------|---------|----------------------|----|---------------|
| PH                           |                |       | SM4       | 500-H+B |                      |    |               |
| RunID: WETCHEM_140523A       | QC Batch: R935 | Oili- | PrepDate: |         | Analyst: <b>LC</b> 0 |    |               |
| рН                           | 8.2            | 0.10  | 0.10      | Н       | pH Units             | 1  | 5/23/2014     |
| Temp. at time of pH Analysis | 25             | 0.10  | 0.10      | Н       | pH Units             | 1  | 5/23/2014     |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 F: 702.307.269**6**0 P: 702.307.2659 www.assetlaboratories.com

Date: 09-Jun-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order:

N012607

PG&E Topock, 423575.MP.02.RM **Project:** 

# ANALYTICAL QC SUMMARY REPORT

**TestCode:** 150.1\_4500H+B\_W

| Sample ID: N012607-012D-DUP        | SampType: <b>DUP</b>    | TestCode: 150.1_4500H Units: pH Units | Prep Date:                         | RunNo: <b>93557</b>   |
|------------------------------------|-------------------------|---------------------------------------|------------------------------------|-----------------------|
| Client ID: ZZZZZZ                  | Batch ID: <b>R93557</b> | TestNo: SM4500-H+B                    | Analysis Date: <b>5/23/2014</b>    | SeqNo: <b>1786895</b> |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val %           | REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| рН                                 | 8.320                   | 0.10                                  | 8.320                              | 0 10 H                |
| Temp. at time of pH Analysis       | 25.000                  | 0.10                                  | 25.00                              | 0 10 H                |
| Sample ID: <b>N012607-025D-DUP</b> | SampType: <b>DUP</b>    | TestCode: 150.1_4500H Units: pH Units | Prep Date:                         | RunNo: <b>93557</b>   |
| Client ID: ZZZZZZ                  | Batch ID: <b>R93557</b> | TestNo: SM4500-H+B                    | Analysis Date: 5/23/2014           | SeqNo: <b>1786906</b> |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val %           | REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| рН                                 | 8.280                   | 0.10                                  | 8.290                              | 0.121 10 H            |
| Temp. at time of pH Analysis       | 25.000                  | 0.10                                  | 25.00                              | 0 10 H                |
| Sample ID: N012607-031C-DUP        | SampType: <b>DUP</b>    | TestCode: 150.1_4500H Units: pH Units | Prep Date:                         | RunNo: <b>93557</b>   |
| Client ID: ZZZZZZ                  | Batch ID: <b>R93557</b> | TestNo: SM4500-H+B                    | Analysis Date: 5/23/2014           | SeqNo: <b>1786912</b> |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val %           | REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| рН                                 | 8.220                   | 0.10                                  | 8.200                              | 0.244 10 H            |
| Temp. at time of pH Analysis       | 25.000                  | 0.10                                  | 25.00                              | 0 10 H                |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

RPD outside accepted recovery limits Calculations are based on raw values

Value above quantitation range

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-BNS-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 10:40:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-001

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527A QC Batch: 45755 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:32 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Surrogate Diluted Out

Spike/Surrogate outside of limits due to matrix interference

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

5/27/2014 08:32 AM

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-I-3-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:56:00 AM

10

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

ND

**Lab ID:** N012607-002

Suspended Solids (Residue, Non-

Filterable)

Analyses Result MDL PQL Qual Units DF Date Analyzed

TOTAL NON-FILTERABLE RESIDUE

SM2540D

RunID: WETCHEM\_140527A QC Batch: 45755 PrepDate: 5/27/2014 Analyst: LCC

10

mg/L

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26963

www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-I-3-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-003

Analyses Result MDL PQL Qual Units DF Date Analyzed

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

 RunID:
 WETCHEM\_140527A
 QC Batch:
 45755
 PrepDate:
 5/27/2014
 Analyst:
 LCC

 Suspended Solids (Residue, Non ND
 10
 10
 mg/L
 1
 5/27/2014 08:32 AM

Filterable)

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

ASSET Laboratories

E Value above quantitation range
ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26964 www.assetlaboratories.com

Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-MAR-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 11:46:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-004

**ASSET Laboratories** 

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units **TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527A QC Batch: 45755 PrepDate: 5/27/2014 Analyst: LCC 70 5/27/2014 08:32 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

5/27/2014 08:32 AM

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-MAR-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:54:00 AM

10

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

62

**Lab ID:** N012607-005

Suspended Solids (Residue, Non-

Filterable)

Analyses Result MDL PQL Qual Units DF Date Analyzed

TOTAL NON-FILTERABLE RESIDUE

SM2540D

RunID: WETCHEM\_140527A QC Batch: 45755 PrepDate: 5/27/2014 Analyst: LCC

10

mg/L

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

Value above quantitation range
 Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26966 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R22A-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 10:00:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-008

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

RunID: WETCHEM\_140527A QC Batch: 45755 PrepDate: 5/27/2014 Analyst: LCC

SM2540D

ND 5/27/2014 08:32 AM Suspended Solids (Residue, Non-10 10 mg/L Filterable)

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Surrogate Diluted Out

Spike/Surrogate outside of limits due to matrix interference

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R22A-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 10:12:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-009

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units **TOTAL NON-FILTERABLE RESIDUE** SM2540D

RunID: WETCHEM\_140527A QC Batch: 45755 Suspended Solids (Residue, Non-

ND 10

10

PrepDate: mg/L 5/27/2014

Analyst: LCC 5/27/2014 08:32 AM

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

5/27/2014

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R27-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 11:06:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-010

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units **TOTAL NON-FILTERABLE RESIDUE** 

SM2540D RunID: WETCHEM\_140527A QC Batch: 45755

PrepDate: Analyst: LCC ND 5/27/2014 08:32 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R27-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 11:20:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-011

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527A QC Batch: 45755 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:32 AM 10 10 mg/L

Suspended Solids (Residue, Non-

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Analyst: LCC

5/27/2014 08:32 AM

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:10:00 AM

10

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

QC Batch: 45755

ND

**Lab ID:** N012607-012

RunID: WETCHEM\_140527A

Filterable)

Suspended Solids (Residue, Non-

Analyses Result MDL PQL Qual Units DF Date Analyzed

TOTAL NON-FILTERABLE RESIDUE

SM2540D

10

PrepDate:

mg/L

5/27/2014

Qualifiers: B Analy

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26971 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-TAZ-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:26:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-013

**Analyses** Result MDL **PQL** Qual DF **Date Analyzed** Units **TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: R63-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 9:32:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-014

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units **TOTAL NON-FILTERABLE RESIDUE** SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-CON-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 9:44:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-016

**Analyses** Result MDL **PQL** Qual DF **Date Analyzed** Units **TOTAL NON-FILTERABLE RESIDUE** SM2540D

Suspended Solids (Residue, Non-

RunID: WETCHEM\_140527B

QC Batch: 45756

10

10

PrepDate:

5/27/2014

Analyst: LCC 5/27/2014 08:33 AM

ND mg/L Filterable)

Qualifiers:

В Analyte detected in the associated Method Blank

Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-CON-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 10:00:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-017

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units **TOTAL NON-FILTERABLE RESIDUE** 

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

SM2540D

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:26:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-020

Analyses Result MDL PQL Qual Units DF Date Analyzed

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

 RunID:
 WETCHEM\_140527B
 QC Batch:
 45756
 PrepDate:
 5/27/2014
 Analyst:
 LCC

 Suspended Solids (Residue, Non ND
 10
 10
 mg/L
 1
 5/27/2014 08:33 AM

Filterable)

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26976 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-021

Analyses Result MDL PQL Qual Units DF Date Analyzed

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

 RunID:
 WETCHEM\_140527B
 QC Batch:
 45756
 PrepDate:
 5/27/2014
 Analyst:
 LCC

 Suspended Solids (Residue, Non ND
 10
 10
 mg/L
 1
 5/27/2014 08:33 AM

Filterable)

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26977 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR3-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:04:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-022

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Η Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR3-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:20:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-023

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

Η

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR4-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:50:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-024

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR4-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 12:02:00 PM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-025

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R-19-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 8:50:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-026

Analyses Result MDL PQL Qual Units DF Date Analyzed

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

 RunID:
 WETCHEM\_140527B
 QC Batch:
 45756
 PrepDate:
 5/27/2014
 Analyst:
 LCC

 Suspended Solids (Residue, Non ND
 10
 10
 mg/L
 1
 5/27/2014 08:33 AM

Filterable)

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26982

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: R-28-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 8:24:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-027

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC ND 5/27/2014 08:33 AM Suspended Solids (Residue, Non-10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: RRB-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 9:12:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-029 Lab ID:

DF **Analyses** Result MDL **PQL** Qual **Date Analyzed** Units

**TOTAL NON-FILTERABLE RESIDUE** 

SM2540D

RunID: WETCHEM\_140527B QC Batch: 45756 PrepDate: 5/27/2014 Analyst: LCC 5/27/2014 08:33 AM Suspended Solids (Residue, Non-18 10 10 mg/L

Filterable)

Qualifiers: В Analyte detected in the associated Method Blank

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Η Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Date: 09-Jun-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL

Work Order: N012607

PG&E Topock, 423575.MP.02.RM **Project:** 

# ANALYTICAL QC SUMMARY REPORT

**TestCode:** 160.2\_2540D\_W

| Sample ID: MB-45755<br>Client ID: PBW | SampType: <b>MB</b> Batch ID: <b>457</b>  |          | ode: <b>160.2_2540D</b> _ Units: <b>mg/L</b> tNo: <b>SM2540D</b>    | Prep Date: <b>5/27/2014</b> Analysis Date: <b>5/27/2014</b> | RunNo: <b>93584</b><br>SeqNo: <b>1787868</b> |
|---------------------------------------|-------------------------------------------|----------|---------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|
| Analyte                               | Re                                        | sult PQL | SPK value SPK Ref Val                                               | %REC LowLimit HighLimit RPD Ref Val                         | %RPD RPDLimit Qual                           |
| Suspended Solids (Residue,            | Non-Filter                                | ND 10    |                                                                     |                                                             |                                              |
| Sample ID: LCS-45755 Client ID: LCSW  | SampType: LC\$  Batch ID: 457             |          | ode: <b>160.2_2540D</b> _ Units: <b>mg/L</b> tNo: <b>SM2540D</b>    | Prep Date: <b>5/27/2014</b> Analysis Date: <b>5/27/2014</b> | RunNo: <b>93584</b><br>SeqNo: <b>1787869</b> |
| Analyte                               | Re                                        | sult PQL | SPK value SPK Ref Val                                               | %REC LowLimit HighLimit RPD Ref Val                         | %RPD RPDLimit Qual                           |
| Suspended Solids (Residue,            | Non-Filter 880.                           | 000 10   | 1000 0                                                              | 88.0 80 120                                                 |                                              |
| Sample ID: N012607-001D-D             | SampType: <b>DUI</b> Batch ID: <b>457</b> |          | ode: <b>160.2_2540D</b> _ Units: <b>mg/L</b><br>tNo: <b>SM2540D</b> | Prep Date: <b>5/27/2014</b> Analysis Date: <b>5/27/2014</b> | RunNo: <b>93584</b><br>SeqNo: <b>1787871</b> |
| Analyte                               | Re                                        | sult PQL | SPK value SPK Ref Val                                               | %REC LowLimit HighLimit RPD Ref Val                         | %RPD RPDLimit Qual                           |
| Suspended Solids (Residue,            | Non-Filter                                | ND 10    |                                                                     | 0                                                           | 0 5                                          |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba **ASSET Laboratories** 

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

- Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N012607

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

**TestCode: 160.2\_2540D\_W** 

| Sample ID: MB-45756              | SampType: MBLK     | TestCode: 160.2_2540D_ Units: mg/L | Prep Date: 5/27/2014                | RunNo: <b>93585</b>   |
|----------------------------------|--------------------|------------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW                   | Batch ID: 45756    | TestNo: SM2540D                    | Analysis Date: 5/27/2014            | SeqNo: <b>1787881</b> |
| Analyte                          | Result             | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Suspended Solids (Residue, I     | Non-Filter ND      | 10                                 |                                     |                       |
| Sample ID: LCS-45756             | SampType: LCS      | TestCode: 160.2_2540D_ Units: mg/L | Prep Date: 5/27/2014                | RunNo: <b>93585</b>   |
| Client ID: LCSW                  | Batch ID: 45756    | TestNo: SM2540D                    | Analysis Date: 5/27/2014            | SeqNo: <b>1787882</b> |
| Analyte                          | Result             | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Suspended Solids (Residue, I     | Non-Filter 879.000 | 10 1000 0                          | 87.9 80 120                         |                       |
| Sample ID: <b>N012607-013D-D</b> | OUP SampType: DUP  | TestCode: 160.2_2540D_ Units: mg/L | Prep Date: 5/27/2014                | RunNo: <b>93585</b>   |
| Client ID: ZZZZZZ                | Batch ID: 45756    | TestNo: SM2540D                    | Analysis Date: 5/27/2014            | SeqNo: <b>1787884</b> |
| Analyte                          | Result             | PQL SPK value SPK Ref Val          | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Suspended Solids (Residue, I     | Non-Filter ND      | 10                                 | 0                                   | 0 5                   |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-BNS-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-001

| Analyses                   | Result MDL              | PQL  | Qual Unit | s DF      | Date Analyzed      |
|----------------------------|-------------------------|------|-----------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |           |           |                    |
|                            |                         | EP.  | A 218.6   |           |                    |
| RunID: IC6_140523A         | QC Batch: <b>R93576</b> |      | PrepDate: |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L      | 1         | 5/23/2014 11:19 AM |
| DISSOLVED METALS BY ICI    | P-MS                    |      |           |           |                    |
|                            | EPA 3010A               | EP   | A 6020    |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738         |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L      | 1         | 5/27/2014 01:20 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

<sup>a</sup> ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26987 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-I-3-D-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/21/2014 8:56:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-002

| Analyses                   | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP.  | A 218.6    |           |                    |
| RunID: IC6_140523A         | QC Batch: <b>R93576</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 11:29 AM |
| DISSOLVED METALS BY IC     | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 01:47 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-I-3-S-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/21/2014 9:06:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-003

| Analyses                | Result MDL       | PQL  | Qual Units | S DF      | Date Analyzed      |
|-------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |      |            |           |                    |
|                         |                  | EP   | A 218.6    |           |                    |
| RunID: IC6_140523A      | QC Batch: R93576 |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016         | 0.20 | μg/L       | 1         | 5/23/2014 11:39 AM |
| DISSOLVED METALS BY ICE | P-MS             |      |            |           |                    |
|                         | EPA 3010A        | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738  |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0  | μg/L       | 1         | 5/27/2014 01:53 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-MAR-D-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/21/2014 11:46:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-004

| Analyses                | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|-------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |      |            |           |                    |
|                         |                         | EP   | A 218.6    |           |                    |
| RunID: IC6_140523A      | QC Batch: <b>R93576</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 11:49 AM |
| DISSOLVED METALS BY ICI | P-MS                    |      |            |           |                    |
|                         | EPA 3010A               | EP.  | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 01:58 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out **Advanced Technology Laboratories, Inc.**  Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-MAR-S-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/21/2014 11:54:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-005

| Analyses                   | Result MDL       | PQL  | Qual Unit | s DF      | Date Analyzed      |
|----------------------------|------------------|------|-----------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC            |      |           |           |                    |
|                            |                  | EP   | A 218.6   |           |                    |
| RunID: IC6_140523A         | QC Batch: R93576 |      | PrepDate: |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016         | 0.20 | μg/L      | 1         | 5/23/2014 11:59 AM |
| DISSOLVED METALS BY ICI    | P-MS             |      |           |           |                    |
|                            | EPA 3010A        | EP   | A 6020    |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738  |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030         | 1.0  | μg/L      | 1         | 5/27/2014 02:15 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-MW-80-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:00:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-006

DF **Analyses** Result MDL **PQL** Qual Units **Date Analyzed** 

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

IC6\_140523A RunID: QC Batch: R93576 PrepDate: Analyst: RB 5/23/2014 10:57 AM Hexavalent Chromium ND 0.016 0.20 μg/L

Qualifiers: В

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-MW-81-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:40:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-007 Lab ID:

DF **Analyses** Result MDL **PQL** Qual Units **Date Analyzed** 

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

IC6\_140523A RunID: QC Batch: R93576 PrepDate: Analyst: RB 5/23/2014 11:09 AM Hexavalent Chromium ND 0.016 0.20 μg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-R22A-D-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/21/2014 10:00:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-008

| Analyses                   | Result MDL       | PQL  | Qual Unit | s DF      | Date Analyzed      |
|----------------------------|------------------|------|-----------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC            |      |           |           |                    |
|                            |                  | EP   | A 218.6   |           |                    |
| RunID: IC6_140523A         | QC Batch: R93576 |      | PrepDate: |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016         | 0.20 | μg/L      | 1         | 5/23/2014 12:09 PM |
| DISSOLVED METALS BY ICI    | P-MS             |      |           |           |                    |
|                            | EPA 3010A        | EP   | A 6020    |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738  |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030         | 1.0  | μg/L      | 1         | 5/27/2014 02:20 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc. ASSET Laboratories** 

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-R22A-S-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/21/2014 10:12:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-009

| Analyses                   | Result MDL       | PQL  | Qual Units | DF        | Date Analyzed      |
|----------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC            |      |            |           |                    |
|                            |                  | EP   | A 218.6    |           |                    |
| RunID: IC6_140523A         | QC Batch: R93576 |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016         | 0.20 | μg/L       | 1         | 5/23/2014 01:07 PM |
| DISSOLVED METALS BY ICI    | P-MS             |      |            |           |                    |
|                            | EPA 3010A        | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738  |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030         | 1.0  | μg/L       | 1         | 5/27/2014 02:27 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-010

| Analyses                | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|-------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |      |            |           |                    |
|                         |                         | EP   | A 218.6    |           |                    |
| RunID: IC6_140523A      | QC Batch: <b>R93576</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 01:17 PM |
| DISSOLVED METALS BY ICI | P-MS                    |      |            |           |                    |
|                         | EPA 3010A               | EP.  | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 02:32 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit
Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2696 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-011

| Analyses               | Result MDL       | PQL  | Qual Units | s DF      | Date Analyzed      |
|------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC            |      |            |           |                    |
|                        |                  | EP.  | A 218.6    |           |                    |
| RunID: IC6_140523A     | QC Batch: R93576 |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016         | 0.20 | μg/L       | 1         | 5/23/2014 01:27 PM |
| DISSOLVED METALS BY IC | P-MS             |      |            |           |                    |
|                        | EPA 3010A        | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 45738  |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium               | ND 0.030         | 1.0  | μg/L       | 1         | 5/27/2014 02:38 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26997 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:10:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-012

| Analyses                   | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP   | A 218.6    |           |                    |
| RunID: IC6_140523A         | QC Batch: <b>R93576</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 01:36 PM |
| DISSOLVED METALS BY ICI    | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 02:43 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

luted Out

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26998 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-TAZ-S-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/21/2014 8:26:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-013

| Analyses               | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |      |            |           |                    |
|                        |                         | EP.  | A 218.6    |           |                    |
| RunID: IC6_140523A     | QC Batch: <b>R93576</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 01:46 PM |
| DISSOLVED METALS BY IC | P-MS                    |      |            |           |                    |
|                        | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium               | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 02:49 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: R63-196 **CLIENT:** 

N012607 Lab Order: Collection Date: 5/21/2014 9:32:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-014

| Analyses                | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|-------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |      |            |           |                    |
|                         |                         | EP   | A 218.6    |           |                    |
| RunID: IC6_140523A      | QC Batch: <b>R93576</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 01:56 PM |
| DISSOLVED METALS BY ICI | P-MS                    |      |            |           |                    |
|                         | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 02:54 PM |

Е

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: RMP-AB1-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 2:00:00 PM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-015

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140523A
 QC Batch:
 R93576
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 5/23/2014 02:06 PM

Qualifiers: B

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26901 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-CON-D-196 CH2M HILL **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 9:44:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-016

| Analyses                | Result MDL       | PQL  | Qual Unit | s DF      | Date Analyzed      |
|-------------------------|------------------|------|-----------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |      |           |           |                    |
|                         |                  | EP   | A 218.6   |           |                    |
| RunID: IC6_140523A      | QC Batch: R93576 |      | PrepDate: |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016         | 0.20 | μg/L      | 1         | 5/23/2014 02:16 PM |
| DISSOLVED METALS BY ICI | P-MS             |      |           |           |                    |
|                         | EPA 3010A        | EP   | A 6020    |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738  |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0  | μg/L      | 1         | 5/27/2014 03:00 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-CON-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:00:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-017

| Analyses                | Result MDL       | PQL  | Qual Units | S DF      | Date Analyzed      |
|-------------------------|------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC            |      |            |           |                    |
|                         |                  | EP   | A 218.6    |           |                    |
| RunID: IC6_140523A      | QC Batch: R93576 |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016         | 0.20 | μg/L       | 1         | 5/23/2014 02:26 PM |
| DISSOLVED METALS BY ICE | P-MS             |      |            |           |                    |
|                         | EPA 3010A        | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738  |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030         | 1.0  | μg/L       | 1         | 5/27/2014 03:06 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26703 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-MW-82-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 8:16:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-018

DF **Analyses** Result MDL **PQL** Qual Units **Date Analyzed** 

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

IC6\_140523A RunID: QC Batch: R93576 PrepDate: Analyst: RB 5/23/2014 02:36 PM Hexavalent Chromium ND 0.016 0.20 μg/L

Qualifiers: В Analyte detected in the associated Method Blank

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Η Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-MW-83-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 8:42:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-019

**ASSET Laboratories** 

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC6\_140523A
 QC Batch:
 R93576
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 5/23/2014 03:07 PM

Qualifiers: B Analy

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

a ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26705 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:26:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-020

| Analyses                   | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP.  | A 218.6    |           |                    |
| RunID: IC6_140523A         | QC Batch: <b>R93576</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 03:18 PM |
| DISSOLVED METALS BY ICI    | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 03:22 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26706 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-021

| Analyses                | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|-------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |      |            |           |                    |
|                         |                         | EPA  | A 218.6    |           |                    |
| RunID: IC7_140523A      | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 11:21 AM |
| DISSOLVED METALS BY ICI | P-MS                    |      |            |           |                    |
|                         | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 03:28 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

P: 70

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR3-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:04:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-022

| Analyses                   | Result MDL              | PQL  | Qual Units | S DF      | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP   | A 218.6    |           |                    |
| RunID: IC7_140523A         | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 11:32 AM |
| DISSOLVED METALS BY ICE    | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 03:33 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26708 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-NR3-S-196 CH2M HILL **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:20:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-023

| Analyses                   | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP   | A 218.6    |           |                    |
| RunID: IC7_140523A         | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 11:42 AM |
| DISSOLVED METALS BY ICI    | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 03:39 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-NR4-D-196 CH2M HILL **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:50:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-024

| Analyses                | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|-------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |      |            |           |                    |
|                         |                         | EP   | A 218.6    |           |                    |
| RunID: IC7_140523A      | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 11:51 AM |
| DISSOLVED METALS BY ICI | P-MS                    |      |            |           |                    |
|                         | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 03:44 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

DO Surrogate Diluted Out

Spike/Surrogate outside of limits due to matrix interference

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26910 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR4-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 12:02:00 PM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-025

| Analyses                   | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP.  | A 218.6    |           |                    |
| RunID: IC7_140523A         | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 12:01 PM |
| DISSOLVED METALS BY ICE    | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45738         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 03:50 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Results are

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26911 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R-19-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 8:50:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-026

| Analyses                   | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP.  | A 218.6    |           |                    |
| RunID: IC7_140523A         | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 12:10 PM |
| DISSOLVED METALS BY ICI    | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45739         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 04:06 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26912 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R-28-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 8:24:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-027

| Analyses               | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E  | BY IC                   |      | -          |           | •                  |
|                        |                         | EP   | A 218.6    |           |                    |
| RunID: IC7_140523A     | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium    | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 12:20 PM |
| DISSOLVED METALS BY IC | P-MS                    |      |            |           |                    |
|                        | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 45739         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium               | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 04:45 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26913 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: RMP-AB2-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 12:30:00 PM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-028

**ASSET Laboratories** 

Analyses Result MDL PQL Qual Units DF Date Analyzed

**HEXAVALENT CHROMIUM BY IC** 

**EPA 218.6** 

 RunID:
 IC7\_140523A
 QC Batch:
 R93577
 PrepDate:
 Analyst:
 RB

 Hexavalent Chromium
 ND
 0.016
 0.20
 μg/L
 1
 5/23/2014 12:29 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

**ASSET Laboratories** 

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26914 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: RRB-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 9:12:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-029

| Analyses                | Result MDL              | PQL  | Qual Units | DF        | Date Analyzed      |
|-------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |      |            |           |                    |
|                         |                         | EP   | A 218.6    |           |                    |
| RunID: IC7_140523A      | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 12:58 PM |
| DISSOLVED METALS BY ICI | P-MS                    |      |            |           |                    |
|                         | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45739         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 04:50 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26915 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: SW1-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 6:58:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-030

| Analyses                   | Result MDL              | PQL  | Qual Units | s DF      | Date Analyzed      |
|----------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E      | BY IC                   |      |            |           |                    |
|                            |                         | EP   | A 218.6    |           |                    |
| RunID: IC7_140523A         | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium        | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 01:07 PM |
| DISSOLVED METALS BY ICI    | P-MS                    |      |            |           |                    |
|                            | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: <b>ICP7_140527B</b> | QC Batch: 45739         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                   | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 04:56 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

is exceeded ND Not Detected at the Reporting Limit
matrix interference Results are wet unless otherwise specified

Е

Value above quantitation range

Advanced Technology Laboratories, Inc.

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26916 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: SW2-196 CH2M HILL **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 6:40:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-031

| Analyses                | Result MDL              | PQL  | Qual Units | S DF      | Date Analyzed      |
|-------------------------|-------------------------|------|------------|-----------|--------------------|
| HEXAVALENT CHROMIUM E   | BY IC                   |      |            |           |                    |
|                         |                         | EP   | A 218.6    |           |                    |
| RunID: IC7_140523A      | QC Batch: <b>R93577</b> |      | PrepDate:  |           | Analyst: RB        |
| Hexavalent Chromium     | ND 0.016                | 0.20 | μg/L       | 1         | 5/23/2014 01:17 PM |
| DISSOLVED METALS BY ICI | P-MS                    |      |            |           |                    |
|                         | EPA 3010A               | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B     | QC Batch: 45739         |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Chromium                | ND 0.030                | 1.0  | μg/L       | 1         | 5/27/2014 05:01 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified ASSET Laboratories

Date: 09-Jun-14

CLIENT: CH2M HILL Work Order: N012607

N012607

**Project:** PG&E Topock, 423575.MP.02.RM

# ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6R\_WPGE

| Sample ID: MB-R93576        | SampType: MBLK          | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: 93576          |
|-----------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW              | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787266</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93576       | SampType: <b>LCS</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: LCSW             | Batch ID: <b>R93576</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787267</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 5.025                   | 0.20 5.000 0                     | 101 90 110                          |                       |
| Sample ID: N012607-001A-DUP | SampType: <b>DUP</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ           | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: 1787292        |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 0.052                   | 0.20                             | 0.06390                             | 0 20                  |
| Sample ID: N012607-001A-MS  | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93576</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787293</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.095                   | 0.20 1.000 0.06390               | 103 90 110                          |                       |
| Sample ID: N012607-001A-MSD | SampType: MSD           | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ           | Batch ID: <b>R93576</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787294</b> |
| Analyte                     | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium         | 1.063                   | 0.20 1.000 0.06390               | 99.9 90 110 1.095                   | 2.95 20               |

#### **Qualifiers:**

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

- E Value above quantitation rangeR RPD outside accepted recovery limits
- Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 218.6R\_WPGE

| Sample ID: N012607-002A-MS        | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
|-----------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787295</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.053                   | 0.20 1.000 0.05830               | 99.5 90 110                         |                       |
| Sample ID: <b>N012607-003A-MS</b> | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787296</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.054                   | 0.20 1.000 0.06240               | 99.2 90 110                         |                       |
| Sample ID: N012607-004A-MS        | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787297</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.040                   | 0.20 1.000 0.05140               | 98.9 90 110                         |                       |
| Sample ID: <b>N012607-005A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93576</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787298</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.068                   | 0.20 1.000 0.05610               | 101 90 110                          |                       |
| Sample ID: N012607-006A-MS        | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787299</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 0.989                   | 0.20 1.000 0                     | 98.9 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 218.6R\_WPGE

| Sample ID: N012607-007A-MS        | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
|-----------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: <b>R93576</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787302</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.021                   | 0.20 1.000 0                     | 102 90 110                          |                       |
| Sample ID: <b>N012607-008A-MS</b> | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787303</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.061                   | 0.20 1.000 0.06250               | 99.9 90 110                         |                       |
| Sample ID: N012607-009A-MS        | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: <b>5/23/2014</b>     | SeqNo: <b>1787304</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.071                   | 0.20 1.000 0.06860               | 100 90 110                          |                       |
| Sample ID: <b>N012607-010A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787305</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.062                   | 0.20 1.000 0.07140               | 99.0 90 110                         |                       |
| Sample ID: N012607-011A-MS        | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787306</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.058                   | 0.20 1.000 0.07460               | 98.3 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 218.6R\_WPGE

| Sample ID: N012607-012A-MS        | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
|-----------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: EPA 218.6                | Analysis Date: <b>5/23/2014</b>     | SeqNo: <b>1787307</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.075                   | 0.20 1.000 0.06680               | 101 90 110                          |                       |
| Sample ID: <b>N012607-013A-MS</b> | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: EPA 218.6                | Analysis Date: 5/23/2014            | SeqNo: <b>1787308</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.070                   | 0.20 1.000 0.05840               | 101 90 110                          |                       |
| Sample ID: <b>N012607-014A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93576</b> | TestNo: EPA 218.6                | Analysis Date: 5/23/2014            | SeqNo: <b>1787309</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.081                   | 0.20 1.000 0.06720               | 101 90 110                          |                       |
| Sample ID: <b>N012607-015A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787310</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 0.991                   | 0.20 1.000 0                     | 99.1 90 110                         |                       |
| Sample ID: N012607-016A-MS        | SampType: MS            | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: <b>93576</b>   |
| Client ID: ZZZZZZ                 | Batch ID: R93576        | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787311</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.062                   | 0.20 1.000 0.07370               | 98.8 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits

  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 218.6R\_WPGE

| Sample ID: <b>N012607-017A-MS</b>                                           | SampType: <b>MS</b>                           | TestCode: 218.6R_WPG Units: µg/L                                                                                              | Prep Date:                                                                                                                                               | RunNo: <b>93576</b>                                           |
|-----------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Client ID: ZZZZZZ                                                           | Batch ID: R93576                              | TestNo: <b>EPA 218.6</b>                                                                                                      | Analysis Date: 5/23/2014                                                                                                                                 | SeqNo: 1787314                                                |
| Analyte                                                                     | Result                                        | PQL SPK value SPK Ref Val                                                                                                     | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                                            |
| Hexavalent Chromium                                                         | 1.092                                         | 0.20 1.000 0.06390                                                                                                            | 103 90 110                                                                                                                                               |                                                               |
| Sample ID: N012607-018A-MS                                                  | SampType: MS                                  | TestCode: 218.6R_WPG Units: µg/L                                                                                              | Prep Date:                                                                                                                                               | RunNo: <b>93576</b>                                           |
| Client ID: ZZZZZZ                                                           | Batch ID: R93576                              | TestNo: EPA 218.6                                                                                                             | Analysis Date: 5/23/2014                                                                                                                                 | SeqNo: <b>1787315</b>                                         |
| Analyte                                                                     | Result                                        | PQL SPK value SPK Ref Val                                                                                                     | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                                            |
| Hexavalent Chromium                                                         | 1.076                                         | 0.20 1.000 0                                                                                                                  | 108 90 110                                                                                                                                               |                                                               |
|                                                                             |                                               |                                                                                                                               |                                                                                                                                                          |                                                               |
| Sample ID: <b>N012607-019A-MS</b>                                           | SampType: <b>MS</b>                           | TestCode: 218.6R_WPG Units: μg/L                                                                                              | Prep Date:                                                                                                                                               | RunNo: <b>93576</b>                                           |
| Sample ID: N012607-019A-MS Client ID: ZZZZZZ                                | SampType: MS Batch ID: R93576                 |                                                                                                                               | Prep Date: Analysis Date: 5/23/2014                                                                                                                      | RunNo: <b>93576</b><br>SeqNo: <b>1787316</b>                  |
|                                                                             |                                               | TestCode: 218.6R_WPG Units: µg/L                                                                                              | '                                                                                                                                                        |                                                               |
| Client ID: ZZZZZZ                                                           | Batch ID: <b>R93576</b>                       | TestCode: 218.6R_WPG Units: μg/L TestNo: EPA 218.6                                                                            | Analysis Date: <b>5/23/2014</b>                                                                                                                          | SeqNo: <b>1787316</b>                                         |
| Client ID: ZZZZZZ Analyte                                                   | Batch ID: R93576  Result                      | TestCode: 218.6R_WPG Units: μg/L TestNo: EPA 218.6  PQL SPK value SPK Ref Val                                                 | Analysis Date: 5/23/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                            | SeqNo: <b>1787316</b>                                         |
| Client ID: ZZZZZZ  Analyte  Hexavalent Chromium                             | Batch ID: <b>R93576</b> Result  1.044         | TestCode: 218.6R_WPG Units: μg/L TestNo: EPA 218.6  PQL SPK value SPK Ref Val 0.20 1.000 0                                    | Analysis Date: 5/23/2014  %REC LowLimit HighLimit RPD Ref Val  104 90 110                                                                                | SeqNo: <b>1787316</b><br>%RPD RPDLimit Qual                   |
| Client ID: ZZZZZZ  Analyte  Hexavalent Chromium  Sample ID: N012607-020A-MS | Batch ID: R93576  Result  1.044  SampType: MS | TestCode: 218.6R_WPG Units: μg/L TestNo: EPA 218.6  PQL SPK value SPK Ref Val  0.20 1.000 0  TestCode: 218.6R_WPG Units: μg/L | Analysis Date: 5/23/2014           %REC         LowLimit         HighLimit         RPD Ref Val           104         90         110           Prep Date: | SeqNo: <b>1787316</b> %RPD RPDLimit Qual  RunNo: <b>93576</b> |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

PG&E Topock, 423575.MP.02.RM **Project:** 

TestCode: 218.6R\_WPGE

| Sample ID: MB-R93577               | SampType: MBLK          | TestCode: 218.6R WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
|------------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: PBW                     | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: <b>5/23/2014</b>     | SeqNo: <b>1787326</b> |
|                                    |                         |                                  |                                     | ·                     |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium                | ND                      | 0.20                             |                                     |                       |
| Sample ID: LCS-R93577              | SampType: LCS           | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: LCSW                    | Batch ID: <b>R93577</b> | TestNo: EPA 218.6                | Analysis Date: 5/23/2014            | SeqNo: <b>1787327</b> |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium                | 5.032                   | 0.20 5.000 0                     | 101 90 110                          |                       |
| Sample ID: <b>N012607-021A-DUP</b> | SampType: <b>DUP</b>    | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                  | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787342</b> |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium                | 0.046                   | 0.20                             | 0.05070                             | 0 20                  |
| Sample ID: <b>N012607-021A-MS</b>  | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                  | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787343</b> |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium                | 1.036                   | 0.20 1.000 0.05070               | 98.6 90 110                         |                       |
| Sample ID: <b>N012607-021A-MSD</b> | SampType: MSD           | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                  | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787344</b> |
| Analyte                            | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium                | 1.040                   | 0.20 1.000 0.05070               | 98.9 90 110 1.036                   | 0.347 20              |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

**Project:** 

PG&E Topock, 423575.MP.02.RM

# ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6R\_WPGE

| Sample ID: N012607-022A-MS        | SampType: MS            | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: <b>93577</b>   |
|-----------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: EPA 218.6                | Analysis Date: <b>5/23/2014</b>     | SeqNo: <b>1787345</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.026                   | 0.20 1.000 0.04720               | 97.9 90 110                         |                       |
| Sample ID: N012607-023A-MS        | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787346</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.027                   | 0.20 1.000 0.04670               | 98.0 90 110                         |                       |
| Sample ID: <b>N012607-024A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: μg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: EPA 218.6                | Analysis Date: <b>5/23/2014</b>     | SeqNo: <b>1787347</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 0.984                   | 0.20 1.000 0.04450               | 93.9 90 110                         |                       |
| Sample ID: <b>N012607-025A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787350</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.041                   | 0.20 1.000 0.04110               | 99.9 90 110                         |                       |
| Sample ID: <b>N012607-026A-MS</b> | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: <b>5/23/2014</b>     | SeqNo: <b>1787351</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.046                   | 0.20 1.000 0.04530               | 100 90 110                          |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 218.6R\_WPGE

| Sample ID: <b>N012607-027A-MS</b> | SampType: MS            | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
|-----------------------------------|-------------------------|----------------------------------|-------------------------------------|-----------------------|
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787352</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.032                   | 0.20 1.000 0.04690               | 98.5 90 110                         |                       |
| Sample ID: N012607-028A-MS        | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787353</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.029                   | 0.20 1.000 0                     | 103 90 110                          |                       |
| Sample ID: N012607-029A-MS        | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787354</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.028                   | 0.20 1.000 0.04140               | 98.7 90 110                         |                       |
| Sample ID: <b>N012607-030A-MS</b> | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787355</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 1.030                   | 0.20 1.000 0.03330               | 99.7 90 110                         |                       |
| Sample ID: N012607-031A-MS        | SampType: <b>MS</b>     | TestCode: 218.6R_WPG Units: µg/L | Prep Date:                          | RunNo: <b>93577</b>   |
| Client ID: ZZZZZZ                 | Batch ID: <b>R93577</b> | TestNo: <b>EPA 218.6</b>         | Analysis Date: 5/23/2014            | SeqNo: <b>1787356</b> |
| Analyte                           | Result                  | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual    |
| Hexavalent Chromium               | 0.957                   | 0.20 1.000 0.03960               | 91.7 90 110                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6020DIS\_CrPGE

| Sample ID: <b>MB-45738</b>                                     | SampType: <b>MBLK</b>                         | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                                                                                         | Prep Date: 5/27/2014                                                                                                   | RunNo: <b>93595</b>                                           |
|----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Client ID: PBW                                                 | Batch ID: 45738                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                                                                                                | Analysis Date: 5/27/2014                                                                                               | SeqNo: <b>1788097</b>                                         |
| Analyte                                                        | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                                                                                 | %REC LowLimit HighLimit RPD Ref Val                                                                                    | %RPD RPDLimit Qual                                            |
| Chromium                                                       | ND                                            | 1.0                                                                                                                                                                                                                                       |                                                                                                                        |                                                               |
| Sample ID: LCS-45738                                           | SampType: <b>LCS</b>                          | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                                                                                         | Prep Date: 5/27/2014                                                                                                   | RunNo: <b>93595</b>                                           |
| Client ID: LCSW                                                | Batch ID: 45738                               | TestNo: EPA 6020 EPA 3010A                                                                                                                                                                                                                | Analysis Date: 5/27/2014                                                                                               | SeqNo: <b>1788098</b>                                         |
| Analyte                                                        | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                                                                                 | %REC LowLimit HighLimit RPD Ref Val                                                                                    | %RPD RPDLimit Qual                                            |
| Chromium                                                       | 9.921                                         | 1.0 10.00 0                                                                                                                                                                                                                               | 99.2 85 115                                                                                                            |                                                               |
|                                                                |                                               |                                                                                                                                                                                                                                           |                                                                                                                        |                                                               |
| Sample ID: <b>N012607-001C-MS</b>                              | SampType: <b>MS</b>                           | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                                                                                         | Prep Date: 5/27/2014                                                                                                   | RunNo: <b>93595</b>                                           |
| Sample ID: N012607-001C-MS Client ID: ZZZZZZ                   | SampType: MS Batch ID: 45738                  |                                                                                                                                                                                                                                           |                                                                                                                        | RunNo: <b>93595</b><br>SeqNo: <b>1788102</b>                  |
| · ·                                                            |                                               | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                                                                                         | Prep Date: 5/27/2014                                                                                                   |                                                               |
| Client ID: ZZZZZZ                                              | Batch ID: <b>45738</b>                        | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A                                                                                                                                                                              | Prep Date: 5/27/2014  Analysis Date: 5/27/2014                                                                         | SeqNo: <b>1788102</b>                                         |
| Client ID: ZZZZZZ Analyte                                      | Batch ID: <b>45738</b> Result                 | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val                                                                                                                                                    | Prep Date: 5/27/2014  Analysis Date: 5/27/2014  %REC LowLimit HighLimit RPD Ref Val                                    | SeqNo: <b>1788102</b>                                         |
| Client ID: ZZZZZZ Analyte Chromium                             | Batch ID: <b>45738</b> Result  9.643          | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 0.2764                                                                                                                                 | Prep Date: <b>5/27/2014</b> Analysis Date: <b>5/27/2014</b> %REC LowLimit HighLimit RPD Ref Val  93.7 75 125           | SeqNo: <b>1788102</b><br>%RPD RPDLimit Qual                   |
| Client ID: ZZZZZZ Analyte Chromium Sample ID: N012607-001C-MSD | Batch ID: 45738  Result  9.643  SampType: MSD | TestCode: 6020DIS_CrP         Units: μg/L           TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         0.2764           TestCode: 6020DIS_CrP         Units: μg/L | Prep Date: 5/27/2014  Analysis Date: 5/27/2014  %REC LowLimit HighLimit RPD Ref Val  93.7 75 125  Prep Date: 5/27/2014 | SeqNo: <b>1788102</b> %RPD RPDLimit Qual  RunNo: <b>93595</b> |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits

  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6020DIS\_CrPGE

| · · · · · · · · · · · · · · · · · · ·                                                     |                                                             |                                                                                                                                                                                                                                      |                                                                                                                        |                                                  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Sample ID: MB-45739                                                                       | SampType: MBLK                                              | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                                                                                    | Prep Date: 5/27/2014                                                                                                   | RunNo: <b>93595</b>                              |
| Client ID: PBW                                                                            | Batch ID: 45739                                             | TestNo: EPA 6020 EPA 3010A                                                                                                                                                                                                           | Analysis Date: 5/27/2014                                                                                               | SeqNo: <b>1788127</b>                            |
| Analyte                                                                                   | Result                                                      | PQL SPK value SPK Ref Val                                                                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                                    | %RPD RPDLimit Qual                               |
| Chromium                                                                                  | ND                                                          | 1.0                                                                                                                                                                                                                                  |                                                                                                                        |                                                  |
| Sample ID: LCS-45739                                                                      | SampType: <b>LCS</b>                                        | TestCode: 6020DIS_CrP Units: µg/L                                                                                                                                                                                                    | Prep Date: 5/27/2014                                                                                                   | RunNo: <b>93595</b>                              |
| Client ID: LCSW                                                                           | Batch ID: 45739                                             | TestNo: <b>EPA 6020 EPA 3010A</b>                                                                                                                                                                                                    | Analysis Date: 5/27/2014                                                                                               | SeqNo: <b>1788128</b>                            |
| Analyte                                                                                   | Result                                                      | PQL SPK value SPK Ref Val                                                                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                                    | %RPD RPDLimit Qual                               |
| Chromium                                                                                  | 9.902                                                       | 1.0 10.00 0                                                                                                                                                                                                                          | 99.0 85 115                                                                                                            |                                                  |
|                                                                                           | 5.502                                                       | 1.0 10.00 0                                                                                                                                                                                                                          | 99.0 00 110                                                                                                            |                                                  |
| Sample ID: <b>N012607-026C-MS</b>                                                         | SampType: MS                                                | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                                                                                    | Prep Date: <b>5/27/2014</b>                                                                                            | RunNo: <b>93595</b>                              |
|                                                                                           |                                                             |                                                                                                                                                                                                                                      |                                                                                                                        | RunNo: <b>93595</b><br>SeqNo: <b>1788134</b>     |
| Sample ID: <b>N012607-026C-MS</b>                                                         | SampType: <b>MS</b>                                         | TestCode: 6020DIS_CrP Units: μg/L                                                                                                                                                                                                    | Prep Date: 5/27/2014                                                                                                   |                                                  |
| Sample ID: N012607-026C-MS Client ID: ZZZZZZ                                              | SampType: MS Batch ID: 45739                                | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A                                                                                                                                                                         | Prep Date: <b>5/27/2014</b> Analysis Date: <b>5/27/2014</b>                                                            | SeqNo: <b>1788134</b>                            |
| Sample ID: N012607-026C-MS Client ID: ZZZZZZ Analyte                                      | SampType: MS Batch ID: 45739 Result 9.464                   | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val                                                                                                                                               | Prep Date: 5/27/2014  Analysis Date: 5/27/2014  %REC LowLimit HighLimit RPD Ref Val                                    | SeqNo: <b>1788134</b>                            |
| Sample ID: N012607-026C-MS Client ID: ZZZZZZ Analyte Chromium                             | SampType: MS Batch ID: 45739 Result 9.464                   | TestCode: 6020DIS_CrP Units: μg/L TestNo: EPA 6020 EPA 3010A  PQL SPK value SPK Ref Val  1.0 10.00 0                                                                                                                                 | Prep Date: 5/27/2014 Analysis Date: 5/27/2014  %REC LowLimit HighLimit RPD Ref Val 94.6 75 125                         | SeqNo: 1788134<br>%RPD RPDLimit Qual             |
| Sample ID: N012607-026C-MS Client ID: ZZZZZZ Analyte Chromium Sample ID: N012607-026C-MSD | SampType: MS  Batch ID: 45739  Result  9.464  SampType: MSD | TestCode: 6020DIS_CrP         Units: μg/L           TestNo: EPA 6020         EPA 3010A           PQL         SPK value         SPK Ref Val           1.0         10.00         0           TestCode: 6020DIS_CrP         Units: μg/L | Prep Date: 5/27/2014  Analysis Date: 5/27/2014  %REC LowLimit HighLimit RPD Ref Val  94.6 75 125  Prep Date: 5/27/2014 | SeqNo: 1788134  %RPD RPDLimit Qual  RunNo: 93595 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-BNS-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 10:40:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-001

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.31 0.022 0.050 mg/L

Qualifiers: В

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-I-3-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:56:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-002

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.30 0.022 0.050 mg/L

Qualifiers: В

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Surrogate Diluted Out

Spike/Surrogate outside of limits due to matrix interference

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-I-3-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 9:06:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-003 Lab ID:

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.28 0.022 0.050 mg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-MAR-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 11:46:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-004 Lab ID:

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 0.21 5/28/2014 Nitrate/Nitrite as N 0.022 0.050 mg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Η Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-MAR-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 11:54:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-005

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.20 0.022 0.050 mg/L

Qualifiers: В

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Surrogate Diluted Out

Spike/Surrogate outside of limits due to matrix interference

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R22A-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 10:00:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-008

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 0.22 5/28/2014 Nitrate/Nitrite as N 0.022 0.050 mg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R22A-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:12:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-009

Analyses Result MDL PQL Qual Units DF Date Analyzed

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

 RunID:
 WETCHEM\_140528B
 QC Batch:
 R93619
 PrepDate:
 Analyst:
 PS

 Nitrate/Nitrite as N
 0.29
 0.022
 0.050
 mg/L
 1
 5/28/2014

Qualifiers: B

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26734 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-R27-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 11:06:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-010 Lab ID:

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.47 0.022 0.050 mg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-011

Analyses Result MDL PQL Qual Units DF Date Analyzed

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

 RunID:
 WETCHEM\_140528B
 QC Batch:
 R93619
 PrepDate:
 Analyst:
 PS

 Nitrate/Nitrite as N
 0.23 0.022 0.050
 mg/L
 1 5/28/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26936 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-TAZ-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:10:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-012

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.24 0.022 0.050 mg/L

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-TAZ-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/21/2014 8:26:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-013

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 0.25 5/28/2014 Nitrate/Nitrite as N 0.022 0.050 mg/L

Qualifiers: В Analyte detected in the associated Method Blank

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Η Holding times for preparation or analysis exceeded Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R63-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-014

Analyses Result MDL PQL Qual Units DF Date Analyzed

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

 RunlD:
 WETCHEM\_140528B
 QC Batch:
 R93619
 PrepDate:
 Analyst:
 PS

 Nitrate/Nitrite as N
 0.27 0.022 0.050
 mg/L
 1 5/28/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26939 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-CON-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 9:44:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-016

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.18 0.022 0.050 mg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-CON-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 10:00:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-017

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 0.32 5/28/2014 Nitrate/Nitrite as N 0.022 0.050 mg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR1-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 10:26:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-020 Lab ID:

Result MDL **PQL** DF **Analyses** Qual **Date Analyzed** Units **NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.24 0.022 0.050 mg/L

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Surrogate Diluted Out

Spike/Surrogate outside of limits due to matrix interference

**ASSET Laboratories** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR1-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 10:40:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-021

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528B QC Batch: R93619 PrepDate: Analyst: PS 0.27 5/28/2014 Nitrate/Nitrite as N 0.022 0.050 mg/L

Qualifiers: В

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Η

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Е Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR3-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:04:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-022

Analyses Result MDL PQL Qual Units DF Date Analyzed

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

 RunlD:
 WETCHEM\_140528B
 QC Batch:
 R93619
 PrepDate:
 Analyst:
 PS

 Nitrate/Nitrite as N
 0.22 0.022 0.050
 mg/L
 1 5/28/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26744 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR3-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:20:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-023

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528C QC Batch: R93621 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.31 0.022 0.050 mg/L

Qualifiers: В

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR4-D-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 11:50:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-024

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528C QC Batch: R93621 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.26 0.022 0.050 mg/L

Qualifiers: В

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: C-NR4-S-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 12:02:00 PM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-025

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528C QC Batch: R93621 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.19 0.022 0.050 mg/L

Qualifiers: В Analyte detected in the associated Method Blank

> Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc. ASSET Laboratories** 

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R-19-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 8:50:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-026

Analyses Result MDL PQL Qual Units DF Date Analyzed

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

 RunlD:
 WETCHEM\_140528C
 QC Batch:
 R93621
 PrepDate:
 Analyst:
 PS

 Nitrate/Nitrite as N
 0.22
 0.022
 0.050
 mg/L
 1
 5/28/2014

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26748 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: R-28-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 8:24:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

Lab ID: N012607-027

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528C QC Batch: R93621 PrepDate: Analyst: PS 0.27 5/28/2014 Nitrate/Nitrite as N 0.022 0.050 mg/L 1

Qualifiers: В

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: RRB-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 9:12:00 AM

PG&E Topock, 423575.MP.02.RM **Project:** Matrix: WATER

N012607-029 Lab ID:

Result MDL **PQL** DF **Analyses** Qual Units **Date Analyzed** 

**NITRATE/NITRITE-N BY CADMIUM REDUCTION** 

SM4500-NO3F

RunID: WETCHEM\_140528C QC Batch: R93621 PrepDate: Analyst: PS 5/28/2014 Nitrate/Nitrite as N 0.49 0.022 0.050 mg/L 1

Qualifiers: В

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

**ASSET Laboratories** 

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659

www.assetlaboratories.com

Date: 09-Jun-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order:

N012607

PG&E Topock, 423575.MP.02.RM **Project:** 

## ANALYTICAL QC SUMMARY REPORT

TestCode: 4500N03F\_W

| Sample ID: MB-R93619                                                         | SampType: MBLK                                 | TestCode: 4500N03F_W Units: mg/L                                                                                        | Prep Date:                                                                                                                                               | RunNo: 93619                                                  |
|------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Client ID: PBW                                                               | Batch ID: R93619                               | TestNo: SM4500-NO3                                                                                                      | Analysis Date: 5/28/2014                                                                                                                                 | SeqNo: <b>1789035</b>                                         |
| Analyte                                                                      | Result                                         | PQL SPK value SPK Ref Val                                                                                               | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                                            |
| Nitrate/Nitrite as N                                                         | ND                                             | 0.050                                                                                                                   |                                                                                                                                                          |                                                               |
| Sample ID: LCS-R93619                                                        | SampType: LCS                                  | TestCode: 4500N03F_W Units: mg/L                                                                                        | Prep Date:                                                                                                                                               | RunNo: <b>93619</b>                                           |
| Client ID: LCSW                                                              | Batch ID: <b>R93619</b>                        | TestNo: <b>SM4500-NO3</b>                                                                                               | Analysis Date: 5/28/2014                                                                                                                                 | SeqNo: <b>1789036</b>                                         |
| Analyte                                                                      | Result                                         | PQL SPK value SPK Ref Val                                                                                               | %REC LowLimit HighLimit RPD Ref Val                                                                                                                      | %RPD RPDLimit Qual                                            |
| Nitrate/Nitrite as N                                                         | 1.036                                          | 0.050 1.000 0                                                                                                           | 104 85 115                                                                                                                                               |                                                               |
| Sample ID: NO42607 004 EME                                                   |                                                | T 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                | D D :                                                                                                                                                    | D. N. 22212                                                   |
| Sample ID: N012607-001EMS                                                    | SampType: <b>MS</b>                            | TestCode: 4500N03F_W Units: mg/L                                                                                        | Prep Date:                                                                                                                                               | RunNo: <b>93619</b>                                           |
| Client ID: ZZZZZZ                                                            | SampType: MS  Batch ID: R93619                 | TestNo: SM4500-NO3                                                                                                      | Analysis Date: 5/28/2014                                                                                                                                 | Runno: 93619<br>SeqNo: 1789038                                |
| •                                                                            |                                                |                                                                                                                         |                                                                                                                                                          |                                                               |
| Client ID: ZZZZZZ                                                            | Batch ID: <b>R93619</b>                        | TestNo: <b>SM4500-NO3</b>                                                                                               | Analysis Date: 5/28/2014                                                                                                                                 | SeqNo: <b>1789038</b>                                         |
| Client ID: ZZZZZZ Analyte                                                    | Batch ID: R93619  Result                       | TestNo: <b>SM4500-NO3</b> PQL SPK value SPK Ref Val                                                                     | Analysis Date: 5/28/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                            | SeqNo: <b>1789038</b>                                         |
| Client ID: ZZZZZZ  Analyte  Nitrate/Nitrite as N                             | Batch ID: <b>R93619</b> Result  1.317          | TestNo: <b>SM4500-NO3</b> PQL SPK value SPK Ref Val  0.050 1.000 0.3117                                                 | Analysis Date: 5/28/2014  %REC LowLimit HighLimit RPD Ref Val  100 85 115                                                                                | SeqNo: 1789038<br>%RPD RPDLimit Qual                          |
| Client ID: ZZZZZZ  Analyte  Nitrate/Nitrite as N  Sample ID: N012607-001EMSD | Batch ID: R93619  Result  1.317  SampType: MSD | TestNo: <b>SM4500-NO3</b> PQL SPK value SPK Ref Val  0.050 1.000 0.3117  TestCode: <b>4500N03F_W</b> Units: <b>mg/L</b> | Analysis Date: 5/28/2014           %REC         LowLimit         HighLimit         RPD Ref Val           100         85         115           Prep Date: | SeqNo: <b>1789038</b> %RPD RPDLimit Qual  RunNo: <b>93619</b> |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

dba **ASSET Laboratories** 

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 F: 702.307.2691 P: 702.307.2659

www.assetlaboratories.com

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 4500N03F\_W

| Sample ID: MB-R93621                                                         | SampType: <b>MBLK</b>                          | TestCode: 4500N03F_W Units: mg/L                                                                                                                                       | Prep Date:                                                                                          | RunNo: <b>93621</b>                              |  |
|------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Client ID: PBW                                                               | Batch ID: R93621                               | TestNo: SM4500-NO3                                                                                                                                                     | Analysis Date: 5/28/2014                                                                            | SeqNo: <b>1789086</b>                            |  |
| Analyte                                                                      | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                              | %REC LowLimit HighLimit RPD Ref Val                                                                 | %RPD RPDLimit Qual                               |  |
| Nitrate/Nitrite as N                                                         | ND                                             | 0.050                                                                                                                                                                  |                                                                                                     |                                                  |  |
| Sample ID: LCS-R93621                                                        | SampType: LCS                                  | TestCode: 4500N03F_W Units: mg/L                                                                                                                                       | Prep Date:                                                                                          | RunNo: <b>93621</b>                              |  |
| Client ID: LCSW                                                              | Batch ID: R93621                               | TestNo: SM4500-NO3                                                                                                                                                     | Analysis Date: 5/28/2014                                                                            | SeqNo: 1789087                                   |  |
| Analyte                                                                      | Result                                         | PQL SPK value SPK Ref Val                                                                                                                                              | %REC LowLimit HighLimit RPD Ref Val                                                                 | %RPD RPDLimit Qual                               |  |
| Nitrate/Nitrite as N                                                         | 0.959                                          | 0.050 1.000 0                                                                                                                                                          | 95.9 85 115                                                                                         |                                                  |  |
|                                                                              |                                                |                                                                                                                                                                        |                                                                                                     |                                                  |  |
| Sample ID: <b>N012607-023EMS</b>                                             | SampType: <b>MS</b>                            | TestCode: 4500N03F_W Units: mg/L                                                                                                                                       | Prep Date:                                                                                          | RunNo: <b>93621</b>                              |  |
| Sample ID: N012607-023EMS Client ID: ZZZZZZ                                  | SampType: MS Batch ID: R93621                  | TestCode: 4500N03F_W Units: mg/L TestNo: SM4500-NO3                                                                                                                    | Prep Date: Analysis Date: 5/28/2014                                                                 | RunNo: <b>93621</b><br>SeqNo: <b>1789089</b>     |  |
|                                                                              |                                                | _                                                                                                                                                                      | •                                                                                                   |                                                  |  |
| Client ID: ZZZZZZ                                                            | Batch ID: <b>R93621</b>                        | TestNo: <b>SM4500-NO3</b>                                                                                                                                              | Analysis Date: 5/28/2014                                                                            | SeqNo: <b>1789089</b>                            |  |
| Client ID: ZZZZZZZ Analyte                                                   | Batch ID: R93621  Result                       | TestNo: <b>SM4500-NO3</b> PQL SPK value SPK Ref Val                                                                                                                    | Analysis Date: <b>5/28/2014</b> %REC LowLimit HighLimit RPD Ref Val                                 | SeqNo: <b>1789089</b>                            |  |
| Client ID: ZZZZZZ  Analyte  Nitrate/Nitrite as N                             | Batch ID: <b>R93621</b> Result  1.187          | TestNo: <b>SM4500-NO3</b> PQL SPK value SPK Ref Val  0.050 1.000 0.3068                                                                                                | Analysis Date: 5/28/2014  %REC LowLimit HighLimit RPD Ref Val  88.0 85 115                          | SeqNo: <b>1789089</b><br>%RPD RPDLimit Qual      |  |
| Client ID: ZZZZZZ  Analyte  Nitrate/Nitrite as N  Sample ID: N012607-023EMSD | Batch ID: R93621  Result  1.187  SampType: MSD | TestNo: SM4500-NO3           PQL         SPK value         SPK Ref Val           0.050         1.000         0.3068           TestCode: 4500N03F_W         Units: mg/L | Analysis Date: <b>5/28/2014</b> ***REC LowLimit HighLimit RPD Ref Val  ***88.0 85 115  **Prep Date: | SeqNo: 1789089  %RPD RPDLimit Qual  RunNo: 93621 |  |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

R RPD outside accepted recovery limits
Calculations are based on raw values
3151 W. Post Rd, Las Vegas, NV 89118
P: 702.307.2659 F: 702.307.2691
www.assetlaboratories.com

Value above quantitation range

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-BNS-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-001

| Analyse | es                 | Result MDL      | PQL   | Qual Units | s DF      | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.031 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 09:25 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 06:23 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26953 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-I-3-D-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/21/2014 8:56:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-002

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.045 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 09:47 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 06:45 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-I-3-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-003

| Analyse | es                 | Result MDL      | PQL   | Qual Units | s DF      | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 10:00 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 06:50 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26955 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-MAR-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:46:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-004

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 2.9 0.0013      | 0.020 | mg/L       | 1         | 6/6/2014 10:05 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 06:54 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26756 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-MAR-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:54:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-005

| Analyse | es ·               | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed      |
|---------|--------------------|-----------------|-------|------------|-----------|--------------------|
| METAL   | S BY ICP           |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | 0.49 0.0013     | 0.020 | mg/L       | 1         | 6/6/2014 10:09 AM  |
| DISSOL  | LVED METALS BY ICP |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 07:08 PM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

it \_\_\_\_

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26957 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R22A-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:00:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-008

| Analyses |                   | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed      |
|----------|-------------------|-----------------|-------|------------|-----------|--------------------|
| METALS   | BY ICP            |                 |       |            |           |                    |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:   | ICP2_140606A      | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron     |                   | 0.026 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 10:14 AM  |
| DISSOL   | VED METALS BY ICP |                 |       |            |           |                    |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:   | ICP2_140605A      | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF        |
| Iron     |                   | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 07:12 PM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

te Diluted Out

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26958 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-R22A-S-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/21/2014 10:12:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-009

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.037 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 10:18 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 07:17 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc. ASSET Laboratories**  Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-R27-D-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/21/2014 11:06:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-010

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed      |
|---------|--------------------|-----------------|-------|------------|-----------|--------------------|
| METAL   | S BY ICP           |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA ( | 6010B      |           |                    |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | 0.053 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 10:22 AM  |
| DISSOL  | LVED METALS BY ICP |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA ( | 6010B      |           |                    |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | 0.023 0.0013    | 0.020 | mg/L       | 1         | 6/5/2014 07:21 PM  |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-011

| Analyses |                  | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|----------|------------------|-----------------|-------|------------|-----------|-------------------|
| METALS   | BY ICP           |                 |       |            |           |                   |
|          |                  | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID: I | CP2_140606A      | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron     |                  | 0.027 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 10:27 AM |
| DISSOLV  | ED METALS BY ICP |                 |       |            |           |                   |
|          |                  | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID: I | CP2_140605A      | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron     |                  | 0.021 0.0013    | 0.020 | mg/L       | 1         | 6/5/2014 07:25 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2661 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:10:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-012

| Analyse | es                 | Result MDL      | PQL   | Qual Units | s DF      | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.025 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 10:31 AM |
| DISSOI  | LVED METALS BY ICP | 1               |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 07:30 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

Results

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2662 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:26:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-013

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.66 0.0013     | 0.020 | mg/L       | 1         | 6/6/2014 10:35 AM |
| DISSOI  | LVED METALS BY ICP | 1               |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 07:34 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2663 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R63-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-014

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.068 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 10:40 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 07:38 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2664 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-CON-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 9:44:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-016

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.052 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 10:53 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 07:43 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Inc

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2665 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-CON-S-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/22/2014 10:00:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-017

| Analyses |                   | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|----------|-------------------|-----------------|-------|------------|-----------|-------------------|
| METALS   | S BY ICP          |                 |       |            |           |                   |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:   | ICP2_140606A      | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron     |                   | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 10:58 AM |
| DISSOL   | VED METALS BY ICP |                 |       |            |           |                   |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:   | ICP2_140605A      | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron     |                   | 0.023 0.0013    | 0.020 | mg/L       | 1         | 6/5/2014 07:47 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26966 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:26:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-020

| Analyses                | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed      |
|-------------------------|-----------------|-------|------------|-----------|--------------------|
| METALS BY ICP           |                 |       |            |           |                    |
|                         | EPA 3010A       | EPA 6 | 6010B      |           |                    |
| RunID: ICP2_140606A     | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF        |
| Iron                    | 0.030 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 11:02 AM  |
| DISSOLVED METALS BY ICI | P               |       |            |           |                    |
|                         | EPA 3010A       | EPA 6 | 010B       |           |                    |
| RunID: ICP2_140605A     | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron                    | 0.025 0.0013    | 0.020 | mg/L       | 1         | 6/5/2014 08:01 PM  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26967 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-NR1-S-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/22/2014 10:40:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-021

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 11:07 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 08:05 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: C-NR3-D-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/22/2014 11:04:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-022

| Analyses |                   | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed      |
|----------|-------------------|-----------------|-------|------------|-----------|--------------------|
| METAL    | S BY ICP          |                 |       |            |           |                    |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:   | ICP2_140606A      | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron     |                   | 0.041 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 11:11 AM  |
| DISSOL   | VED METALS BY ICP |                 |       |            |           |                    |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:   | ICP2_140605A      | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron     |                   | 0.030 0.0013    | 0.020 | mg/L       | 1         | 6/5/2014 08:09 PM  |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2669 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR3-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-023

| Analyse | es                 | Result MDL      | PQL   | Qual Units | s DF      | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 11:15 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 08:14 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

ASSET Laboratories

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26770 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR4-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:50:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-024

| Analyses |                   | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|----------|-------------------|-----------------|-------|------------|-----------|-------------------|
| METALS   | S BY ICP          |                 |       |            |           |                   |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:   | ICP2_140606A      | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron     |                   | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 11:20 AM |
| DISSOL   | VED METALS BY ICP |                 |       |            |           |                   |
|          |                   | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:   | ICP2_140605A      | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron     |                   | 0.024 0.0013    | 0.020 | mg/L       | 1         | 6/5/2014 08:18 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26971 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR4-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 12:02:00 PM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-025

| Analyse | es                 | Result MDL      | PQL   | Qual Units | DF        | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45743 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 11:24 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140605A       | QC Batch: 45746 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/5/2014 08:22 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26972 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: R-19-196 **CLIENT:** CH2M HILL

Lab Order: N012607 Collection Date: 5/22/2014 8:50:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-026

| Analyse | es                 | Result MDL      | PQL   | Qual Units | s DF      | Date Analyzed     |
|---------|--------------------|-----------------|-------|------------|-----------|-------------------|
| METAL   | S BY ICP           |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45747 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | 0.023 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 08:54 AM |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                   |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                   |
| RunID:  | ICP2_140606A       | QC Batch: 45747 |       | PrepDate:  | 5/23/2014 | Analyst: SF       |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 08:23 AM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out **Advanced Technology Laboratories, Inc.**  Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2673 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

Client Sample ID: R-28-196 **CLIENT:** CH2M HILL

N012607 Lab Order: Collection Date: 5/22/2014 8:24:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-027

| Analyse | es                 | Result MDL      | PQL   | Qual Units | s DF      | Date Analyzed      |
|---------|--------------------|-----------------|-------|------------|-----------|--------------------|
| METAL   | S BY ICP           |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:  | ICP2_140606A       | QC Batch: 45747 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | 0.027 0.0013    | 0.020 | mg/L       | 1         | 6/6/2014 09:07 AM  |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:  | ICP2_140606A       | QC Batch: 45747 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | ND 0.0013       | 0.020 | mg/L       | 1         | 6/6/2014 08:45 AM  |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2674 www.assetlaboratories.com

**ASSET Laboratories** Print Date: 09-Jun-14

CH2M HILL Client Sample ID: RRB-196 **CLIENT:** 

Lab Order: N012607 Collection Date: 5/22/2014 9:12:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-029

| Analyse | es ·               | Result MDL      | PQL   | Qual Units | DF.       | Date Analyzed      |
|---------|--------------------|-----------------|-------|------------|-----------|--------------------|
| METAL   | S BY ICP           |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:  | ICP2_140606A       | QC Batch: 45747 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | 0.40 0.0013     | 0.020 | mg/L       | 1         | 6/6/2014 09:12 AM  |
| DISSOI  | LVED METALS BY ICP |                 |       |            |           |                    |
|         |                    | EPA 3010A       | EPA   | 6010B      |           |                    |
| RunID:  | ICP2_140606A       | QC Batch: 45747 |       | PrepDate:  | 5/23/2014 | Analyst: <b>SF</b> |
| Iron    |                    | ND 0.0013       | 0.020 | ma/L       | 1         | 6/6/2014 08:49 AM  |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26975 www.assetlaboratories.com

Date: 09-Jun-14 **ASSET Laboratories** 

**CLIENT:** CH2M HILL Work Order:

N012607

PG&E Topock, 423575.MP.02.RM **Project:** 

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6010W\_HINK

| Sample ID: MB-45743                                                                   | SampType: MBLK                                | TestCode: 6010W_HINK Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                  | RunNo: <b>93700</b>                                                              |
|---------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Client ID: PBW                                                                        | Batch ID: <b>45743</b>                        | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                                                          | Analysis Date: 6/6/2014                                                                                                                                                               | SeqNo: <b>1791146</b>                                                            |
| Analyte                                                                               | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                   | %RPD RPDLimit Qual                                                               |
| Iron                                                                                  | 0.006                                         | 0.020                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |                                                                                  |
| Sample ID: LCS-45743                                                                  | SampType: LCS                                 | TestCode: 6010W_HINK Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                  | RunNo: <b>93700</b>                                                              |
| Client ID: LCSW                                                                       | Batch ID: 45743                               | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                                                          | Analysis Date: 6/6/2014                                                                                                                                                               | SeqNo: <b>1791147</b>                                                            |
| Analyte                                                                               | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                   | %RPD RPDLimit Qual                                                               |
| Iron                                                                                  | 0.109                                         | 0.020 0.1000 0                                                                                                                                                                                                                                                                       | 109 85 115                                                                                                                                                                            |                                                                                  |
|                                                                                       |                                               |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |                                                                                  |
| Sample ID: <b>N012607-001B-MS</b>                                                     | SampType: MS                                  | TestCode: 6010W_HINK Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                  | RunNo: <b>93700</b>                                                              |
|                                                                                       | SampType: MS Batch ID: 45743                  |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       | RunNo: <b>93700</b><br>SeqNo: <b>1791151</b>                                     |
| Sample ID: <b>N012607-001B-MS</b>                                                     |                                               | TestCode: 6010W_HINK Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                  |                                                                                  |
| Sample ID: N012607-001B-MS Client ID: ZZZZZZ                                          | Batch ID: <b>45743</b>                        | TestCode: 6010W_HINK Units: mg/L TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                         | Prep Date: <b>5/23/2014</b> Analysis Date: <b>6/6/2014</b>                                                                                                                            | SeqNo: <b>1791151</b>                                                            |
| Sample ID: N012607-001B-MS Client ID: ZZZZZZ Analyte                                  | Batch ID: <b>45743</b> Result                 | TestCode: 6010W_HINK Units: mg/L TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val                                                                                                                                                                                               | Prep Date: 5/23/2014 Analysis Date: 6/6/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                                     | SeqNo: <b>1791151</b>                                                            |
| Sample ID: N012607-001B-MS Client ID: ZZZZZZ Analyte Iron                             | Batch ID: <b>45743</b> Result  0.138          | TestCode:         6010W_HINK         Units:         mg/L           TestNo:         EPA 6010B         EPA 3010A           PQL         SPK value         SPK Ref Val           0.020         0.1000         0.03121                                                                    | Prep Date: 5/23/2014         Analysis Date: 6/6/2014         %REC       LowLimit       HighLimit       RPD Ref Val         106       75       125                                     | SeqNo: <b>1791151</b> %RPD RPDLimit Qual                                         |
| Sample ID: N012607-001B-MS Client ID: ZZZZZZ Analyte Iron Sample ID: N012607-001B-MSD | Batch ID: 45743  Result  0.138  SampType: MSD | TestCode:         6010W_HINK         Units:         mg/L           TestNo:         EPA 6010B         EPA 3010A           PQL         SPK value         SPK Ref Val           0.020         0.1000         0.03121           TestCode:         6010W_HINK         Units:         mg/L | Prep Date: 5/23/2014         Analysis Date: 6/6/2014         %REC       LowLimit 106       HighLimit 75       RPD Ref Val         106       75       125         Prep Date: 5/23/2014 | SeqNo: 1791151         %RPD         RPDLimit         Qual           RunNo: 93700 |

#### **Qualifiers:**

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

RPD outside accepted recovery limits Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

Value above quantitation range

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6010W\_HINK

| Sample ID: MB-45747                                         | SampType: MBLK                                   | TestCode: 6010W_HINK Units: mg/L                                                                                                                                                           | Prep Date: 5/23/2014                                                                           | RunNo: 93700                                                  |
|-------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Client ID: PBW                                              | Batch ID: 45747                                  | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                | Analysis Date: 6/6/2014                                                                        | SeqNo: <b>1791132</b>                                         |
| Analyte                                                     | Result                                           | PQL SPK value SPK Ref Val                                                                                                                                                                  | %REC LowLimit HighLimit RPD Ref Val                                                            | %RPD RPDLimit Qual                                            |
| Iron                                                        | 0.005                                            | 0.020                                                                                                                                                                                      |                                                                                                |                                                               |
| Sample ID: LCS-45747                                        | SampType: <b>LCS</b>                             | TestCode: 6010W_HINK Units: mg/L                                                                                                                                                           | Prep Date: 5/23/2014                                                                           | RunNo: <b>93700</b>                                           |
| Client ID: LCSW                                             | Batch ID: 45747                                  | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                | Analysis Date: 6/6/2014                                                                        | SeqNo: <b>1791133</b>                                         |
| Analyte                                                     | Result                                           | PQL SPK value SPK Ref Val                                                                                                                                                                  | %REC LowLimit HighLimit RPD Ref Val                                                            | %RPD RPDLimit Qual                                            |
| Iron                                                        | 0.115                                            | 0.020 0.1000 0                                                                                                                                                                             | 115 85 115                                                                                     |                                                               |
|                                                             |                                                  |                                                                                                                                                                                            |                                                                                                |                                                               |
| Sample ID: <b>N012607-026C-MS</b>                           | SampType: <b>MS</b>                              | TestCode: 6010W_HINK Units: mg/L                                                                                                                                                           | Prep Date: 5/23/2014                                                                           | RunNo: <b>93700</b>                                           |
| Sample ID: N012607-026C-MS Client ID: ZZZZZZ                | SampType: MS Batch ID: 45747                     | TestCode: 6010W_HINK Units: mg/L TestNo: EPA 6010B EPA 3010A                                                                                                                               | Prep Date: <b>5/23/2014</b> Analysis Date: <b>6/6/2014</b>                                     | RunNo: <b>93700</b><br>SeqNo: <b>1791137</b>                  |
| ·                                                           |                                                  | _                                                                                                                                                                                          | •                                                                                              |                                                               |
| Client ID: ZZZZZZ                                           | Batch ID: <b>45747</b>                           | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                | Analysis Date: <b>6/6/2014</b>                                                                 | SeqNo: <b>1791137</b>                                         |
| Client ID: ZZZZZZZ Analyte                                  | Batch ID: <b>45747</b> Result  0.115             | TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val                                                                                                                                      | Analysis Date: 6/6/2014  %REC LowLimit HighLimit RPD Ref Val                                   | SeqNo: <b>1791137</b>                                         |
| Client ID: ZZZZZZ Analyte Iron                              | Batch ID: <b>45747</b> Result  0.115             | TestNo: <b>EPA 6010B EPA 3010A</b> PQL SPK value SPK Ref Val  0.020 0.1000 0.006988                                                                                                        | Analysis Date: 6/6/2014  %REC LowLimit HighLimit RPD Ref Val  108 75 125                       | SeqNo: <b>1791137</b><br>%RPD RPDLimit Qual                   |
| Client ID: ZZZZZZ  Analyte Iron  Sample ID: N012607-026C-MS | Batch ID: 45747  Result  0.115  SD SampType: MSD | TestNo: EPA 6010B         EPA 3010A           PQL         SPK value         SPK Ref Val           0.020         0.1000         0.006988           TestCode: 6010W_HINK         Units: mg/L | Analysis Date: 6/6/2014  %REC LowLimit HighLimit RPD Ref Val  108 75 125  Prep Date: 5/23/2014 | SeqNo: <b>1791137</b> %RPD RPDLimit Qual  RunNo: <b>93700</b> |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

- E Value above quantitation range
- R RPD outside accepted recovery limits

  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6010WD\_HINK

| Sample ID: <b>MB-45746</b>                                                            | SampType: MBLK                                              | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                | RunNo: <b>93695</b>                                                                |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Client ID: PBW                                                                        | Batch ID: 45746                                             | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                                                          | Analysis Date: 6/5/2014                                                                                                                                                             | SeqNo: <b>1790873</b>                                                              |
| Analyte                                                                               | Result                                                      | PQL SPK value SPK Ref Val                                                                                                                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                 | %RPD RPDLimit Qual                                                                 |
| Iron                                                                                  | 0.009                                                       | 0.020                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                                                    |
| Sample ID: LCS-45746                                                                  | SampType: LCS                                               | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                | RunNo: <b>93695</b>                                                                |
| Client ID: LCSW                                                                       | Batch ID: 45746                                             | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                                                          | Analysis Date: <b>6/5/2014</b>                                                                                                                                                      | SeqNo: <b>1790874</b>                                                              |
| Analyte                                                                               | Result                                                      | PQL SPK value SPK Ref Val                                                                                                                                                                                                                                                            | %REC LowLimit HighLimit RPD Ref Val                                                                                                                                                 | %RPD RPDLimit Qual                                                                 |
| Iron                                                                                  | 0.113                                                       | 0.020 0.1000 0                                                                                                                                                                                                                                                                       | 113 85 115                                                                                                                                                                          |                                                                                    |
|                                                                                       |                                                             | 0.020 0.1000 0                                                                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                                                                    |
| Sample ID: <b>N012607-001C-MS</b>                                                     | SampType: MS                                                | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                | RunNo: <b>93695</b>                                                                |
|                                                                                       |                                                             |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     | RunNo: <b>93695</b><br>SeqNo: <b>1790878</b>                                       |
| Sample ID: <b>N012607-001C-MS</b>                                                     | SampType: <b>MS</b>                                         | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                     | Prep Date: 5/23/2014                                                                                                                                                                |                                                                                    |
| Sample ID: N012607-001C-MS Client ID: ZZZZZZ                                          | SampType: MS Batch ID: 45746                                | TestCode: 6010WD_HIN Units: mg/L TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                         | Prep Date: 5/23/2014  Analysis Date: 6/5/2014                                                                                                                                       | SeqNo: <b>1790878</b>                                                              |
| Sample ID: N012607-001C-MS Client ID: ZZZZZZ Analyte                                  | SampType: MS  Batch ID: 45746  Result                       | TestCode: 6010WD_HIN Units: mg/L TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val                                                                                                                                                                                               | Prep Date: 5/23/2014  Analysis Date: 6/5/2014  %REC LowLimit HighLimit RPD Ref Val                                                                                                  | SeqNo: <b>1790878</b>                                                              |
| Sample ID: N012607-001C-MS Client ID: ZZZZZZ Analyte Iron                             | SampType: MS Batch ID: 45746 Result 0.110                   | TestCode: 6010WD_HIN Units: mg/L TestNo: EPA 6010B EPA 3010A  PQL SPK value SPK Ref Val  0.020 0.1000 0.01846                                                                                                                                                                        | Prep Date: 5/23/2014         Analysis Date: 6/5/2014         %REC       LowLimit       HighLimit       RPD Ref Val         91.6       75       125                                  | SeqNo: <b>1790878</b> %RPD RPDLimit Qual                                           |
| Sample ID: N012607-001C-MS Client ID: ZZZZZZ Analyte Iron Sample ID: N012607-001C-MSD | SampType: MS  Batch ID: 45746  Result  0.110  SampType: MSD | TestCode:         6010WD_HIN         Units:         mg/L           TestNo:         EPA 6010B         EPA 3010A           PQL         SPK value         SPK Ref Val           0.020         0.1000         0.01846           TestCode:         6010WD_HIN         Units:         mg/L | Prep Date: 5/23/2014         Analysis Date: 6/5/2014         %REC       LowLimit 1       HighLimit 2       RPD Ref Val         91.6       75       125         Prep Date: 5/23/2014 | SeqNo: 1790878           %RPD         RPDLimit         Qual           RunNo: 93695 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

- E Value above quantitation range
- R RPD outside accepted recovery limits

  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6010WD\_HINK

| Sample ID: <b>MB-45747</b>                                   | SampType: MBLK                                | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                      | Prep Date: 5/23/2014                                                                           | RunNo: <b>93700</b>                              |
|--------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Client ID: PBW                                               | Batch ID: 45747                               | TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                                                           | Analysis Date: 6/6/2014                                                                        | SeqNo: <b>1791014</b>                            |
| Analyte                                                      | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                                                                                                                             | %REC LowLimit HighLimit RPD Ref Val                                                            | %RPD RPDLimit Qual                               |
| Iron                                                         | 0.005                                         | 0.020                                                                                                                                                                                                                                                                                 |                                                                                                |                                                  |
| Sample ID: LCS-45747                                         | SampType: LCS                                 | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                      | Prep Date: 5/23/2014                                                                           | RunNo: <b>93700</b>                              |
| Client ID: LCSW                                              | Batch ID: 45747                               | TestNo: <b>EPA 6010B EPA 3010A</b>                                                                                                                                                                                                                                                    | Analysis Date: 6/6/2014                                                                        | SeqNo: <b>1791015</b>                            |
| Analyte                                                      | Result                                        | PQL SPK value SPK Ref Val                                                                                                                                                                                                                                                             | %REC LowLimit HighLimit RPD Ref Val                                                            | %RPD RPDLimit Qual                               |
| Iron                                                         | 0.115                                         | 0.020 0.1000 0                                                                                                                                                                                                                                                                        | 115 85 115                                                                                     |                                                  |
|                                                              |                                               |                                                                                                                                                                                                                                                                                       |                                                                                                |                                                  |
| Sample ID: <b>N012607-026C-MS</b>                            | SampType: <b>MS</b>                           | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                      | Prep Date: <b>5/23/2014</b>                                                                    | RunNo: <b>93700</b>                              |
| Sample ID: N012607-026C-MS Client ID: ZZZZZZ                 | SampType: MS Batch ID: 45747                  |                                                                                                                                                                                                                                                                                       | Prep Date: <b>5/23/2014</b> Analysis Date: <b>6/6/2014</b>                                     | RunNo: <b>93700</b><br>SeqNo: <b>1791019</b>     |
| ·                                                            |                                               | TestCode: 6010WD_HIN Units: mg/L                                                                                                                                                                                                                                                      |                                                                                                |                                                  |
| Client ID: ZZZZZZ                                            | Batch ID: <b>45747</b>                        | TestCode: 6010WD_HIN Units: mg/L TestNo: EPA 6010B EPA 3010A                                                                                                                                                                                                                          | Analysis Date: 6/6/2014                                                                        | SeqNo: <b>1791019</b>                            |
| Client ID: ZZZZZZ Analyte                                    | Batch ID: <b>45747</b> Result                 | TestCode: 6010WD_HIN Units: mg/L TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val                                                                                                                                                                                                | Analysis Date: 6/6/2014  %REC LowLimit HighLimit RPD Ref Val                                   | SeqNo: <b>1791019</b>                            |
| Client ID: ZZZZZZ Analyte Iron                               | Batch ID: <b>45747</b> Result  0.115          | TestCode: 6010WD_HIN Units: mg/L TestNo: EPA 6010B EPA 3010A  PQL SPK value SPK Ref Val  0.020 0.1000 0.006988                                                                                                                                                                        | Analysis Date: 6/6/2014  %REC LowLimit HighLimit RPD Ref Val  108 75 125                       | SeqNo: <b>1791019</b><br>%RPD RPDLimit Qual      |
| Client ID: ZZZZZZ  Analyte Iron  Sample ID: N012607-026C-MSD | Batch ID: 45747  Result  0.115  SampType: MSD | TestCode:         6010WD_HIN         Units:         mg/L           TestNo:         EPA 6010B         EPA 3010A           PQL         SPK value         SPK Ref Val           0.020         0.1000         0.006988           TestCode:         6010WD_HIN         Units:         mg/L | Analysis Date: 6/6/2014  %REC LowLimit HighLimit RPD Ref Val  108 75 125  Prep Date: 5/23/2014 | SeqNo: 1791019  %RPD RPDLimit Qual  RunNo: 93700 |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

- E Value above quantitation range
- R RPD outside accepted recovery limits

  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

www.assetlaboratories.com

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-BNS-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:40:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-001

**ASSET Laboratories** 

| Analyses                   | Result        | MDL             | PQL  | Qual Units | s DF      | Date Analyzed      |  |  |  |
|----------------------------|---------------|-----------------|------|------------|-----------|--------------------|--|--|--|
| DISSOLVED METALS BY ICP-MS |               |                 |      |            |           |                    |  |  |  |
|                            | EPA 3010A     | EPA 3010A EPA 6 |      | A 6020     |           |                    |  |  |  |
| RunID: ICP7_140527B        | QC Batch: 457 | 38              |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |  |  |  |
| Arsenic                    | 2.5           | 0.027           | 0.10 | μg/L       | 1         | 5/27/2014 01:20 PM |  |  |  |
| Barium                     | 130           | 0.15            | 5.0  | μg/L       | 5         | 5/27/2014 01:25 PM |  |  |  |
| Manganese                  | ND            | 0.026           | 0.50 | μg/L       | 1         | 5/27/2014 01:20 PM |  |  |  |
| Molybdenum                 | 4.5           | 0.15            | 0.50 | μg/L       | 1         | 5/27/2014 01:20 PM |  |  |  |
| Selenium                   | 1.5           | 0.069           | 0.50 | μg/L       | 1         | 5/27/2014 01:20 PM |  |  |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26980 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: C-I-3-D-196

CLIENT: CH2M HILL

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:56:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-002

**ASSET Laboratories** 

| Analyses                   | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |  |  |  |
|----------------------------|---------------|-------|------|------------|-----------|--------------------|--|--|--|
| DISSOLVED METALS BY ICP-MS |               |       |      |            |           |                    |  |  |  |
|                            | EPA 3010A     |       | EP   | A 6020     |           |                    |  |  |  |
| RunID: ICP7_140527B        | QC Batch: 457 | 38    |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |  |  |  |
| Arsenic                    | 2.5           | 0.027 | 0.10 | μg/L       | 1         | 5/27/2014 01:47 PM |  |  |  |
| Barium                     | 120           | 0.030 | 1.0  | μg/L       | 1         | 5/27/2014 01:47 PM |  |  |  |
| Manganese                  | ND            | 0.026 | 0.50 | μg/L       | 1         | 5/27/2014 01:47 PM |  |  |  |
| Molybdenum                 | 4.5           | 0.15  | 0.50 | μg/L       | 1         | 5/27/2014 01:47 PM |  |  |  |
| Selenium                   | 1.5           | 0.069 | 0.50 | ua/l       | 1         | 5/27/2014 01:47 PM |  |  |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26981 www.assetlaboratories.com

Print Date: 09-Jun-14

**CLIENT:** CH2M HILL

**Lab Order:** N012607

**ASSET Laboratories** 

**Project:** PG&E Topock, 423575.MP.02.RM

**Lab ID:** N012607-003

Client Sample ID: C-I-3-S-196

Collection Date: 5/21/2014 9:06:00 AM

Matrix: WATER

| Analyses                   | Result        | MDL   | PQL  | Qual Ur   | nits DF   | Date Analyzed      |  |  |  |
|----------------------------|---------------|-------|------|-----------|-----------|--------------------|--|--|--|
| DISSOLVED METALS BY ICP-MS |               |       |      |           |           |                    |  |  |  |
|                            | EPA 3010A     |       | EP.  | A 6020    |           |                    |  |  |  |
| RunID: ICP7_140527B        | QC Batch: 457 | 38    |      | PrepDate: | 5/27/2014 | Analyst: CEI       |  |  |  |
| Arsenic                    | 2.4           | 0.027 | 0.10 | μg/L      | . 1       | 5/27/2014 01:53 PM |  |  |  |
| Barium                     | 120           | 0.030 | 1.0  | μg/L      | . 1       | 5/27/2014 01:53 PM |  |  |  |
| Manganese                  | ND            | 0.026 | 0.50 | μg/L      | . 1       | 5/27/2014 01:53 PM |  |  |  |
| Molybdenum                 | 4.4           | 0.15  | 0.50 | μg/L      | . 1       | 5/27/2014 01:53 PM |  |  |  |
| Selenium                   | 1.5           | 0.069 | 0.50 | μg/L      | . 1       | 5/27/2014 01:53 PM |  |  |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

**ASSET Laboratories** 

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Value above quantitation range

Ε

Advanced Technology Laboratories, Inc.

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26982 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL

**ASSET Laboratories** 

Lab Order: N012607

**Project:** PG&E Topock, 423575.MP.02.RM

**Lab ID:** N012607-004

Client Sample ID: C-MAR-D-196

Collection Date: 5/21/2014 11:46:00 AM

Matrix: WATER

| Analyses                   | Result        | MDL   | PQL  | Qual Unit | s DF      | Date Analyzed      |  |  |  |
|----------------------------|---------------|-------|------|-----------|-----------|--------------------|--|--|--|
| DISSOLVED METALS BY ICP-MS |               |       |      |           |           |                    |  |  |  |
|                            | EPA 3010A     |       | EP   | A 6020    |           |                    |  |  |  |
| RunID: ICP7_140527B        | QC Batch: 457 | 38    |      | PrepDate: | 5/27/2014 | Analyst: CEI       |  |  |  |
| Arsenic                    | 2.1           | 0.027 | 0.10 | μg/L      | 1         | 5/27/2014 01:58 PM |  |  |  |
| Barium                     | 120           | 0.030 | 1.0  | μg/L      | 1         | 5/27/2014 01:58 PM |  |  |  |
| Manganese                  | 33            | 0.026 | 0.50 | μg/L      | 1         | 5/27/2014 01:58 PM |  |  |  |
| Molybdenum                 | 4.5           | 0.15  | 0.50 | μg/L      | 1         | 5/27/2014 01:58 PM |  |  |  |
| Selenium                   | 1.5           | 0.069 | 0.50 | μg/L      | 1         | 5/27/2014 01:58 PM |  |  |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

,

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2693 www.assetlaboratories.com

Print Date: 09-Jun-14

**CLIENT:** CH2M HILL

**ASSET Laboratories** 

N012607 Lab Order:

**Project:** PG&E Topock, 423575.MP.02.RM

Lab ID: N012607-005 Client Sample ID: C-MAR-S-196

Collection Date: 5/21/2014 11:54:00 AM

Matrix: WATER

| Analyses                   | Result        | MDL       | PQL  | Qual Units | DF        | Date Analyzed      |  |  |  |
|----------------------------|---------------|-----------|------|------------|-----------|--------------------|--|--|--|
| DISSOLVED METALS BY ICP-MS |               |           |      |            |           |                    |  |  |  |
|                            | EPA 3010A     | EPA 3010A |      | A 6020     |           |                    |  |  |  |
| RunID: ICP7_140527B        | QC Batch: 457 | 38        |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |  |  |  |
| Arsenic                    | 2.1           | 0.027     | 0.10 | μg/L       | 1         | 5/27/2014 02:15 PM |  |  |  |
| Barium                     | 120           | 0.030     | 1.0  | μg/L       | 1         | 5/27/2014 02:15 PM |  |  |  |
| Manganese                  | 35            | 0.026     | 0.50 | μg/L       | 1         | 5/27/2014 02:15 PM |  |  |  |
| Molybdenum                 | 4.5           | 0.15      | 0.50 | μg/L       | 1         | 5/27/2014 02:15 PM |  |  |  |
| Selenium                   | 1.5           | 0.069     | 0.50 | μg/L       | 1         | 5/27/2014 02:15 PM |  |  |  |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R22A-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:00:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-008

**ASSET Laboratories** 

| Analyses               | Result        | MDL             | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|---------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |                 |      |            |           |                    |
|                        | EPA 3010A     |                 | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027           | 0.10 | μg/L       | 1         | 5/27/2014 02:20 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L       | 1         | 5/27/2014 02:20 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L       | 1         | 5/27/2014 02:20 PM |
| Molybdenum             | 4.3           | 0.15            | 0.50 | μg/L       | 1         | 5/27/2014 02:20 PM |
| Selenium               | 1.5           | 0.069           | 0.50 | μg/L       | 1         | 5/27/2014 02:20 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2695 www.assetlaboratories.com

Print Date: 09-Jun-14

ASSET Laboratories

CLIENT: CH2M HILL Client Sample ID: C-R22A-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 10:12:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-009

| Analyses               | Result MD       | L PQL        | Qual Units | DF        | Date Analyzed      |
|------------------------|-----------------|--------------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS           |              |            |           |                    |
|                        | EPA 3010A       | PA 3010A EPA |            |           |                    |
| RunID: ICP7_140527B    | QC Batch: 45738 |              | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4 0.0         | 27 0.10      | μg/L       | 1         | 5/27/2014 02:27 PM |
| Barium                 | 110 0.0         | 30 1.0       | μg/L       | 1         | 5/27/2014 02:27 PM |
| Manganese              | ND 0.0          | 26 0.50      | μg/L       | 1         | 5/27/2014 02:27 PM |
| Molybdenum             | 4.3 0.1         | 15 0.50      | μg/L       | 1         | 5/27/2014 02:27 PM |
| Selenium               | 1.3 0.0         | 69 0.50      | ua/l       | 1         | 5/27/2014 02:27 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2696 www.assetlaboratories.com

ASSET Laboratories Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-R27-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 11:06:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-010

| Analyses               | Result        | MDL             | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|---------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |                 |      |            |           |                    |
|                        | EPA 3010A     |                 | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.3           | 0.027           | 0.10 | μg/L       | 1         | 5/27/2014 02:32 PM |
| Barium                 | 110           | 0.030           | 1.0  | μg/L       | 1         | 5/27/2014 02:32 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L       | 1         | 5/27/2014 02:32 PM |
| Molybdenum             | 4.4           | 0.15            | 0.50 | μg/L       | 1         | 5/27/2014 02:32 PM |
| Selenium               | 1.5           | 0.069           | 0.50 | μg/L       | 1         | 5/27/2014 02:32 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26937 www.assetlaboratories.com

Print Date: 09-Jun-14

CH2M HILL **CLIENT:** 

Client Sample ID: C-R27-S-196 Lab Order: N012607 Collection Date: 5/21/2014 11:20:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM Matrix: WATER

Lab ID: N012607-011

**ASSET Laboratories** 

| Analyses               | Result        | MDL             | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|---------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |                 |      |            |           |                    |
|                        | EPA 3010A     |                 | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.5           | 0.027           | 0.10 | μg/L       | 1         | 5/27/2014 02:38 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L       | 1         | 5/27/2014 02:38 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L       | 1         | 5/27/2014 02:38 PM |
| Molybdenum             | 4.5           | 0.15            | 0.50 | μg/L       | 1         | 5/27/2014 02:38 PM |
| Selenium               | 1.5           | 0.069           | 0.50 | μg/L       | 1         | 5/27/2014 02:38 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Е Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-D-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:10:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-012

**ASSET Laboratories** 

| Analyses               | Result         | MDL                    | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|----------------|------------------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS           |                        |      |            |           |                    |
|                        | EPA 3010A      |                        | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457: | QC Batch: <b>45738</b> |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.3            | 0.027                  | 0.10 | μg/L       | 1         | 5/27/2014 02:43 PM |
| Barium                 | 110            | 0.030                  | 1.0  | μg/L       | 1         | 5/27/2014 02:43 PM |
| Manganese              | ND             | 0.026                  | 0.50 | μg/L       | 1         | 5/27/2014 02:43 PM |
| Molybdenum             | 4.4            | 0.15                   | 0.50 | μg/L       | 1         | 5/27/2014 02:43 PM |
| Selenium               | 1.4            | 0.069                  | 0.50 | μg/L       | 1         | 5/27/2014 02:43 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26989 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-TAZ-S-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 8:26:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-013

**ASSET Laboratories** 

| Analyses               | Result M        | 1DL   | PQL  | Qual Uni  | ts DF     | Date Analyzed      |
|------------------------|-----------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS            |       |      |           |           |                    |
|                        | EPA 3010A       |       | EP   | A 6020    |           |                    |
| RunID: ICP7_140527B    | QC Batch: 45738 | 1     |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4             | 0.027 | 0.10 | μg/L      | 1         | 5/27/2014 02:49 PM |
| Barium                 | 120             | 0.030 | 1.0  | μg/L      | 1         | 5/27/2014 02:49 PM |
| Manganese              | ND              | 0.026 | 0.50 | μg/L      | 1         | 5/27/2014 02:49 PM |
| Molybdenum             | 4.5             | 0.15  | 0.50 | μg/L      | 1         | 5/27/2014 02:49 PM |
| Selenium               | 1.4             | 0.069 | 0.50 | μg/L      | 1         | 5/27/2014 02:49 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26990 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: R63-196

**Lab Order:** N012607 **Collection Date:** 5/21/2014 9:32:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-014

**ASSET Laboratories** 

| Analyses               | Result        | MDL             | PQL  | Qual Unit | s DF      | Date Analyzed      |
|------------------------|---------------|-----------------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |                 |      |           |           |                    |
|                        | EPA 3010A     | EPA 3010A       |      | A 6020    |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027           | 0.10 | μg/L      | 1         | 5/27/2014 02:54 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L      | 1         | 5/27/2014 02:54 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L      | 1         | 5/27/2014 02:54 PM |
| Molybdenum             | 4.3           | 0.15            | 0.50 | μg/L      | 1         | 5/27/2014 02:54 PM |
| Selenium               | 1.4           | 0.069           | 0.50 | μg/L      | 1         | 5/27/2014 02:54 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26791 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: C-CON-D-196

CLIENT: CH2M HILL

**Lab Order:** N012607 **Collection Date:** 5/22/2014 9:44:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-016

**ASSET Laboratories** 

| Analyses               | Result        | MDL             | PQL  | Qual Units | s DF      | Date Analyzed      |
|------------------------|---------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |                 |      |            |           |                    |
|                        | EPA 3010A     |                 | EP.  | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027           | 0.10 | μg/L       | 1         | 5/27/2014 03:00 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L       | 1         | 5/27/2014 03:00 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L       | 1         | 5/27/2014 03:00 PM |
| Molybdenum             | 4.4           | 0.15            | 0.50 | μg/L       | 1         | 5/27/2014 03:00 PM |
| Selenium               | 1.6           | 0.069           | 0.50 | μg/L       | 1         | 5/27/2014 03:00 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Print Date: 09-Jun-14

ASSET Laboratories

CLIENT: CH2M H

CH2M HILL Client Sample ID: C-CON-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:00:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-017

| Analyses               | Result        | MDL             | PQL  | Qual Unit | s DF | Date Analyzed      |
|------------------------|---------------|-----------------|------|-----------|------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |                 |      |           |      |                    |
|                        | EPA 3010A     |                 | EP   | A 6020    |      |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate: |      | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027           | 0.10 | μg/L      | 1    | 5/27/2014 03:06 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L      | 1    | 5/27/2014 03:06 PM |
| Manganese              | ND            | ND 0.026        |      | μg/L      | 1    | 5/27/2014 03:06 PM |
| Molybdenum             | 4.4           | 0.15            | 0.50 | μg/L      | 1    | 5/27/2014 03:06 PM |
| Selenium               | 1.4           | 0.069           | 0.50 | μg/L      | 1    | 5/27/2014 03:06 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2693 www.assetlaboratories.com

Print Date: 09-Jun-14

**CLIENT:** CH2M HILL

Lab Order: N012607

**ASSET Laboratories** 

**Project:** PG&E Topock, 423575.MP.02.RM

**Lab ID:** N012607-020

Client Sample ID: C-NR1-D-196

Collection Date: 5/22/2014 10:26:00 AM

Matrix: WATER

| Analyses               | Result        | MDL             | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|---------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |                 |      |            |           |                    |
|                        | EPA 3010A     |                 | EP.  | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027           | 0.10 | μg/L       | 1         | 5/27/2014 03:22 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L       | 1         | 5/27/2014 03:22 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L       | 1         | 5/27/2014 03:22 PM |
| Molybdenum             | 4.6           | 0.15            | 0.50 | μg/L       | 1         | 5/27/2014 03:22 PM |
| Selenium               | 1.6           | 0.069           | 0.50 | μg/L       | 1         | 5/29/2014 10:07 AM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

ND

E Value above quantitation rangeND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

dba ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2694 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR1-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 10:40:00 AM

**Project:** PG&E Topock, 423575.MP.02.RM **Matrix:** WATER

**Lab ID:** N012607-021

**ASSET Laboratories** 

| Analyses               | Result        | MDL             | PQL  | Qual Unit | s DF      | Date Analyzed      |
|------------------------|---------------|-----------------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |                 |      |           |           |                    |
|                        | EPA 3010A     | EPA 3010A       |      | A 6020    |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.5           | 0.027           | 0.10 | μg/L      | 1         | 5/27/2014 03:28 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L      | 1         | 5/27/2014 03:28 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L      | 1         | 5/27/2014 03:28 PM |
| Molybdenum             | 4.6           | 0.15            | 0.50 | μg/L      | 1         | 5/27/2014 03:28 PM |
| Selenium               | 1.4           | 0.069           | 0.50 | μg/L      | 1         | 5/27/2014 03:28 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2695 www.assetlaboratories.com

Print Date: 09-Jun-14

**CLIENT:** CH2M HILL

**ASSET Laboratories** 

Lab Order: N012607

**Project:** PG&E Topock, 423575.MP.02.RM

Lab ID: N012607-022 Client Sample ID: C-NR3-D-196

Collection Date: 5/22/2014 11:04:00 AM

Matrix: WATER

| Analyses               | Result        | MDL             | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|---------------|-----------------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |                 |      |            |           |                    |
|                        | EPA 3010A     |                 | EP.  | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | QC Batch: 45738 |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027           | 0.10 | μg/L       | 1         | 5/27/2014 03:33 PM |
| Barium                 | 120           | 0.030           | 1.0  | μg/L       | 1         | 5/27/2014 03:33 PM |
| Manganese              | ND            | 0.026           | 0.50 | μg/L       | 1         | 5/27/2014 03:33 PM |
| Molybdenum             | 4.4           | 0.15            | 0.50 | μg/L       | 1         | 5/27/2014 03:33 PM |
| Selenium               | 1.4           | 0.069           | 0.50 | μg/L       | 1         | 5/27/2014 03:33 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

CLIENT: CH2M HILL Client Sample ID: C-NR3-S-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:20:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-023

**ASSET Laboratories** 

| Analyses               | Result        | esult MDL PQL Qual Unit |      | s DF      | Date Analyzed |                    |
|------------------------|---------------|-------------------------|------|-----------|---------------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |                         |      |           |               |                    |
|                        | EPA 3010A     |                         | EP   | A 6020    |               |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | 38                      |      | PrepDate: | 5/27/2014     | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027                   | 0.10 | μg/L      | 1             | 5/27/2014 03:39 PM |
| Barium                 | 120           | 0.030                   | 1.0  | μg/L      | 1             | 5/27/2014 03:39 PM |
| Manganese              | ND            | 0.026                   | 0.50 | μg/L      | 1             | 5/27/2014 03:39 PM |
| Molybdenum             | 4.5           | 0.15                    | 0.50 | μg/L      | 1             | 5/27/2014 03:39 PM |
| Selenium               | 1.7           | 0.069                   | 0.50 | μg/L      | 1             | 5/27/2014 03:39 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out
Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26997 www.assetlaboratories.com

Print Date: 09-Jun-14

\_\_\_\_

**ASSET Laboratories** 

CLIENT: CH2M HILL Client Sample ID: C-NR4-D-196

**Lab Order:** N012607 **Collection Date:** 5/22/2014 11:50:00 AM

Project: PG&E Topock, 423575.MP.02.RM Matrix: WATER

**Lab ID:** N012607-024

| Analyses               | Result        | Result MDL PQL Qua |           | Qual Unit | s DF      | Date Analyzed      |
|------------------------|---------------|--------------------|-----------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | P-MS          |                    |           |           |           |                    |
|                        | EPA 3010A     |                    | EP        | A 6020    |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | 38                 | PrepDate: |           | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.5           | 0.027              | 0.10      | μg/L      | 1         | 5/27/2014 03:44 PM |
| Barium                 | 120           | 0.030              | 1.0       | μg/L      | 1         | 5/27/2014 03:44 PM |
| Manganese              | ND            | 0.026              | 0.50      | μg/L      | 1         | 5/27/2014 03:44 PM |
| Molybdenum             | 4.4           | 0.15               | 0.50      | μg/L      | 1         | 5/27/2014 03:44 PM |
| Selenium               | 1.5           | 0.069              | 0.50      | μg/L      | 1         | 5/27/2014 03:44 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

E Value above quantitation range
 ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2698 www.assetlaboratories.com

Print Date: 09-Jun-14

Client Sample ID: C-NR4-S-196

**CLIENT:** CH2M HILL

**ASSET Laboratories** 

Lab Order: N012607 Collection Date: 5/22/2014 12:02:00 PM

**Project:** PG&E Topock, 423575.MP.02.RM

Matrix: WATER Lab ID: N012607-025

| Analyses              | Result         | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|-----------------------|----------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY I | CP-MS          |       |      |            |           |                    |
|                       | EPA 3010A      |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B   | QC Batch: 457: | 38    |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic               | 2.4            | 0.027 | 0.10 | μg/L       | 1         | 5/27/2014 03:50 PM |
| Barium                | 120            | 0.030 | 1.0  | μg/L       | 1         | 5/27/2014 03:50 PM |
| Manganese             | ND             | 0.026 | 0.50 | μg/L       | 1         | 5/27/2014 03:50 PM |
| Molybdenum            | 4.4            | 0.15  | 0.50 | μg/L       | 1         | 5/27/2014 03:50 PM |
| Selenium              | 1.4            | 0.069 | 0.50 | μg/L       | 1         | 5/27/2014 03:50 PM |

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

Ε Value above quantitation range Not Detected at the Reporting Limit Results are wet unless otherwise specified

> 3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 www.assetlaboratories.com

Print Date: 09-Jun-14

**CLIENT:** CH2M HILL

Lab Order: N012607

**ASSET Laboratories** 

**Project:** PG&E Topock, 423575.MP.02.RM

**Lab ID:** N012607-026

Client Sample ID: R-19-196

**Collection Date:** 5/22/2014 8:50:00 AM

Matrix: WATER

| Analyses               | Result        | MDL   | PQL  | Qual Uni  | ts DF     | Date Analyzed      |
|------------------------|---------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |       |      |           |           |                    |
|                        | EPA 3010A     |       | EP.  | A 6020    |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | 39    |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.3           | 0.027 | 0.10 | μg/L      | 1         | 5/27/2014 04:06 PM |
| Barium                 | 120           | 0.15  | 5.0  | μg/L      | 5         | 5/27/2014 04:12 PM |
| Manganese              | ND            | 0.026 | 0.50 | μg/L      | 1         | 5/27/2014 04:06 PM |
| Molybdenum             | 4.4           | 0.15  | 0.50 | μg/L      | 1         | 5/27/2014 04:06 PM |
| Selenium               | 1.4           | 0.069 | 0.50 | μg/L      | 1         | 5/27/2014 04:06 PM |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

**Advanced Technology Laboratories, Inc.** 

dba ASSET Laboratories

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2620 www.assetlaboratories.com

Print Date: 09-Jun-14

**CLIENT:** CH2M HILL

N012607 Lab Order:

**ASSET Laboratories** 

**Project:** PG&E Topock, 423575.MP.02.RM

Lab ID: N012607-027 Client Sample ID: R-28-196

Collection Date: 5/22/2014 8:24:00 AM

Matrix: WATER

| Analyses               | Result        | MDL   | PQL  | Qual Units | DF        | Date Analyzed      |
|------------------------|---------------|-------|------|------------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |       |      |            |           |                    |
|                        | EPA 3010A     |       | EP   | A 6020     |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | 39    |      | PrepDate:  | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.4           | 0.027 | 0.10 | μg/L       | 1         | 5/27/2014 04:45 PM |
| Barium                 | 120           | 0.030 | 1.0  | μg/L       | 1         | 5/27/2014 04:45 PM |
| Manganese              | ND            | 0.026 | 0.50 | μg/L       | 1         | 5/27/2014 04:45 PM |
| Molybdenum             | 4.7           | 0.15  | 0.50 | μg/L       | 1         | 5/27/2014 04:45 PM |
| Selenium               | 1.5           | 0.069 | 0.50 | μg/L       | 1         | 5/27/2014 04:45 PM |

Qualifiers: В Analyte detected in the associated Method Blank

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Н Holding times for preparation or analysis exceeded

**Advanced Technology Laboratories, Inc.** 

**ASSET Laboratories** 

Ε Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26201 www.assetlaboratories.com

Print Date: 09-Jun-14

CH2M HILL **CLIENT:** 

N012607 Lab Order:

**ASSET Laboratories** 

**Project:** PG&E Topock, 423575.MP.02.RM

Lab ID: N012607-029 Client Sample ID: RRB-196

Collection Date: 5/22/2014 9:12:00 AM

Matrix: WATER

| Analyses               | Result        | MDL   | PQL  | Qual Uni  | ts DF     | Date Analyzed      |
|------------------------|---------------|-------|------|-----------|-----------|--------------------|
| DISSOLVED METALS BY IC | CP-MS         |       |      |           |           |                    |
|                        | EPA 3010A     |       | EP.  | A 6020    |           |                    |
| RunID: ICP7_140527B    | QC Batch: 457 | 39    |      | PrepDate: | 5/27/2014 | Analyst: CEI       |
| Arsenic                | 2.2           | 0.027 | 0.10 | μg/L      | 1         | 5/27/2014 04:50 PM |
| Barium                 | 120           | 0.030 | 1.0  | μg/L      | 1         | 5/27/2014 04:50 PM |
| Manganese              | 7.3           | 0.026 | 0.50 | μg/L      | 1         | 5/27/2014 04:50 PM |
| Molybdenum             | 4.4           | 0.15  | 0.50 | μg/L      | 1         | 5/27/2014 04:50 PM |
| Selenium               | 1.3           | 0.069 | 0.50 | μg/L      | 1         | 5/27/2014 04:50 PM |

Ε

Value above quantitation range

Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Qualifiers: В Analyte detected in the associated Method Blank

> Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

**Advanced Technology Laboratories, Inc.** 

3151 W. Post Rd, Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.26202 www.assetlaboratories.com

ASSET Laboratories

Date: 09-Jun-14

CLIENT: CH2M HILL Work Order: N012607

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6020\_DIS

| Sample ID: MB-45738        | SampType: MBLK       | TestCode: 6020_DIS | Units: µg/L | Prep Date: 5/27/2014               | RunNo: <b>93595</b>   |
|----------------------------|----------------------|--------------------|-------------|------------------------------------|-----------------------|
| Client ID: PBW             | Batch ID: 45738      | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/27/2014           | SeqNo: 1788173        |
| Analyte                    | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Va | al %RPD RPDLimit Qual |
| Arsenic                    | ND                   | 0.10               |             |                                    |                       |
| Barium                     | ND                   | 1.0                |             |                                    |                       |
| Manganese                  | ND                   | 0.50               |             |                                    |                       |
| Molybdenum                 | ND                   | 0.50               |             |                                    |                       |
| Selenium                   | ND                   | 0.50               |             |                                    |                       |
| Sample ID: LCS-45738       | SampType: <b>LCS</b> | TestCode: 6020_DIS | Units: µg/L | Prep Date: 5/27/2014               | RunNo: <b>93595</b>   |
| Client ID: LCSW            | Batch ID: 45738      | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/27/2014           | SeqNo: 1788174        |
| Analyte                    | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Va | al %RPD RPDLimit Qual |
| Arsenic                    | 10.305               | 0.10 10.00         | 0           | 103 85 115                         |                       |
| Barium                     | 107.957              | 1.0 100.0          | 0           | 108 85 115                         |                       |
| Manganese                  | 99.621               | 0.50 100.0         | 0           | 99.6 85 115                        |                       |
| Molybdenum                 | 10.330               | 0.50 10.00         | 0           | 103 85 115                         |                       |
| Selenium                   | 10.141               | 0.50 10.00         | 0           | 101 85 115                         |                       |
| Sample ID: N012607-001C-MS | SampType: <b>MS</b>  | TestCode: 6020_DIS | Units: µg/L | Prep Date: 5/27/2014               | RunNo: <b>93595</b>   |
| Client ID: ZZZZZZ          | Batch ID: 45738      | TestNo: EPA 6020   | EPA 3010A   | Analysis Date: 5/27/2014           | SeqNo: 1788178        |
| Analyte                    | Result               | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Va | al %RPD RPDLimit Qual |
| Arsenic                    | 12.720               | 0.10 10.00         | 2.472       | 102 75 125                         |                       |
| Manganese                  | 93.463               | 0.50 100.0         | 0           | 93.5 75 125                        |                       |
| Molybdenum                 | 15.595               | 0.50 10.00         | 4.492       | 111 75 125                         |                       |
| Selenium                   | 11.704               | 0.50 10.00         | 1.508       | 102 75 125                         |                       |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N012607

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6020\_DIS

| Sample ID: N012607-001C-MSD        | SampType: MSD       | TestCode: 6020     | _DIS Units: μg/L |      | Prep Da                  | te: <b>5/27/2</b> 0 | 14          | RunNo: 93             | 595                   |      |  |
|------------------------------------|---------------------|--------------------|------------------|------|--------------------------|---------------------|-------------|-----------------------|-----------------------|------|--|
| Client ID: ZZZZZZ                  | Batch ID: 45738     | TestNo: <b>EPA</b> | 6020 EPA 3010A   |      | Analysis Date: 5/27/2014 |                     |             |                       | SeqNo: <b>1788179</b> |      |  |
| Analyte                            | Result              | PQL SPK v          | alue SPK Ref Val | %REC | LowLimit                 | HighLimit           | RPD Ref Val | %RPD                  | RPDLimit              | Qual |  |
| Arsenic                            | 12.409              | 0.10 1             | 0.00 2.472       | 99.4 | 75                       | 125                 | 12.72       | 2.48                  | 20                    |      |  |
| Manganese                          | 92.566              | 0.50 1             | 0.00             | 92.6 | 75                       | 125                 | 93.46       | 0.965                 | 20                    |      |  |
| Molybdenum                         | 15.589              | 0.50 1             | 0.00 4.492       | 111  | 75                       | 125                 | 15.59       | 0.0379                | 20                    |      |  |
| Selenium                           | 11.727              | 0.50 1             | 0.00 1.508       | 102  | 75                       | 125                 | 11.70       | 0.192                 | 20                    |      |  |
| Sample ID: N012607-001C-MS         | SampType: <b>MS</b> | TestCode: 6020     | _DIS Units: μg/L |      | Prep Dat                 | te: <b>5/27/20</b>  | 14          | RunNo: 93             | 595                   |      |  |
| Client ID: ZZZZZZ                  | Batch ID: 45738     | TestNo: <b>EPA</b> | 6020 EPA 3010A   |      | Analysis Date: 5/27/2014 |                     |             | SeqNo: <b>1788218</b> |                       |      |  |
| Analyte                            | Result              | PQL SPK v          | alue SPK Ref Val | %REC | LowLimit                 | HighLimit           | RPD Ref Val | %RPD                  | RPDLimit              | Qual |  |
| Barium                             | 242.300             | 5.0 1              | 00.0 129.4       | 113  | 75                       | 125                 |             |                       |                       |      |  |
| Sample ID: <b>N012607-001C-MSD</b> | SampType: MSD       | TestCode: 6020     | _DIS Units: μg/L |      | Prep Dat                 | te: <b>5/27/20</b>  | 14          | RunNo: 93             | 595                   |      |  |
| Client ID: ZZZZZZ                  | Batch ID: 45738     | TestNo: EPA        | 6020 EPA 3010A   |      | Analysis Da              | te: <b>5/27/20</b>  | 14          | SeqNo: <b>178</b>     | 88221                 |      |  |
| Analyte                            | Result              | PQL SPK v          | alue SPK Ref Val | %REC | LowLimit                 | HighLimit           | RPD Ref Val | %RPD                  | RPDLimit              | Qual |  |
| Barium                             | 242.453             | 5.0 1              | 00.0 129.4       | 113  | 75                       | 125                 | 242.3       | 0.0630                | 20                    |      |  |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

- E Value above quantitation range
- R RPD outside accepted recovery limits

  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

**CLIENT:** CH2M HILL Work Order: N012607

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM TestCode: 6020\_DIS

| Sample ID: <b>MB-45739</b>        | SampType: MBLK       | TestCod       | e: <b>6020_DIS</b> | Units: µg/L |                          | Prep Dat     | te: <b>5/27/20</b> | 14          | RunNo: 935            | 95       |      |
|-----------------------------------|----------------------|---------------|--------------------|-------------|--------------------------|--------------|--------------------|-------------|-----------------------|----------|------|
| Client ID: PBW                    | Batch ID: 45739      | TestN         | o: <b>EPA 6020</b> | EPA 3010A   |                          | Analysis Dat | te: <b>5/27/20</b> | 14          | SeqNo: <b>178</b>     | 8203     |      |
| Analyte                           | Result               | PQL           | SPK value          | SPK Ref Val | %REC                     | LowLimit     | HighLimit          | RPD Ref Val | %RPD                  | RPDLimit | Qual |
| Arsenic                           | ND                   | 0.10          |                    |             |                          |              |                    |             |                       |          |      |
| Barium                            | ND                   | 1.0           |                    |             |                          |              |                    |             |                       |          |      |
| Manganese                         | 0.091                | 0.50          |                    |             |                          |              |                    |             |                       |          |      |
| Molybdenum                        | ND                   | 0.50          |                    |             |                          |              |                    |             |                       |          |      |
| Selenium                          | ND                   | 0.50          |                    |             |                          |              |                    |             |                       |          |      |
| Sample ID: LCS-45739              | SampType: <b>LCS</b> | TestCod       | e: <b>6020_DIS</b> | Units: µg/L |                          | Prep Dat     | te: <b>5/27/20</b> | 14          | RunNo: 935            | 95       |      |
| Client ID: LCSW                   | Batch ID: 45739      | TestN         | o: <b>EPA 6020</b> | EPA 3010A   |                          | Analysis Dat | te: <b>5/27/20</b> | 14          | SeqNo: <b>178</b>     | 8204     |      |
| Analyte                           | Result               | PQL SPK value |                    | SPK Ref Val | %REC                     | LowLimit     | HighLimit          | RPD Ref Val | %RPD                  | RPDLimit | Qual |
| Arsenic                           | 10.047               | 0.10          | 10.00              | 0           | 100                      | 85           | 115                |             |                       |          |      |
| Barium                            | 108.230              | 1.0           | 100.0              | 0           | 108                      | 85           | 115                |             |                       |          |      |
| Manganese                         | 101.468              | 0.50          | 100.0              | 0           | 101                      | 85           | 115                |             |                       |          |      |
| Molybdenum                        | 10.345               | 0.50          | 10.00              | 0           | 103                      | 85           | 115                |             |                       |          |      |
| Selenium                          | 10.242               | 0.50          | 10.00              | 0           | 102                      | 85           | 115                |             |                       |          |      |
| Sample ID: <b>N012607-026C-MS</b> | SampType: <b>MS</b>  | TestCod       | e: <b>6020_DIS</b> | Units: µg/L |                          | Prep Dat     | te: <b>5/27/20</b> | 14          | RunNo: 935            | 95       |      |
| Client ID: ZZZZZZ                 | Batch ID: 45739      | TestN         | o: <b>EPA 6020</b> | EPA 3010A   |                          | Analysis Dat | te: <b>5/27/20</b> | 14          | SeqNo: <b>178</b>     | 8210     |      |
| Analyte                           | Result               | PQL           | SPK value          | SPK Ref Val | %REC                     | LowLimit     | HighLimit          | RPD Ref Val | %RPD                  | RPDLimit | Qual |
| Arsenic                           | 12.641               | 0.10          | 10.00              | 2.260       | 104                      | 75           | 125                |             |                       |          |      |
| Manganese                         | 93.386               | 0.50          | 100.0              | 0           | 93.4                     | 75           | 125                |             |                       |          |      |
| Molybdenum                        | 15.923               | 0.50          | 10.00              | 4.408       | 115                      | 75           | 125                |             |                       |          |      |
| Selenium                          | 12.152               | 0.50          | 10.00              | 1.444       | 107                      | 75           | 125                |             |                       |          |      |
| Sample ID: N012607-026C-MSD       | SampType: <b>MSD</b> | TestCod       | e: <b>6020_DIS</b> | Units: µg/L |                          | Prep Dat     | te: <b>5/27/20</b> | 14          | RunNo: 935            | 95       |      |
| Client ID: ZZZZZZ                 | Batch ID: 45739      | TestN         | o: <b>EPA 6020</b> | EPA 3010A   | Analysis Date: 5/27/2014 |              |                    | 14          | SeqNo: <b>1788211</b> |          |      |
| Analyte                           | Result               | PQL           | SPK value          | SPK Ref Val | %REC                     | LowLimit     | HighLimit          | RPD Ref Val | %RPD                  | RPDLimit | Qual |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- Advanced Technology Laboratories, Inc.

Value above quantitation range

P: 702.307.2659

- RPD outside accepted recovery limits Calculations are based on raw values 3151 W. Post Rd, Las Vegas, NV 89118

F: 702.307.2691

Holding times for preparation or analysis exceeded Spike/Surrogate outside of limits due to matrix interference CLIENT: CH2M HILL Work Order: N012607

# ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6020\_DIS

| Sample ID: N012607-026C-MSD        | SampType: MSD        | TestCode: 60 | TestCode: 6020_DIS |             | Prep Date: 5/27/2014     |               |                   | 14          | RunNo: 935        |          |      |
|------------------------------------|----------------------|--------------|--------------------|-------------|--------------------------|---------------|-------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                  | Batch ID: 45739      | TestNo: EF   | PA 6020            | EPA 3010A   | Analysis Date: 5/27/2014 |               |                   | 14          | SeqNo: <b>178</b> |          |      |
| Analyte                            | Result               | PQL SP       | K value            | SPK Ref Val | %REC                     | LowLimit      | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Arsenic                            | 12.626               | 0.10         | 10.00              | 2.260       | 104                      | 75            | 125               | 12.64       | 0.123             | 20       |      |
| Manganese                          | 93.629               | 0.50         | 100.0              | 0           | 93.6                     | 75            | 125               | 93.39       | 0.259             | 20       |      |
| Molybdenum                         | 16.079               | 0.50         | 10.00              | 4.408       | 117                      | 75            | 125               | 15.92       | 0.970             | 20       |      |
| Selenium                           | 11.326               | 0.50         | 10.00              | 1.444       | 98.8                     | 75            | 125               | 12.15       | 7.04              | 20       |      |
| Sample ID: <b>N012607-026C-MS</b>  | SampType: <b>MS</b>  | TestCode: 60 | 20_DIS             | Units: µg/L |                          | Prep Date     | e: <b>5/27/20</b> | 14          | RunNo: 935        | 595      |      |
| Client ID: ZZZZZZ                  | Batch ID: 45739      | TestNo: EF   | PA 6020            | EPA 3010A   | Analysis Date: 5/27/2014 |               |                   | 14          | SeqNo: <b>178</b> | 88224    |      |
| Analyte                            | Result               | PQL SP       | K value            | SPK Ref Val | %REC                     | LowLimit      | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Barium                             | 244.501              | 5.0          | 100.0              | 124.6       | 120                      | 75            | 125               |             |                   |          |      |
| Sample ID: <b>N012607-026C-MSD</b> | SampType: <b>MSD</b> | TestCode: 60 | 20_DIS             | Units: µg/L |                          | Prep Date     | e: <b>5/27/20</b> | 14          | RunNo: 935        | 595      |      |
| Client ID: ZZZZZZ                  | Batch ID: 45739      | TestNo: EF   | PA 6020            | EPA 3010A   |                          | Analysis Date | e: <b>5/27/20</b> | 14          | SeqNo: <b>178</b> | 88225    |      |
| Analyte                            | Result               | PQL SP       | K value            | SPK Ref Val | %REC                     | LowLimit      | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Barium                             | 243.770              | 5.0          | 100.0              | 124.6       | 119                      | 75            | 125               | 244.5       | 0.299             | 20       |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Advanced Technology Laboratories, Inc.

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values
  3151 W. Post Rd, Las Vegas, NV 89118
  P: 702.307.2659 F: 702.307.2691

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

| CH2MHIL |  | - | 21 | M |  | MANAGE | £ |  |
|---------|--|---|----|---|--|--------|---|--|
|---------|--|---|----|---|--|--------|---|--|

## **CHAIN OF CUSTODY RECORD**

5/22/2014 2:01:07 PM

Page 1 OF 3

|                                            | 0 Sem                                            |                                  |                         |                                    | ,                  |                  |                                                                    |                                           |                               |                 |                                         |                      | 3222017 2.01.01 FW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|--------------------------------------------------|----------------------------------|-------------------------|------------------------------------|--------------------|------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------|-----------------|-----------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name Po                            | 3&E Topoc                                        | k (                              | Container:              | 3X250<br>ml Poly                   | 250 Poly           | 500 ml<br>Poly   | 500 ml<br>Poly                                                     | 500 ml<br>Poly                            | 1 Liter<br>Poly               | 1 Liter<br>Poly | 1 Liter<br>Poly                         | Poly                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Location Topoc                             | 1                                                | Danam                            |                         | (NH4)2S                            |                    | HNO3,            | HNO3,                                                              | HNO3,                                     | 4°C                           | 4°C             | 4°C                                     | il ch.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Manager                            | * -                                              |                                  | ervatives:              | 04/NH40<br>H, 4°C                  | 04/NH40<br>H, 4°C  | 4°C              | 4°C                                                                | 4°C                                       |                               |                 |                                         | H25C4<br>PH<2<br>4°C | * Where provided with multiple bothes for Cr6 + Het diss metals please analyze 1 + hold 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | - Carlotte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample Manager                             | Shawn Du                                         | ffy                              | Filtered:               | Field                              | NA                 | NA               | Field                                                              | Field                                     | NA                            | NA              | NA                                      | NA                   | * Where provided with multiple soiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                  | Holo                             | ling Time:              | 28                                 | 28                 | 180              | 180                                                                | 180                                       | 7                             | 7               | 7                                       | 28                   | Cor Colo + Lifet diss metals please                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Number                             | 423575.MF                                        | .02.RN                           | 1                       |                                    |                    |                  | ≤e                                                                 | Z                                         | ဇွ                            |                 |                                         | 23                   | 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Market Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Task Order                                 | 10.400                                           |                                  |                         | Cr6                                | Field QC           | Metals           | tals                                                               | etals                                     | ecifi                         |                 |                                         | 3 7                  | analyze 1 + kolo of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project 2014-RM<br>Turnaround Time         |                                                  | •                                |                         | (E2                                | ည်                 | <u>ब</u>         | (SW<br>F)                                                          | \$ (60                                    | င္ပင္ပ                        | 꾸               | STS                                     | ンチャ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number         | - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - Sept |
| Shipping Date:                             |                                                  | 3                                |                         | 18.6<br>Filk                       | Cr6                | (601             | 6010<br>eld F                                                      | )20A<br>Chro                              | ndu                           | (SM-            | s (s                                    | 187                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ber            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COC Number: R                              |                                                  |                                  |                         | - ri<br>ered                       | (E21               | (80              | OB/S<br>Tilter                                                     | ) Fie                                     | ctan                          | РН (SM4500НВ    | M25                                     | 367                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of (           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| oov Hullisti. N                            |                                                  |                                  |                         | (E218,6 - river) Field<br>Filtered | Cr6 (E218.6-river) | (60108) Total Fe | Metals (SW6010B/SW6020Adis)<br>Field Filtered<br>As,Mn,Fe,Se,Mo,Ba | Metals (6020A) Field Filtered<br>Chromium | Specific Conductance (E120.1) | HB)             | 40)                                     | (Sm 4500 Notrate     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Containers     | Marie Commen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                            |                                                  |                                  |                         | Field                              | rive               | <u>a</u>         | )20A<br>Ba                                                         | iltere                                    | ≘120                          |                 |                                         | (4                   | TAXABLE PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tain           | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|                                            | DATE                                             | TIME                             | Matrix                  |                                    |                    |                  | dis)                                                               | ă                                         | 1.1                           |                 |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SJe            | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C-BNS-D-196                                | 5/21/2014                                        | 10:40                            | Water                   | х                                  |                    | х                | x                                                                  | Х                                         | х                             | Х               | ×                                       | X                    | N0121007-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,8°            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-I-3-D-196                                | 5/21/2014                                        | 8:56                             | Water                   | Х                                  | <del></del>        | ж                | х                                                                  | Х                                         | х                             | Х               | х                                       | ×                    | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g/             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-I-3-S-196                                | 5/21/2014                                        | 9:06                             | Water                   | Х                                  |                    | х                | Х                                                                  | Х                                         | х                             | Х               | Х                                       | X                    | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-MAR-D-196                                | 5/21/2014                                        | 11:46                            | Water                   | Х                                  |                    | х                | ж                                                                  | Х                                         | Х                             | Х               | Х                                       | X                    | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,8/            | 9 _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C-MAR-S-196                                | 5/21/2014                                        | 11:54                            | Water                   | х                                  |                    | Х                | х                                                                  | Х                                         | Х                             | х               | х                                       | X                    | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-MW-80-196                                | 5/21/2014                                        | 8:00                             | Water                   |                                    | х                  |                  |                                                                    | V 1-44, 1-4                               |                               |                 |                                         |                      | -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C-MW-81-196                                | 5/21/2014                                        | 8:40                             | Water                   |                                    | Х                  |                  |                                                                    |                                           |                               |                 |                                         |                      | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                  | 0.70                             |                         |                                    |                    | 1                | 1 1                                                                |                                           |                               |                 |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-R22A-D-196                               | 5/21/2014                                        | 10:00                            | Water                   | Х                                  |                    | х                | х                                                                  | х                                         | х                             | Х               | X                                       | ×                    | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , <i>ĝ</i> /   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C-R22A-D-196<br>C-R22A-S-196               |                                                  |                                  | Water<br>Water          | X<br>X                             |                    | x<br>x           | X                                                                  | x<br>x                                    | X<br>X                        | x<br>x          | X<br>X                                  | X                    | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | 5/21/2014                                        | 10:00                            |                         |                                    |                    |                  |                                                                    |                                           |                               |                 | *************************************** | -                    | -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-R22A-S-196                               | 5/21/2014<br>5/21/2014                           | 10:00<br>10:12                   | Water                   | Х                                  |                    | Х                | x                                                                  | х                                         | Х                             | Х               | Х                                       | X                    | -8<br>-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £/<br>,%{      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-R22A-S-196<br>C-R27-D-196                | 5/21/2014<br>5/21/2014<br>5/21/2014              | 10:00<br>10:12<br>11:06          | Water<br>Water          | x<br>x                             |                    | x<br>x           | x                                                                  | x<br>x                                    | x<br>x                        | x<br>x          | X<br>X                                  | XX                   | -8<br>-9<br>-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | £/<br>,%{      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C-R22A-S-196<br>C-R27-D-196<br>C-R27-S-196 | 5/21/2014<br>5/21/2014<br>5/21/2014<br>5/21/2014 | 10:00<br>10:12<br>11:06<br>11:20 | Water<br>Water<br>Water | x<br>x<br>x                        |                    | x<br>x<br>x      | x<br>x<br>x                                                        | x<br>x<br>x                               | x<br>x<br>x                   | x<br>x<br>x     | X<br>X<br>X                             | XXX                  | -8<br>-9<br>-10<br>-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/<br>3/<br>3/ | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| www.wayayayayaya |                         |              |                           |
|------------------|-------------------------|--------------|---------------------------|
|                  | <sub>a</sub> Signatures | _Date/Time   | Shipping Deta             |
| Approved by      |                         | 5-22-14      |                           |
| Sampled by       | *//                     | 1430         | Method of Shipment: Fed   |
| Relinquished by  | 101/                    | j j          | On Ice: (yes)/ no 3 1 1 1 |
| Received by      | and -                   | 5/22/14/30   | Airbill No:               |
| Relinquished by  | tourned.                | 5/22/14/650  | Lab Name: ADVANCED TEC    |
| Received by      | Everanola Costs         | 5/22/14 1650 | Lab Phone: (702) 307-2659 |
|                  |                         |              |                           |

**Shipping Details** 

Method of Shipment: FedEx

On Ice: (yes) / no

Lab Name: ADVANCED TECHNOLOGY LABORATO

ATTN:

May 21-22, 2014

Sample Custody

and

Marlon

Report Copy to

Special Instructions:

Shawn Duffy (530) 229-3303

208

| C |  | 2 | M. | 爥 | ١. | and a | 10000 | SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESSE<br>SALESS |
|---|--|---|----|---|----|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |  |   |    |   |    |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### **CHAIN OF CUSTODY RECORD**

5/22/2014 2:17:30 PM

Page 2 OF 3

| brzwinil                               | n lane                 |                |                |                                    |                             |                         |                                                                    |                                           | MIIA C                        |                 |                 |                                             | 7112 3/22/2014 2.17.30 PM Page 2 1                                                        | or _       | <u> </u>      |
|----------------------------------------|------------------------|----------------|----------------|------------------------------------|-----------------------------|-------------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------|-----------------|-----------------|---------------------------------------------|-------------------------------------------------------------------------------------------|------------|---------------|
| Project Name Po                        | 3&E Topod              | :k             | Container:     | 3X250<br>ml Poly                   | 250 Poly                    | 500 ml<br>Poly          | 500 ml<br>Poly                                                     | 500 ml<br>Poly                            | 1 Liter<br>Poly               | 1 Liter<br>Poly | 1 Liter<br>Poly | 125ml<br>poly                               |                                                                                           |            |               |
| ocation Topoc                          |                        | D              |                | (NH4)2S                            |                             | HNO3,                   | HNO3,                                                              | HNO3,                                     | 4°C                           | 4°C             | 4°C             | 11,504                                      |                                                                                           |            |               |
| Project Manager                        | Jay Piper              | Pres           | ervatives:     | 04/NH40<br>H, 4°C                  | 04/NH40<br>H, 4°C           | 4°C                     | 4°C                                                                | 4°C                                       |                               |                 |                 | A423                                        | 2 1 3 2 4 1 11 1                                                                          |            | Bittlemen     |
| Sample Manager                         | Shawn Du               | ffy            | Filtered:      | Field                              | NA                          | NA                      | Field                                                              | Field                                     | NA                            | NA              | NA              | NA                                          | # Where provided w/multiple bottles<br>for Cré + diss metals please analyze<br>1 + hold 2 |            |               |
|                                        |                        | Holo           | ling Time:     | 28                                 | 28                          | 180                     | 180                                                                | 180                                       | 7                             | 7               | 7               | 28                                          | Contral die males alouse analyze                                                          |            |               |
| Project Number                         | 423575.MF              | .02.RN         | ı              |                                    | _                           |                         | <b>S</b>                                                           | 7                                         | gs                            |                 |                 | 2                                           | for Cle + on metals from many                                                             |            |               |
| Fask Order                             |                        |                |                | Cr6                                | Field QC Cr6 (E218.6~river, | <u>≤</u>                | etals                                                              | Metals (6020A) Field Filtered<br>Chromium | Specific Conductance (E120.1) |                 |                 | Nitrate/Nitrite<br>(SM 4500 NO3)<br>Nitrate | 1 + hold 2                                                                                |            |               |
| Project 2014-RM                        | 1                      |                |                |                                    | වි                          | tals                    | (SW<br>As,N                                                        | s (6                                      | ic<br>Q                       | 웃               | TS.             | - 33                                        |                                                                                           | Number     |               |
| Turnaround Time                        |                        | S              |                | <u>1</u> 8.                        | Cr6                         | (60                     | /601<br>leld                                                       | 020<br>Chr                                | ondu                          | MS)             | (S)             | 185                                         |                                                                                           | ber        |               |
| Shipping Date: 5                       |                        |                |                | 6 - I                              | (E2                         | 108                     | OB/<br>Filte<br>e,Se                                               | A) FI                                     | ıctar                         | 450             | TSS (SM2540)    | oroash                                      |                                                                                           | of.        | ĺ             |
| COC Number: R                          | MP-196                 |                |                | (E218.6 - river) Field<br>Filtered | 18.6                        | Metals (6010B) Total Fe | sw6                                                                | ım eld I                                  | aor                           | РН (ЅМ4500НВ)   | 540)            | 10 SE                                       |                                                                                           | Cor        |               |
|                                        |                        |                |                | Fie                                | -rive                       | talF                    | 020,<br>Ba                                                         | ∃itei                                     | (E12                          |                 |                 |                                             |                                                                                           | Containers |               |
|                                        | DATE                   | TIME           | Matrix         | d                                  | gr)                         | Φ.                      | Metals (SW6010B/SW6020Adis)<br>Field Filtered<br>As,Mn,Fe,Se,Mo,Ba | ed                                        | 0.1)                          |                 |                 |                                             |                                                                                           | ers        | COMMENT       |
| RMP-AB1-196                            | 5/21/2014              | 14:00          | Water          |                                    | X                           |                         | <u> </u>                                                           |                                           |                               |                 |                 |                                             | NO12607-15                                                                                | 1          |               |
| C-CON-D-196                            | 5/22/2014              | 9:44           | Water          | $\mathbf{L}_{\mathbf{x}}$          | 2                           | х                       | X                                                                  | x                                         | Х                             | х               |                 | X                                           | -16                                                                                       | <u>.</u>   | G.            |
| C-CON-S-196                            | 5/22/2014              | 10:00          | Water          | <del> </del>                       |                             | X                       | X                                                                  | X                                         | X                             | x               | X               | X                                           | -17                                                                                       | 6          | a             |
| C-MW-82-196                            | 5/22/2014              | 8:16           | Water          | <u> </u>                           | x                           |                         | <del>  ^</del> _                                                   | ^                                         |                               | ^               |                 | //                                          | -18                                                                                       | 1          |               |
| C-MW-83-196                            | 5/22/2014              | 8:42           | Water          |                                    | X                           |                         |                                                                    |                                           |                               |                 |                 |                                             |                                                                                           | 1          |               |
| C-NR1-D-196                            | 5/22/2014              | 10:26          | Water          |                                    | A                           | 5//                     |                                                                    | ~                                         | N/r                           | ***             |                 | X                                           | ~19<br>~2D                                                                                |            | a             |
| C-NR1-S-196                            | 5/22/2014              | 10:40          | Water          | X                                  |                             | X                       | X                                                                  | X                                         | X                             | X               | <u> </u>        | **************************************      |                                                                                           | <u> </u>   | $\frac{1}{a}$ |
| C-NR3-D-196                            | 5/22/2014              | 11:04          | Water          | X                                  |                             | X                       | X                                                                  | X                                         | X                             | X               | X               | X                                           | -21                                                                                       | <u>-8</u>  | <del>3</del>  |
|                                        | 3/22/2014              | <del> </del>   | Water          | X                                  |                             | X                       | X                                                                  | X                                         | X                             | X               | <u> </u>        | ×                                           | -22<br>-23                                                                                |            | $\frac{g}{q}$ |
| C-MD2-C-406                            | ringings               | 1 44.00        |                | X                                  | 1                           | X                       | Х                                                                  | Х                                         | Х                             | Х               | Х               |                                             |                                                                                           | مگرر       | 9 11          |
| C-NR3-S-196                            | 5/22/2014              | 11:20          |                | <u> </u>                           |                             |                         | ,                                                                  |                                           |                               |                 |                 | 2.1                                         |                                                                                           |            | المحادث تساير |
| C-NR4-D-196                            | 5/22/2014              | 11:50          | Water          | X                                  |                             | Х                       | х                                                                  | х                                         | Х                             | х               | X               | X                                           |                                                                                           | -8         | -             |
| C-NR4-D-196<br>C-NR4-S-196             | 5/22/2014<br>5/22/2014 | <del> </del>   |                | <u> </u>                           |                             | X                       | ×                                                                  | x<br>x                                    | X                             | X<br>X          | ×               | X                                           | -25                                                                                       | 28         | 9 8           |
| C-NR4-D-196<br>C-NR4-S-196<br>R-19-196 | 5/22/2014              | 11:50          | Water          | х                                  |                             |                         |                                                                    |                                           |                               |                 |                 | X                                           | - 25<br>- 26                                                                              | _&<br>_&   | 9 R<br>9      |
| C-NR4-D-196<br>C-NR4-S-196             | 5/22/2014<br>5/22/2014 | 11:50<br>12:02 | Water<br>Water | X                                  |                             | Х                       | x                                                                  | Х                                         | Х                             | X               | х               |                                             | -25                                                                                       | 28         | 4.4           |

| Approved by     |
|-----------------|
| Sampled by      |
| Relinquished by |
| Received by     |
| Relinquished by |
| Received by     |

Date/Time
5-22-74
7430

\_Signatures

Time Shipping Details

Method of Shipment: FedEx
On Ice: Ves / no & - 9 4 2 4 4 / 8 - 6 - 10 ft 2 4 4 / 8 - 6 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2 - 10 ft 2

(17) Lab Name: ADVANCED TECHNOLOGY LABORATO

1650 Lab Phone: (702) 307-2659

ATTN:

May 21-22, 2014

Special Instructions:

Sample Custody

and

Marion

Report Copy to

Shawn Duffy (530) 229-3303

209

| CH             | 2N                 | H        |              |
|----------------|--------------------|----------|--------------|
| ABP#62, 685 BB | different all 1989 | ## 2 2 S | Same Section |

## CHAIN OF CUSTODY RECORD

5/22/2014 2:01:08 PM

Page 3 OF 3

|                                                                                          | ma Matem                         |       |                                        |                                        |                             |                               |                                                                    |                                           |                               |                 |                 | n n gramman and                           | 0/2/2017 2.01.001 19! 1 490 5                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------|----------------------------------|-------|----------------------------------------|----------------------------------------|-----------------------------|-------------------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------|-----------------|-----------------|-------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name Po                                                                          | G&E Topoc                        | k C   | Container:                             | 3X250<br>ml Poly                       |                             | 500 ml<br>Poly                | 500 ml<br>Poly                                                     | 500 ml<br>Poly                            | 1 Liter<br>Poly               | 1 Liter<br>Poly | 1 Liter<br>Poly | 125ml<br>Paly                             |                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Location Topod<br>Project Manager                                                        |                                  | Prese | ervatives:                             | }                                      | (NH4)2S                     | HNO3,<br>4°C                  | HNO3,<br>4°C                                                       | HNO3,<br>4°C                              | 4°C                           | 4°C             | 4°C             | मुड्यू                                    |                                                                                             |                      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| Sample Manager                                                                           | Shawn Du                         | ffy   | Filtered:                              |                                        | NA                          | NA                            | Field                                                              | Field                                     | NA                            | NA              | NA              |                                           | street a del No alle Colle                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                          |                                  | Hold  | ling Time:                             | 28                                     | 28                          | 180                           | 180                                                                | 180                                       | 7                             | 7               | 7               | 28                                        | Ix where provided with multiple boiles                                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Number Task Order Project 2014-RM Turnaround Time Shipping Date: { COC Number: R | IP-196<br>• 10 Days<br>5/13/2014 | s     | Matrix                                 | Cr6 (E218.6 – river) Field<br>Filtered | Field QC Cr6 (E218.6-river) | Metals (6010B) Total Fe       | Metals (SW6010B/SW6020Adis)<br>Field Filtered<br>As,Mn,Fe,Se,Mo,Ba | Metals (6020A) Field Filtered<br>Chromium | Specific Conductance (E120.1) | РН (SM4500НВ)   | TSS (SM2540)    | Nitale/Nitrite<br>Comusponios)<br>Nitrale | * Where provided with multiple bottles  Cor Crle + diss. metals, please analyze  1 + hold - | Number of Containers | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RRB-196                                                                                  | 5/22/2014                        | 9:12  | Water                                  | Х                                      |                             | Х                             | х                                                                  | Х                                         | Х                             | Х               | Х               | X                                         | N012607-29                                                                                  | .8                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SW1-196                                                                                  | 5/22/2014                        | 6:58  | Water                                  | х                                      |                             | , , , i (a <sup>m</sup> -740) |                                                                    | х                                         | Х                             | Х               |                 |                                           | -30                                                                                         | 18                   | 6 BEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SW2-196                                                                                  | 5/22/2014                        | 6:40  | Water                                  | х                                      |                             |                               |                                                                    | Х                                         | Х                             | х               |                 |                                           | V -3\                                                                                       | 5                    | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                          |                                  |       | ······································ | \$                                     | -                           |                               | +                                                                  |                                           |                               |                 |                 | <del></del>                               |                                                                                             | 3                    | ă .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| -               |             |              |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|-----------------|-------------|--------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                 | Signatures  | Date/Time    | Shipping Details                       |                                         | Special Instructions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Approved by     |             | 5-22-14      | 88-41 X -5 OL I                        | ATTN:                                   | May 21-22, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Sampled by      |             | 1430         | Method of Shipment: FedEx              |                                         | may 21-22, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Relinquished by | AL          |              | On Ice: yes / no 34 / 42               | Sample Custody                          | Parameter and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |     |
| Received by     | Dungeling   | 5/22/14 /B   | Airbill No:                            | and                                     | Report Copy to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Relinquished by | 13 may      | 5/22/N /650  | Lab Name: ADVANCED TECHNOLOGY LABORATO | Marion                                  | Shawn Duffy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Received by     | Amanda Cots | 5/22/14 1650 | Lab Phone: (702) 307-2659              | *************************************** | (530) 229-3303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210 |

## **ASSET Laboratories**

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

| If you have any questions of                             | or further in:                | struction, pleas   | e contact our P | roject Coord | dinator at (702 | ) 307-2659.  |              |  |
|----------------------------------------------------------|-------------------------------|--------------------|-----------------|--------------|-----------------|--------------|--------------|--|
| Cooler Received/Opened On:                               | 5/22/2014                     |                    |                 |              | Workorder:      | N012607      |              |  |
| Rep sample Temp (Deg C):                                 | 2.9/3.2/3.3                   | 3/3.9/3.6/3.4      |                 |              | IR Gun ID:      | 2            |              |  |
| Temp Blank:                                              | Yes                           | <b>✓</b> No        |                 |              |                 |              |              |  |
| Carrier name:                                            | ATL                           |                    |                 |              |                 |              |              |  |
| Last 4 digits of Tracking No.:                           | NA                            |                    |                 | Packing      | Material Used:  | None         |              |  |
| Cooling process:                                         | <b>✓</b> Ice                  | ☐ Ice Pack         | ☐ Dry Ice       | Other        | ☐ None          |              |              |  |
|                                                          |                               | <u>S</u>           | ample Receip    | t Checklist  | <u> </u>        |              |              |  |
| 1. Shipping container/cooler in                          | good condit                   | ion?               |                 |              | Yes 🗹           | No $\square$ | Not Present  |  |
| 2. Custody seals intact, signed                          | , dated on s                  | hippping containe  | er/cooler?      |              | Yes             | No 🗌         | Not Present  |  |
| 3. Custody seals intact on sam                           | ple bottles?                  |                    |                 |              | Yes             | No 🗌         | Not Present  |  |
| 4. Chain of custody present?                             |                               |                    |                 |              | Yes 🗹           | No 🗌         |              |  |
| 5. Sampler's name present in 0                           | COC?                          |                    |                 |              | Yes 🗹           | No 🗌         |              |  |
| 6. Chain of custody signed who                           | en relinquish                 | ned and received?  | ?               |              | Yes 🗸           | No $\square$ |              |  |
| 7. Chain of custody agrees with                          | h sample lab                  | oels?              |                 |              | Yes 🗸           | No 🗌         |              |  |
| 8. Samples in proper container                           | /bottle?                      |                    |                 |              | Yes 🗸           | No $\square$ |              |  |
| 9. Sample containers intact?                             |                               |                    |                 |              | Yes 🗸           | No $\square$ |              |  |
| 10. Sufficient sample volume for                         | or indicated                  | test?              |                 |              | Yes 🗹           | No 🗌         |              |  |
| 11. All samples received within                          | holding time                  | e?                 |                 |              | Yes $\square$   | No 🗹         |              |  |
| 12. Temperature of rep sample                            | or Temp BI                    | lank within accep  | table limit?    |              | Yes 🗸           | No 🗆         | NA $\square$ |  |
| 13. Water - VOA vials have zer                           | ro headspac                   | e?                 |                 |              | Yes             | No 🗆         | NA 🗸         |  |
| 14. Water - pH acceptable upo<br>Example: pH > 12 for (C |                               | for Metals         |                 |              | Yes 🗹           | No 🗌         | NA 🗆         |  |
| 15. Did the bottle labels indicat                        | e correct pre                 | eservatives used   | ?               |              | Yes 🗹           | No $\square$ | NA 🗆         |  |
| 16. Were there Non-Conformal W:                          | nce issues a<br>as Client not | -                  |                 |              | Yes  Yes        | No □<br>No □ | NA 🗹         |  |
| Comments: Sample for pH ar                               | nalysis is pa                 | st holding time up | pon receipt.    |              |                 |              |              |  |
|                                                          |                               |                    |                 |              |                 |              |              |  |
|                                                          |                               |                    |                 |              |                 |              |              |  |
|                                                          |                               |                    |                 |              |                 |              |              |  |
|                                                          |                               |                    |                 |              |                 |              |              |  |

AC Mortes 5/23/2014

Reviewed By: 05/27/14

### **SAMPLE CALCULATION**

METHOD: SM 2540D

TEST NAME: Total Non-Filterable Residue

**MATRIX:** Water

FORMULA:

Calculate TSS concentration in mg/L, in the original sample as follows:

TSS, mg/L = 
$$(A-B)*1000000$$

Where:

A = weight in g of dish + residue after drying

B = weight of dish in g

C = volume of sample used in mL

For N012607-001D, TSS concentration in mg/L is calculated as follows:

Reporting result in two significant figures,

$$TSS = 0 mg/L$$



### **SAMPLE CALCULATION**

METHOD: SM 2540D

TEST NAME: Total Non-Filterable Residue

**MATRIX:** Water

FORMULA:

Calculate TSS concentration in mg/L, in the original sample as follows:

TSS, mg/L = 
$$(A-B)*1000000$$

Where:

A = weight in g of dish + residue after drying

B = weight of dish in g

C = volume of sample used in mL

For N012607-013D, TSS concentration in mg/L is calculated as follows:

Reporting result in two significant figures,

$$TSS = 0 mg/L$$



TOTAL SUSPENDED SOLIDS, TSS

## TSS, mg/L = (A-B) X 1000000 / C

## WHERE:

A = weight in grams of dish + residue after drying
B = weight of dish in grams
C = volume of sample used in mL

| Date: 5/27/2014  | vol of sample | Wi     | Wf     | TSS, mg/L |
|------------------|---------------|--------|--------|-----------|
| MB-45755         | 100           | 1.4284 | 1.4284 | 0         |
| LCS-45755        | 100           | 1.4249 | 1.5129 | 880       |
| N012607-001D     | 100           | 1.4428 | 1.4428 | 0         |
| N012607-001D-DUP | 100           | 1.4463 | 1.4463 | 0         |
| N012607-002D     | 100           | 1.4327 | 1.4327 | 0         |
| N012607-003D     | 100           | 1.4338 | 1.4338 | 0         |
| N012607-004D     | 100           | 1.4318 | 1.4388 | 70        |
| N012607-005D     | 100           | 1.4399 | 1.4461 | 62        |
| N012607-008D     | 100           | 1.4154 | 1.4155 | 1         |
| N012607-009D     | 100           | 1,447  | 1,447  | 0         |
| N012607-010D     | 100           | 1.4202 | 1.4202 | 0         |
| N012607-011D     | 100           | 1.4442 | 1.4443 | 1         |
| N012607-012D     | 100           | 1.4491 | 1.4491 | 0         |



TOTAL SUSPENDED SOLIDS, TSS

## TSS, mg/L = (A-B) X 1000000 / C

## WHERE:

A = weight in grams of dish + residue after drying
B = weight of dish in grams
C = volume of sample used in mL

| Date: 5/27/2014  | vol of sample | Wi     | Wf     | TSS, mg/L |
|------------------|---------------|--------|--------|-----------|
| MB-45756         | 100           | 1.431  | 1.431  | 0         |
| LCS-45756        | 100           | 1.4292 | 1.5171 | 879       |
| N012607-013D     | 100           | 1.4465 | 1.4465 | 0         |
| N012607-013D-DUP | 100           | 1.4183 | 1.4183 | 0         |
| N012607-014D     | 100           | 1.4049 | 1.4049 | 0         |
| N012607-016D     | 100           | 1.4299 | 1.4299 | 0         |
| N012607-017D     | 100           | 1.4296 | 1.4296 | Q         |
| N012607-020D     | 100           | 1.4186 | 1.4186 | 0         |
| N012607-021D     | 100           | 1.4351 | 1.4351 | 0         |
| N012607-022D     | 100           | 1.4237 | 1.4237 | 0         |
| N012607-023D     | 100           | 1.4207 | 1.4208 | 16        |
| N012607-024D     | 100           | 1.4474 | 1,4474 | Q         |
| N012607-025D     | 100           | 1.4431 | 1.4431 | 0         |
| N012607-026D     | 100           | 1.4283 | 1.4283 | 0         |
| N012607-027D     | 100           | 1.4485 | 1.4485 | 0         |
| N012607-029D     | 100           | 1.4311 | 1.4329 | 18        |



# **Sample Calculation**

**METHOD:** EPA 218.6

**TEST NAME:** HEXAVALENT CHROMIUM BY IC

**MATRIX:** Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in  $\mu g/L$ , in the original sample as follows:

$$Cr^{+6}$$
,  $\mu g/L = A * DF$ 

where:

A =  $\mu$ g/L, IC Cr<sup>+6</sup> calculated concentration DF = dilution factor

For **N012607-020A** concentration in  $\mu$ g/L is calculated as follows:

$$Cr^{+6}$$
,  $\mu g/L$  = 0.0768 \* 1

= 0.0768

Since PQL is 0.20 µg/L,

$$Cr^{+6}$$
,  $\mu g/L = ND$ 

Many 6/4/2014

## **SAMPLE CALCULATION**

METHOD: SM4500N03

**TEST NAME**: Nitrate by Cadmium Reduction

**MATRIX**: Water

FORMULA:

Calculate the Nitrate concentration, in mg/L, in the original sample as follows:

Nitrate, mg/L = A\*DF

Where:

A= mg/L, Nitrate calculated concentration DF= dilution factor

For N012607-002E, concentration in mg/L is calculated as follows:

Nitrate, mg/L = 0.2989\*1

= 0.2989 mg/L

Reporting result in two significant figures,

Nitrate = 0.30 mg/L

Marry 6/5/2014

# **Sample Calculation**

METHOD: EPA 6010

TEST NAME: Heavy Metals by ICP

**MATRIX:** Water

FORMULA:

Calculate the Iron concentration, in mg/L, in the original sample as follows:

Iron, 
$$mg/L = A * DF * PF$$

where:

A = mg/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Amt. of Sample mL

For Sample N012607-029B, the concentration in mg/L is calculated as follows:

Iron, mg/L =  $\frac{0.4139097744}{0.4139097744} * 1 * (25/25)$ 

= <del>0.4139097744</del> 0.40467

Reporting results in two significant figures,

Iron, mg/L = -0.41 0.40

### **ASSET Laboratories**

ICP-Metals in Water

**Dilution Test Summary** 

Work Order No.: N012607 Test Method: EPA 6010 Analysis Date: 6/6/2014

Matrix: Water 45747 Batch No.:

Instrument ID: ICP-02
Instrument Description: Perkin Elmer Optima DV Series

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable for Fe. The calculated value is <25X the RL. PS @2X passed criteria.

| Sample ID          | Analyte | Units | Calc Val    | OQual | SAMPrefval  | %DIFF  | %DIFFlimit |
|--------------------|---------|-------|-------------|-------|-------------|--------|------------|
| N012607-026C-DT 5X | Iron    | mg/L  | 0.011380652 | NA    | 0.006987991 | 62.86% | 10         |

Note: NA - Not Applicable

### **ASSET Laboratories**

ICP-Metals in Water

**Dilution Test Summary** 

06/09/14

Work Order No.: N012607 Test Method: EPA 6010 Analysis Date: 6/6/2014

Matrix: Water 45743 Batch No.:

Instrument ID: ICP-02
Instrument Description: Perkin Elmer Optima DV Series

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable for Fe. The calculated value is <25X the RL. PS @2X passed criteria.

| Sample ID          | Analyte | Units | Calc Val    | OQual | SAMPrefval  | %DIFF  | %DIFFlimit |
|--------------------|---------|-------|-------------|-------|-------------|--------|------------|
| N012607-001B-DT 5X | Iron    | mg/L  | 0.035939752 | NA    | 0.031214946 | 15.14% | 10         |

Note: NA - Not Applicable

ASSET Laboratories

Date: 06-Jun-14

CLIENT: CH2M HILL Work Order: N012607

**Project:** 

N012607
PG&E Topock, 423575.MP.02.RM
Tes

# ANALYTICAL QC SUMMARY REPORT

TestCode: 6010W\_HINK

| Sample ID: N012607-001B-PS Client ID: ZZZZZZ | SampType: <b>PS</b> Batch ID: <b>45743</b> | TestCode: 6010W_HINK TestNo: EPA 6010B |           | •           | Prep Date: Analysis Date: 6/6/2014 |          | ļ         | RunNo: <b>93700</b><br>SeqNo: <b>1791150</b> |      |          |      |
|----------------------------------------------|--------------------------------------------|----------------------------------------|-----------|-------------|------------------------------------|----------|-----------|----------------------------------------------|------|----------|------|
| Analyte                                      | Result                                     | PQL                                    | SPK value | SPK Ref Val | %REC                               | LowLimit | HighLimit | RPD Ref Val                                  | %RPD | RPDLimit | Qual |
| Iron                                         | 5.057                                      | 0.040                                  | 5,000     | 0.03121     | 101                                | 80       | 120       |                                              |      |          |      |



#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N012607

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6010W\_HINK

| Sample ID: <b>N012607-026C-PS</b> | SampType: <b>PS</b> | TestCo | de: <b>6010W_HI</b> I | NK Units: mg/L |      | Prep Da     | ite:          |             | RunNo: <b>937</b> | 00       |      |
|-----------------------------------|---------------------|--------|-----------------------|----------------|------|-------------|---------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45747     | TestN  | No: <b>EPA 6010E</b>  | B EPA 3010A    |      | Analysis Da | ate: 6/6/2014 | ļ           | SeqNo: <b>179</b> | 1136     |      |
| Analyte                           | Result              | PQL    | SPK value             | SPK Ref Val    | %REC | LowLimit    | HighLimit     | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Iron                              | 4.943               | 0.040  | 5.000                 | 0.006988       | 98.7 | 80          | 120           |             |                   |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

### **Sample Calculation**

METHOD: EPA 6010

TEST NAME: Heavy Metals by ICP

**MATRIX:** Water

### FORMULA:

Calculate the Iron concentration, in mg/L, in the original sample as follows:

Iron, 
$$mg/L = A * DF * PF$$

where:

A = mg/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Amt. of Sample mL

For Sample N012607-010C, the concentration in mg/L is calculated as follows:

Iron, mg/L = 0.02312721298 \* 1 \* (25/25)

= 0.02312721298

Reporting results in two significant figures,

Iron, mg/L = 0.023



### **ASSET Laboratories**

**ICP-Metals in Water** 

**Dilution Test Summary** 

 Work Order No.:
 N012607
 Matrix:

 Test Method:
 EPA 6010
 Batch No.:

 Analysis Date:
 6/5/2014

Matrix: Water
Batch No.: 45746

Instrument ID: ICP-02

Instrument Description: Perkin Elmer Optima DV Series

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable for Fe. The calculated value is <25X the RL. PS @2X passed criteria.

06/09/14

| Sample ID          | Analyte | Units | Calc Val      | OQual | SAMPrefval   | %DIFF  | %DIFFlimit |
|--------------------|---------|-------|---------------|-------|--------------|--------|------------|
| N012607-001C-DT 5X | Iron    | mg/L  | 0.02088108968 | NA    | 0.0184646134 | 13.09% | 10         |

Note: NA - Not Applicable

### **ASSET Laboratories**

ICP-Metals in Water

**Dilution Test Summary** 

Work Order No.: N012607 Test Method: EPA 6010 Analysis Date: 6/6/2014

Matrix: Water 45747 Batch No.:

Instrument ID: ICP-02
Instrument Description: Perkin Elmer Optima DV Series

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable for Fe. The calculated value is <25X the RL. PS @2X passed criteria.

| Sample ID          | Analyte | Units | Calc Val    | OQual | SAMPrefval  | %DIFF  | %DIFFlimit |
|--------------------|---------|-------|-------------|-------|-------------|--------|------------|
| N012607-026C-DT 5X | Iron    | mg/L  | 0.011380652 | NA    | 0.006987991 | 62.86% | 10         |

Note: NA - Not Applicable

ASSET Laboratories

Date: 06-Jun-14

CLIENT: CH2M HILL Work Order: N012607

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6010WD\_HINK

| Sample ID: <b>N012607-001C-PS</b> | SampType: <b>PS</b> | TestCo | de: <b>6010WD_</b> H | IIN Units: mg/L |      | Prep Dat    | te:                 |             | RunNo: <b>936</b> | 95       |      |
|-----------------------------------|---------------------|--------|----------------------|-----------------|------|-------------|---------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45746     | TestN  | lo: <b>EPA 6010E</b> | B EPA 3010A     |      | Analysis Da | te: <b>6/5/2014</b> |             | SeqNo: <b>179</b> | 0877     |      |
| Analyte                           | Result              | PQL    | SPK value            | SPK Ref Val     | %REC | LowLimit    | HighLimit R         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Iron                              | 4.857               | 0.040  | 5.000                | 0.01846         | 96.8 | 80          | 120                 |             |                   |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
  Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N012607

ANALYTICAL QC SUMMARY REPORT

**Project:** PG&E Topock, 423575.MP.02.RM

TestCode: 6010WD\_HINK

| Sample ID: N01260 Client ID: ZZZZZ | 1 71   |       | ode: <b>6010WD_H</b><br>No: <b>EPA 6010B</b> | IN Units: mg/L<br>EPA 3010A |      | Prep Da<br>Analysis Da | te:<br>te: <b>6/6/2014</b> | ļ           | RunNo: <b>937</b><br>SeqNo: <b>179</b> |          |      |
|------------------------------------|--------|-------|----------------------------------------------|-----------------------------|------|------------------------|----------------------------|-------------|----------------------------------------|----------|------|
| Analyte                            | Result | PQL   | SPK value                                    | SPK Ref Val                 | %REC | LowLimit               | HighLimit                  | RPD Ref Val | %RPD                                   | RPDLimit | Qual |
| Iron                               | 4 943  | 0.040 | 5 000                                        | 0.006988                    | 98.7 | 80                     | 120                        |             |                                        |          |      |

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

### **Sample Calculation**

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

**MATRIX:** Aqueous

FORMULA:

Calculate the Barium concentration, in ug/L, in the original sample as follows:

Barium, ug/L = A \* DF \* PF

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N012607-002C, the concentration in ug/L is calculated as follows:

Barium, ug/L = 116.812114012683 \* 1 \* (25/25)

= 116.812114012683

Reporting result in two significant figures,

Barium, ug/L = 120

Many 6/4/2014

### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012607

 Test Method:
 EPA 6020

 Analysis Date:
 5/27/2014

Matrix: Water
Batch No.: 45738

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to Cr, Mn, Mo & Se. The calculated values are <25X RL. PS @ 2x passed criteria.

| Sample ID           | Analyte    | Units | Calc Val    | OQual | SAMPRefVal  | %DIFF   | %DIFFlimit |
|---------------------|------------|-------|-------------|-------|-------------|---------|------------|
| N012607-001C-DT 5X  | Chromium   | μg/L  | 0           | NA    | 0.276392179 | 100.00% | 10         |
| N012610-001B-DT 5X  | Arsenic    | μg/L  | 2.547024364 | PASS  | 2.471876552 | 3.04%   | 10         |
| N012610-001B-DT 25X | Barium     | μg/L  | 133.0746272 | PASS  | 129.3849274 | 2.85%   | 10         |
| N012610-001B-DT 5X  | Manganese  | μg/L  | 0           | NA    | 0           |         | 10         |
| N012610-001B-DT 5X  | Molybdenum | μg/L  | 4.378487329 | NA    | 4.492232407 | 2.53%   | 10         |
| N012610-001B-DT 5X  | Selenium   | μg/L  | 1.247118107 | NA    | 1.507603397 | 17.28%  | 10         |

Note: NA - Not applicable

### **ASSET Laboratories**

ICP-Metals in Water Dilution Test Summary

 Work Order No.:
 N012607

 Test Method:
 EPA 6020

 Analysis Date:
 5/27/2014

Matrix: Water
Batch No.: 45739

Instrument ID: ICP-MS #2
Instrument Description: Agilent 7700x

Comments: Analyzed By: Mary Claire Ignacio

Dilution test is not applicable to As, Cr, Mn, Mo & Se. The calculated values are <25X RL. PS @ 2x passed criteria.

| Sample ID           | Analyte    | Units                 | Calc Val                                | OQual | SAMPRefVal  | %DIFF                    | %DIFFlimit       |
|---------------------|------------|-----------------------|-----------------------------------------|-------|-------------|--------------------------|------------------|
| N012607-026C-DT 5X  | Chromium   | μg/L                  | 0                                       | NA    | 0           |                          | 10               |
| N012607-026C-DT 5X  | Arsenic    | μg/L                  | 2.416059211                             | NA    | 2.259692123 | 6.92%                    | 10               |
| N012607-026C-DT 25X | Barium     | μg/L <sup>129.0</sup> | <sup>+ 1</sup> 1 <del>33.074627</del> 2 | PASS  | 124.6447421 | <del>- 6.76% -</del> 3.5 | <sup>27</sup> 10 |
| N012607-026C-DT 5X  | Manganese  | μg/L                  | 0                                       | NA    | 0           |                          | 10               |
| N012607-026C-DT 5X  | Molybdenum | μg/L                  | 4.404800114                             | NA    | 4.408343201 | 0.08%                    | 10               |
| N012607-026C-DT 5X  | Selenium   | μg/L                  | 1.365664147                             | NA    | 1.444116517 | 5.43%                    | 10               |

Note: NA - Not applicable

Narry 6/4/2014

for

**ASSET Laboratories Date:** 29-May-14

**CLIENT:** CH2M HILL Work Order:

N012607

**Project:** PG&E Topock, 423575.MP.02.RM

### ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: N012607-001C-PS        | SampType: <b>PS</b> | TestCode: | 6020_DIS  | Units: µg/L |      | Prep Da     | te:                |             | RunNo: 938        | 595      |      |
|-----------------------------------|---------------------|-----------|-----------|-------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45738     | TestNo:   | EPA 6020  | EPA 3010A   |      | Analysis Da | te: <b>5/27/20</b> | 14          | SeqNo: <b>178</b> | 88177    |      |
| Analyte                           | Result              | PQL S     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Arsenic                           | 22.992              | 0.20      | 20.00     | 2.472       | 103  | 80          | 120                |             |                   |          |      |
| Manganese                         | 186.289             | 1.0       | 200.0     | 0           | 93.1 | 80          | 120                |             |                   |          |      |
| Molybdenum                        | 26.069              | 1.0       | 20.00     | 4.492       | 108  | 80          | 120                |             |                   |          |      |
| Selenium                          | 20.974              | 1.0       | 20.00     | 1.508       | 97.3 | 80          | 120                |             |                   |          |      |
| Sample ID: <b>N012607-001C-PS</b> | SampType: <b>PS</b> | TestCode: | 6020_DIS  | Units: µg/L |      | Prep Da     | te:                |             | RunNo: 935        | 595      |      |
| Client ID: ZZZZZZZ                | Batch ID: 45738     | TestNo:   | EPA 6020  | EPA 3010A   |      | Analysis Da | te: <b>5/27/20</b> | 14          | SeqNo: <b>178</b> | 88217    |      |
| Analyte                           | Result              | PQL S     | SPK value | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Barium                            | 648.276             | 5.0       | 500.0     | 129.4       | 104  | 80          | 120                |             |                   |          |      |

#### Qualifiers:

DO Surrogate Diluted Out

Analyte detected in the associated Method Blank В

ND Not Detected at the Reporting Limit

Value above quantitation range

RPD outside accepted recovery limits Calculations are based on raw values

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N012607

**Project:** PG&E Topock, 423575.MP.02.RM

### ANALYTICAL QC SUMMARY REPORT

TestCode: 6020\_DIS

| Sample ID: <b>N012607-026C-PS</b> | SampType: <b>PS</b> | TestCode | e: <b>6020_DIS</b> | Units: µg/L |      | Prep Da     | te:                |             | RunNo: 93         | 595      |      |
|-----------------------------------|---------------------|----------|--------------------|-------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: ZZZZZZ                 | Batch ID: 45739     | TestNo   | EPA 6020           | EPA 3010A   |      | Analysis Da | te: <b>5/27/20</b> | 14          | SeqNo: <b>178</b> | 38209    |      |
| Analyte                           | Result              | PQL      | SPK value          | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Arsenic                           | 22.628              | 0.20     | 20.00              | 2.260       | 102  | 80          | 120                |             |                   |          |      |
| Manganese                         | 191.229             | 1.0      | 200.0              | 0           | 95.6 | 80          | 120                |             |                   |          |      |
| Molybdenum                        | 26.584              | 1.0      | 20.00              | 4.408       | 111  | 80          | 120                |             |                   |          |      |
| Selenium                          | 21.248              | 1.0      | 20.00              | 1.444       | 99.0 | 80          | 120                |             |                   |          |      |
| Sample ID: <b>N012607-026C-PS</b> | SampType: <b>PS</b> | TestCode | e: 6020_DIS        | Units: µg/L |      | Prep Da     | te:                |             | RunNo: 93         | 595      |      |
| Client ID: ZZZZZZZ                | Batch ID: 45739     | TestNo   | : <b>EPA 6020</b>  | EPA 3010A   |      | Analysis Da | te: <b>5/27/20</b> | 14          | SeqNo: <b>178</b> | 38223    |      |
| Analyte                           | Result              | PQL      | SPK value          | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| Barium                            | 659.851             | 5.0      | 500.0              | 124.6       | 107  | 80          | 120                |             |                   |          |      |

#### Qualifiers:

DO Surrogate Diluted Out

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL **CLIENT:** Work Order:

N012607

PG&E Topock, 423575.MP.02.RM **Project:** 

### ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012607-001C-PS | SampType: <b>PS</b> | TestCod | de: <b>6020DIS_</b> 0 | CrP Units: μg/L |      | Prep Da     | te:                  |             | RunNo: 93          | 595      |      |
|----------------------------|---------------------|---------|-----------------------|-----------------|------|-------------|----------------------|-------------|--------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 45738     | TestN   | No: <b>EPA 6020</b>   | EPA 3010A       |      | Analysis Da | te: <b>5/27/20</b> 1 | 14          | SeqNo: <b>17</b> 8 | 38101    |      |
| Analyte                    | Result              | PQL     | SPK value             | SPK Ref Val     | %REC | LowLimit    | HighLimit            | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Chromium                   | 19.099              | 2.0     | 20.00                 | 0.2764          | 94.1 | 80          | 120                  |             |                    |          |      |

#### Qualifiers:

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CH2M HILL **CLIENT:** Work Order:

N012607

PG&E Topock, 423575.MP.02.RM **Project:** 

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020DIS\_CrPGE

| Sample ID: N012607-026C-PS Client ID: ZZZZZZ | SampType: PS Batch ID: 45739 |     | de: <b>6020DIS_</b><br>No: <b>EPA 6020</b> | CrP Units: µg/L<br>EPA 3010A |      | Prep Da<br>Analysis Da | te: 5/27/2014         | RunNo: <b>93</b> :<br>SeqNo: <b>17</b> : |          |      |
|----------------------------------------------|------------------------------|-----|--------------------------------------------|------------------------------|------|------------------------|-----------------------|------------------------------------------|----------|------|
| Analyte                                      | Result                       | PQL | SPK value                                  | SPK Ref Val                  | %REC | LowLimit               | HighLimit RPD Ref Val | %RPD                                     | RPDLimit | Qual |
| Chromium                                     | 19 304                       | 2.0 | 20.00                                      | 0                            | 96.5 | 80                     | 120                   |                                          | _        |      |

#### Qualifiers:

- Analyte detected in the associated Method Blank В
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

## **ANALYTICAL REPORT**

For:

**PGE Topock** 

ASL Report #: N1708

Project ID: 423575.MP.02.GM.01

**Attn: Jay Piper** 

cc:

Data Center/RDD Shawn Duffy/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

(541) 758-0235 ext.23144

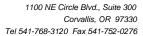
June 17, 2014

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.



Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)


### **Sample Receipt Comments**

We certify that the test results meet all NELAP requirements except those listed below:

- Samples were received at a temperature of 8.8°C.
- CH2M HILL Applied Sciences Laboratory is not accredited by NELAP for the following tests: EPA 120.1.

### **Sample Cross-Reference**

| ASL       |                  | Date/Time      | Date     |
|-----------|------------------|----------------|----------|
| Sample ID | Client Sample ID | Collected      | Received |
| N170801   | MW-54-085-198    | 04/09/14 09:04 | 04/21/14 |
| N170802   | MW-54-140-198    | 04/09/14 09:47 | 04/21/14 |
| N170803   | MW-54-195-198    | 04/09/14 08:27 | 04/21/14 |
| N170804   | MW-90-195-198    | 04/09/14 06:30 | 04/21/14 |
| N170805   | MW-240-198       | 04/10/14 06:20 | 04/21/14 |
| N170806   | MW-56D-198       | 04/10/14 12:35 | 04/21/14 |
| N170807   | MW-56M-198       | 04/10/14 13:28 | 04/21/14 |
| N170808   | MW-56S-198       | 04/10/14 14:08 | 04/21/14 |





### CASE NARRATIVE METALS ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1708

Project: PGE Topock Project #: 423575.MP.02.GM.01

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

### **Method(s):**

SW6010B: FLDFLT SW6020: FLDFLT E200.7: FLDFLT

### **Analytical Exception(s):**

SW6020: Client samples were diluted due to high sodium concentrations.

### Field Sample ID:

MW-54-085-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170801

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte   | Date<br>Analyzed | DF | DL     | PQL   | Result | С | Q | М  |
|-----------|-----------|------------------|----|--------|-------|--------|---|---|----|
| 7440-38-2 | Arsenic   | 04/28/14         | 2  | 0.0600 | 0.200 | 3.46   |   |   | MS |
| 7440-47-3 | Chromium  | 04/28/14         | 2  | 0.0877 | 1.00  | 1.00   | U |   | MS |
| 7439-96-5 | Manganese | 04/23/14         | 1  | 0.500  | 10.0  | 760    |   |   | Р  |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           | _         |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

### Field Sample ID:

MW-54-140-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170802

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte   | Date<br>Analyzed | DF | DL     | PQL   | Result | С | Q | М  |
|-----------|-----------|------------------|----|--------|-------|--------|---|---|----|
| 7440-38-2 | Arsenic   | 04/28/14         | 2  | 0.0600 | 0.200 | 2.63   |   |   | MS |
| 7440-47-3 | Chromium  | 04/28/14         | 2  | 0.0877 | 1.00  | 1.00   | U |   | MS |
| 7439-96-5 | Manganese | 04/23/14         | 1  | 0.500  | 10.0  | 144    |   |   | P  |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           | +         |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       | _      |   |   |    |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |

### Field Sample ID:

MW-54-195-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170803

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte   | Date<br>Analyzed | DF | DL     | PQL   | Result | С | Q | М  |
|-----------|-----------|------------------|----|--------|-------|--------|---|---|----|
| 7440-38-2 | Arsenic   | 04/28/14         | 2  | 0.0600 | 0.200 | 0.226  |   |   | MS |
| 7440-47-3 | Chromium  | 04/28/14         | 2  | 0.0877 | 1.00  | 1.00   | U |   | MS |
| 7439-96-5 | Manganese | 04/23/14         | 1  | 0.500  | 10.0  | 537    |   |   | P  |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           | _         |                  |    |        |       |        |   |   | _  |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |

Field Sample ID:

MW-54-195-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170803MS

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte   | Date<br>Analyzed | DF | DL     | PQL   | Result | С | Q | М        |
|-----------|-----------|------------------|----|--------|-------|--------|---|---|----------|
| 7440-38-2 | Arsenic   | 04/28/14         | 2  | 0.0600 | 0.200 | 90.0   |   |   | MS       |
| 7440-47-3 | Chromium  | 04/28/14         | 2  | 0.0877 | 1.00  | 88.4   |   |   | MS       |
| 7439-96-5 | Manganese | 04/23/14         | 1  | 0.500  | 10.0  | 1610   |   |   | Р        |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           | +         |                  |    |        |       |        |   |   | _        |
|           |           |                  |    |        |       |        |   |   | -        |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   | <u> </u> |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   | _        |
|           |           |                  |    |        |       |        |   |   |          |
|           |           |                  |    |        |       |        |   |   |          |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

Field Sample ID:

MW-54-195-198MSD

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170803MSD

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte   | Date<br>Analyzed | DF | DL     | PQL   | Result | С | Q | М  |
|-----------|-----------|------------------|----|--------|-------|--------|---|---|----|
| 7440-38-2 | Arsenic   | 04/28/14         | 2  | 0.0600 | 0.200 | 87.8   |   |   | MS |
| 7440-47-3 | Chromium  | 04/28/14         | 2  | 0.0877 | 1.00  | 87.5   |   |   | MS |
| 7439-96-5 | Manganese | 04/23/14         | 1  | 0.500  | 10.0  | 1610   |   |   | P  |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

### Field Sample ID:

MW-90-195-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170804

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte   | Date<br>Analyzed | DF | DL     | PQL   | Result | С | Q | М  |
|-----------|-----------|------------------|----|--------|-------|--------|---|---|----|
| 7440-38-2 | Arsenic   | 04/28/14         | 2  | 0.0600 | 0.200 | 1.42   |   |   | MS |
| 7440-47-3 | Chromium  | 04/28/14         | 2  | 0.0877 | 1.00  | 1.00   | U |   | MS |
| 7439-96-5 | Manganese | 04/23/14         | 1  | 0.500  | 10.0  | 140    |   |   | Р  |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           | _         |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |
|           |           |                  |    |        |       |        |   |   |    |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

### Field Sample ID:

MW-56D-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170806

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte  | Date<br>Analyzed | DF | DL     | PQL  | Result | С | Q | М  |
|-----------|----------|------------------|----|--------|------|--------|---|---|----|
| 7440-47-3 | Chromium | 04/28/14         | 2  | 0.0877 | 1.00 | 1.00   | U |   | MS |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   | -  |
|           |          |                  |    |        |      |        |   |   | _  |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

### Field Sample ID:

| лw – | 56M- | 198 |  |
|------|------|-----|--|
|      |      |     |  |

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170807

Percent Moisture: 100 Date Received: 04/21/14

| CAS No.   | Analyte  | Date<br>Analyzed | DF | DL     | PQL  | Result | С | Q | М  |
|-----------|----------|------------------|----|--------|------|--------|---|---|----|
| 7440-47-3 | Chromium | 04/28/14         | 2  | 0.0877 | 1.00 | 1.82   |   |   | MS |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   | -  |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |
|           |          |                  |    |        |      |        |   |   |    |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |

### Field Sample ID:

| /T.T  | г | 60  | 1 | 0 | 0 |  |
|-------|---|-----|---|---|---|--|
| viw – | 2 | 6S- | 1 | 9 | n |  |

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170808

Percent Moisture: 100 Date Received: 04/21/14

| 7440-47-3 Ch | nromium | 04/28/14 | 2 | 0.0877 | 1.00 | 5.33 |  | MS           |
|--------------|---------|----------|---|--------|------|------|--|--------------|
|              |         |          |   |        |      |      |  | -            |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  | _            |
|              |         |          |   |        |      |      |  | _            |
|              |         |          |   |        |      |      |  | _            |
|              |         |          |   |        |      |      |  | ├            |
|              |         |          |   |        |      |      |  | -            |
|              |         |          |   |        |      |      |  | ┢            |
|              |         |          |   |        |      |      |  | <del> </del> |
|              |         |          |   |        |      |      |  | $\vdash$     |
|              |         |          |   |        |      |      |  | $\vdash$     |
|              |         |          |   |        |      |      |  | ┢            |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |
|              |         |          |   |        |      |      |  |              |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

### Field Sample ID:

| WR1               | -0423 |  |
|-------------------|-------|--|
| $^{\prime\prime}$ | 0423  |  |

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-0423

Percent Moisture: 100 Date Received: / /

Preparation: Total Concentration Units: ug/L

| 7439-96-5                                        | Manganese | 04/02/14 |   |       | PQL  | Result | С | Q | M |
|--------------------------------------------------|-----------|----------|---|-------|------|--------|---|---|---|
|                                                  |           | 04/23/14 | 1 | 0.500 | 10.0 | 10.0   | U |   | P |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
| <u> </u>                                         |           |          |   |       |      |        |   |   |   |
| <u> </u>                                         |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |
| <u> </u>                                         |           |          |   |       |      |        |   |   |   |
| <del>                                     </del> |           |          |   |       |      |        |   |   |   |
|                                                  |           |          |   |       |      |        |   |   |   |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

### Field Sample ID:

| WB1-0428 |  |
|----------|--|
| NDI UIZU |  |

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-0428

Percent Moisture: 100 Date Received: / /

Preparation: Total Concentration Units: ug/L

| CAS No.   | Analyte  | Date<br>Analyzed | DF | DL     | PQL   | Result | С | Q | М        |
|-----------|----------|------------------|----|--------|-------|--------|---|---|----------|
| 7440-38-2 | Arsenic  | 04/28/14         | 1  |        |       | 0.100  | U |   | MS       |
| 7440-47-3 | Chromium | 04/28/14         | 1  | 0.0439 | 0.500 | 0.500  | Ū |   | MS       |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   |          |
|           |          |                  |    |        |       |        |   |   | <u> </u> |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
| •         |  |  |  |

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: Water Concentration Units:ug/L

Native Sample ID: MSD Sample ID: MSD Sample ID: MW-54-195-198 MW-54-195-198MSD MW-54-195-198MSD

|           |         | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |          |    |
|-----------|---------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|----------|----|
|           |         | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |          |    |
| Analyte   | Method  | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q        | М  |
| Arsenic   | SW6020  | 0.226  | 100   | 90.0   | 90  | 100   | 87.8   | 88  | 2.4  | 80-120 | 20     |          | MS |
| Chromium  | SW6020  | 1.00U  | 100   | 88.4   | 88  | 100   | 87.5   | 87  | 1.0  | 80-120 | 20     |          | MS |
| Manganese | SW6010B | 537    | 1000  | 1610   | 107 | 1000  | 1610   | 107 | 0.0  | 75-125 | 20     |          | P  |
|           |         |        |       |        |     |       |        |     |      |        |        | L        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | L        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | $\vdash$ |    |
|           |         |        |       |        |     |       |        |     |      |        |        | ⊢        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | $\vdash$ |    |
|           |         |        |       |        |     |       |        |     |      |        |        | $\vdash$ |    |
|           |         |        |       |        |     |       |        |     |      |        |        | $\vdash$ |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |
|           |         |        |       |        |     |       |        |     |      |        |        | L        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | L        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | L        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | L        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | $\vdash$ |    |
|           |         |        |       |        |     |       |        |     |      |        |        | ┢        |    |
|           |         |        |       |        |     |       |        |     |      |        |        | $\vdash$ |    |
|           |         |        |       |        |     |       |        |     |      |        |        | $\vdash$ |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |
|           |         |        |       |        |     |       |        |     |      |        |        |          |    |

Comments:

Dissolved Metals

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

# 7 LABORATORY CONTROL SAMPLE

SDG No.: N1708 Lab Name: CH2M HILL ASL

Aqueous LCS ID: BS1W0423 Solid LCS ID:

|           |         | Aqueous (ug/L) |       |    | Sol  | id (mg/Kg) |    |        |   |
|-----------|---------|----------------|-------|----|------|------------|----|--------|---|
| Analyte   | Method  | True           | Found | %R | True | Found      | %R | Limits | C |
| Manganese | SW6010B | 1000           | 990   | 99 |      |            |    | 85-115 |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |
|           |         |                |       |    |      |            |    |        |   |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

# 7 LABORATORY CONTROL SAMPLE

SDG No.: N1708 Lab Name: CH2M HILL ASL

Aqueous LCS ID: BS1W0428 Solid LCS ID:

|          |        | Aqueous (ug/L) |       |    | Sol  | id (mg/Kg) |    |        |   |
|----------|--------|----------------|-------|----|------|------------|----|--------|---|
| Analyte  | Method | True           | Found | %R | True | Found      | %R | Limits | C |
| Arsenic  | SW6020 | 50.0           | 47.1  | 94 |      |            |    | 85-115 |   |
| Chromium | SW6020 | 50.0           | 47.5  | 95 |      |            |    | 85-115 |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      | _          |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |
|          |        |                |       |    |      |            |    |        |   |

| Comments: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

#### SERIAL DILUTIONS

Field Sample ID:

MW-54-195-198DL

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: Water Concentration Units:ug/L

| Analyte  | Initial Sample |   | Serial Dilution<br>Result (S) |   | % Difference | Q | М  |
|----------|----------------|---|-------------------------------|---|--------------|---|----|
| Arsenic  | 0.226          |   | 1.00                          | U |              |   | MS |
| Chromium | 1.00           | U | 5.00                          | U |              |   | MS |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |
|          |                |   |                               |   |              |   |    |

### Comments:

10% Criteria does not apply if undiluted sample result is <50 times the MDL for ICP.

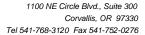
10% Criteria does not apply if undiluted sample result is <100 times the MDL for ICPMS.

#### SERIAL DILUTIONS

Field Sample ID:

MW-90-195-198DL

SDG No.: N1708 Lab Name: CH2M HILL ASL


Matrix: Water Concentration Units:ug/L

|           | Turket 3 C 3                 |   | Gardal Pill II                |   |              |   |   |
|-----------|------------------------------|---|-------------------------------|---|--------------|---|---|
| Analyte   | Initial Sample<br>Result (I) | C | Serial Dilution<br>Result (S) |   | % Difference |   | M |
|           |                              | Ċ |                               |   |              | V |   |
| Manganese | 140                          |   | 138                           |   | 1.4          |   | Р |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               | - |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |
|           |                              |   |                               |   |              |   |   |

### Comments:

10% Criteria does not apply if undiluted sample result is <50 times the MDL for ICP.

10% Criteria does not apply if undiluted sample result is <100 times the MDL for ICPMS.





### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1708

Project: PGE Topock Project #: 423575.MP.02.GM.01

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

### **Method(s):**

E218.6

# 1A-WC GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

MW-54-085-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170801

Date Received: 04/21/14

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 1.00   | U | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

# 1A-WC GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

MW-54-085-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170801MS

Date Received: 04/21/14

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 4.87   |   | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

# 1A-WC GENERAL CHEMISTRY ANALYSIS DATA SHEET

Field Sample ID:

MW-54-140-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170802

Date Received: 04/21/14

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 1.00   | U | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-54-140-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170802MS

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 5.33   |   | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-54-195-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170803

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 1.00   | U | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-54-195-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170803MS

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 4.51   |   | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-90-195-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170804

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 1.00   | U | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-90-195-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170804MS

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 5.30   |   | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    | I                |

Field Sample ID:

MW-240-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170805

| CAS No.    | Analyte              | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0167 | 0.200 | 0.200  | U | ug/L  | 1  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-240-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170805MS

| CAS No.    | Analyte              | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0167 | 0.200 | 0.985  |   | ug/L  | 1  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-56D-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170806

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 1.00   | U | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-56D-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170806MS

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 5.11   |   | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-56M-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170807

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 1.00   | U | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-56M-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170807MS

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 4.93   |   | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            | <u> </u>             |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            | +                    |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            | +                    |        |      |        |   |       |    |                  |                    |                  |
|            | +                    |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      | 1      | l    | I      |   | ı     | I  |                  |                    | I                |

Field Sample ID:

MW-56S-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170808

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 1.00   | U | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-56S-198MS

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170808MS

| CAS No.    | Analyte              | DL     | PQL  | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0835 | 1.00 | 5.48   |   | ug/L  | 5  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |
|            |                      |        |      |        |   |       |    |                  |                    |                  |

Field Sample ID:

| WB1- | 05 | 50 | 2 |  |  |
|------|----|----|---|--|--|
|------|----|----|---|--|--|

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-0502

Date Received: / /

| CAS No.    | Analyte              | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0167 | 0.200 | 0.200  | U | ug/L  | 1  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

| <b>VB2</b> - | 0502 |  |
|--------------|------|--|
|--------------|------|--|

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB2-0502

Date Received: / /

| CAS No.    | Analyte              | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|------------|----------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| 18540-29-9 | Chromium, Hexavalent | 0.0167 | 0.200 | 0.200  | U | ug/L  | 1  | 1000 UL          | E218.6             | 05/02/14         |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |
|            |                      |        |       |        |   |       |    |                  |                    |                  |

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-240-198 MW-240-198MS

|                      | Native | MS    |        |    | MSD   |        |          |      | QC     | QC     |                        |
|----------------------|--------|-------|--------|----|-------|--------|----------|------|--------|--------|------------------------|
|                      | Sample | Spike | MS     | MS | Spike | MSD    | MSD      |      | Limits | Limits |                        |
| Analyte              | Result | Added | Result | %R | Added | Result | %R       | %RPD | %R     | %RPD   | Q                      |
| Chromium, Hexavalent | 0.200U | 1.00  | 0.985  | 92 |       |        |          |      | 90-110 | 20     |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        | $\Box$                 |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        | igsquare               |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash$               |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        |                        |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash$               |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash \vdash$        |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash \vdash \vdash$ |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash \vdash \vdash$ |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash\vdash\vdash$   |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash \vdash \vdash$ |
|                      |        |       |        |    |       |        |          |      |        |        | $\vdash \vdash \vdash$ |
|                      |        |       |        |    |       |        | <u> </u> |      |        |        | ш                      |

<sup>\*</sup> Values outside of QC limits

### Comments:

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-54-085-198 MW-54-085-198MS

|                      | Native | MS    |        |    | MSD   |        |     |      | QC     | QC     |   |
|----------------------|--------|-------|--------|----|-------|--------|-----|------|--------|--------|---|
|                      | Sample | Spike | MS     | MS | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte              | Result | Added | Result | %R | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Chromium, Hexavalent | 1.00U  | 5.00  | 4.87   | 97 |       |        |     |      | 90-110 | 20     |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

Comments:

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-54-140-198 MW-54-140-198MS

|                      | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|----------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                      | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte              | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Chromium, Hexavalent | 1.00U  | 5.00  | 5.33   | 107 |       |        |     |      | 90-110 | 20     |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

### Comments:

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-54-195-198 MW-54-195-198MS

|                      | Native | MS    |        |    | MSD   |        |     |      | QC     | QC     |   |
|----------------------|--------|-------|--------|----|-------|--------|-----|------|--------|--------|---|
|                      | Sample | Spike | MS     | MS | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte              | Result | Added | Result | %R | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Chromium, Hexavalent | 1.00U  | 5.00  | 4.51   | 90 |       |        |     |      | 90-110 | 20     |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

### Comments:

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-56D-198 MW-56D-198MS

|                      | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |                        |
|----------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|------------------------|
|                      | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |                        |
| Analyte              | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q                      |
| Chromium, Hexavalent | 1.00U  | 5.00  | 5.11   | 102 |       |        |     |      | 90-110 | 20     |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        | $\Box$                 |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        | igsquare               |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        |                        |
|                      |        |       |        |     |       |        |     |      |        |        | $\vdash \vdash$        |
|                      |        |       |        |     |       |        |     |      |        |        | $\vdash \vdash$        |
|                      |        |       |        |     |       |        |     |      |        |        | $\vdash \vdash \vdash$ |
|                      |        |       |        |     |       |        |     |      |        |        | $\vdash$               |
|                      |        |       |        |     |       |        |     |      |        |        | $\vdash\vdash\vdash$   |
|                      |        |       |        |     |       |        |     |      |        |        | $\vdash \vdash \vdash$ |
|                      |        |       |        |     |       |        |     |      |        |        | $\vdash\vdash$         |
|                      |        |       |        |     |       |        |     |      |        |        |                        |

<sup>\*</sup> Values outside of QC limits

### Comments:

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-56M-198 MW-56M-198MS

|                      | Native | MS    |        |    | MSD   |        |     |      | QC     | QC     |   |
|----------------------|--------|-------|--------|----|-------|--------|-----|------|--------|--------|---|
|                      | Sample | Spike | MS     | MS | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte              | Result | Added | Result | %R | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Chromium, Hexavalent | 1.00U  | 5.00  | 4.93   | 99 |       |        |     |      | 90-110 | 20     |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |
|                      |        |       |        |    |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

### Comments:

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-56S-198 MW-56S-198MS

|                      | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|----------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                      | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte              | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Chromium, Hexavalent | 1.00U  | 5.00  | 5.48   | 110 |       |        |     |      | 90-110 | 20     |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        | Ш |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |
|                      |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

### Comments:

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-90-195-198 MW-90-195-198MS

|                      | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |             |
|----------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|-------------|
|                      | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |             |
| Analyte              | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q           |
| Chromium, Hexavalent | 1.00U  | 5.00  | 5.30   | 106 |       |        |     |      | 90-110 | 20     |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        | igsquare    |
|                      |        |       |        |     |       |        |     |      |        |        | $\sqcup$    |
|                      |        |       |        |     |       |        |     |      |        |        | $\sqcup$    |
|                      |        |       |        |     |       |        |     |      |        |        | $\sqcup$    |
|                      |        |       |        |     |       |        |     |      |        |        | $\sqcup$    |
|                      |        |       |        |     |       |        |     |      |        |        | $\sqcup$    |
|                      |        |       |        |     |       |        |     |      |        |        | $\sqcup$    |
|                      |        |       |        |     |       |        |     |      |        |        | igwdown     |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        |             |
|                      |        |       |        |     |       |        |     |      |        |        | $\bigsqcup$ |
|                      |        |       |        |     |       |        |     |      |        |        | $\sqcup$    |
|                      |        |       |        |     |       |        |     |      |        |        | igsqcup     |
|                      |        |       |        |     |       |        |     |      |        |        | $\bigsqcup$ |
|                      |        |       |        |     |       |        |     |      |        |        | $\bigsqcup$ |
|                      |        |       |        |     |       |        |     |      |        |        | oxdot       |

<sup>\*</sup> Values outside of QC limits

### Comments:

#### 7-WC

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1708 Lab Name: CH2M HILL ASL

Analysis Method: E218.6 LCS ID: BS1W0502

Initial Calibration ID: HexCr-050214 Date Analyzed: 05/02/14

Matrix: (Soil/Water) WATER Time Analyzed: 1227

Instrument: ICK Concentration Units: ug/L

| Analyte              | Expected | Found | %R | QC Limits<br>%R | Q |
|----------------------|----------|-------|----|-----------------|---|
| Chromium, Hexavalent | 1.38     | 1.26  | 91 | 90-110          |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |
|                      |          |       |    |                 |   |

<sup>\*</sup> Values outside of QC limits

Comments:

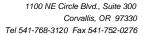
#### 7-WC

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1708 Lab Name: CH2M HILL ASL

Analysis Method: E218.6 LCS ID: BSW20502

Initial Calibration ID: HexCr-050214 Date Analyzed: 05/02/14


Matrix: (Soil/Water) WATER Time Analyzed: 1753

Instrument: ICK Concentration Units: ug/L

|                      |          |       |    | QC Limits |   |
|----------------------|----------|-------|----|-----------|---|
| Analyte              | Expected | Found | %R | %R        | Q |
| Chromium, Hexavalent | 1.38     | 1.26  | 91 | 90-110    |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |
|                      |          |       |    |           |   |

<sup>\*</sup> Values outside of QC limits

Comments:





### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1708

Project: PGE Topock Project #: 423575.MP.02.GM.01

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

### **Method(s):**

E120.1

Field Sample ID:

MW-54-085-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170801

| COND   Conductivity   N/A   10.0   9230   UMHOS/   1   25 ML   E120.1   04/22 | CAS No. | Analyte      | DL  | PQL  | Result | Q | Units  | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|-------------------------------------------------------------------------------|---------|--------------|-----|------|--------|---|--------|----|------------------|--------------------|------------------|
|                                                                               | COND    | Conductivity | N/A | 10.0 | 9230   |   | UMHOS/ | 1  | 25 ML            | E120.1             | 04/22/14         |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |
|                                                                               |         |              |     |      |        |   |        |    |                  |                    |                  |

Field Sample ID:

MW-54-140-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170802

| COND   Conductivity   N/A   10.0   12300   UMHOS/   1   25 ML   E120.1 | Date<br>Analyzed | Analysis<br>Method | Sample<br>Amount | DF | Units  | Q | Result | PQL  | DL  | Analyte      | CAS No. |
|------------------------------------------------------------------------|------------------|--------------------|------------------|----|--------|---|--------|------|-----|--------------|---------|
|                                                                        | 04/22/14         | E120.1             | 25 ML            | 1  | UMHOS/ |   | 12300  | 10.0 | N/A | Conductivity | COND    |
|                                                                        |                  |                    |                  |    |        |   |        |      |     | -            |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  | <u> </u>           |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  | <u> </u>           |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  | <u> </u>           |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        | +                |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        | +                |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        | +                |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     | 1            |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     | 1            |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     | 1            |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     | 1            |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     | +            |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        | +                |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        | +                |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |
|                                                                        |                  |                    |                  |    |        |   |        |      |     |              |         |

Field Sample ID:

MW-54-195-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170803

| COND Co | onductivity | N/A | 10.0 | 18300 |        |   |       | Method | Analyzed |
|---------|-------------|-----|------|-------|--------|---|-------|--------|----------|
|         |             |     |      | 10300 | UMHOS/ | 1 | 25 ML | E120.1 | 04/22/14 |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |
|         |             |     |      |       |        |   |       |        |          |

Field Sample ID:

MW-90-195-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170804

| CAS No. | Analyte      | DL  | PQL  | Result | Q | Units  | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|--------------|-----|------|--------|---|--------|----|------------------|--------------------|------------------|
| COND    | Conductivity | N/A | 10.0 | 12200  |   | UMHOS/ | 1  | 25 ML            | E120.1             | 04/22/14         |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |

Field Sample ID:

MW-56D-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170806

| CAS No. | Analyte      | DL  | PQL  | Result | Q | Units  | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|--------------|-----|------|--------|---|--------|----|------------------|--------------------|------------------|
| COND    | Conductivity | N/A | 10.0 | 19800  |   | UMHOS/ | 1  | 25 ML            | E120.1             | 04/22/14         |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |

Field Sample ID:

MW-56M-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170807

| CAS No. | Analyte      | DL  | PQL  | Result | Q | Units  | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|--------------|-----|------|--------|---|--------|----|------------------|--------------------|------------------|
| COND    | Conductivity | N/A | 10.0 | 14400  |   | UMHOS/ | 1  | 25 ML            | E120.1             | 04/22/14         |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         | Ī            | ı   | l    | 1      | 1 | 1      | I  | I                |                    | 1                |

Field Sample ID:

MW-56S-198

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N170808

| COND   Conductivity | Date<br>Analyzed | Analysis<br>Method | Sample<br>Amount | DF | Units  | Q | Result | PQL  | DL  | Analyte      | CAS No. |
|---------------------|------------------|--------------------|------------------|----|--------|---|--------|------|-----|--------------|---------|
|                     | 04/22/14         | E120.1             | 25 ML            | 1  | UMHOS/ |   | 6390   | 10.0 | N/A | Conductivity | COND    |
|                     |                  |                    |                  |    |        |   |        |      |     | _            |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     | <u> </u>     |         |
|                     |                  |                    |                  |    |        |   |        |      |     | <u> </u>     |         |
|                     |                  |                    |                  |    |        |   |        |      |     | 1            |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     |              |         |
|                     |                  |                    |                  |    |        |   |        |      |     | +            |         |

Field Sample ID:

|--|--|

SDG No.: N1708 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-0422

Date Received: / /

| CAS No. | Analyte      | DL  | PQL  | Result | Q | Units  | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|--------------|-----|------|--------|---|--------|----|------------------|--------------------|------------------|
| COND    | Conductivity | N/A | 10.0 | 10.0   | U | UMHOS/ | 1  | 25 ML            | E120.1             | 04/22/14         |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              |     |      |        |   |        |    |                  |                    |                  |
|         |              | ı   | l    | 1      | 1 | 1      | I  |                  |                    | 1                |

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1708 Lab Name: CH2M HILL ASL

Analysis Method: E120.1 LCS ID: BS1W0422

Initial Calibration ID: NONE Date Analyzed: 04/22/14

Matrix: (Soil/Water) WATER Time Analyzed: 1537

Instrument: NONE Concentration Units: UMHOS/CM

| Analyte      | Expected | Found | %R  | QC Limits<br>%R | Q |
|--------------|----------|-------|-----|-----------------|---|
| Conductivity | 474      | 494   | 104 | 80-120          |   |
|              | 1 1 1    |       | 101 | 00 120          |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          |       |     |                 |   |
|              |          | ·     |     |                 |   |

<sup>\*</sup> Values outside of QC limits

Comments:

4/19/14 10:15 MG

NITUS

**CHAIN OF CUSTODY RECORD** 

4/16/2014 10:54:40 AM

Page '1 OF 1

| CLISIAN NET                                                                                     | -                                      |         |                         |                                                  |                                                |                                                     |                                           | , 102017 7.50 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.7 | ~· _                 |      |                                         |
|-------------------------------------------------------------------------------------------------|----------------------------------------|---------|-------------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------------------------------|----------------------|------|-----------------------------------------|
| Project Name PG8 Location Topock Project Manager J                                              |                                        |         | ontainer:<br>ervatives: | 2x250<br>ml Poly<br>(NH4)2S<br>04/NH40<br>H. 4°C | 250 ml<br>Poly<br>(NH4)2S<br>04/NH40<br>H, 4°C | 2x500<br>ml Poly<br>HNO3,<br>4°C                    | 2x500<br>ml Poly<br>HN03,<br>4°C          | i Liter                                              |                      |      | *************************************** |
| Sample Manager S                                                                                |                                        | ffv     | Filtered:               |                                                  | Field                                          | Field                                               | Field                                     | NA .                                                 |                      | ĺ    |                                         |
| management                                                                                      |                                        |         | ing Time:               | L                                                | 28                                             | 180                                                 | 180                                       | 28                                                   |                      |      |                                         |
| Project Number 4 Task Order Project 2014-GMP Turnaround Time Shipping Date: 4// COC Number: 198 | P-198-AZ<br>12 Days<br>(3/2014<br>8-AZ | °.02.GM | 1.0                     | Cr6 (E218.6R) Field Filtered                     | Cr6 (E218.6R) Field Filtered                   | Metals (SW6010B/SW6020Adis)<br>Field Filtered As.Mn | Metals (6020A) Field Filtered<br>Chromium | Conductance                                          | Number of Containers | COMM | IENTS                                   |
| MW-54-085-198                                                                                   | 4/9/2014                               | 9:04    | Water                   | х                                                |                                                | х                                                   | X                                         | X                                                    | 5                    |      | ī                                       |
| MW-54-140-198                                                                                   | 4/9/2014                               | 9:47    | Water                   | х                                                |                                                | х                                                   | х                                         | x                                                    | 5                    |      | 2                                       |
| MW-54-195-198                                                                                   | 4/9/2014                               | 8:27    | Water                   | х                                                |                                                | х                                                   | x                                         | x                                                    | 5                    |      | 3                                       |
| MW-90-195-198                                                                                   | 4/9/2014                               | 6:30    | Water                   | х                                                |                                                | x                                                   | х                                         | X                                                    | 5                    | -    | 4                                       |
| MW-240-198                                                                                      | 4/10/2014                              | 6:20    | Water                   |                                                  | x                                              |                                                     |                                           |                                                      | 1                    |      | 5                                       |
| MW-56D-198                                                                                      | 4/10/2014                              | 12:35   | Water                   | х                                                |                                                |                                                     | х                                         | x                                                    | A                    | 5    | 6                                       |
| MW-56M-198                                                                                      | 4/10/2014                              | 13:28   | Water                   | х                                                |                                                |                                                     | х                                         | X                                                    | 4                    |      | BEL                                     |
| MW-56S-198                                                                                      | 4/10/2014                              | 14:08   | Water                   | х                                                | 777                                            |                                                     | х                                         | X                                                    | A                    | _    | 8                                       |
|                                                                                                 |                                        | ļ       |                         |                                                  |                                                |                                                     | <u> </u>                                  | TOTAL NUMBER OF CONTAINERS                           | .33                  | 36   | <u>:</u>                                |

| ************************************** |   |
|----------------------------------------|---|
| Approved by                            |   |
| Sampled by                             |   |
| Reinquished by                         | • |
| Received by                            | - |
| Relinquished by                        |   |
| Danis and his                          |   |

Method of Shipment: FedEx On ice: yes / no

**Shipping Details** 

Airbill No: Lab Name: CH2M HILL Applied Sciences Lab

Lab Phone: (541) 752-4271

ATTN:

April 9 to May 15, 2014

Sample Custody and

Kathy McKinley

Special Instructions:

Report Copy to

Shawn Duffy (530) 229-3303





| Client/Project: PG&E Topock Received By: Mikio Quinn                                                                                                                                                                                                        |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                             |          |
| Were custody seals intact and on the outside of the cooler?                                                                                                                                                                                                 | □ N/A    |
| Shipping Record: Hand Delivered                                                                                                                                                                                                                             | □ coc    |
| Radiological Screening for DoD Yes No                                                                                                                                                                                                                       | ✓ N/A    |
| Packing Material: Hand Delivered                                                                                                                                                                                                                            | Вох      |
| Temp OK? (<6C) Therm ID: <u>TH173 Exp.</u> <u>6/11</u> 8.8°C ☐ Yes ✓ No                                                                                                                                                                                     | □ N/A    |
| Was a Chain of Custody (CoC) Provided?                                                                                                                                                                                                                      | □ N/A    |
| Was the CoC correctly filled out (If No, document below)                                                                                                                                                                                                    | □ N/A    |
| Did sample labels agree with COC? (If No, document below)                                                                                                                                                                                                   | □ N/A    |
| Did the CoC list a correct bottle count and the preservative types (Y=OK, N=Corrected on CoC)                                                                                                                                                               | □ N/A    |
| Were the sample containers in good condition (broken or leaking)?                                                                                                                                                                                           | □ N/A    |
| Was enough sample volume provided for analysis? (If No, document below)                                                                                                                                                                                     | □ N/A    |
| Containers supplied by ASL?                                                                                                                                                                                                                                 | □ N/A    |
| Any sample with < 1/2 holding time remaining? If so contact LPM                                                                                                                                                                                             | □ N/A    |
| Samples have multi-phase? If yes, document on SRER                                                                                                                                                                                                          | □ N/A    |
| All water VOCs free of air bubbles? No, document on SRER                                                                                                                                                                                                    | ✓ N/A    |
| pH of all samples met criteria on receipt? If "No", preserve and document below.                                                                                                                                                                            | □ N/A    |
| Dissolved/Soluble metals filtered in the field?                                                                                                                                                                                                             | □ N/A    |
| Dissolved/Soluble metals have sediment in bottom of container? If so document below.                                                                                                                                                                        | □ N/A    |
| Preservation Adjustment                                                                                                                                                                                                                                     |          |
| Sample ID Reagent Reagent Lot Number Volume Added                                                                                                                                                                                                           | Initials |
|                                                                                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                                             |          |
| Sample Exception Report (The following exceptions were noted)                                                                                                                                                                                               |          |
| Sample Exception Report (The following exceptions were noted)  Samples received outside of temperature at 8.8°C.                                                                                                                                            |          |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2                                                                                             | 8 day    |
| Samples received outside of temperature at 8.8°C.                                                                                                                                                                                                           | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2                                                                                             | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2                                                                                             | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2                                                                                             | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2                                                                                             | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2 holding time and we are to proceed with analysis.                                           | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2 holding time and we are to proceed with analysis.  Client was notified on:  Client contact: | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2 holding time and we are to proceed with analysis.  Client was notified on:  Client contact: | 8 day    |
| Samples received outside of temperature at 8.8°C.  Conductivity samples were received past ASL's standard 24 hr holding time. Per client these samples have a 2 holding time and we are to proceed with analysis.  Client was notified on:  Client contact: | 8 day    |

#### **ANALYTICAL REPORT**

For:

**PGE Topock** 

ASL Report #: N1716

Project ID: 423575.MP.02.GM.03

**Attn: Jay Piper** 

cc:

Data Center/RDD Shawn Duffy/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

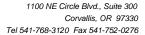
(541) 758-0235 ext.23144

May 06, 2014

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.




Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)

#### **Sample Receipt Comments**

We certify that the test results meet all NELAP requirements.

#### **Sample Cross-Reference**

| ASL       |                  | Date/Time      | Date     |
|-----------|------------------|----------------|----------|
| Sample ID | Client Sample ID | Collected      | Received |
| N171601   | MW-63-065-198    | 04/09/14 14:12 | 04/22/14 |
| N171602   | MW-37D-198       | 04/10/14 10:03 | 04/22/14 |
| N171603   | MW-121-198       | 04/14/14 07:00 | 04/22/14 |
| N171604   | MW-27-020-198    | 04/14/14 10:13 | 04/22/14 |
| N171605   | MW-27-060-198    | 04/14/14 11:00 | 04/22/14 |
| N171606   | MW-30-030-198    | 04/14/14 13:36 | 04/22/14 |
| N171607   | MW-122-198       | 04/15/14 07:00 | 04/22/14 |
| N171608   | MW-28-025-198    | 04/15/14 08:59 | 04/22/14 |
| N171609   | MW-28-090-198    | 04/15/14 09:34 | 04/22/14 |
| N171610   | MW-46-175-198    | 04/15/14 13:36 | 04/22/14 |
| N171611   | MW-125-198       | 04/16/14 07:00 | 04/22/14 |
| N171612   | MW-29-198        | 04/16/14 14:20 | 04/22/14 |
| N171613   | MW-44-115-198    | 04/16/14 07:38 | 04/22/14 |
| N171614   | MW-44-125-198    | 04/16/14 11:59 | 04/22/14 |





#### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1716

Project: PGE Topock Project #: 423575.MP.02.GM.03

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

#### **Method(s):**

E353.2

#### **Matrix Spike/Matrix Spike Duplicate(s):**

E353.2: MS recovery of Nitrate/Nitrite-N(124%) in MW-63-065-198MS did not meet acceptance criteria of 90-110%.

MSD recovery of Nitrate/Nitrite-N(117%) in MW-63-065-198MSD did not meet acceptance criteria of 90-110%.

Field Sample ID:

MW-63-065-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171601

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.851  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-63-065-198MS

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171601MS

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.47   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   | i     | I  |                  |                    | 1                |

Field Sample ID:

MW-63-065-198MSD

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171601MSD

| NO3NO2N   | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|-----------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| I NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.44   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |
|           |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-37D-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171602

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.311  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | ļ                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-121-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171603

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-27-020-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171604

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.265  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-27-060-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171605

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   | 1       |        | 1      |   |       | l  |                  |                    | İ                |

Field Sample ID:

MW-30-030-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171606

| CAS No. | Analyte           | DL                                               | PQL    | Result | Q | Units                                            | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------------------------------------------------|--------|--------|---|--------------------------------------------------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280                                          | 0.0100 | 0.0153 |   | MG/L                                             | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   | -                                                |        |        |   | 1                                                |    |                  |                    |                  |
|         |                   | <del>                                     </del> |        |        |   | <del>                                     </del> |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   | -                                                |        |        |   | 1                                                |    |                  |                    |                  |
|         |                   |                                                  |        |        |   |                                                  |    |                  |                    |                  |
|         |                   |                                                  |        |        |   | I                                                |    |                  |                    | İ                |

Field Sample ID:

MW-122-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171607

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-28-025-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171608

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-28-090-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171609

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   | 1       |        | 1      |   |       | l  |                  |                    | İ                |

Field Sample ID:

MW-46-175-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171610

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.18   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-125-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171611

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.263  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-125-198MS

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171611MS

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.794  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-125-198MSD

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171611MSD

| NO3NO2N Nitrate/Nitrite-N | Analysis Date Method Analyze | A  | Sample<br>Amount | DF | Units | Q | Result | PQL    | DL                                               | Analyte           | CAS No. |
|---------------------------|------------------------------|----|------------------|----|-------|---|--------|--------|--------------------------------------------------|-------------------|---------|
|                           | E353.2 04/30/14              | 1L | 3 MI             | 1  | MG/L  |   | 0.783  | 0.0100 | 0.00280                                          | Nitrate/Nitrite-N | NO3NO2N |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           | +                            | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           | +                            | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  | 1                 |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> | +                 |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> | 1                 |         |
|                           |                              | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           | <del></del>                  | +  |                  |    |       |   |        |        | <del>                                     </del> |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |
|                           |                              | +  |                  |    |       |   |        |        |                                                  |                   |         |

Field Sample ID:

MW-29-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171612

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.198  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-44-115-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171613

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.198  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   | I .     |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-44-125-198

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N171614

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.260  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB1-043014

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-043014

Date Received: / /

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   | 1       |        | 1      |   |       | l  |                  |                    | İ                |

Field Sample ID:

WB3-043014

SDG No.: N1716 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB3-043014

Date Received: / /

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   | 1       |        | 1      |   |       | l  |                  |                    | İ                |

SDG No.: N1716 Lab Name: CH2M HILL ASL
Analysis Method: E353.2 Concentration Units: MG/L

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-125-198 MW-125-198MS MW-125-198MSD

|                   | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|-------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                   | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte           | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Nitrate/Nitrite-N | 0.263  | 0.500 | 0.794  | 106 | 0.500 | 0.783  | 104 | 2    | 90-110 | 15     |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

#### Comments:

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

SDG No.: N1716 Lab Name: CH2M HILL ASL Analysis Method: E353.2 Concentration Units: MG/L

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-63-065-198MS MW-63-065-198MSD

|                   | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|-------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                   | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte           | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Nitrate/Nitrite-N | 0.851  | 0.500 | 1.47   | 124 | 0.500 | 1.44   | 117 | 2    | 90-110 | 15     | * |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

#### Comments:

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

#### 7-WC

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1716 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS1W0430

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 04/30/14

Matrix: (Soil/Water) WATER Time Analyzed: 1243

Instrument: SMARTCHEM Concentration Units: MG/L

|                   |          |       |     | QC Limits |   |
|-------------------|----------|-------|-----|-----------|---|
| Analyte           | Expected | Found | %R  | %R        | Q |
| Nitrate/Nitrite-N | 0.480    | 0.483 | 101 | 90-110    |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           | + |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           | + |
|                   |          |       |     |           |   |
|                   |          |       |     |           | + |
|                   |          |       |     |           | + |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |

<sup>\*</sup> Values outside of QC limits

Comments:

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1716 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS3W0430

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 04/30/14

Matrix: (Soil/Water) WATER Time Analyzed: 1332

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q |
|-------------------|----------|-------|-----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.485 | 101 | 90-110          |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   | +        |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   | +        |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |

<sup>\*</sup> Values outside of QC limits

Comments:

| CH2MHIL                                                                                | L                                              |                |                         | (i)                                      | CHAIN OF CUSTODY RECORD 4/17/2014 1:36:31 PM Page | 1 OF                 | _ <b>1</b> |
|----------------------------------------------------------------------------------------|------------------------------------------------|----------------|-------------------------|------------------------------------------|---------------------------------------------------|----------------------|------------|
| Project Name Po<br>Location Topod<br>Project Manager                                   | k                                              |                | ontainer:<br>ervatives: | 125 ml<br>Poly<br>H2SO4,<br>pH<2,<br>4°C |                                                   |                      |            |
| Sample Manager                                                                         | Shawn Duf                                      | ffy            | Filtered:               | NA                                       |                                                   |                      | 1          |
| Project Number<br>Task Order<br>Project 2014-GN<br>Turnaround Time<br>Shipping Date: 4 | 423575.MP<br>IP-198-Q2<br>10 Days<br>1/17/2014 | Hold<br>.02.GN | ing Time:               | Nitrate/Nitrite (SM4500NO3)              |                                                   | Number of Containers |            |
|                                                                                        | DATE                                           | TIME           | Matrix                  | 03)                                      | AC                                                | iners                | COMMEN     |
| /W-63-065-198                                                                          | 4/9/2014                                       | 14:12          | Water                   | х                                        | N012240-1                                         | 1                    |            |
| W-37D-198                                                                              | 4/10/2014                                      | 10:03          | Water                   | х                                        | 1 -2                                              | 1                    |            |
| MW-121-198                                                                             | 4/14/2014                                      | 7:00           | Water                   | х                                        | -3                                                | 1                    |            |
| MW-27-020-198                                                                          | 4/14/2014                                      | 10:13          | Water                   | x                                        | _ <b>U</b>                                        | 1                    |            |
| MW-27-060-198                                                                          | 4/14/2014                                      | 11:00          | Water                   | x                                        | -5                                                | 1                    |            |
| MW-30-030-198                                                                          | 4/14/2014                                      | 13:36          | Water                   | x                                        | -6                                                | 1                    |            |
| MW-122-198                                                                             | 4/15/2014                                      | 7:00           | Water                   | х                                        | -7                                                | 1                    |            |
| MW-28-025-198                                                                          | 4/15/2014                                      | 8:59           | Water                   | x                                        | ~ <b>%</b>                                        | 1                    |            |
| MW-28-090-198                                                                          | 4/15/2014                                      | 9:34           | Water                   | X                                        | -9                                                | 1                    |            |
| MW-46-175-198                                                                          | 4/15/2014                                      | 13:36          | Water                   | x                                        | -/0                                               | 1                    |            |
| MW-125-198                                                                             | 4/16/2014                                      | 7:00           | Water                   | x                                        | -11                                               | 1                    |            |
| MW-29-198                                                                              | 4/16/2014                                      | 14:20          | Water                   | x                                        | -12                                               | 1                    |            |
| MW-44-115-198                                                                          | 4/16/2014                                      | 7:38           | Water                   | ×                                        | -13                                               | 1                    |            |
| MW-44-125-198                                                                          | 4/16/2014                                      | 11:59          | Water                   | x                                        | V -14                                             | 1                    |            |
| Approved by                                                                            |                                                | Sign           | atures                  | Da                                       | te/Time Shipping Details Special Instructions:    | 14                   | 1          |

Approved by Sampled by Relinquished by Received by

Relinquished Received by

Method of Shipment:

On Ice: (yes)/ no

17APR14 1635 Airbill No:

Lab Name: CH2M Htt. Applied Sciences Lab Lab Phone.

ATTN:

April 9 to May 15, 3014

Sample Luctaria الأخفاض

Fed Ex# 7986 0846 1292 Report Copy to

Shawn Duffy

Hathy McKinley

Relinquished by Amondo Cordes 4/21/14 1500





| SDG ID: N1716                                  |                         | Date Received:      | 4/22/2014       |           |           |          |
|------------------------------------------------|-------------------------|---------------------|-----------------|-----------|-----------|----------|
| Client/Project: Topock                         |                         | Received By:        | Carmen Cole     |           |           |          |
| Were custody seals intact and on the outs      | de of the cooler?       |                     |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Shipping Record:                               |                         |                     | Hand I          | Delivered | ✓ On File | □ coc    |
| Radiological Screening for DoD                 |                         |                     |                 | Yes       | No        | ✓ N/A    |
| Packing Material:                              |                         | [                   | Hand Delivered  | ✓ Ice     | Blue Ice  | Вох      |
| Temp OK? (<6C) Therm ID: TH173 E               | xp. <u>6/14</u>         |                     | 1.8 °C          | ✓ Yes     | No        | □ N/A    |
| Was a Chain of Custody (CoC) Provided?         |                         |                     |                 | ✓ Yes     | ☐ No      | N/A      |
| Was the CoC correctly filled out (If No, doo   | cument below)           |                     |                 | ✓ Yes     | No        | □ N/A    |
| Did sample labels agree with COC? (If No.      | document below)         |                     |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Did the CoC list a correct bottle count and    | the preservative types  | (Y=OK, N=Correcte   | ed on CoC)      | ✓ Yes     | No        | □ N/A    |
| Were the sample containers in good condi       | tion (broken or leaking | )?                  |                 | ✓ Yes     | No        | □ N/A    |
| Was enough sample volume provided for a        | analysis? (If No, docum | nent below)         |                 | ✓ Yes     | No        | □ N/A    |
| Containers supplied by ASL?                    |                         |                     |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Any sample with < 1/2 holding time remain      | ing? If so contact LPM  | 1                   |                 | Yes       | ✓ No      | □ N/A    |
| Samples have multi-phase? If yes, docume       | ent on SRER             |                     |                 | Yes       | ✓ No      | □ N/A    |
| All water VOCs free of air bubbles? No, do     | ocument on SRER         |                     |                 | Yes       | No        | ✓ N/A    |
| pH of all samples met criteria on receipt? I   | f "No", preserve and do | ocument below.      |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Dissolved/Soluble metals filtered in the field | d?                      |                     |                 | Yes       | ☐ No      | ✓ N/A    |
| Dissolved/Soluble metals have sediment in      | bottom of container?    | If so document belo | w.              | Yes       | No        | ✓ N/A    |
|                                                | Preservation            | on Adjustment       |                 |           |           |          |
| Sample ID                                      | Reagent                 | Reagent Lot N       | Number          | Volur     | ne Added  | Initials |
|                                                |                         |                     |                 |           |           |          |
|                                                |                         |                     |                 |           |           |          |
|                                                |                         |                     |                 |           |           |          |
|                                                |                         |                     |                 |           |           |          |
|                                                | Exception Report        |                     | ons were noted) |           |           |          |
| Sample Method SM4500 was requested on the      |                         |                     | ons were noted) |           |           |          |
|                                                |                         |                     | ons were noted) |           |           |          |
| Method SM4500 was requested on the             | COC. ASL will repo      |                     | ons were noted) |           |           |          |

#### **ANALYTICAL REPORT**

For:

PGE Topock - 2014-GMP-198-Q2

ASL Report #: N1751

Project ID: 423575.MP.02.GM.02

**Attn: Jay Piper** 

Data Center/RDD Shawn Duffy/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

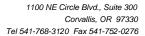
(541) 758-0235 ext.23144

May 07, 2014

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.




Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)

#### **Sample Receipt Comments**

We certify that the test results meet all NELAP requirements.

#### **Sample Cross-Reference**

| ASL       |                         | Date/Time      | Date     |  |
|-----------|-------------------------|----------------|----------|--|
| Sample ID | <b>Client Sample ID</b> | Collected      | Received |  |
| N175101   | MW-33-040-198           | 04/17/14 14:34 | 04/29/14 |  |
| N175102   | MW-33-150-198           | 04/17/14 13:48 | 04/29/14 |  |
| N175103   | MW-36-100-198           | 04/17/14 11:24 | 04/29/14 |  |
| N175104   | MW-123-198              | 04/21/14 07:00 | 04/29/14 |  |
| N175105   | MW-33-090-198           | 04/21/14 08:18 | 04/29/14 |  |
| N175106   | MW-33-210-198           | 04/21/14 09:32 | 04/29/14 |  |
| N175107   | MW-72BR-200-198         | 04/21/14 14:52 | 04/29/14 |  |
| N175108   | MW-21-198               | 04/22/14 11:10 | 04/29/14 |  |
| N175109   | MW-57-185-198           | 04/22/14 11:06 | 04/29/14 |  |





#### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1751

Project: PGE Topock Project #: 423575.MP.02.GM.02

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

#### **Method(s):**

E353.2

#### **Matrix Spike/Matrix Spike Duplicate(s):**

E353.2: MS recovery of Nitrate/Nitrite-N(121%) in MW-123-198MS did not meet acceptance criteria of 90-110%.

MSD recovery of Nitrate/Nitrite-N(118%) in MW-123-198MSD did not meet acceptance criteria of 90-110%.

EB140502-15:13-N1751-W Page 7 of 53

Field Sample ID:

MW-33-040-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175101

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-33-150-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175102

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.63   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-36-100-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175103

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0768 |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   | 1       |        | l      |   |       |    |                  |                    |                  |

Field Sample ID:

MW-123-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175104

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.38   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         | +                 |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-123-198MS

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175104MS

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.99   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-123-198MSD

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175104MSD

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.97   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-33-090-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175105

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.43   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-33-210-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175106

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.58   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         | +                 |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-72BR-200-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175107

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.103  |   | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-21-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175108

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.32   |   | MG/L  | 4  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-57-185-198

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N175109

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB1-043014

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-043014

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB2-043014

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB2-043014

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB3-043014

SDG No.: N1751 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB3-043014

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 04/30/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | <u> </u>          |         |        |        |   |       |    |                  |                    |                  |
|         | -                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        | 1      |   |       | l  |                  |                    | İ                |

#### 5A-WC

### WATER GENERAL CHEMISTRY MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

SDG No.: N1751 Lab Name: CH2M HILL ASL
Analysis Method: E353.2 Concentration Units: MG/L

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-123-198 MW-123-198MS MW-123-198MSD

|                   | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|-------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                   | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte           | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Nitrate/Nitrite-N | 1.38   | 0.500 | 1.99   | 121 | 0.500 | 1.97   | 118 | 0.7  | 90-110 | 15     | * |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

### Comments:

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

### 7-WC

### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1751 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS1W0430

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 04/30/14

Matrix: (Soil/Water) WATER Time Analyzed: 1243

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q |
|-------------------|----------|-------|-----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.483 | 101 | 90-110          |   |
| NIGIGO, NIGITO IN | 0.100    | 0.100 |     | 70 110          |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |

<sup>\*</sup> Values outside of QC limits

Comments:

### 7-WC

### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1751 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS2W0430

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 04/30/14

Matrix: (Soil/Water) WATER Time Analyzed: 1313

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q       |
|-------------------|----------|-------|-----|-----------------|---------|
| Nitrate/Nitrite-N | 0.480    | 0.490 | 102 | 90-110          | ~       |
| NICIACE/NICIICE-N | 0.480    | 0.490 | 102 | 90-110          |         |
|                   |          |       |     |                 | -       |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 | +       |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 | +       |
|                   |          |       |     |                 | +       |
|                   |          |       |     |                 | +-      |
|                   |          |       |     |                 | +-+     |
|                   |          |       |     |                 | $\perp$ |
|                   |          |       |     |                 |         |
|                   |          |       |     |                 |         |

<sup>\*</sup> Values outside of QC limits

Comments:

### 7-WC

### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1751 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS3W0430

Initial Calibration ID: 092313NO32SM1 Date Analyzed: 04/30/14

Matrix: (Soil/Water) WATER Time Analyzed: 1332

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q        |
|-------------------|----------|-------|-----|-----------------|----------|
| Nitrate/Nitrite-N | 0.480    | 0.485 | 101 | 90-110          |          |
| NICIACE/NICIICE-N | 0.400    | 0.403 | 101 | 90-110          |          |
|                   |          |       | 1   |                 | 1        |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 | -        |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 |          |
|                   |          |       |     |                 | $\vdash$ |
|                   |          |       |     |                 | +-       |
|                   |          |       |     |                 |          |
|                   | I        | I     | l   | L               | 1        |

<sup>\*</sup> Values outside of QC limits

Comments:

NITSI

**CHAIN OF CUSTODY RECORD** CH2MHILL Page 1 OF 1 4/24/2014 10:50:51 AM 125 ml Project Name PG&E Topock Container: Poly Location Topock H2\$04, Preservatives: pH<2, Project Manager Jay Piper 4°C Sample Manager Shawn Duffy NA 28 **Holding Time:** Project Number 423575.MP.02.GM.03 Nitrate/Nitrite (SM4500NO3) Nitrate Task Order Project 2014-GMP-198-Q2 Number of Containers Turnaround Time 10 Days Shipping Date: 4/24/2014 COC Number: 4 DATE TIME Matrix COMMENTS MW-33-040-198 1 4/17/2014 14:34 Water X MW-33-150-198 4/17/2014 13:48 Water X MW-36-100-198 4/17/2014 11:24 Water X MW-123-198 4/21/2014 7:00 Water X MW-33-090-198 4/21/2014 8:18 Water X MW-33-210-198 4/21/2014 9:32 Water 1 Х MW-72BR-200-198 7 4/21/2014 14:52 Water 1 Х MW-21-198 1 4/22/2014 Water 11:10 х MW-57-185-198 4/22/2014 11:06 Water 1 Х 9 TOTAL NUMBER OF CONTAINERS

Kerened. Conver Colo 4/24/14 1050 Date/Time Śignatures **Shipping Details Special Instructions:** Approved by 424-14 ATTN: April 0 to May 15, 2011 Method of Shipment: Sampled by On Ice: yes:/ no Relinquished by Sample Contody 1/24/14/230 Airbill No: Received by Report Copy to 4/24// Type Lab Name: UHZW Bill Applied Science Falls Relinquished by / Shawe undiv wathe Mchange. Ananda Costes 4/24/14 Received by Lab Phone ser By RAPRIA

FEDEX: 7984 7981, 5771

1450





| SDG ID: N1751                                                                         |                                                | Date Received:                                                   | 4/29/2014      |           |           |          |
|---------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|----------------|-----------|-----------|----------|
| Client/Project: Topock                                                                |                                                | Received By:                                                     | Carmen Cole    |           |           |          |
| Were custody seals intact and on the outsi                                            | de of the cooler?                              |                                                                  |                | ✓ Yes     | No        | □ N/A    |
| Shipping Record:                                                                      |                                                |                                                                  | ☐ Hand [       | Delivered | ✓ On File | □ coc    |
| Radiological Screening for DoD                                                        |                                                |                                                                  |                | Yes       | ☐ No      | ✓ N/A    |
| Packing Material:                                                                     |                                                |                                                                  | Hand Delivered | ✓ Ice     | Blue Ice  | Вох      |
| Temp OK? (<6C) Therm ID: TH173 E                                                      | кр. <u>6/14</u>                                |                                                                  | 4.6 °C         | ✓ Yes     | ☐ No      | □ N/A    |
| Was a Chain of Custody (CoC) Provided?                                                |                                                |                                                                  |                | ✓ Yes     | ☐ No      | □ N/A    |
| Was the CoC correctly filled out (If No, doo                                          | ument below)                                   |                                                                  |                | ✓ Yes     | ☐ No      | □ N/A    |
| Did sample labels agree with COC? (If No,                                             | document below)                                |                                                                  |                | ✓ Yes     | ☐ No      | □ N/A    |
| Did the CoC list a correct bottle count and                                           | the preservative types                         | s (Y=OK, N=Correcte                                              | d on CoC)      | ✓ Yes     | ☐ No      | □ N/A    |
| Were the sample containers in good condi                                              | tion (broken or leaking                        | g)?                                                              |                | ✓ Yes     | ☐ No      | □ N/A    |
| Was enough sample volume provided for a                                               | ınalysis? (If No, docur                        | ment below)                                                      |                | ✓ Yes     | ☐ No      | □ N/A    |
| Containers supplied by ASL?                                                           |                                                |                                                                  |                | ✓ Yes     | ☐ No      | □ N/A    |
| Any sample with < 1/2 holding time remain                                             | ing? If so contact LPI                         | M                                                                |                | Yes       | ✓ No      | □ N/A    |
| Samples have multi-phase? If yes, docume                                              | ent on SRER                                    |                                                                  |                | Yes       | ✓ No      | □ N/A    |
| All water VOCs free of air bubbles? No, do                                            | ocument on SRER                                |                                                                  |                | Yes       | ☐ No      | ✓ N/A    |
| pH of all samples met criteria on receipt? I                                          | "No", preserve and d                           | locument below.                                                  |                | ✓ Yes     | ☐ No      | □ N/A    |
| Dissolved/Soluble metals filtered in the fiel                                         | d?                                             |                                                                  |                | Yes       | ☐ No      | ✓ N/A    |
|                                                                                       |                                                |                                                                  |                | <b>—</b>  |           | ✓ N/A    |
| Dissolved/Soluble metals have sediment in                                             | bottom of container?                           | If so document below                                             | N.             | Yes       | No        | Ľ IN/A   |
| Dissolved/Soluble metals have sediment in                                             |                                                | on Adjustment                                                    | W.             | Yes       | ∐ No      | L N/A    |
| Dissolved/Soluble metals have sediment in                                             |                                                |                                                                  |                |           | ne Added  | Initials |
|                                                                                       | Preservati                                     | on Adjustment                                                    |                |           |           |          |
|                                                                                       | Preservati                                     | on Adjustment                                                    |                |           |           |          |
|                                                                                       | Preservati                                     | on Adjustment                                                    |                |           |           |          |
| Sample ID Sample                                                                      | Preservati Reagent  Exception Report           | on Adjustment Reagent Lot N                                      | lumber         |           |           |          |
| Sample ID                                                                             | Preservati Reagent  Exception Report           | on Adjustment Reagent Lot N                                      | lumber         |           |           |          |
| Sample ID Sample                                                                      | Preservati Reagent  Exception Report           | on Adjustment Reagent Lot N                                      | lumber         |           |           |          |
| Sample ID Sample                                                                      | Preservati Reagent  Exception Report           | on Adjustment Reagent Lot N                                      | lumber         |           |           |          |
| Sample ID Sample                                                                      | Preservati Reagent  Exception Report           | on Adjustment Reagent Lot N                                      | lumber         |           |           |          |
| Sample ID Sample                                                                      | Preservati Reagent  Exception Report           | on Adjustment Reagent Lot N                                      | lumber         |           |           |          |
| Sample ID  Sample  Sample  Method SM4500 was requested on CC                          | Preservati Reagent  Exception Report           | on Adjustment Reagent Lot N  t (The following exception y E353.2 | lumber         |           |           |          |
| Sample ID  Sample  Sample  Method SM4500 was requested on CC  Client was notified on: | Reagent  Exception Report C ASL will report by | on Adjustment Reagent Lot N  t (The following exception y E353.2 | lumber         |           |           |          |
| Sample ID  Sample  Sample  Method SM4500 was requested on CC                          | Reagent  Exception Report C ASL will report by | on Adjustment Reagent Lot N  t (The following exception y E353.2 | lumber         |           |           |          |
| Sample ID  Sample  Sample  Method SM4500 was requested on CC  Client was notified on: | Reagent  Exception Report C ASL will report by | on Adjustment Reagent Lot N  t (The following exception y E353.2 | lumber         |           |           |          |
| Sample ID  Sample  Sample  Method SM4500 was requested on CC  Client was notified on: | Reagent  Exception Report C ASL will report by | on Adjustment Reagent Lot N  t (The following exception y E353.2 | lumber         |           |           |          |
| Sample ID  Sample  Sample  Method SM4500 was requested on CC  Client was notified on: | Reagent  Exception Report C ASL will report by | on Adjustment Reagent Lot N  t (The following exception y E353.2 | lumber         |           |           |          |

### **ANALYTICAL REPORT**

For:

PGE Topock - 2014-GMP-198-Q2

ASL Report #: N1794

Project ID: 423575.MP.02.GM.03

**Attn: Jay Piper** 

cc:

Data Center/RDD Shawn Duffy/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

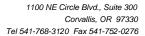
(541) 758-0235 ext.23144

May 12, 2014

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.




Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)

### **Sample Receipt Comments**

We certify that the test results meet all NELAP requirements.

### **Sample Cross-Reference**

| ASL       | ·                | Date/Time      | Date     |
|-----------|------------------|----------------|----------|
| Sample ID | Client Sample ID | Collected      | Received |
| N179401   | MW-124-198       | 04/24/14 07:30 | 05/02/14 |
| N179402   | MW-35-060-198    | 04/24/14 10:33 | 05/02/14 |
| N179403   | MW-40D-198       | 04/24/14 12:44 | 05/02/14 |
| N179404   | MW-65-160-198    | 04/24/14 08:55 | 05/02/14 |
| N179405   | MW-71-035-198    | 04/24/14 14:00 | 05/02/14 |
| N179406   | MW-72-080-198    | 04/24/14 07:56 | 05/02/14 |
| N179407   | MW-70-105-198    | 04/28/14 11:02 | 05/02/14 |
| N179408   | MW-60BR-245-198  | 04/29/14 10:54 | 05/02/14 |
| N179409   | MW-61-110-198    | 04/29/14 11:40 | 05/02/14 |
| N179410   | MW-65-225-198    | 04/29/14 14:13 | 05/02/14 |
| N179411   | MW-73-080-198    | 04/29/14 06:35 | 05/02/14 |





### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1794

**Project:** PGE Topock **Project #:** 423575.MP.02.GM.03

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

### **Method(s):**

E353.2

### **Matrix Spike/Matrix Spike Duplicate(s):**

E353.2: MS recovery of Nitrate/Nitrite-N(113%) in MW-124-198MS did not meet acceptance criteria of 90-110%.

MSD recovery of Nitrate/Nitrite-N(119%) in MW-124-198MSD did not meet acceptance criteria of 90-110%.

Field Sample ID:

MW-124-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179401

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 2.33   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-124-198MS

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179401MS

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 2.90   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-124-198MSD

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179401MSD

| NO3NO2N Nitrate/Nitrite-N 0.0112 0.0400 2.93 MG/L 4 3 ML E353.2 0 | Date<br>Analyzed |
|-------------------------------------------------------------------|------------------|
|                                                                   | 05/08/14         |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |
|                                                                   |                  |

Field Sample ID:

MW-35-060-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179402

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 2.39   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-40D-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179403

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.37   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-65-160-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179404

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 12.3   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/12/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-71-035-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179405

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 2.19   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-72-080-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179406

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.991  |   | MG/L  | 1  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-70-105-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179407

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.22   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-60BR-245-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179408

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.148  |   | MG/L  | 1  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-61-110-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179409

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.650  |   | MG/L  | 1  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

### Field Sample ID:

MW-65-225-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179410

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0560 | 0.200 | 6.89   |   | MG/L  | 20 | 3 ML             | E353.2             | 05/12/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    | <u> </u>         |

Field Sample ID:

MW-73-080-198

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N179411

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0560 | 0.200 | 4.95   |   | MG/L  | 20 | 3 ML             | E353.2             | 05/12/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB1-050814

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-050814

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       | 1  |                  |                    |                  |

Field Sample ID:

WB1-051214

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-051214

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/12/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB2-050814

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB2-050814

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB4-050814

SDG No.: N1794 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB4-050814

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/08/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

SDG No.: N1794 Lab Name: CH2M HILL ASL
Analysis Method: E353.2 Concentration Units: MG/L

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-124-198 MW-124-198MS MW-124-198MSD

|                   | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|-------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                   | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte           | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Nitrate/Nitrite-N | 2.33   | 0.500 | 2.90   | 113 | 0.500 | 2.93   | 119 | 0.9  | 90-110 | 15     | * |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

#### Comments:

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

SDG No.: N1794 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS1W0508

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/08/14

Matrix: (Soil/Water) WATER Time Analyzed: 1804

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q |
|-------------------|----------|-------|-----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.488 | 102 | 90-110          |   |
| <u> </u>          |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 | 1 |

<sup>\*</sup> Values outside of QC limits

SDG No.: N1794 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS2W0508

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/08/14

Matrix: (Soil/Water) WATER Time Analyzed: 1834

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q |
|-------------------|----------|-------|-----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.497 | 104 | 90-110          |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |

<sup>\*</sup> Values outside of QC limits

SDG No.: N1794 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS4W0508

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/08/14

Matrix: (Soil/Water) WATER Time Analyzed: 1920

Instrument: SMARTCHEM Concentration Units: MG/L

| _                 |          |       |     | QC Limits |   |
|-------------------|----------|-------|-----|-----------|---|
| Analyte           | Expected | Found | %R  | %R        | Q |
| Nitrate/Nitrite-N | 0.480    | 0.513 | 107 | 90-110    |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       | +   |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           | + |
|                   |          |       | +   |           | + |
|                   |          |       | +   |           |   |
|                   |          |       | +   |           | - |
|                   |          |       |     |           |   |
|                   |          |       | +   |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |

<sup>\*</sup> Values outside of QC limits

SDG No.: N1794 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS1W0512

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/12/14

Matrix: (Soil/Water) WATER Time Analyzed: 1226

Instrument: SMARTCHEM Concentration Units: MG/L

|                   |          |       |    | QC Limits |   |
|-------------------|----------|-------|----|-----------|---|
| Analyte           | Expected | Found | %R | %R        | Q |
| Nitrate/Nitrite-N | 0.480    | 0.470 | 98 | 90-110    |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           | 1 |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           | + |
|                   |          |       |    |           | + |
|                   |          |       |    |           |   |

<sup>\*</sup> Values outside of QC limits

| CH2MHIL                                                                                     | L                   |       |                          |                                        | CHAIN OF CUSTODY RECORD 4/30/2014 12:22:31 PM Page 1 | OF _                 | 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |
|---------------------------------------------------------------------------------------------|---------------------|-------|--------------------------|----------------------------------------|------------------------------------------------------|----------------------|-----------------------------------------|
| Project Name PG Location Topoci Project Manager                                             | τ.                  |       | Container:<br>ervatives: | Poly<br>H2SO4,                         |                                                      |                      |                                         |
| Sample Manager                                                                              | Shawn Du            | ffy   | Filtered:                | NA                                     |                                                      |                      |                                         |
|                                                                                             |                     |       | ling Time:               | 28                                     |                                                      |                      |                                         |
| Project Number of Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: 6 | P-198-Q2<br>10 Days |       | <b>/1.0</b>              | Nitrate/Nitrite (SM4500NO3)<br>Nitrate |                                                      | Number of Containers |                                         |
|                                                                                             | DATE                |       | Matrix                   |                                        |                                                      | <u> </u>             | COMMENTS                                |
| MW-124-198                                                                                  | 4/24/2014           | 7:30  | Water                    | X                                      |                                                      | 1                    | 1                                       |
| MW-35-060-198                                                                               | 4/24/2014           | 10:33 | ├                        | Х                                      |                                                      | 1                    | 2                                       |
| MW-40D-198                                                                                  | 4/24/2014           | 12:44 | Water                    | X                                      |                                                      | 1                    | 3                                       |
| MW-65-160-198                                                                               | 4/24/2014           | 8:55  | Water                    | x                                      |                                                      | 1                    | Ψ.                                      |
| MW-71-035-198                                                                               | 4/24/2014           | 14:00 | Water                    | х                                      |                                                      | 1                    | S                                       |
| MW-72-080-198                                                                               | 4/24/2014           | 7:56  | Water                    | х                                      |                                                      | 1                    | 6                                       |
| MW-70-105-198                                                                               | 4/28/2014           | 11:02 | Water                    | х                                      |                                                      | 1                    | 7                                       |
| MW-60BR-245-198                                                                             | 4/29/2014           | 10:54 | Water                    | х                                      |                                                      | 1                    | 8                                       |
| MW-61-110-198                                                                               | 4/29/2014           | 11:40 | Water                    | х                                      |                                                      | 1                    | 9                                       |
| MW-65-225-198                                                                               | 4/29/2014           | 14:13 | Water                    | х                                      |                                                      | 1                    | 10                                      |
| MW-73-080-198                                                                               | 4/29/2014           | 6:35  | Water                    | х                                      |                                                      | 1                    | 41                                      |

Approved by Sampled by Relinquished by Received by

Relinquished by Received by 

Signatures

Date/Time

**Shipping Details** 

Method of Shipment: On Ice: yes /no

Airbill No:-

Lab Name: CH2M Hit! Lab Phone

rathe Mckney

Special Instructions:

April 9 to May 15 2014

Report Copy to

TOTAL NUMBER OF CONTAINERS

Shawn Duffy

Hac

ATTN:





| SDG ID: N1794                                  |                           | Date Received:     | 5/2/2014        |           |           |          |
|------------------------------------------------|---------------------------|--------------------|-----------------|-----------|-----------|----------|
| Client/Project: Topock                         |                           | Received By:       | Carmen Cole     |           |           |          |
| Were custody seals intact and on the outsi     | ide of the cooler?        |                    |                 | ✓ Yes     | No        | N/A      |
| Shipping Record:                               |                           |                    | Hand [          | Delivered | ✓ On File | coc      |
| Radiological Screening for DoD                 |                           |                    |                 | Yes       | No        | ✓ N/A    |
| Packing Material:                              |                           | Г                  | Hand Delivered  | Ice       | Blue Ice  | Вох      |
| Temp OK? (<6C) Therm ID: TH173 E               | xp. 6/14                  |                    | 2.3 °C          | ✓ Yes     | No        | □ N/A    |
| Was a Chain of Custody (CoC) Provided?         |                           |                    |                 | ✓ Yes     | No        | □ N/A    |
| Was the CoC correctly filled out (If No, doo   | cument below)             |                    |                 | ✓ Yes     | No        | N/A      |
| Did sample labels agree with COC? (If No,      | document below)           |                    |                 | ✓ Yes     | No        | N/A      |
| Did the CoC list a correct bottle count and    | the preservative types (  | Y=OK, N=Correcte   | d on CoC)       | ✓ Yes     | ☐ No      | □ N/A    |
| Were the sample containers in good condi       | tion (broken or leaking)  | ?                  |                 | ✓ Yes     | ☐ No      | N/A      |
| Was enough sample volume provided for a        | analysis? (If No, docume  | ent below)         |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Containers supplied by ASL?                    |                           |                    |                 | ✓ Yes     | ☐ No      | N/A      |
| Any sample with < 1/2 holding time remain      | ing? If so contact LPM    |                    |                 | Yes       | ✓ No      | □ N/A    |
| Samples have multi-phase? If yes, docume       | ent on SRER               |                    |                 | Yes       | ✓ No      | N/A      |
| All water VOCs free of air bubbles? No, do     | ocument on SRER           |                    |                 | Yes       | No        | ✓ N/A    |
| pH of all samples met criteria on receipt? I   | f "No", preserve and do   | cument below.      |                 | ✓ Yes     | ☐ No      | N/A      |
| Dissolved/Soluble metals filtered in the field | d?                        |                    |                 | Yes       | No        | ✓ N/A    |
| Dissolved/Soluble metals have sediment in      | n bottom of container? It | f so document belo | w.              | Yes       | ☐ No      | ✓ N/A    |
|                                                | Preservation              | n Adjustment       |                 |           |           |          |
| Sample ID                                      | Reagent                   | Reagent Lot N      | lumber          | Volu      | me Added  | Initials |
|                                                |                           |                    |                 |           |           |          |
|                                                |                           |                    |                 |           |           |          |
|                                                |                           |                    |                 |           |           |          |
|                                                |                           |                    |                 |           |           |          |
|                                                | e Exception Report (      |                    | ons were noted) |           |           |          |
| Sample Client requested method SM4500 ASL      |                           |                    | ons were noted) |           |           | <u> </u> |
|                                                |                           |                    | ons were noted) |           |           |          |
|                                                |                           |                    | ons were noted) |           |           |          |
|                                                |                           |                    | ons were noted) |           |           |          |
|                                                |                           |                    | ons were noted) |           |           |          |
|                                                |                           |                    | ons were noted) |           |           |          |
| Client requested method SM4500 ASL             | will report by method     |                    | ons were noted) |           |           |          |
| Client requested method SM4500 ASL             | will report by method     |                    | ons were noted) |           |           |          |
| Client requested method SM4500 ASL             | will report by method     |                    | ons were noted) |           |           |          |
| Client requested method SM4500 ASL             | will report by method     |                    | ons were noted) |           |           |          |
| Client requested method SM4500 ASL             | will report by method     |                    | ons were noted) |           |           |          |

#### **ANALYTICAL REPORT**

For:

**PGE Topock** 

ASL Report #: N1853

Project ID: 423575.MP.02.GM.02

**Attn: Jay Piper** 

cc:

Data Center/RDD Shawn Duffy/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

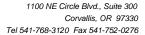
(541) 758-0235 ext.23144

May 19, 2014

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.




Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)

#### **Sample Receipt Comments**

We certify that the test results meet all NELAP requirements.

#### **Sample Cross-Reference**

| ASL       |                  | Date/Time      | Date     |
|-----------|------------------|----------------|----------|
| Sample ID | Client Sample ID | Collected      | Received |
| N185301   | MW-12-198        | 05/01/14 12:14 | 05/09/14 |
| N185302   | MW-127-198       | 05/01/14 07:00 | 05/09/14 |
| N185303   | MW-60-125-198    | 05/01/14 13:31 | 05/09/14 |
| N185304   | MW-66-165-198    | 05/01/14 10:32 | 05/09/14 |
| N185305   | MW-69-195-198    | 05/01/14 08:52 | 05/09/14 |
| N185306   | MW-74-240-198    | 05/01/14 08:10 | 05/09/14 |
| N185307   | MW-26-198        | 05/05/14 11:24 | 05/09/14 |
| N185308   | MW-67-185-198    | 05/05/14 13:48 | 05/09/14 |
| N185309   | MW-67-260-198    | 05/05/14 13:06 | 05/09/14 |
| N185310   | MW-70BR-225-198  | 05/05/14 09:04 | 05/09/14 |
| N185311   | MW-128-198       | 05/06/14 08:30 | 05/09/14 |
| N185312   | MW-67-225-198    | 05/06/14 08:32 | 05/09/14 |
| N185313   | MW-68-240-198    | 05/06/14 07:38 | 05/09/14 |
| N185314   | MW-20-070-198    | 05/07/14 10:17 | 05/09/14 |
| N185315   | MW-20-100-198    | 05/07/14 11:46 | 05/09/14 |
| N185316   | MW-59-100-198    | 05/07/14 08:23 | 05/09/14 |
| N185317   | MW-62-110-198    | 05/07/14 13:50 | 05/09/14 |
| N185318   | MW-62-190-198    | 05/07/14 14:05 | 05/09/14 |
| N185319   | MW-66-230-198    | 05/07/14 07:14 | 05/09/14 |





#### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1853

Project: PGE Topock Project #: 423575.MP.02.GM.02

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

#### **Method(s):**

E353.2

#### **Matrix Spike/Matrix Spike Duplicate(s):**

E353.2: MS recovery of Nitrate/Nitrite-N(116%) in MW-67-260-198MS did not meet acceptance criteria of 90-110%.

MSD recovery of Nitrate/Nitrite-N(121%) in MW-67-260-198MSD did not meet acceptance criteria of 90-110%.

Field Sample ID:

MW-12-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185301

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0560 | 0.200 | 13.9   |   | MG/L  | 20 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-127-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185302

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.224 | 0.800 | 34.1   |   | MG/L  | 80 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-60-125-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185303

| NONNORN Nitrate/Nitrite-N 0.0280 0.100 4.02 MG/L 10 3 ML E353.2 05/14/1- | CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|--------------------------------------------------------------------------|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
|                                                                          | NO3NO2N | Nitrate/Nitrite-N | 0.0280 | 0.100 | 4.02   |   | MG/L  | 10 | 3 ML             | E353.2             | 05/14/14         |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
| Company                                                                  |         |                   |        |       |        |   |       |    |                  |                    |                  |
| Company                                                                  |         |                   |        |       |        |   |       |    |                  |                    |                  |
| Company                                                                  |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |
|                                                                          |         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-66-165-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185304

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.224 | 0.800 | 33.4   |   | MG/L  | 80 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-69-195-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185305

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 19.3   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-74-240-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185306

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.514  |   | MG/L  | 1  | 3 ML             | E353.2             | 05/13/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-26-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185307

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 20.4   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-67-185-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185308

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.224 | 0.800 | 45.4   |   | MG/L  | 80 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    | ı .              |

Field Sample ID:

MW-67-260-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185309

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 1.21   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-67-260-198MS

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185309MS

| NO3NO2N Nitrate/Nitrite-N 0.0112 0.0400 3.53 MG/L 4 3 ML E3 | ysis Date thod Analyzed |
|-------------------------------------------------------------|-------------------------|
|                                                             | 33.2 05/14/14           |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |
|                                                             |                         |

Field Sample ID:

MW-67-260-198MSD

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185309MSD

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.63   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-70BR-225-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185310

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0280 | 0.100 | 3.98   |   | MG/L  | 10 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    | <u> </u>         |
|         |                   |        |       |        |   |       |    |                  |                    | <u> </u>         |
|         |                   |        |       |        |   |       |    |                  |                    | <u> </u>         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-128-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185311

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0280 | 0.100 | 4.50   |   | MG/L  | 10 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-67-225-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185312

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 23.5   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-68-240-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185313

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0280 | 0.100 | 4.66   |   | MG/L  | 10 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-20-070-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185314

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0280 | 0.100 | 7.15   |   | MG/L  | 10 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-20-100-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185315

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0560 | 0.200 | 11.1   |   | MG/L  | 20 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-59-100-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185316

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.57   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/13/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-62-110-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185317

| CAS No. | Analyte           | DL     | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0112 | 0.0400 | 3.74   |   | MG/L  | 4  | 3 ML             | E353.2             | 05/13/14         |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |
|         |                   |        |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-62-190-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185318

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0209 |   | MG/L  | 1  | 3 ML             | E353.2             | 05/13/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         | +                 |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   | i     | I  |                  |                    | 1                |

Field Sample ID:

MW-66-230-198

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N185319

| CAS No. | Analyte           | DL     | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|--------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.0560 | 0.200 | 13.5   |   | MG/L  | 20 | 3 ML             | E353.2             | 05/14/14         |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |
|         |                   |        |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB1-051414

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-051414

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/14/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB2-051314

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB2-051314

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/13/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB3-051414

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB3-051414

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/14/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB4-051314

SDG No.: N1853 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB4-051314

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/13/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

SDG No.: N1853 Lab Name: CH2M HILL ASL
Analysis Method: E353.2 Concentration Units: MG/L

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-67-260-198MS MW-67-260-198MSD

|                   | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |                        |
|-------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|------------------------|
|                   | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |                        |
| Analyte           | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q                      |
| Nitrate/Nitrite-N | 1.21   | 2.00  | 3.53   | 116 | 2.00  | 3.63   | 121 | 3    | 90-110 | 15     | *                      |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        | $\vdash$               |
|                   |        |       |        |     |       |        |     |      |        |        | $\vdash$               |
|                   |        |       |        |     |       |        |     |      |        |        | $\vdash$               |
|                   |        |       |        |     |       |        |     |      |        |        | $\vdash \vdash \vdash$ |
|                   |        |       |        |     |       |        |     |      |        |        |                        |
|                   |        |       |        |     |       |        |     |      |        |        | ldot                   |

<sup>\*</sup> Values outside of QC limits

### Comments:

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1853 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS2W0513

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/13/14

Matrix: (Soil/Water) WATER Time Analyzed: 1501

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R | QC Limits<br>%R | Q |
|-------------------|----------|-------|----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.461 | 96 | 90-110          |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       | -  |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |

<sup>\*</sup> Values outside of QC limits

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1853 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS4W0513

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/13/14

Matrix: (Soil/Water) WATER Time Analyzed: 1621

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R  | QC Limits<br>%R | Q |
|-------------------|----------|-------|-----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.492 | 102 | 90-110          |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       | +   |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       | +   |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       | +   |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |
|                   |          |       |     |                 |   |

<sup>\*</sup> Values outside of QC limits

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1853 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS1W0514

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/14/14

Matrix: (Soil/Water) WATER Time Analyzed: 1336

Instrument: SMARTCHEM Concentration Units: MG/L

|                   |          |       |    | QC Limits |   |
|-------------------|----------|-------|----|-----------|---|
| Analyte           | Expected | Found | %R | %R        | Q |
| Nitrate/Nitrite-N | 0.480    | 0.470 | 98 | 90-110    |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           | 1 |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           |   |
|                   |          |       |    |           | + |
|                   |          |       |    |           | + |
|                   |          |       |    |           |   |

<sup>\*</sup> Values outside of QC limits

#### 7-WC

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1853 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS3W0514

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/14/14

Matrix: (Soil/Water) WATER Time Analyzed: 1414

Instrument: SMARTCHEM Concentration Units: MG/L

|                   |          |       |     | QC Limits |   |
|-------------------|----------|-------|-----|-----------|---|
| Analyte           | Expected | Found | %R  | %R        | Q |
| Nitrate/Nitrite-N | 0.480    | 0.485 | 101 | 90-110    |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           | + |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           | + |
|                   |          |       |     |           |   |
|                   |          |       |     |           | + |
|                   |          |       |     |           | + |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |
|                   |          |       |     |           |   |

<sup>\*</sup> Values outside of QC limits

1,50

10 180 5

### CH2MHILL

CHAIN OF CUSTODY RECORD

5/8/2014 12.12.43 PM

Page \_ F OF \_ z

|                                     |                   |       |           |                                        | · · |            |          |
|-------------------------------------|-------------------|-------|-----------|----------------------------------------|-----|------------|----------|
| Project Name PG                     |                   | i C   | ontainer: | 125 mi<br>Poly                         |     |            |          |
| Location Topock                     |                   | _     |           | H2SO4.                                 |     | ]          | ]        |
| Project Manager                     | ay Piper          | Prese | rvatives: | pH<2<br>4°C                            |     |            |          |
| Sample Manager                      | shawii Dul        | fty   | Filtered: | NA                                     |     | ł          |          |
|                                     |                   |       | ng Time:  | 28                                     |     | 1          |          |
| Project Number 4                    | 23575. <b>M</b> P | 02 GM | 02        | z                                      |     | l          | }        |
| Task Order                          | . 400 00          |       |           | itrate                                 |     | _          |          |
| Project 2014-GMF<br>Turnaround Time |                   | ,     |           | e/Nit                                  |     | Number     | 1        |
| Shipping Date: 5/                   | -                 | •     |           | rite (                                 |     | ber        | l j      |
| COC Number: 8                       |                   |       |           | SM4                                    |     | of C       |          |
|                                     |                   |       |           | Nitrate/Nitrite (SM4500NO3)<br>Nitrate |     | Containers |          |
|                                     |                   |       |           | NO3                                    |     | aine       |          |
|                                     | DATE              | TIME  | Matrix    | )                                      |     | SJ6        | COMMENTS |
| MW-12-198                           | 5/1/2014          | 12:14 | Water     | Х                                      |     | 1          | i        |
| MW-127-198                          | 5/1/2014          | 7:00  | Water     | х                                      |     | 1          | 2        |
| MW-60-125-198                       | 5/1/2014          | 13:31 | Water     | х                                      |     | 1          | 3        |
| MW-66-165-198                       | 5/1/2014          | 10:32 | Water     | х                                      |     | 1          | 4        |
| MW-69-195-198                       | 5/1/2014          | 8:52  | Water     | х                                      |     | 1          | 5        |
| MW-74-240-198                       | 5/1/2014          | 8:10  | Water     | х                                      |     | 1          | 6        |
| MW-26-198                           | 5/5/2014          | 11:24 | Water     | х                                      |     | 1          | 7        |
| MW-67-185-198                       | 5/5/2014          | 13:48 | Water     | х                                      |     | 1          | 8        |
| MW-67-260-198                       | 5/5/2014          | 13:06 | Water     | х                                      |     | 1          | 9        |
| MW-70BR-225-198                     | 5/5/2014          | 9:04  | Water     | х                                      |     | 1          | 10       |
| MW-128-198                          | 5/6/2014          | 8:30  | Water     | х                                      |     | 1          | 11       |
| MW-67-225-198                       | 5/6/2014          | 8:32  | Water     | х                                      |     | 1          | 12       |
| MW-68-240-198                       | 5/6/2014          | 7:38  | Water     | х                                      |     | 1          | 13       |
| MW-20-070-198                       | 5/7/2014          | 10:17 | Water     | х                                      |     | 1          | 14       |
|                                     |                   | 1     |           | •                                      |     |            |          |

Approved by Sampled by Relinquished by Received by

Relinquished by

#EREY SAYIS

**S**ignatures

osmyst 144

Date/Time Shippir
5-8-14
1215
Method of Shipment:

On Ice: (%) no

OSWINY H 1215 Airbill No:

Lab Name: CH2M HILL Applied Sciences Lab

**Shipping Details** 

Lab Phone: (541) 752-4271

Receivedly

ATTN:

Sample Custody

and

Kathy McKinley

Special Instructions:

April 9 to May 15, 2014

Fed Ex#17988 0339 7170 Report Copy to

Shawn Duffy (530) 229-3303

Clarathomann Clarathomann 5/9/19 1130

CH2MHIII

CHAIN OF CUSTODY RECORD

5/8/2014 12:12:43 PM Page 🐰 OF 🐰

| CHZIVINIL                                                                                | -L                                        |       |            | 36/2014 12 12 43 PM         | Page 2 Of | "                    | <u> </u> |
|------------------------------------------------------------------------------------------|-------------------------------------------|-------|------------|-----------------------------|-----------|----------------------|----------|
| Project Name PC                                                                          |                                           |       | onaniei.   | 25 mi<br>Poly<br>12SO4.     |           |                      |          |
| Project Manager                                                                          | tay Piper                                 | Prese | ervatives: | pH<2<br><b>4</b> °C         |           |                      | I        |
| Sample Manager                                                                           | Snawn Duf                                 | ty    | Filtered:  | NA .                        |           | ı                    |          |
|                                                                                          |                                           |       | ing Time:  | 28                          |           | ŀ                    |          |
| Project Number Task Order Project 2014-GM Turnaround Time Shipping Date: 5 COC Number: 8 | ¶P-198-Q2<br><b>∍</b> 10 Days<br>5/8/2014 |       |            | Nitrate/Nitrite (SM4500NO3) | 9         | Number of Containers | COMMENTS |
| MW-20-100-198                                                                            | 5/7/2014                                  | 11:46 | Water      | X                           | ,         | 1                    | 15       |
| MW-59-100-198                                                                            | 5/7/2014                                  | 8:23  | Water      | x                           | ,         | 1                    | الم      |
| MW-62-110-198                                                                            | 5/7/2014                                  | 13:50 | Water      | x                           |           | 1                    | (7       |
|                                                                                          | E17/2044                                  | 14:05 | Water      | x                           |           | 1                    | 18       |
| MW-62-190-198                                                                            | 5/7/2014                                  |       |            |                             |           |                      |          |
| MW-62-190-198<br>MW-66-230-198                                                           | 5/7/2014                                  | 7:14  | Water      | x                           |           | 1                    | 19       |

| Approved by     | Signatures        | Date/Time         | Shipping Details                         | ATTN:          | Special Instructions:      |
|-----------------|-------------------|-------------------|------------------------------------------|----------------|----------------------------|
| Sampled by      | K/I               | 1215              | Method of Shipment: courier              | AIIN:          | April 9 to May 15, 2014    |
| Relinquished by |                   |                   | On ice: (65) no 4.72                     | Sample Custody | T-17 11 200 2220 7130      |
| Received by     | HERSTY SPAY       | 15 08 may 14 1215 | Airbill No:                              | and            | Fed 5x# : 7988 0339 7170   |
| Relinquished by |                   | 08 MAY14 1948     | Lab Name: CH2M HILL Applied Sciences Lab | Kathy McKinley | Report Copy to Shawn Duffy |
| Received by     | Manda Cortes      | 5/8/14 1440       | Lab Phone: (541) 752-4271                | ,,             | (530) 229-3303             |
| Relinquished    | ley: Amanda Corte | × 518/14 1500     | Received sly.                            | Clarationen    | dain Thomash 5/9/14        |





|                                                |                        | Date Received:                     | 5/9/2014       |           |           |          |
|------------------------------------------------|------------------------|------------------------------------|----------------|-----------|-----------|----------|
| Client/Project: PGE Topock                     |                        | Received By:                       | Clara Thomann  |           |           |          |
| Were custody seals intact and on the outsi     | de of the cooler?      |                                    |                | ✓ Yes     | ☐ No      | □ N/A    |
| Shipping Record:                               |                        |                                    | Hand [         | Delivered | ✓ On File | Сос      |
| Radiological Screening for DoD                 |                        |                                    |                | Yes       | ☐ No      | ✓ N/A    |
| Packing Material:                              |                        |                                    | Hand Delivered | ✓ Ice     | Blue Ice  | Вох      |
| Temp OK? (<6C) Therm ID: TH173 E               | xp. <u>6/14</u>        |                                    | 2.3°C          | ✓ Yes     | No        | □ N/A    |
| Was a Chain of Custody (CoC) Provided?         |                        |                                    |                | ✓ Yes     | ☐ No      | □ N/A    |
| Was the CoC correctly filled out (If No, doo   | cument below)          |                                    |                | ✓ Yes     | No        | □ N/A    |
| Did sample labels agree with COC? (If No,      | document below)        |                                    |                | ✓ Yes     | No        | N/A      |
| Did the CoC list a correct bottle count and    | the preservative type  | es (Y=OK, N=Corrected              | d on CoC)      | ✓ Yes     | No        | □ N/A    |
| Were the sample containers in good condi       | tion (broken or leakin | ng)?                               |                | ✓ Yes     | No        | N/A      |
| Was enough sample volume provided for a        | analysis? (If No, docu | iment below)                       |                | ✓ Yes     | No        | □ N/A    |
| Containers supplied by ASL?                    |                        |                                    |                | ✓ Yes     | ☐ No      | □ N/A    |
| Any sample with < 1/2 holding time remain      | ing? If so contact LP  | PM                                 |                | Yes       | ✓ No      | □ N/A    |
| Samples have multi-phase? If yes, docume       | ent on SRER            |                                    |                | Yes       | ✓ No      | N/A      |
| All water VOCs free of air bubbles? No, do     | ocument on SRER        |                                    |                | Yes       | No        | ✓ N/A    |
| pH of all samples met criteria on receipt? I   | f "No", preserve and   | document below.                    |                | ✓ Yes     | ☐ No      | □ N/A    |
| Dissolved/Soluble metals filtered in the field | d?                     |                                    |                | Yes       | ☐ No      | ✓ N/A    |
| Dissolved/Soluble metals have sediment in      | bottom of container    | ? If so document below             | N              | Yes       | ☐ No      | ✓ N/A    |
|                                                | Preservat              | ion Adjustment                     |                |           |           |          |
|                                                |                        |                                    | _              |           |           | Initials |
| Sample ID                                      | Reagent                | Reagent Lot N                      | lumber         | Volur     | ne Added  |          |
| Sample ID                                      |                        | Reagent Lot N                      | lumber         | Volur     | ne Added  |          |
| Sample ID                                      |                        | Reagent Lot N                      | lumber         | Volur     | ne Added  |          |
| Sample ID                                      |                        | Reagent Lot N                      | lumber         | Volur     | ne Added  |          |
|                                                | Reagent                | Reagent Lot N                      |                | Volur     | ne Added  |          |
|                                                | Reagent                |                                    |                | Volur     | ne Added  |          |
|                                                | Reagent                | <b>'t</b> (The following exception |                | Volur     | ne Added  |          |

## **ANALYTICAL REPORT**

For:

PGE Topock - 014-GMP-198-02

ASL Report #: N1894

Project ID: 423575.MP.02.GM.02

**Attn: Jay Piper** 

Data Center/RDD Shawn Duffy/RDD

Authorized and Released By:

Laboratory Project Manager

Kothy Mckincey

Kathy McKinley

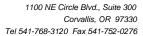
(541) 758-0235 ext.23144

May 27, 2014

All analyses performed by CH2M HILL are clearly indicated. Any subcontracted analyses are included as appended reports as received from the subcontracted laboratory. The results included in this report only relate to the samples listed on the following Sample Cross-Reference page. This report shall not be reproduced except in full, without the written approval of the laboratory.

Any unusual difficulties encountered during the analysis of your samples are discussed in the attached case narratives.




Accredited in accordance with NELAP: Oregon (100022) Arizona (0771) Louisiana (05031)

### **Sample Receipt Comments**

We certify that the test results meet all NELAP requirements.

## **Sample Cross-Reference**

| ASL       |                  | Date/Time      | Date     |
|-----------|------------------|----------------|----------|
| Sample ID | Client Sample ID | Collected      | Received |
| N189401   | MW-20-130-198    | 05/12/14 12:26 | 05/16/14 |
| N189402   | MW-51-198        | 05/12/14 11:12 | 05/16/14 |
| N189403   | MW-68-180-198    | 05/12/14 07:00 | 05/16/14 |
| N189404   | MW-66BR-270-198  | 05/13/14 09:40 | 05/16/14 |
| N189405   | MW-68BR-280-198  | 05/13/14 08:40 | 05/16/14 |
| N189406   | TW-01-198        | 05/13/14 11:56 | 05/16/14 |
| N189407   | MW-10-198        | 05/14/14 07:18 | 05/16/14 |
| N189408   | MW-120-198       | 05/14/14 07:00 | 05/16/14 |





### CASE NARRATIVE GENERAL CHEMISTRY ANALYSIS

Lab Name: CH2M HILL ASL ASL SDG#: N1894

Project: PGE Topock Project #: 423575.MP.02.GM.02

With the exceptions noted as flags, footnotes, or detailed in the section below; standard operating procedures were followed in the analysis of the samples and no problems were encountered or anomalies observed.

All laboratory quality control samples were within established control limits, with any exceptions noted below, or in the associated QC summary forms.

Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. For diluted samples, the reporting limits are adjusted for the dilution required.

Calculations are performed before rounding to minimize errors in calculated values.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the section below, or in the sample receipt documentation.

### **Method(s):**

E353.2

#### Matrix Spike/Matrix Spike Duplicate(s):

E353.2: MS recovery of Nitrate/Nitrite-N(172%) in MW-120-198MS did not meet acceptance criteria because the concentration of analyte in the sample was significantly higher than the added spike concentration. MSD recovery of Nitrate/Nitrite-N(166%) in MW-120-198MSD did not meet acceptance criteria because the concentration of analyte in the sample was significantly higher than the added spike concentration.

K0140521-16:05-N1894-W Page 7 of 42

Field Sample ID:

MW-20-130-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189401

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 12.9   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/21/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-51-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189402

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 11.3   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/21/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   | -     |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    | ]                |

Field Sample ID:

MW-68-180-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189403

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 14.9   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/21/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-66BR-270-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189404

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/21/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   | -       |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    | <u> </u>         |

Field Sample ID:

MW-68BR-280-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189405

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/21/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

Field Sample ID:

TW-01-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189406

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 19.5   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/21/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-10-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189407

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 11.2   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/21/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

MW-120-198

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189408

| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 10.6 |      |    |      |        | Analyzed |
|---------|-------------------|-------|-------|------|------|----|------|--------|----------|
|         |                   |       | 0.300 | 10.0 | MG/L | 50 | 3 ML | E353.2 | 05/21/14 |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |
|         |                   |       |       |      |      |    |      |        |          |

Field Sample ID:

MW-120-198MS

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189408MS

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 11.5   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/21/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         | +                 |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         | +                 |       |       |        |   |       |    |                  |                    |                  |
|         | +                 |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   | I     | l     | I      | 1 | 1     | I  |                  |                    | 1                |

Field Sample ID:

MW-120-198MSD

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: N189408MSD

| CAS No. | Analyte           | DL    | PQL   | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|-------|-------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.140 | 0.500 | 11.4   |   | MG/L  | 50 | 3 ML             | E353.2             | 05/21/14         |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |
|         |                   |       |       |        |   |       |    |                  |                    |                  |

Field Sample ID:

WB1-052114

SDG No.: N1894 Lab Name: CH2M HILL ASL

Matrix: WATER Lab Sample ID: WB1-052114

Date Received: / /

| CAS No. | Analyte           | DL      | PQL    | Result | Q | Units | DF | Sample<br>Amount | Analysis<br>Method | Date<br>Analyzed |
|---------|-------------------|---------|--------|--------|---|-------|----|------------------|--------------------|------------------|
| NO3NO2N | Nitrate/Nitrite-N | 0.00280 | 0.0100 | 0.0100 | U | MG/L  | 1  | 3 ML             | E353.2             | 05/21/14         |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |
|         |                   |         |        |        |   |       |    |                  |                    |                  |

#### 5A-WC

#### WATER GENERAL CHEMISTRY MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

SDG No.: N1894 Lab Name: CH2M HILL ASL
Analysis Method: E353.2 Concentration Units: MG/L

Native Sample ID: Matrix Spike ID: Matrix Spike Duplicate ID:

MW-120-198 MW-120-198MS MW-120-198MSD

|                   | Native | MS    |        |     | MSD   |        |     |      | QC     | QC     |   |
|-------------------|--------|-------|--------|-----|-------|--------|-----|------|--------|--------|---|
|                   | Sample | Spike | MS     | MS  | Spike | MSD    | MSD |      | Limits | Limits |   |
| Analyte           | Result | Added | Result | %R  | Added | Result | %R  | %RPD | %R     | %RPD   | Q |
| Nitrate/Nitrite-N | 10.6   | 0.500 | 11.5   | 172 | 0.500 | 11.4   | 166 | 0.3  | 90-110 | 15     | * |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |
|                   |        |       |        |     |       |        |     |      |        |        |   |

<sup>\*</sup> Values outside of QC limits

#### Comments:

Result values >MDL in the native sample are used in the MS/MSD recovery calculation.

#### 7-WC

#### GENERAL CHEMISTRY LABORATORY CONTROL SAMPLE

SDG No.: N1894 Lab Name: CH2M HILL ASL

Analysis Method: E353.2 LCS ID: BS1W0521

Initial Calibration ID: 050814NO32cal Date Analyzed: 05/21/14

Matrix: (Soil/Water) WATER Time Analyzed: 1210

Instrument: SMARTCHEM Concentration Units: MG/L

| Analyte           | Expected | Found | %R | QC Limits<br>%R | Q |
|-------------------|----------|-------|----|-----------------|---|
| Nitrate/Nitrite-N | 0.480    | 0.465 | 97 | 90-110          |   |
| Niciate/Niciite-N | 0.400    | 0.403 | 91 | 90-110          |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |
|                   |          |       |    |                 |   |

<sup>\*</sup> Values outside of QC limits

N1894 4.3

| CH2MHIL                                                                                   | L                                           |             |                          |                                        | CHAIN OF CUSTODY RECORD 5/14/2014 1:44:05 PM Page 1 | OF _                 | 1        |
|-------------------------------------------------------------------------------------------|---------------------------------------------|-------------|--------------------------|----------------------------------------|-----------------------------------------------------|----------------------|----------|
| Project Name PG<br>Location Topoci<br>Project Manager                                     | k .                                         |             | Container:<br>ervatives: | Poly<br>H2SO4.                         |                                                     |                      |          |
| Sample Manager                                                                            | Shawn Du                                    | ffy         | Filtered:                | NA                                     |                                                     |                      |          |
| 1                                                                                         |                                             |             | ling Time:               | 28                                     |                                                     |                      |          |
| Project Number Task Order Project 2014-GM Turnaround Time Shipping Date: 4 COC Number: Ci | P-198-Q2<br>10 Days<br>/3/2014<br>HMC-198-0 | s<br>Q2     |                          | Nitrate/Nitrite (SM4500NO3)<br>Nitrate |                                                     | Number of Containers |          |
| MW-20-130-198                                                                             | DATE                                        | <del></del> | Matrix                   |                                        |                                                     | <u> </u>             | COMMENTS |
|                                                                                           | 5/12/2014                                   | 12:26       | Water                    | X                                      |                                                     | 1                    |          |
| MW-51-198                                                                                 | 5/12/2014                                   | 11:12       | Water                    | Х                                      |                                                     | 1                    | ے        |
| MW-68-180-198                                                                             | 5/12/2014                                   | 7:00        | Water                    | Х                                      |                                                     | 1                    | 3        |
| MW-66BR-270-198                                                                           | 5/13/2014                                   | 9:40        | Water                    | х                                      |                                                     | 1                    | 4        |
| MW-68BR-280-198                                                                           | 5/13/2014                                   | 8:40        | Water                    | х                                      |                                                     | 1                    | 5        |
| TW-01-198                                                                                 | 5/13/2014                                   | 11:56       | Water                    | x                                      |                                                     | 1                    | 6        |
| MW-10-198                                                                                 | 5/14/2014                                   | 7:18        | Water                    | х                                      |                                                     | 1                    | 7        |
| MW-120-198                                                                                | 5/14/2014                                   | 7:00        | Water                    | Х                                      |                                                     | 1                    | 8        |
|                                                                                           |                                             |             |                          |                                        | TOTAL NUMBER OF CONTAINERS                          | 8                    |          |

| Page             |                | FEDER 7988 6517 417! |                                              |                        |                               |  |  |
|------------------|----------------|----------------------|----------------------------------------------|------------------------|-------------------------------|--|--|
| ്<br>Approved by | Signatures     | Date/Time            | Shipping Details                             |                        | Special Instructions:         |  |  |
| Sampled by       |                | 5-14-14<br>1352      | Method of Shipment: 1 od£3                   | ATTN:                  | ALR D 10 May 10, 2011         |  |  |
| Relinquished by  | MI             | 130                  | On Ice: (yes / no - Yara)                    | Patricy the Park       |                               |  |  |
| Received by      | is though y    | 1/14/14 1510         | Airbill No:                                  | ला । इ <b>र</b> ो      | <b>.</b>                      |  |  |
| Relinquished by  | Box alw        | - 1/4/A 1 /-         | Lab Name: @#@ff/ 1883 Applied 20 1000 for an | K within Mik Millister | Report Copy to Shawn Joints   |  |  |
| Received by      | 10 Africal Lag | - 1/1/h 16-1-1       | Lab Phone: 1997                              |                        | - 20 PAGE WEG 5 - 1 STORES TO |  |  |
| RELA BY          | 7              | LED FIGHWA           | The was                                      |                        |                               |  |  |





| SDG ID: N1894                                 |                          | Date Received:   | 5/16/2014       |           |           |          |
|-----------------------------------------------|--------------------------|------------------|-----------------|-----------|-----------|----------|
| Client/Project: Topock                        |                          | Received By:     | Carmen Cole     |           |           |          |
| Were custody seals intact and on the outsi    | de of the cooler?        |                  |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Shipping Record:                              |                          |                  | ☐ Hand I        | Delivered | ✓ On File | □ coc    |
| Radiological Screening for DoD                |                          |                  |                 | Yes       | No        | ✓ N/A    |
| Packing Material:                             |                          |                  | Hand Delivered  | ✓ Ice     | Blue Ice  | Вох      |
| Temp OK? (<6C) Therm ID: TH173 E              | xp. <u>6/14</u>          |                  | 4.3 °C          | ✓ Yes     | No        | □ N/A    |
| Was a Chain of Custody (CoC) Provided?        |                          |                  |                 | ✓ Yes     | No        | □ N/A    |
| Was the CoC correctly filled out (If No, doo  | cument below)            |                  |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Did sample labels agree with COC? (If No,     |                          | ✓ Yes            | ☐ No            | □ N/A     |           |          |
| Did the CoC list a correct bottle count and   | the preservative types ( | Y=OK, N=Correcte | ed on CoC)      | ✓ Yes     | ☐ No      | □ N/A    |
| Were the sample containers in good condi      | tion (broken or leaking) | ?                |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Was enough sample volume provided for a       | analysis? (If No, docume | ent below)       |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Containers supplied by ASL?                   |                          |                  |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Any sample with < 1/2 holding time remain     | ing? If so contact LPM   |                  |                 | Yes       | ✓ No      | □ N/A    |
| Samples have multi-phase? If yes, docume      | ent on SRER              |                  |                 | Yes       | ✓ No      | □ N/A    |
| All water VOCs free of air bubbles? No, do    | ocument on SRER          |                  |                 | Yes       | ☐ No      | ✓ N/A    |
| pH of all samples met criteria on receipt? I  | f "No", preserve and do  | cument below.    |                 | ✓ Yes     | ☐ No      | □ N/A    |
| Dissolved/Soluble metals filtered in the fiel | d?                       |                  |                 | Yes       | No        | ✓ N/A    |
| Dissolved/Soluble metals have sediment in     | bottom of container? If  | so document belo | w.              | Yes       | No        | ✓ N/A    |
|                                               | Preservation             | n Adjustment     |                 |           |           |          |
| Sample ID                                     | Reagent                  | Reagent Lot N    | Number          | Volun     | ne Added  | Initials |
|                                               |                          |                  |                 |           |           |          |
|                                               |                          |                  |                 |           |           |          |
|                                               |                          |                  |                 |           |           |          |
|                                               |                          |                  |                 |           |           |          |
|                                               | Exception Report (       |                  | ons were noted) |           |           |          |
| Sample Client requested method SM4500 ASL     |                          |                  | ons were noted) |           |           |          |
|                                               |                          |                  | ons were noted) |           |           |          |
|                                               |                          |                  | ons were noted) |           |           |          |
|                                               |                          |                  | ons were noted) |           |           |          |
|                                               |                          |                  | ons were noted) |           |           |          |
|                                               |                          |                  | ons were noted) |           |           |          |
|                                               |                          |                  | ons were noted) |           |           |          |
| Client requested method SM4500 ASL            | will report by method    |                  | ons were noted) |           |           |          |
| Client requested method SM4500 ASL            | will report by method    |                  | ons were noted) |           |           |          |
| Client requested method SM4500 ASL            | will report by method    |                  | ons were noted) |           |           |          |
| Client requested method SM4500 ASL            | will report by method    |                  | ons were noted) |           |           |          |
| Client requested method SM4500 ASL            | will report by method    |                  | ons were noted) |           |           |          |

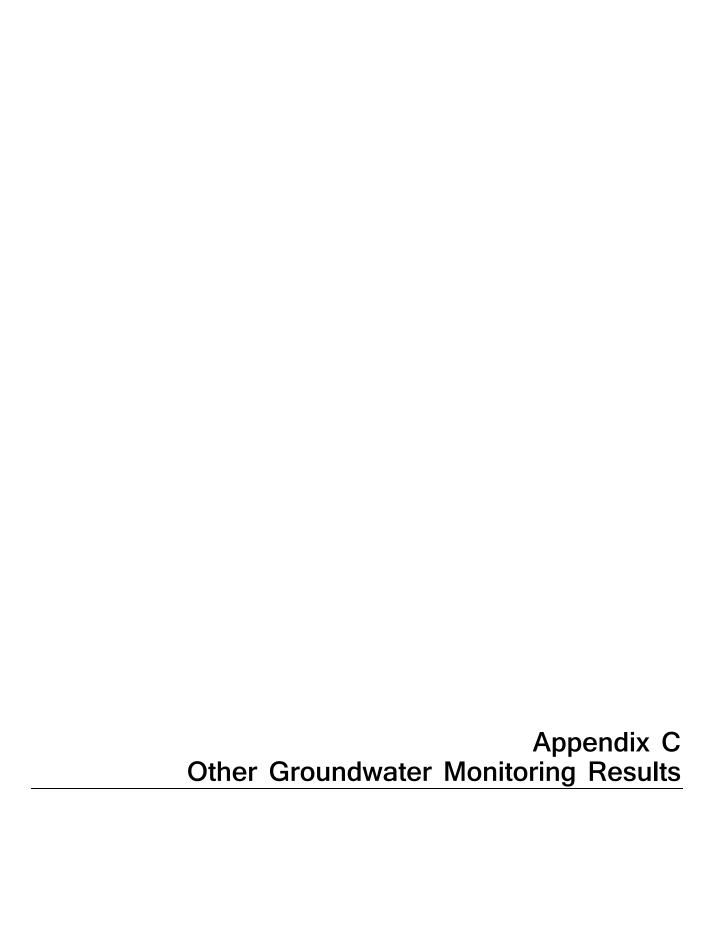



TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID   | Aquifer<br>Zone | Sample<br>Date |    | Dissolved<br>Arsenic<br>(μg/L) |  |
|-----------|-----------------|----------------|----|--------------------------------|--|
| MW-10     | SA              | 12-Dec-13      |    | 4.5                            |  |
| MW-12     | SA              | 25-Sep-13      |    | 40.0                           |  |
|           |                 | 10-Dec-13      |    | 38.0                           |  |
|           |                 | 25-Feb-14      |    | 42.0                           |  |
|           |                 | 01-May-14      |    | 38.0                           |  |
| MW-13     | SA              | 13-Nov-13      |    | 1.9                            |  |
| MW-16     | SA              | 06-Nov-13      |    | 9.1                            |  |
|           |                 | 22-Apr-14      |    | 10.0                           |  |
| MW-17     | SA              | 11-Nov-13      |    | 1.3                            |  |
|           |                 | 23-Apr-14      |    | 1.4                            |  |
| MW-20-130 | DA              | 17-Dec-13      |    | 4.9                            |  |
|           |                 | 17-Dec-13      | FD | 4.9                            |  |
|           |                 | 12-May-14      |    | 5.0                            |  |
| MW-22     | SA              | 14-Nov-13      |    | 14.0                           |  |
|           |                 | 30-Apr-14      |    | 12.0                           |  |
| MW-23-060 | BR              | 17-Sep-13      |    | 4.0                            |  |
|           |                 | 11-Nov-13      |    | 3.0                            |  |
|           |                 | 13-Feb-14      |    | 3.6                            |  |
|           |                 | 22-Apr-14      |    | 2.6                            |  |
| MW-23-080 | BR              | 17-Sep-13      |    | 2.4                            |  |
|           |                 | 11-Nov-13      |    | 3.0                            |  |
|           |                 | 13-Feb-14      |    | 3.6                            |  |
|           |                 | 22-Apr-14      |    | 2.7                            |  |
| MW-25     | SA              | 09-Dec-13      |    | 1.2                            |  |
| MW-26     | SA              | 04-Dec-13      |    | 1.8                            |  |
|           |                 | 05-May-14      |    | 1.7                            |  |
| MW-27-20  | SA              | 04-Nov-13      |    | 1.3                            |  |
|           |                 | 14-Apr-14      |    | 0.84                           |  |
| MW-27-60  | MA              | 02-Oct-13      |    | 6.4                            |  |
|           |                 | 04-Nov-13      |    | 6.3                            |  |
|           |                 | 10-Feb-14      |    | 6.5                            |  |
|           |                 | 14-Apr-14      |    | 6.9                            |  |
|           |                 | 14-Apr-14      | FD | 7.2                            |  |
| MW-27-85  | DA              | 02-Oct-13      |    | 1.4                            |  |
|           |                 | 04-Nov-13      |    | 1.3                            |  |
|           |                 | 10-Feb-14      |    | 1.4                            |  |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID   | Aquifer<br>Zone | Sample<br>Date |    | Dissolved<br>Arsenic<br>(μg/L) |  |
|-----------|-----------------|----------------|----|--------------------------------|--|
| MW-27-85  | DA              | 14-Apr-14      |    | 0.18                           |  |
| MW-28-25  | SA              | 05-Nov-13      |    | 1.0                            |  |
|           |                 | 15-Apr-14      |    | 1.8                            |  |
| MW-28-90  | DA              | 11-Sep-13      |    | 1.7                            |  |
|           |                 | 05-Nov-13      |    | 1.5                            |  |
|           |                 | 12-Feb-14      |    | 1.7                            |  |
|           |                 | 15-Apr-14      |    | 1.8                            |  |
|           |                 | 15-Apr-14      | FD | 1.8                            |  |
| MW-29     | SA              | 05-Nov-13      |    | 6.4                            |  |
|           |                 | 05-Nov-13      | FD | 6.1                            |  |
|           |                 | 16-Apr-14      |    | 5.7                            |  |
| MW-30-30  | SA              | 04-Nov-13      |    | 0.84                           |  |
| MW-30-50  | MA              | 04-Nov-13      |    | 2.7                            |  |
| MW-31-60  | SA              | 03-Dec-13      |    | 1.2                            |  |
| MW-31-135 | DA              | 07-Nov-13      |    | 3.4                            |  |
| MW-32-20  | SA              | 16-Dec-13      |    | 3.6                            |  |
| MW-32-35  | SA              | 06-Nov-13      |    | 23.0                           |  |
|           |                 | 16-Apr-14      |    | 27.0                           |  |
| MW-33-40  | SA              | 16-Sep-13      |    | 11.0                           |  |
|           |                 | 03-Dec-13      |    | 12.0                           |  |
|           |                 | 12-Feb-14      |    | 13.0                           |  |
|           |                 | 17-Apr-14      |    | 14.0                           |  |
| MW-33-90  | MA              | 16-Sep-13      |    | 1.4                            |  |
|           |                 | 03-Dec-13      |    | 1.3                            |  |
|           |                 | 12-Feb-14      |    | 1.3                            |  |
|           |                 | 21-Apr-14      |    | 1.3                            |  |
|           |                 | 21-Apr-14      | FD | 1.3                            |  |
| MW-33-150 | DA              | 16-Sep-13      |    | 1.8                            |  |
|           |                 | 03-Dec-13      |    | 1.7                            |  |
|           |                 | 12-Feb-14      |    | 1.6                            |  |
|           |                 | 12-Feb-14      | FD | 1.7                            |  |
|           |                 | 17-Apr-14      |    | 1.1                            |  |
| MW-33-210 | DA              | 12-Sep-13      |    | 1.2                            |  |
|           |                 | 03-Dec-13      |    | 1.1                            |  |
|           |                 | 03-Dec-13      | FD | 1.2                            |  |
|           |                 | 12-Feb-14      |    | 1.1                            |  |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID   | Aquifer<br>Zone | Sample<br>Date |    | Dissolved<br>Arsenic<br>(μg/L) |  |
|-----------|-----------------|----------------|----|--------------------------------|--|
| MW-33-210 | DA              | 21-Apr-14      |    | 0.94                           |  |
| MW-34-55  | MA              | 20-Nov-13      |    | 2.6                            |  |
| MW-34-80  | DA              | 02-Oct-13      |    | 1.3                            |  |
|           |                 | 20-Nov-13      |    | 1.3                            |  |
|           |                 | 20-Nov-13      | FD | 1.3                            |  |
|           |                 | 10-Feb-14      |    | 1.3                            |  |
|           |                 | 17-Apr-14      |    | 1.4                            |  |
| MW-34-100 | DA              | 02-Oct-13      |    | 1.2                            |  |
|           |                 | 02-Oct-13      | FD | 1.3                            |  |
|           |                 | 20-Nov-13      |    | 1.5                            |  |
|           |                 | 20-Nov-13      | FD | 1.4                            |  |
|           |                 | 16-Dec-13      |    | 2.2                            |  |
|           |                 | 22-Jan-14      |    | 1.8                            |  |
|           |                 | 10-Feb-14      |    | 1.6                            |  |
|           |                 | 17-Apr-14      |    | 1.3                            |  |
| MW-35-60  | SA              | 10-Sep-13      |    | 0.93                           |  |
|           |                 | 12-Nov-13      |    | 0.91                           |  |
|           |                 | 17-Feb-14      |    | 1.1                            |  |
|           |                 | 17-Feb-14      | FD | 1.0                            |  |
|           |                 | 24-Apr-14      |    | 1.0                            |  |
|           |                 | 24-Apr-14      | FD | 1.0                            |  |
| MW-35-135 | DA              | 12-Nov-13      |    | 0.85                           |  |
| MW-36-20  | SA              | 11-Nov-13      |    | 1.5 J                          |  |
|           |                 | 11-Nov-13      | FD | 1.2 J                          |  |
| MW-36-40  | SA              | 11-Nov-13      |    | 4.7                            |  |
| MW-36-50  | MA              | 11-Nov-13      |    | 3.6                            |  |
| MW-36-70  | MA              | 11-Nov-13      |    | 3.5                            |  |
| MW-36-90  | DA              | 11-Nov-13      |    | 20.0                           |  |
|           |                 | 17-Apr-14      |    | 19.0                           |  |
| MW-36-100 | DA              | 16-Dec-13      |    | 7.1                            |  |
|           |                 | 17-Apr-14      |    | 8.5                            |  |
| MW-37S    | MA              | 06-Nov-13      |    | 1.6                            |  |
| MW-38D    | DA              | 17-Sep-13      |    | 6.5                            |  |
|           |                 | 13-Nov-13      |    | 6.6                            |  |
|           |                 | 14-May-14      |    | 6.5                            |  |
| MW-38S    | SA              | 24-Sep-13      |    | 13.0                           |  |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID   | Aquifer<br>Zone | Sample<br>Date          | Dissolved<br>Arsenic<br>(μg/L) |
|-----------|-----------------|-------------------------|--------------------------------|
| MW-38S    | SA              | 03-Dec-13               | 13.0                           |
|           |                 | 14-May-14               | 11.0                           |
| MW-39-40  | SA              | 12-Nov-13               | 17.0                           |
| MW-39-50  | MA              | 12-Nov-13               | 3.5                            |
| MW-39-60  | MA              | 12-Nov-13               | 5.2                            |
| MW-39-100 | DA              | 04-Dec-13               | 2.2                            |
|           |                 | 04-Dec-13 <sub>FD</sub> | 2.0                            |
| MW-40D    | DA              | 02-Dec-13               | 4.3                            |
|           |                 | 24-Apr-14               | 3.9                            |
| MW-40S    | SA              | 11-Nov-13               | 1.5                            |
| MW-41D    | DA              | 04-Nov-13               | 2.1                            |
| MW-41M    | DA              | 04-Nov-13               | 1.8                            |
| MW-41S    | SA              | 04-Nov-13               | 1.7                            |
| MW-42-30  | SA              | 05-Nov-13               | 3.1                            |
| MW-42-55  | MA              | 11-Sep-13               | 11.0                           |
|           |                 | 05-Nov-13               | 11.0                           |
|           |                 | 11-Feb-14               | 13.0                           |
|           |                 | 14-Apr-14               | 11.0                           |
| MW-42-65  | MA              | 11-Sep-13               | 2.6                            |
|           |                 | 05-Nov-13               | 2.2                            |
|           |                 | 11-Feb-14               | 2.2                            |
|           |                 | 14-Apr-14               | 3.0                            |
| MW-43-25  | SA              | 06-Nov-13               | 19.0                           |
|           |                 | 15-Apr-14               | 16.0                           |
| MW-43-75  | DA              | 06-Nov-13               | 12.0                           |
| MW-43-90  | DA              | 06-Nov-13               | 3.1                            |
|           |                 | 15-Apr-14               | 3.1                            |
| MW-44-70  | MA              | 02-Dec-13               | 4.1                            |
|           |                 | 16-Apr-14               | 4.2                            |
| MW-44-115 | DA              | 12-Sep-13               | 6.0                            |
|           |                 | 02-Dec-13               | 5.4                            |
|           |                 | 11-Feb-14               | 5.5                            |
|           |                 | 16-Apr-14               | 5.8                            |
| MW-44-125 | DA              | 12-Sep-13               | 3.6                            |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID    | Aquifer<br>Zone | Sample<br>Date |    | Dissolved<br>Arsenic<br>(μg/L) |  |
|------------|-----------------|----------------|----|--------------------------------|--|
| MW-44-125  | DA              | 02-Dec-13      |    | 3.1                            |  |
|            |                 | 02-Dec-13      | FD | 3.3                            |  |
|            |                 | 11-Feb-14      |    | 3.4                            |  |
|            |                 | 11-Feb-14      | FD | 3.5                            |  |
|            |                 | 16-Apr-14      |    | 2.7                            |  |
|            |                 | 16-Apr-14      | FD | 3.2                            |  |
| MW-45-095a | DA              | 02-Dec-13      |    | 3.2                            |  |
| MW-47-55   | SA              | 12-Nov-13      |    | 1.2                            |  |
| MW-49-135  | DA              | 06-Nov-13      |    | 1.9                            |  |
| MW-51      | MA              | 11-Dec-13      |    | 3.8                            |  |
|            |                 | 12-May-14      |    | 3.9                            |  |
| MW-52D     | DA              | 13-Nov-13      |    | 3.8                            |  |
|            |                 | 30-Apr-14      |    | 3.3                            |  |
| MW-52M     | DA              | 13-Nov-13      |    | 1.9                            |  |
|            |                 | 13-Nov-13      | FD | 1.9                            |  |
|            |                 | 30-Apr-14      |    | 1.4                            |  |
| MW-52S     | MA              | 13-Nov-13      |    | 0.23                           |  |
|            |                 | 30-Apr-14      |    | 0.21                           |  |
| MW-53D     | DA              | 13-Nov-13      |    | 3.1                            |  |
|            |                 | 30-Apr-14      |    | 3.4                            |  |
| MW-53M     | DA              | 13-Nov-13      |    | 0.95                           |  |
|            |                 | 30-Apr-14      |    | 0.84                           |  |
| MW-54-85   | DA              | 21-Nov-13      |    | 3.4                            |  |
|            |                 | 09-Apr-14      |    | 3.5                            |  |
| MW-54-140  | DA              | 21-Nov-13      |    | 2.1                            |  |
|            |                 | 09-Apr-14      |    | 2.6                            |  |
|            |                 | 09-Apr-14      | FD | 1.4                            |  |
| MW-54-195  | DA              | 21-Nov-13      |    | ND (0.2)                       |  |
|            |                 | 09-Apr-14      |    | 0.23                           |  |
| MW-57-070  | BR              | 12-Dec-13      |    | 1.5                            |  |
| MW-57-185  | BR              | 10-Sep-13      |    | 15.0                           |  |
|            |                 | 07-Nov-13      |    | 14.0                           |  |
|            |                 | 07-Nov-13      | FD | 14.0                           |  |
|            |                 | 13-Feb-14      |    | 13.0                           |  |
|            |                 | 22-Apr-14      |    | 13.0                           |  |
| MW-58BR    | BR              | 19-Sep-13      |    | 1.0                            |  |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID     | Aquifer<br>Zone | Sample<br>Date |    | Dissolved<br>Arsenic<br>(µg/L) |  |
|-------------|-----------------|----------------|----|--------------------------------|--|
| MW-58BR     | BR              | 17-Dec-13      |    | 0.97                           |  |
|             |                 | 25-Feb-14      |    | 1.2                            |  |
|             |                 | 06-May-14      |    | 1.0                            |  |
| MW-59-100   | SA              | 25-Sep-13      |    | 2.5                            |  |
|             |                 | 10-Dec-13      |    | 2.1                            |  |
|             |                 | 25-Feb-14      |    | 2.3                            |  |
|             |                 | 07-May-14      |    | 2.1                            |  |
| MW-60-125   | BR              | 24-Sep-13      |    | 1.4                            |  |
|             |                 | 24-Sep-13      | FD | 1.4                            |  |
|             |                 | 04-Dec-13      |    | 1.4                            |  |
|             |                 | 25-Feb-14      |    | 1.4                            |  |
|             |                 | 01-May-14      |    | 1.5                            |  |
| MW-60BR-245 | BR              | 17-Sep-13      |    | 6.4                            |  |
|             |                 | 04-Dec-13      |    | 5.9                            |  |
|             |                 | 19-Feb-14      |    | 6.4                            |  |
|             |                 | 29-Apr-14      |    | 6.8                            |  |
| MW-61-110   | BR              | 23-Sep-13      |    | 3.3                            |  |
|             |                 | 05-Dec-13      |    | 3.4                            |  |
|             |                 | 05-Dec-13      | FD | 3.6                            |  |
|             |                 | 19-Feb-14      |    | 3.5                            |  |
|             |                 | 29-Apr-14      |    | 3.1                            |  |
| MW-62-065   | BR              | 11-Dec-13      |    | 1.2                            |  |
| MW-62-110   | BR              | 18-Sep-13      |    | 8.2                            |  |
|             |                 | 13-Nov-13      |    | 6.6                            |  |
|             |                 | 19-Feb-14      |    | 5.6                            |  |
|             |                 | 07-May-14      |    | 6.0                            |  |
| MW-62-190   | BR              | 18-Sep-13      |    | 5.0                            |  |
|             |                 | 13-Nov-13      |    | 4.6                            |  |
|             |                 | 19-Feb-14      |    | 4.9                            |  |
|             |                 | 07-May-14      |    | 3.6                            |  |
| MW-63-065   | BR              | 09-Sep-13      |    | 1.5                            |  |
|             |                 | 04-Dec-13      |    | 1.5                            |  |
|             |                 | 12-Feb-14      |    | 1.5                            |  |
|             |                 | 09-Apr-14      |    | 1.5                            |  |
| MW-64BR     | BR              | 17-Sep-13      |    | 3.5                            |  |
|             |                 | 16-Dec-13      |    | 2.9                            |  |
|             |                 | 26-Feb-14      |    | 3.1                            |  |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID     | Aquifer<br>Zone | Sample<br>Date |    | Dissolved<br>Arsenic<br>(μg/L) |  |
|-------------|-----------------|----------------|----|--------------------------------|--|
| MW-64BR     | BR              | 06-May-14      |    | 2.9                            |  |
| MW-65-160   | SA              | 19-Sep-13      |    | 0.85                           |  |
|             |                 | 02-Dec-13      |    | 0.73                           |  |
|             |                 | 19-Feb-14      |    | 0.89                           |  |
|             |                 | 24-Apr-14      |    | 0.72                           |  |
| MW-65-225   | DA              | 23-Sep-13      |    | 2.4                            |  |
|             |                 | 23-Sep-13      | FD | 2.4                            |  |
|             |                 | 02-Dec-13      |    | 2.3                            |  |
|             |                 | 19-Feb-14      |    | 2.4                            |  |
|             |                 | 29-Apr-14      |    | 2.2                            |  |
| MW-66-165   | SA              | 23-Sep-13      |    | 1.2                            |  |
|             |                 | 03-Dec-13      |    | 1.1                            |  |
|             |                 | 19-Feb-14      |    | 1.2                            |  |
|             |                 | 01-May-14      |    | 1.2                            |  |
|             |                 | 01-May-14      | FD | 1.3                            |  |
| MW-66-230   | DA              | 25-Sep-13      |    | 8.1                            |  |
|             |                 | 12-Dec-13      |    | 7.7                            |  |
|             |                 | 26-Feb-14      |    | 9.5                            |  |
|             |                 | 07-May-14      |    | 8.5                            |  |
| MW-66BR-270 | BR              | 18-Jun-13      |    | 0.24                           |  |
|             |                 | 23-Sep-13      |    | ND (0.5)                       |  |
|             |                 | 17-Dec-13      |    | ND (0.5)                       |  |
|             |                 | 26-Feb-14      |    | ND (0.5)                       |  |
|             |                 | 13-May-14      |    | ND (0.5)                       |  |
| MW-67-185   | SA              | 25-Sep-13      |    | 1.7                            |  |
|             |                 | 04-Dec-13      |    | 1.5                            |  |
|             |                 | 24-Feb-14      |    | 1.4                            |  |
|             |                 | 05-May-14      |    | 1.5                            |  |
| MW-67-225   | MA              | 25-Sep-13      |    | 3.3                            |  |
|             |                 | 09-Dec-13      |    | 2.9                            |  |
|             |                 | 24-Feb-14      |    | 3.2                            |  |
|             |                 | 06-May-14      |    | 3.1                            |  |
| MW-67-260   | DA              | 25-Sep-13      |    | 12.0                           |  |
|             |                 | 25-Sep-13      | FD | 12.0                           |  |
|             |                 | 09-Dec-13      |    | 11.0                           |  |
|             |                 | 24-Feb-14      |    | 13.0                           |  |
|             |                 | 05-May-14      |    | 11.0                           |  |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID     | Aquifer<br>Zone | Sample<br>Date         |    | Dissolved<br>Arsenic<br>(µg/L) |  |
|-------------|-----------------|------------------------|----|--------------------------------|--|
| MW-68-180   | SA              | 26-Sep-13              |    | 2.7                            |  |
|             |                 | 12-Dec-13              |    | 2.5                            |  |
|             |                 | 12-Dec-13 <sub>F</sub> | D. | 2.4                            |  |
|             |                 | 27-Feb-14              |    | 2.6                            |  |
|             |                 | 12-May-14              |    | 2.9                            |  |
| MW-68-240   | DA              | 24-Sep-13              |    | 2.0                            |  |
|             |                 | 04-Dec-13              |    | 2.0                            |  |
|             |                 | 25-Feb-14              |    | 1.9                            |  |
|             |                 | 06-May-14              |    | 1.9                            |  |
|             |                 | 06-May-14 <sub>F</sub> | D  | 1.8                            |  |
| MW-68BR-280 | BR              | 18-Sep-13              |    | 2.0                            |  |
|             |                 | 18-Dec-13              |    | 1.4                            |  |
|             |                 | 27-Feb-14              |    | 1.5                            |  |
|             |                 | 13-May-14              |    | 1.3                            |  |
| MW-69-195   | BR              | 24-Sep-13              |    | 2.4                            |  |
|             |                 | 03-Dec-13              |    | 2.2                            |  |
|             |                 | 19-Feb-14              |    | 2.4                            |  |
|             |                 | 01-May-14              |    | 2.3                            |  |
| MW-70-105   | BR              | 23-Sep-13              |    | 5.2                            |  |
|             |                 | 04-Dec-13              |    | 5.1                            |  |
|             |                 | 17-Feb-14              |    | 5.0                            |  |
|             |                 | 28-Apr-14              |    | 4.6                            |  |
| MW-70BR-225 | BR              | 24-Sep-13              |    | 1.9                            |  |
|             |                 | 10-Dec-13              |    | 1.8                            |  |
|             |                 | 25-Feb-14              |    | 1.9                            |  |
|             |                 | 05-May-14              |    | 1.9                            |  |
| MW-71-035   | SA              | 10-Sep-13              |    | 1.3                            |  |
|             |                 | 11-Dec-13              |    | 1.3                            |  |
|             |                 | 18-Feb-14              |    | 1.5                            |  |
|             |                 | 24-Apr-14              |    | 1.3                            |  |
| MW-72-080   | BR              | 19-Sep-13              |    | 11.0                           |  |
|             |                 | 19-Sep-13 <sub>F</sub> | D  | 12.0                           |  |
|             |                 | 04-Dec-13              |    | 10.0                           |  |
|             |                 | 18-Feb-14              |    | 12.0                           |  |
|             |                 | 24-Apr-14              |    | 10.0                           |  |
| MW-72BR-200 | BR              | 19-Sep-13              |    | 16.0                           |  |
|             |                 | 05-Nov-13              |    | 14.0                           |  |

TABLE C-1
Arsenic Results in Monitoring Wells, June 2013 through June 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

| Well ID     | Aquifer<br>Zone | Sample<br>Date |    | Dissolved<br>Arsenic<br>(μg/L) |  |
|-------------|-----------------|----------------|----|--------------------------------|--|
| MW-72BR-200 | BR              | 05-Nov-13      | FD | 13.0                           |  |
|             |                 | 17-Feb-14      |    | 15.0                           |  |
|             |                 | 17-Feb-14      | FD | 15.0                           |  |
|             |                 | 21-Apr-14      |    | 14.0                           |  |
| MW-73-080   | BR              | 11-Sep-13      |    | 1.4                            |  |
|             |                 | 05-Dec-13      |    | 1.3                            |  |
|             |                 | 18-Feb-14      |    | 1.5                            |  |
|             |                 | 29-Apr-14      |    | 1.4                            |  |
| MW-74-240   | BR              | 18-Sep-13      |    | 13.0                           |  |
|             |                 | 05-Dec-13      |    | 14.0                           |  |
|             |                 | 26-Feb-14      |    | 13.0                           |  |
|             |                 | 01-May-14      |    | 12.0                           |  |
| OW-3D       | DA              | 05-Nov-13      |    | 2.3                            |  |

### Notes:

FD = field duplicate.

J = concentration or reporting limit estimated by laboratory or data validation.

ND = not detected at listed reporting limit.

 $\mu$ g/L = micrograms per liter.

The California primary drinking water standard maximum contaminant level (MCL) for arsenic is 10 μg/L. The Background Study Upper Tolerance Limit for arsenic at the site is 24.3 μg/L.

Wells are assigned to separate Aquifer zones for results reporting:

SA = shallow interval of Alluvial Aguifer.

MA = mid-depth interval of Alluvial Aquifer.

DA = deep interval of Alluvial Aquifer.

BR = well completed in bedrock (Miocene Conglomerate or pre-Tertiary crystalline rock).

Date Printed: 8/15/2014

## TABLE C-2 Background Metals, Second Quarter 2014 Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

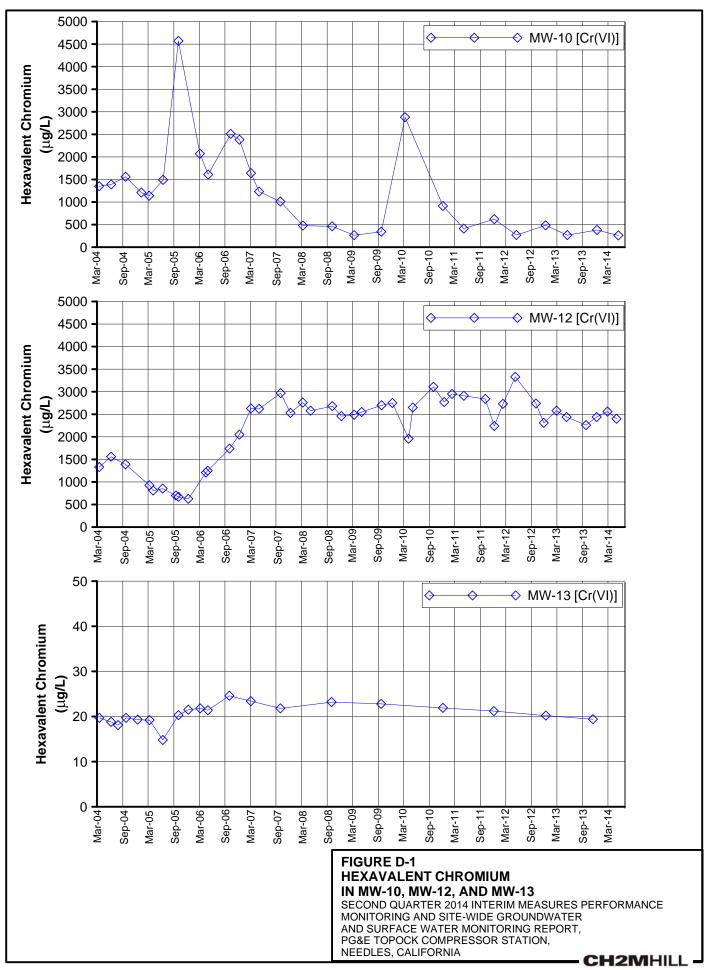
|         |                 | Metals in μg/L |         |          |        |           |          |          |          |                    |          |                 |          |            | General Metals in mg/L |          |                  |          |          |                    |       |         |              |           |
|---------|-----------------|----------------|---------|----------|--------|-----------|----------|----------|----------|--------------------|----------|-----------------|----------|------------|------------------------|----------|------------------|----------|----------|--------------------|-------|---------|--------------|-----------|
|         | California MCL: | 6              | 10      | 200      | 1,000  | 4         | 5        | NE       | 50       | 1,000 <sup>a</sup> | 15       | 50 <sup>a</sup> | 2        | NE         | 100                    | 50       | 100 <sup>a</sup> | 2        | NE       | 5,000 <sup>a</sup> | NE    | NE      | 0.3 <b>a</b> | NE        |
| Well ID | Sample Date     | Antimony       | Arsenic | Aluminum | Barium | Beryllium | Cadmium  | Cobalt   | Chromium | Copper             | Lead     | Manganese       | Mercury  | Molybdenum | Nickel                 | Selenium | Silver           | Thallium | Vanadium | Zinc               | Boron | Calcium | Iron         | Magnesium |
| MW-16   | 04/22/2014      | ND (0.5)       | 10.0    | ND (50)  | 29.0   | ND (0.5)  | ND (0.5) | ND (0.5) | 9.7      | ND (1.0)           | ND (1.0) | ND (0.5)        | ND (0.2) | 13.0       | 2.0                    | 1.8      | ND (0.5)         | ND (0.5) | 32.0     | 14.0               | 0.25  | 24.0    | ND (0.02)    | 4.3       |
| MW-17   | 04/23/2014      | ND (0.5)       | 1.4     | ND (50)  | 25.0   | ND (0.5)  | ND (0.5) | ND (0.5) | 12.0     | ND (1.0)           | ND (1.0) | ND (0.5)        | ND (0.2) | 16.0       | ND (1.0)               | 8.6      | ND (0.5)         | ND (0.5) | 5.4      | 21.0               | 0.19  | 61.0    | ND (0.02)    | 9.0       |

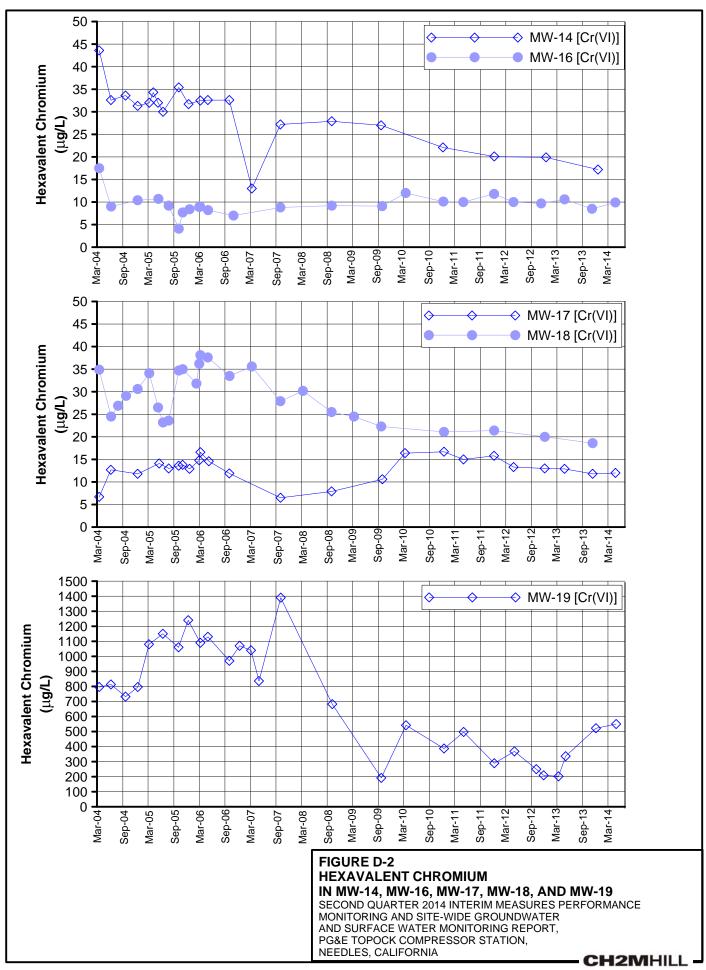
### Notes:

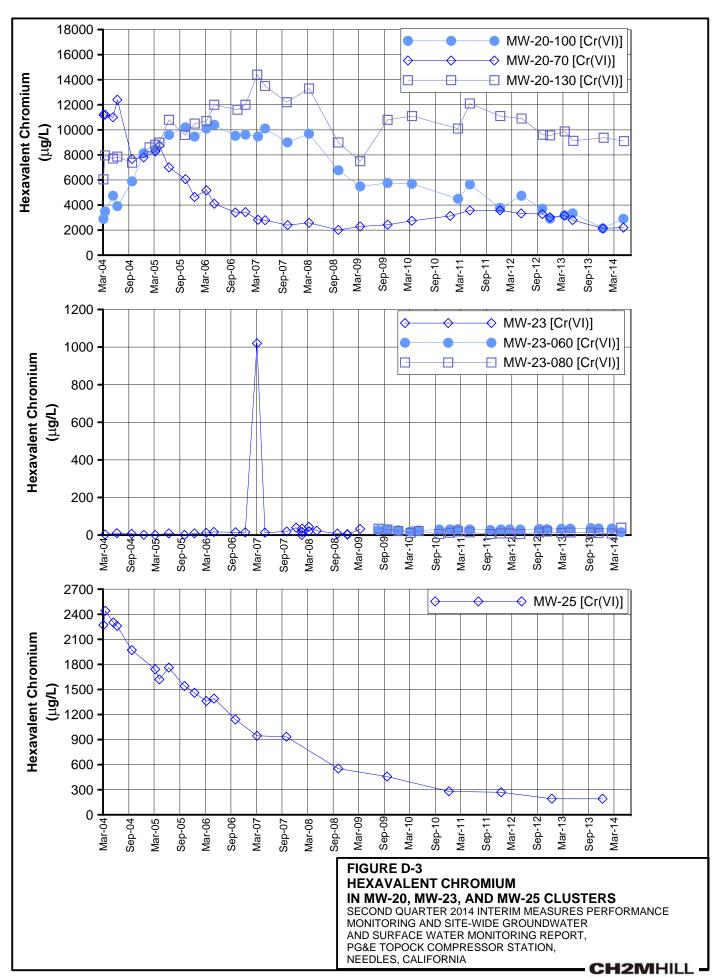
a = Secondary USEPA MCL.MCL = maximum contaminant level mg/L = milligrams per liter.
ND = not detected at listed reporting limit.

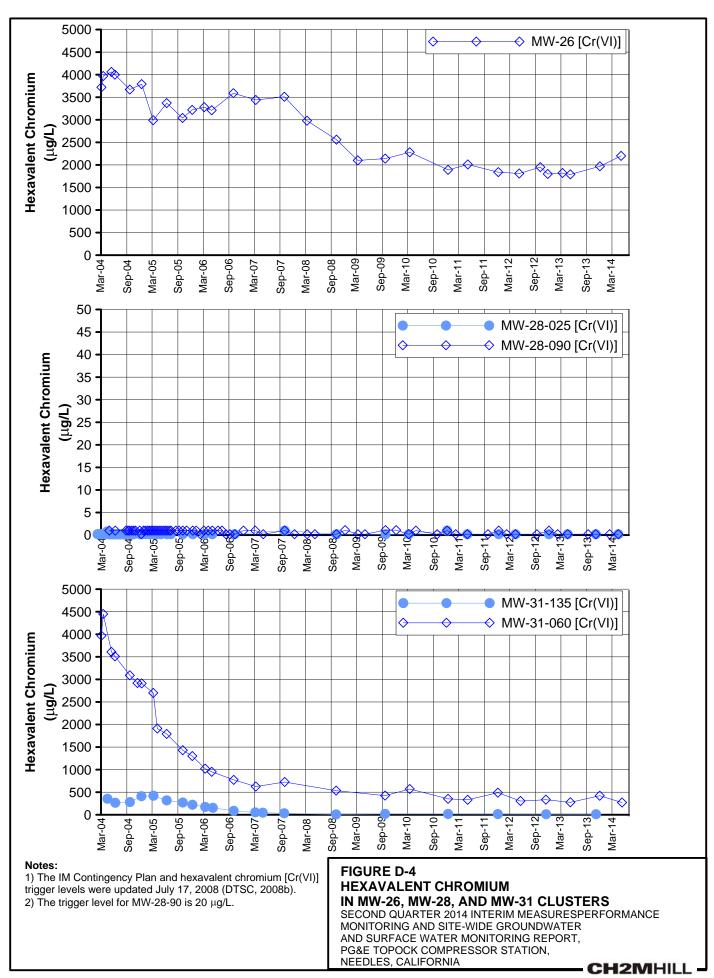
NE =not established.

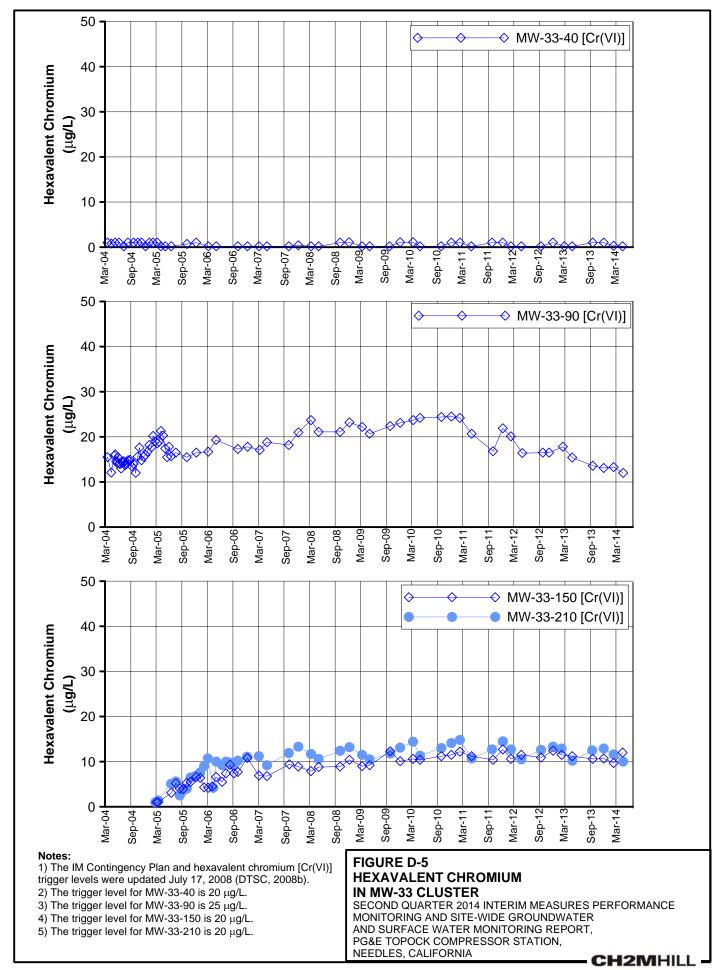
μg/L = micrograms per liter.
USEPA = United States Environmental Protection Agency.

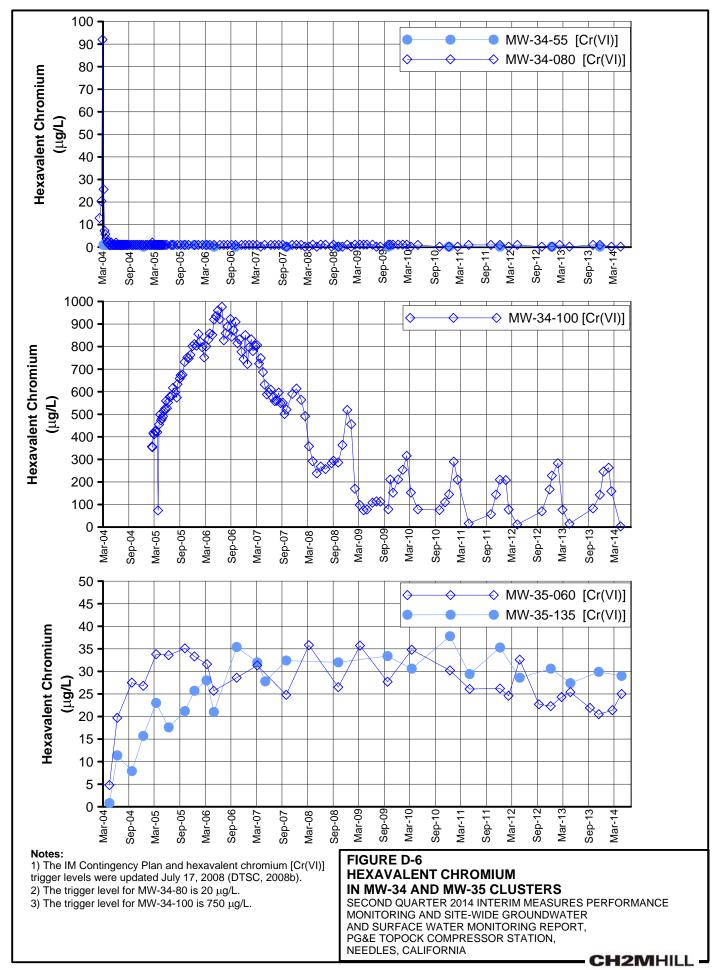

The MCL listed are the California primary drinking water standards, except where noted.

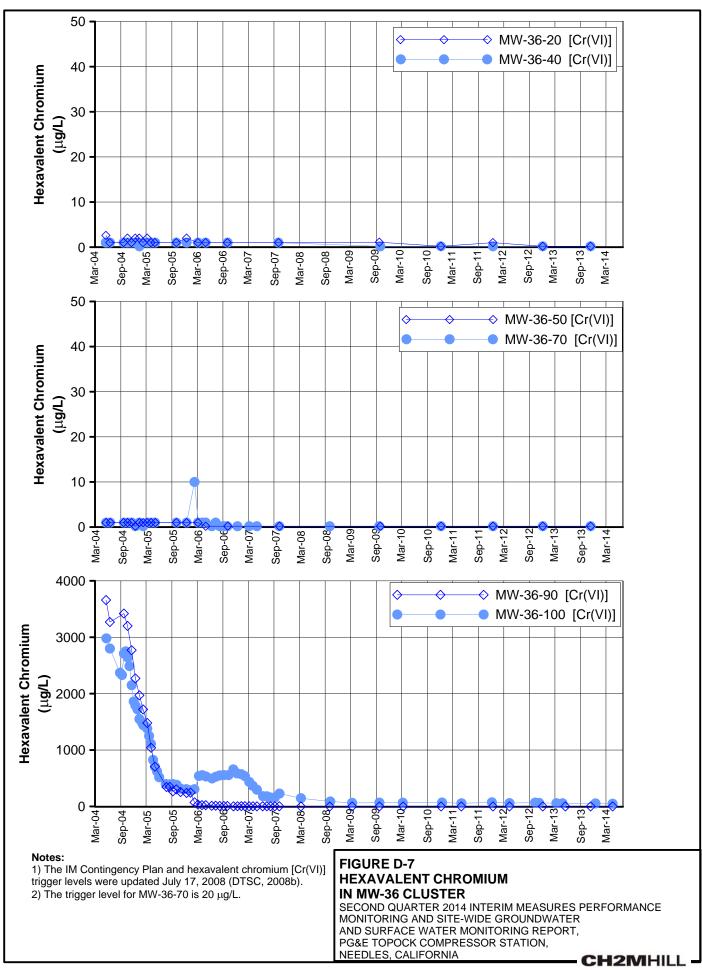

All results are dissolved metals from field-filtered samples.

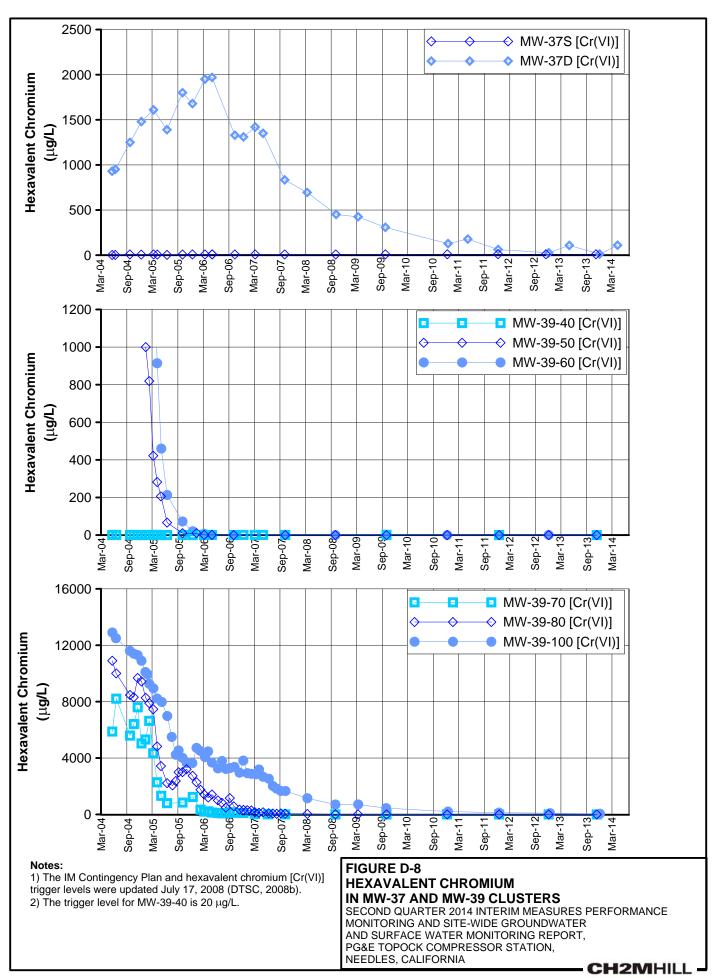

Metals analyzed by USEPA Methods SW6010B or SW6020A or SW7470A.

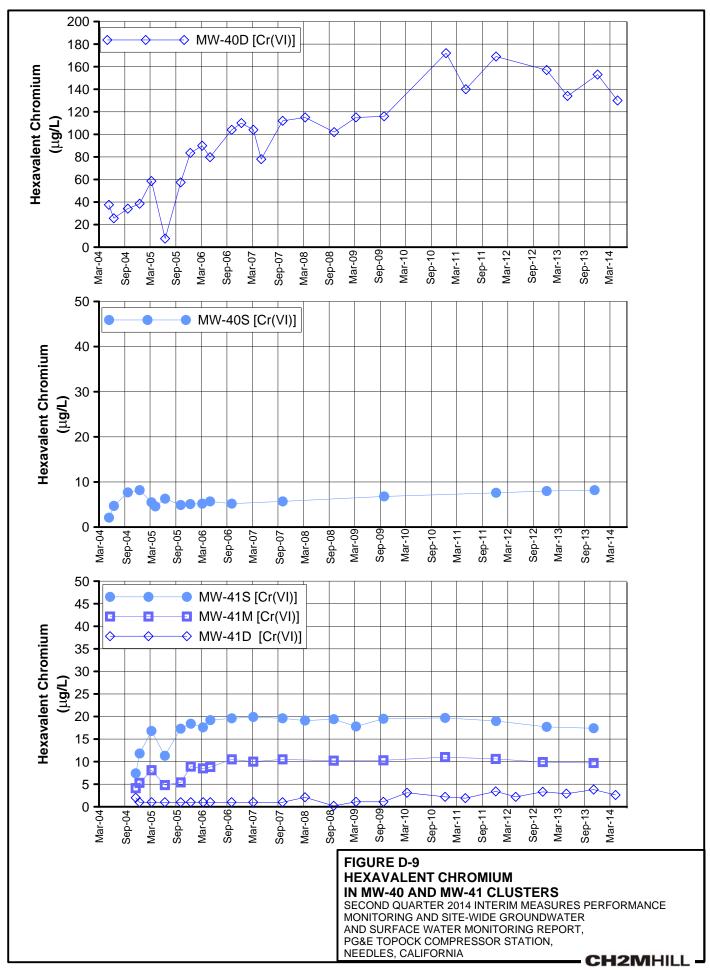

Page 1 of 1 Date Printed: 8/15/2014

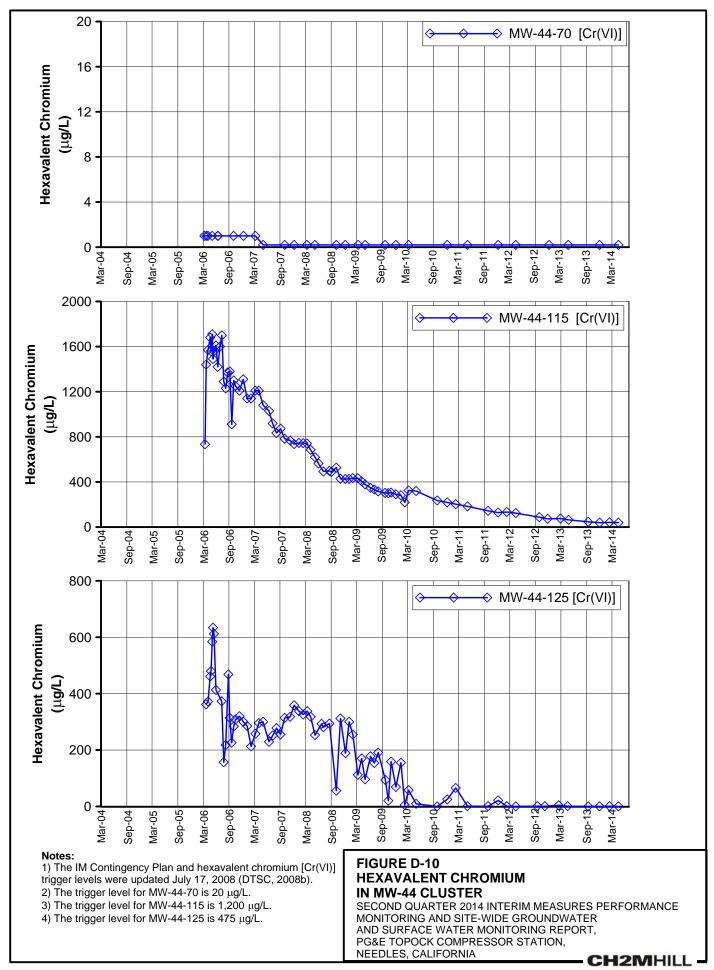

Appendix D
Groundwater Monitoring Data for GMP and
Interim Measures Monitoring Wells

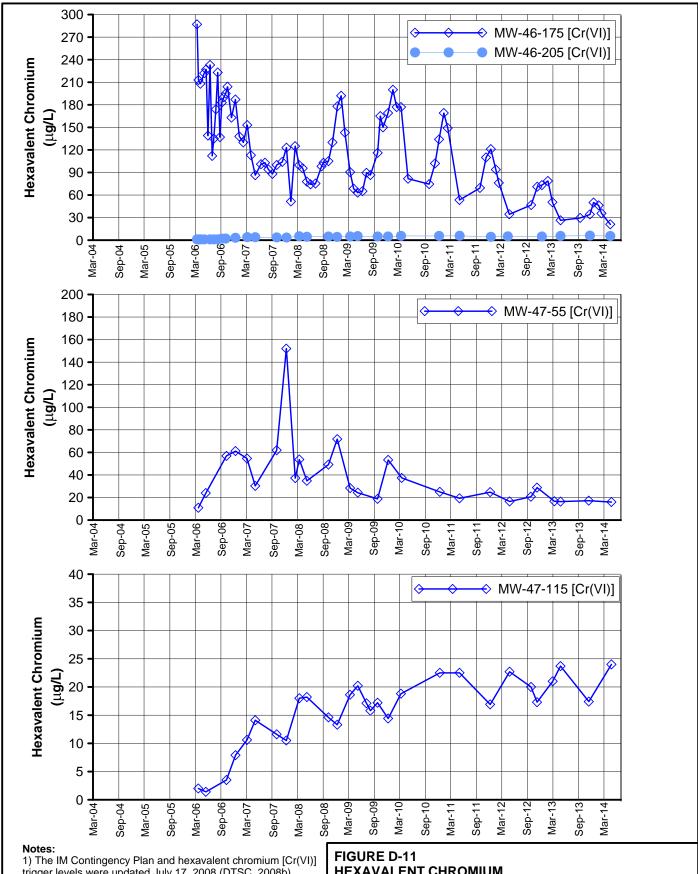


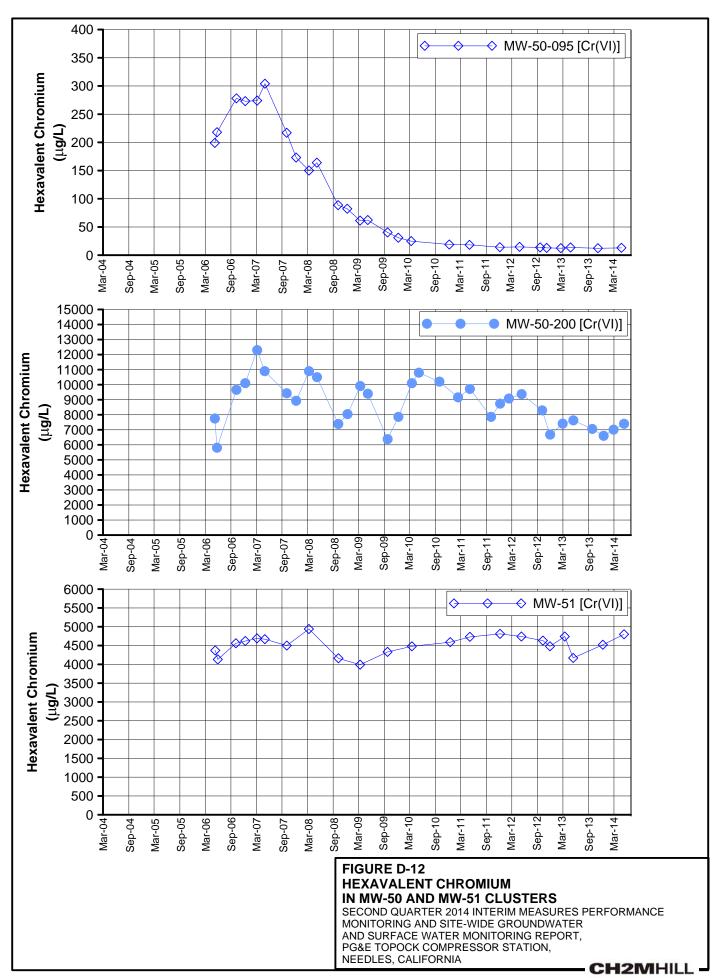



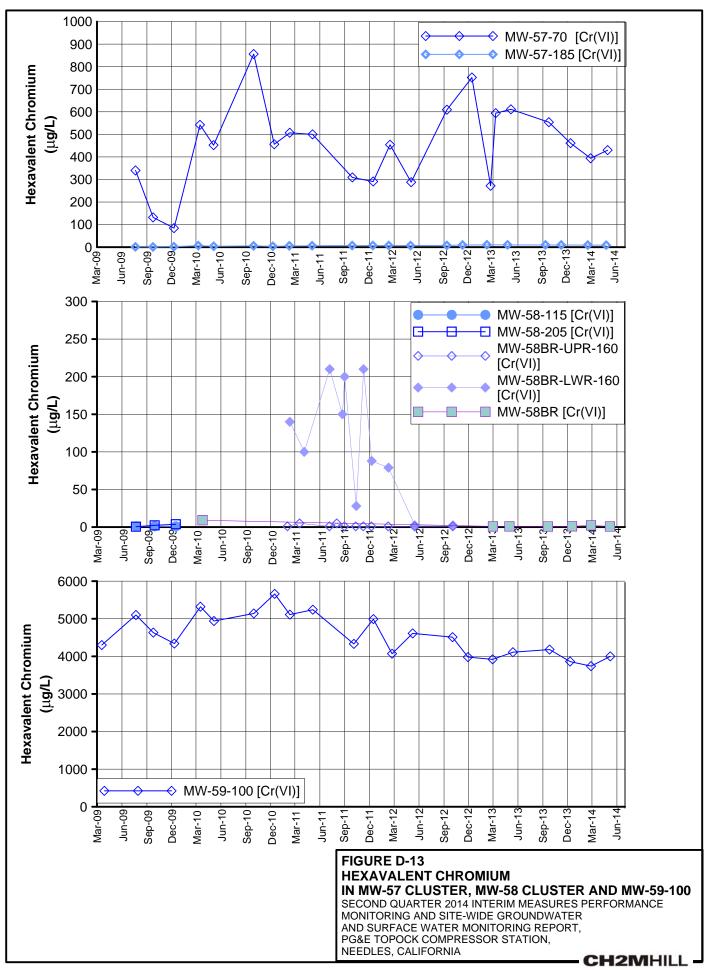



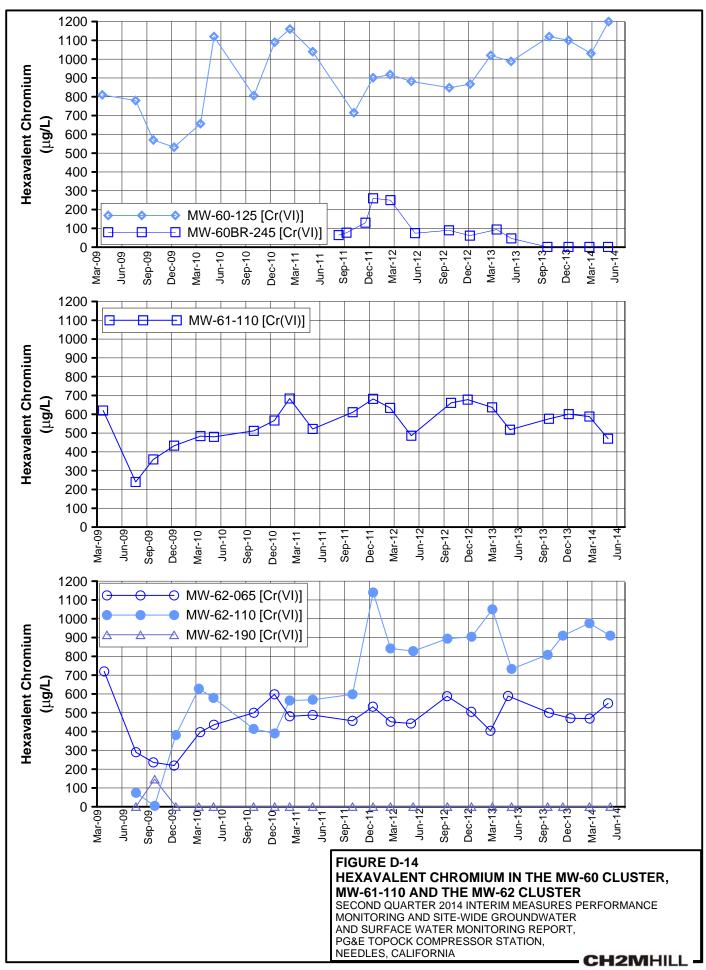


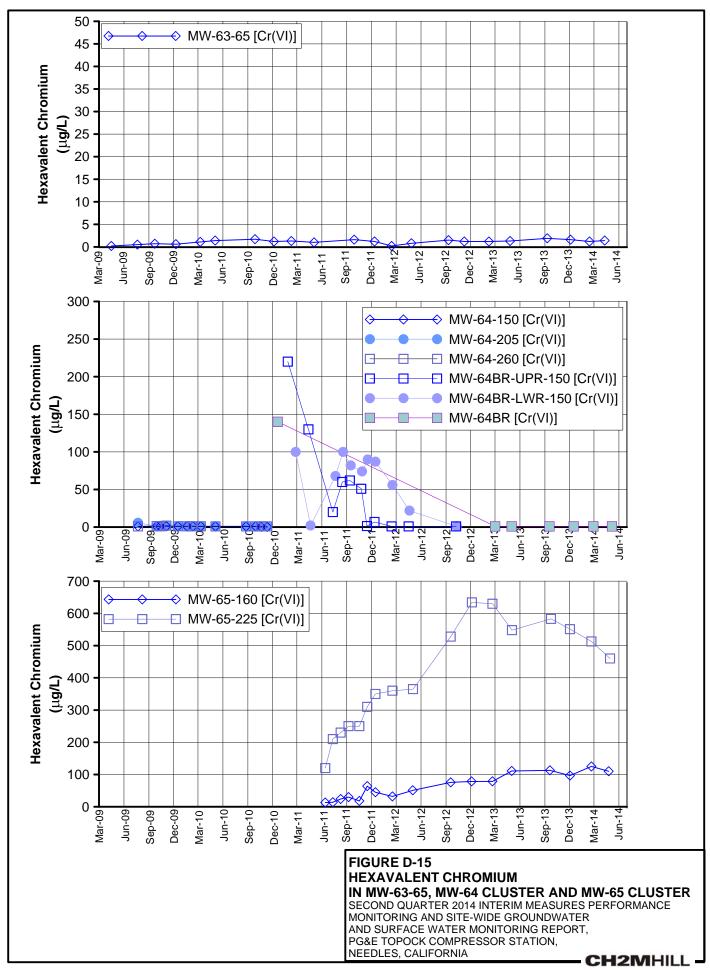


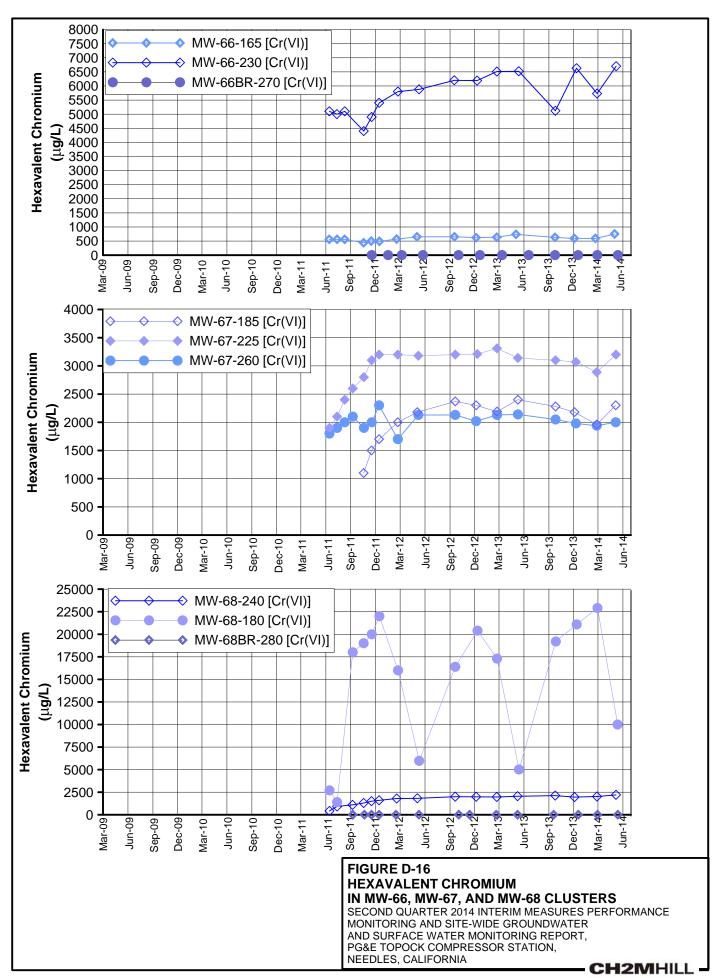


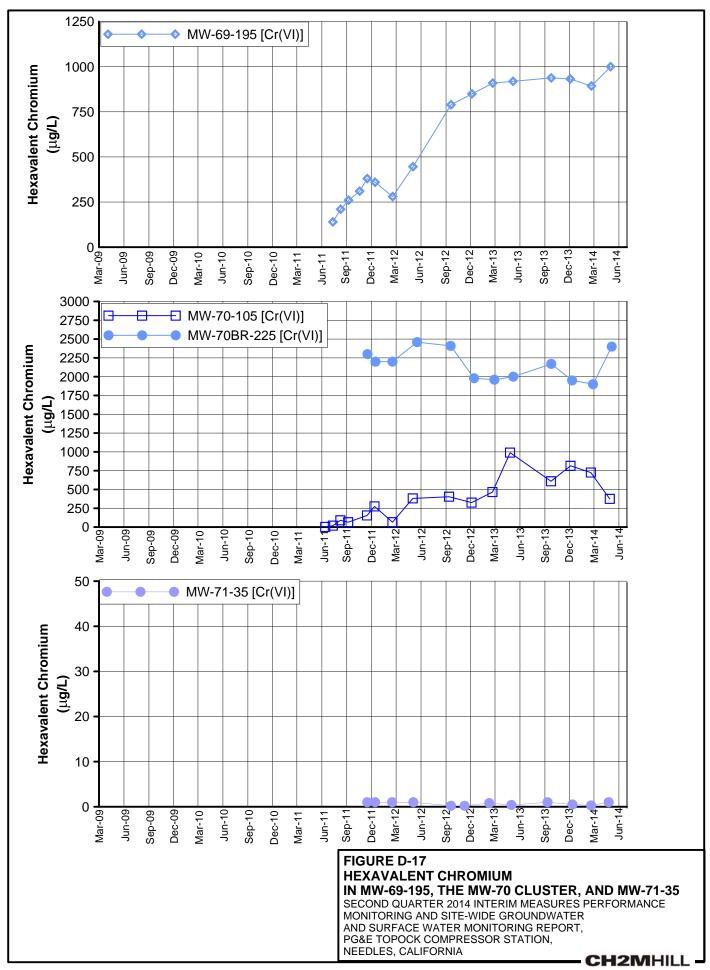



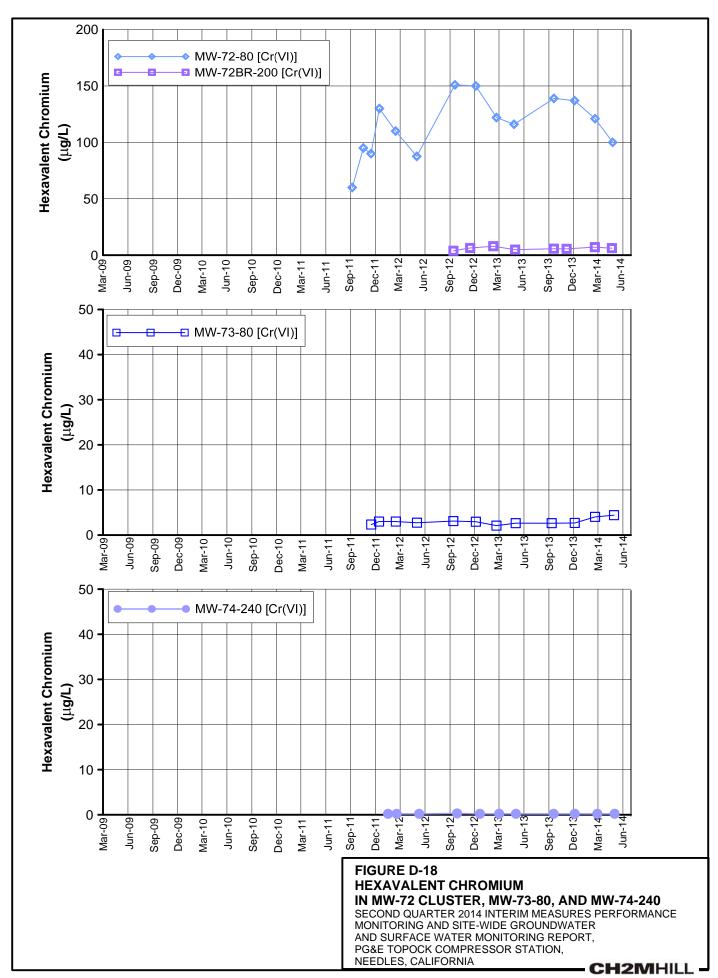



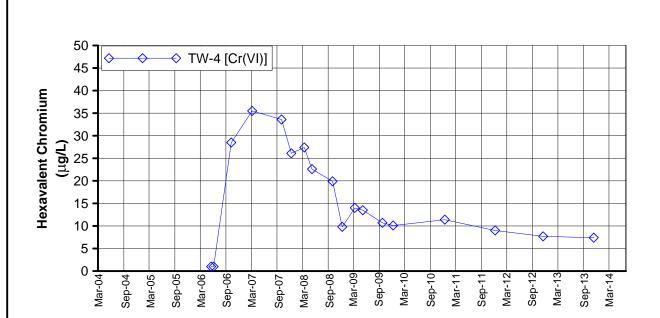


- trigger levels were updated July 17, 2008 (DTSC, 2008b).
- 2) The trigger level for MW-46-175 is 225  $\mu$ g/L.
- 3) The trigger level for MW-46-205 is 20  $\mu g/L$ .
- 4) The trigger level for MW-47-55 is 475  $\mu$ g/L.
- 5) The trigger level for MW-47-115 is 31 μg/L.


# **HEXAVALENT CHROMIUM** IN MW-46 AND MW-47 CLUSTERS


SECOND QUARTER 2014 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA CH2MHILL














### FIGURE D-19 HEXAVALENT CHROMIUM IN TW-4

SECOND QUARTER 2014 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT, PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA



#### APPENDIX E

# Interim Measures Extraction System Operations Log, Second Quarter 2014, PG&E Topock Performance Monitoring Program

During Second Quarter 2014 (April through June), extraction wells TW-3D and PE-1 operated at a target pump rate of at 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction well TW-2D ran for limited durations on April 4 and 5, 2014, and June 24, 25, 26, and 27, 2014. Extraction well TW-2S did not operate during Second Quarter 2014. The operational runtime for the Interim Measure groundwater extraction system (combined or individual pumping) was approximately 92.7 percent during Second Quarter 2014.

The Interim Measure Number 3 (IM-3) facility treated approximately 16,301,483 gallons of extracted groundwater during Second Quarter 2014. The IM-3 facility also treated approximately 5,210 gallons of water generated from the groundwater monitoring program and 29,700 gallons of water from IM-3 well backwashing. Six containers of solids from the IM-3 facility were transported offsite during the reporting period.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 7.3 percent of downtime during Second Quarter 2014) are summarized below. The times shown are in Pacific Standard Time to be consistent with other data collected (for example, water level data) at the site.

## E.1 April 2014

- April 1-4, 2014 (planned): The extraction well system was offline from 12:00 a.m. on April 1 to 7:22 a.m. on April 4 and from 1:46 p.m. to 7:18 p.m. on April 4 for semiannual scheduled maintenance. Extraction system downtime was 3 days, 12 hours, and 54 minutes.
- April 6, 2014 (unplanned): The extraction well system was offline from 5:58 a.m. to 6:14 a.m., from 8:24 a.m. to 8:36 a.m., and from 1:40 p.m. to 1:46 p.m. due to loss of power from City of Needles power. Extraction system downtime was 34 minutes.
- April 10, 2014 (unplanned): The extraction well system was offline from 10:28 p.m. to 10:30 p.m. and from 10:34 p.m. to 10:36 p.m. due to loss of power from City of Needles power. Extraction system downtime was 4 minutes.
- April 16, 2014 (unplanned): The extraction well system was offline from 4:04 p.m. to 6:36 p.m. to repair a leaking valve in the TW-03D vault at the MW-20 bench. Extraction system downtime was 2 hours, 32 minutes.
- April 29, 2014 (unplanned): The extraction well system was offline from 2:06 p.m. to 2:14 p.m. and from 3:36 p.m. to 3:48 p.m. due to loss of power from City of Needles power. Extraction system downtime was 20 minutes.

## E.2 May 2014

- May 1, 2014 (planned): The extraction well system was offline from 12:56 p.m. to 12:58 p.m., from 1:12 p.m. to 1:16 p.m., from 1:20 p.m. to 1:22 p.m., from 1:28 p.m. to 1:30 p.m., from 1:38 p.m. to 1:44 p.m., and from 1:46 p.m. to 1:48 p.m. due to testing of critical alarms and leak detection system. Extraction system downtime was 18 minutes.
- May 4, 2014 (unplanned): The extraction well system was offline from 2:52 p.m. to 3:54 p.m. due to a low ferrous level. Extraction system downtime was 1 hour, 2 minutes.

ES081414092525BAO G-1

- May 7, 2014 (unplanned): The extraction well system was offline from 10:42 p.m. to 11:22 p.m. to clean the
  T-100 microfilter strainer and flow meter FSL-201 and replace the concentrate CLA valve. Extraction system
  downtime was 40 minutes.
- May 14, 2014 (unplanned): The extraction well system was offline from 10:16 p.m. to 10:54 p.m. to replace the gear box on the clarifier flocculator. Extraction system downtime was 38 minutes.
- May 17, 2014 (unplanned): The extraction well system was offline from 9:32 p.m. to 9:54 p.m. due to to a low ferrous level. Extraction system downtime was 22 minutes.
- May 20, 2014 (unplanned): The extraction well system was offline from 9:38 a.m. to 10:20 a.m., from 10:54 a.m. to 12:40 p.m., from 1:04 p.m. to 1:36 p.m., from 7:22 p.m. to 7:58 p.m., and from 10:04 p.m. to 10:34 p.m. due to a malfunctioning air valve water valves in the microfilter system. Extraction system downtime was 4 hours, 6 minutes.
- May 21, 2014 (unplanned): The extraction well system was offline from 10:52 a.m. to 12:20 p.m. due to a high level in the Raw Water Tank (T-100). Extraction system downtime was 1 hour, 28 minutes.
- May 28, 2014 (unplanned): The extraction well system was offline from 4:44 a.m. to 12:20 p.m. and from 12:30 p.m. to 12:48 p.m. due to failure of the pretreated water booster pump (P-500). The pump was replaced and the reverse osmosis (RO) membranes were switched during this time. Extraction system downtime was 7 hours, 54 minutes.

### E.3 June 2014

- June 5, 2014 (planned): The extraction well system was offline from 11:38 a.m. to 2:02 p.m. due to testing of critical alarms and leak detection system and replacement of the ferrous drawdown tube. Extraction system downtime was 2 hours, 24 minutes.
- June 7, 2014 (unplanned): The extraction well system was offline from 6:58 a.m. to 10:12 a.m. due to a motor failure in the primary RO system. Extraction system downtime was 3 hours, 14 minutes.
- June 11, 2014 (unplanned): The extraction well system was offline from 1:18 p.m. to 3:08 p.m. due to a flow blockage in a manually operated valve between the oxidation tanks and the clarifier. Extraction system downtime was 1 hour, 50 minutes.
- June 18, 2014 (unplanned): The extraction well system was offline from 1:54 a.m. to 2:26 a.m. due to high levels in the Chromium Reduction Reactor (T-300) and the Iron Oxidation Reactors 1 and 2 (T-301A and T-301B). Extraction system downtime was 32 minutes.
- June 18, 2014 (unplanned): The extraction well system was offline from 1:04 p.m. to 4:12 p.m. due to a flow blockage in a manually controlled valve between the Iron Oxidation Reactors (T-301A, B, and C) and the Clarifier (CL 400). Extraction system downtime was 3 hours, 8 minutes.
- June 23-24, 2014 (planned): The extraction well system was offline from 12:34 p.m. on June 23, 2014, to 8:34 a.m. on June 24, 2014, for AquaGuard application in extraction well TW-3D. Extraction system downtime was 20 hours.
- June 24-25, 2014 (unplanned): The extraction well system was offline on June 24, 2014, from 8:48 a.m. to 8:54 a.m., from 9:10 a.m. to 9:14 a.m., from 9:30 a.m. to 9:38 a.m., and from 9:48 a.m. to 10:54 a.m.; on June 24, 2014, from 8:04 p.m. to June 25, 2014 at 1:36 p.m.; and on June 25, 2014, from 3:36 p.m. to 8:30 p.m. due to the TW-3D pump overheating. Extraction system downtime was 23 hours, 50 minutes.
- June 26, 2014 (unplanned): The extraction well system was offline from 7:24 p.m. to 7:38 p.m. due to a high level in the Raw Water Tank (T-100). Extraction system downtime was 14 minutes.

• June 27, 2014 (unplanned): The extraction well system was offline from 3:22 p.m. to 3:34 p.m. and from 4:28 p.m. to 4:32 p.m. to switch the plant onto and off of generator power due to a loss of power from the City of Needles. Extraction system downtime was 16 minutes.

ES081414092525BAO D-3

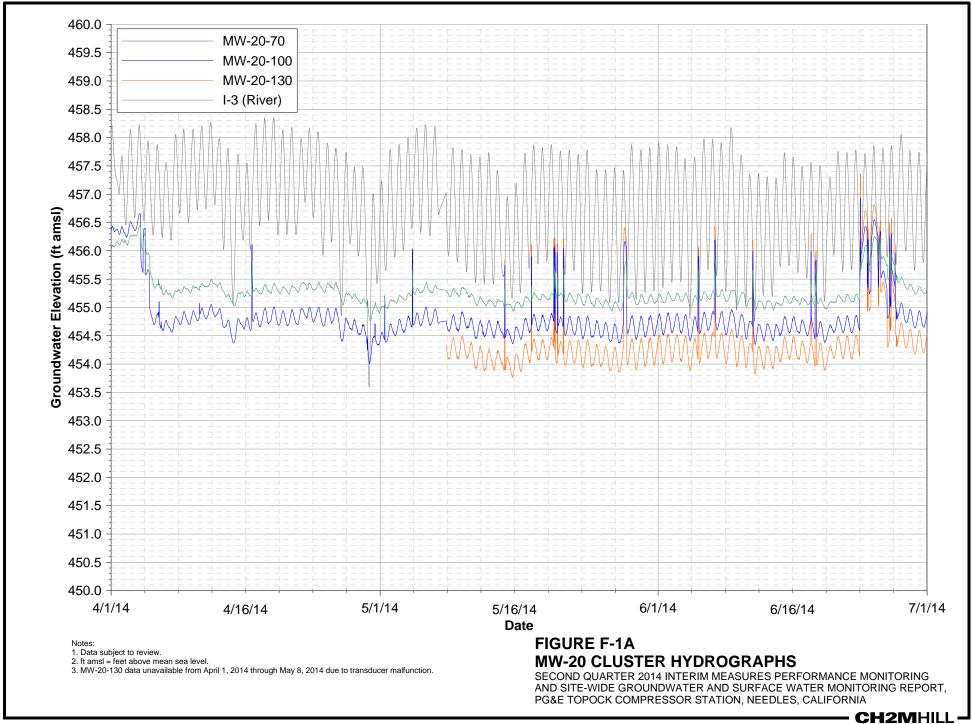
Appendix F
Hydraulic Data for Interim Measures
Reporting Period

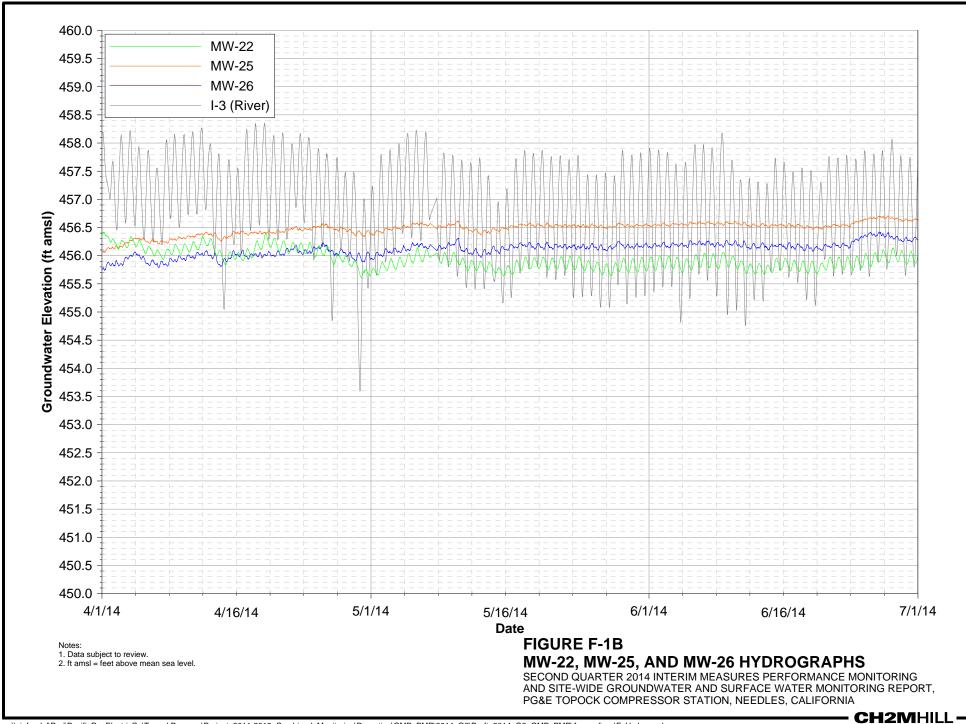
TABLE F-1
Average Monthly and Quarterly Groundwater Elevations, Second Quarter 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

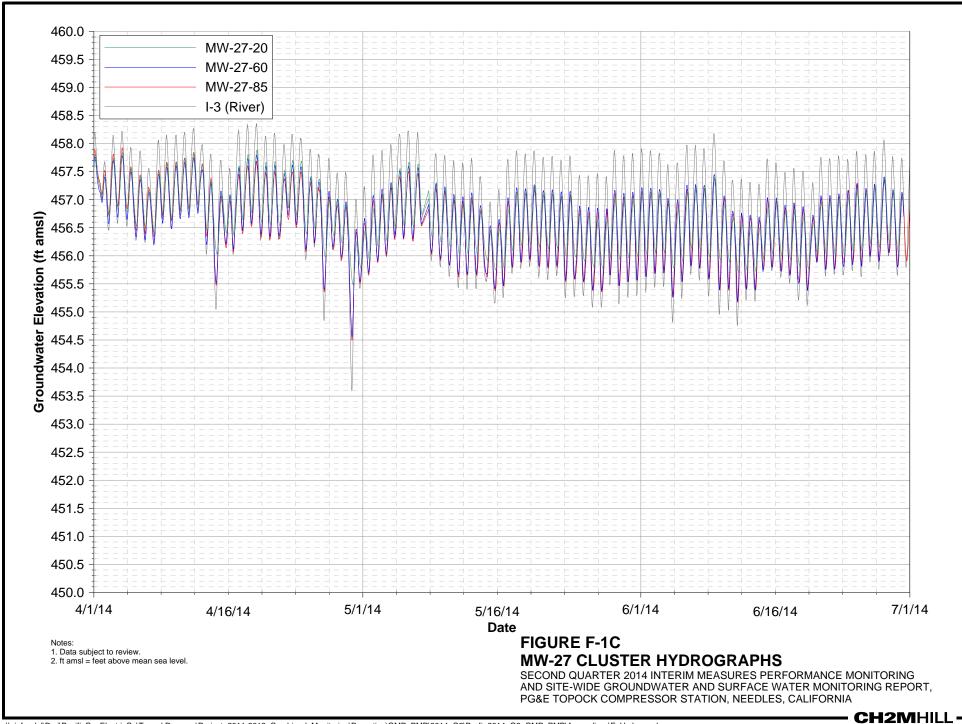
| Well ID                | Aquifer Zone              | April<br>2014 | May<br>2014      | June<br>2014     | Quarter<br>Average | Days in Quarter<br>Average |  |  |
|------------------------|---------------------------|---------------|------------------|------------------|--------------------|----------------------------|--|--|
| I-3                    | River Station             | 457.08        | 456.69           | 456.65           | 456.81             | 91                         |  |  |
| MW-20-070              | Shallow Zone              | 455.41        | 455.17           | 455.27           | 455.28             | 90                         |  |  |
| MW-20-100              | Middle Zone               | 454.97        | 454.69           | 454.86           | 454.84             | 91                         |  |  |
| MW-20-130              | Deep Zone                 | INC           | 454.22           | 454.50           | INC                | 54                         |  |  |
| MW-22                  | Shallow Zone              | 456.09        | 455.85           | 455.87           | 455.93             | 91                         |  |  |
| MW-25                  | Shallow Zone              | 456.36        | 456.51           | 456.57           | 456.48             | 91                         |  |  |
| MW-26                  | Shallow Zone              | 455.99        | 456.14           | 456.21           | 456.11             | 91                         |  |  |
| MW-27-020              | Shallow Zone              | 456.97        | 456.54           | 456.48           | 456.66             | 90                         |  |  |
| MW-27-060              | Middle Zone               | 456.86        | 456.46           | 456.42           | 456.58             | 90                         |  |  |
| MW-27-085              | Deep Zone                 | 456.87        | 456.40           | 456.38           | 456.55             | 91                         |  |  |
| MW-28-025              | Shallow Zone              | 456.95        | 456.55           | 456.51           | 456.67             | 91                         |  |  |
| MW-28-090              | Deep Zone                 | 456.91        | 456.56           | 456.54           | 456.67             | 91                         |  |  |
| MW-30-050              | Middle Zone               | 456.47        | 456.09           | 456.10           | 456.22             | 90                         |  |  |
| MW-31-060              | Shallow Zone              | 456.29        | 456.08           | 456.03           | 456.15             | 78                         |  |  |
| MW-31-135              | Deep Zone                 | 455.68        | 455.43           | 455.43           | 455.51             | 91                         |  |  |
| MW-32-035              | Shallow Zone              | 456.60        | 456.19           | 456.15           | 456.31             | 90                         |  |  |
| MW-33-040              | Shallow Zone              | 456.76        | 456.46           | 456.31           | 456.51             | 91                         |  |  |
| MW-33-090              | Middle Zone               | 456.75        | 456.57           | 456.45           | 456.59             | 91                         |  |  |
| MW-33-150              | Deep Zone                 | 456.81        | 456.53           | 456.45           | 456.60             | 91                         |  |  |
| MW-34-055              | Middle Zone               | 456.96        | 456.55           | 456.53           | 456.68             | 90                         |  |  |
| MW-34-080              | Deep Zone                 | 456.89        | 456.47           | 456.47           | 456.61             | 90                         |  |  |
| MW-34-100              | Deep Zone                 | 456.70        | 456.22           | 456.18           | 456.37             | 91                         |  |  |
| MW-35-060              | Shallow Zone              | 457.35        | 457.07           | 457.01           | 457.18             | 71                         |  |  |
| MW-35-135              | Deep Zone                 | 457.27        | 457.16           | 457.11           | 457.18             | 91                         |  |  |
| MW-36-020              | Shallow Zone              | 456.59        | 456.18           | 456.15           | 456.31             | 90                         |  |  |
| MW-36-040              | Shallow Zone              | 456.64        | 456.24           | 456.22           | 456.36             | 90                         |  |  |
| MW-36-050              | Middle Zone               | 456.60        | 456.21           | 456.20           | 456.33             | 90                         |  |  |
| MW-36-070              | Middle Zone               | INC           | 456.18           | 456.21           | INC                | 55                         |  |  |
| MW-36-090              | Deep Zone                 | 455.72        | 455.25           | 455.33           | 455.43             | 90                         |  |  |
| MW-36-100              | Deep Zone  Deep Zone      | 455.95        | 455.51           | 455.66           | 455.70             | 90                         |  |  |
| MW-39-040              | Shallow Zone              | 456.45        | 456.07           | 456.09           | 456.20             | 90                         |  |  |
| MW-39-050              | Middle Zone               | 456.23        | 455.86           | 455.89           | 455.99             | 90                         |  |  |
| MW-39-060              | Middle Zone               | 456.05        | 455.67           | 455.72           | 455.81             | 90                         |  |  |
| MW-39-000              | Middle Zone               | 455.50        | 455.16           | 455.72           | 455.31             | 90                         |  |  |
| MW-39-080              | Deep Zone                 | 455.50<br>INC | 455.16           | 455.26<br>455.43 | INC                | 55                         |  |  |
|                        | · ·                       |               |                  |                  |                    |                            |  |  |
| MW-39-100<br>MW-42-030 | Deep Zone<br>Shallow Zone | 456.01        | 455.77<br>455.06 | 455.93<br>455.04 | 455.90             | 90<br>90                   |  |  |
|                        | Middle Zone               | 456.35        | 455.96           | 455.94           | 456.08             |                            |  |  |
| MW-42-065              |                           | 456.42        | 456.03           | 456.02           | 456.15             | 90                         |  |  |
| MW-43-025              | Shallow Zone              | 456.94        | 456.55           | 456.50           | 456.66             | 91                         |  |  |
| MW-43-090              | Deep Zone                 | 457.23        | 456.82           | 456.78           | 456.94             | 91                         |  |  |
| MW-44-070              | Middle Zone               | 456.77        | 456.37           | 456.39           | 456.51             | 90                         |  |  |
| MW-44-115              | Deep Zone                 | 456.20        | 455.87           | 455.92           | 456.00             | 90                         |  |  |
| MW-44-125              | Deep Zone                 | 456.69        | 456.36           | 456.42           | 456.49             | 90                         |  |  |
| MW-45-095a             | Deep Zone                 | 456.00        | 454.91           | 455.04           | 455.31             | 91                         |  |  |
| MW-46-175              | Deep Zone                 | 456.59        | 456.36           | 456.40           | 456.45             | 91                         |  |  |
| MW-47-055              | Shallow Zone              | 456.93        | 456.71           | 456.66           | 456.76             | 91                         |  |  |
| MW-47-115              | Deep Zone                 | 456.82        | 456.69           | 456.68           | 456.73             | 91                         |  |  |
| MW-49-135              | Deep Zone                 | 457.15        | 456.91           | 456.87           | 456.98             | 91                         |  |  |

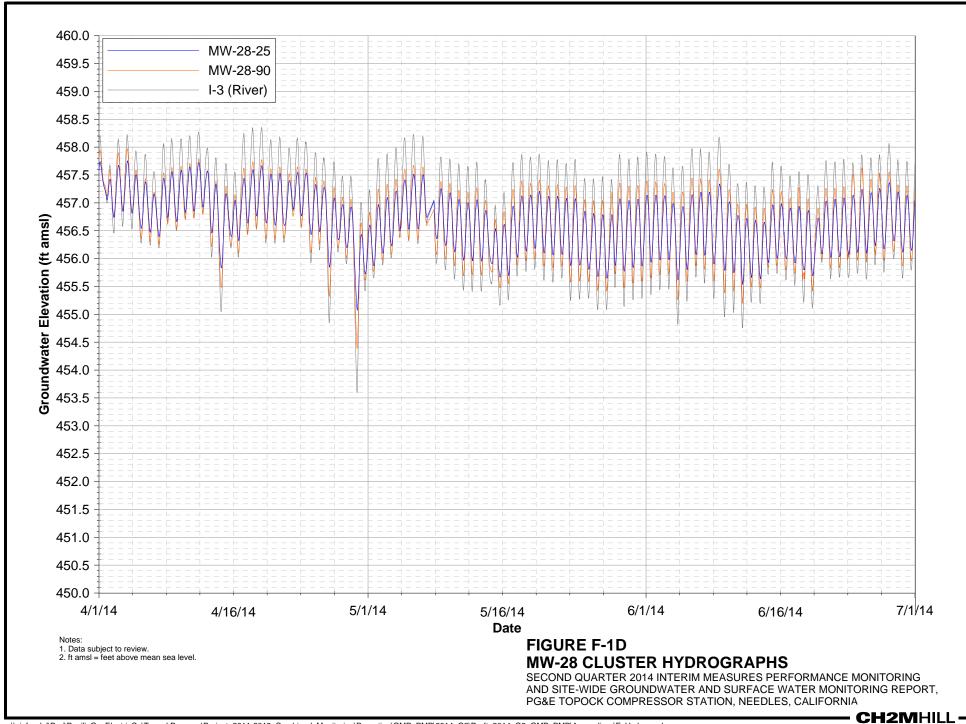
TABLE F-1
Average Monthly and Quarterly Groundwater Elevations, Second Quarter 2014
Second Quarter 2014 Interim Measures Performance Monitoring and Site-wide
Groundwater and Surface Water Monitoring Report,
PG&E Topock Compressor Station, Needles, California

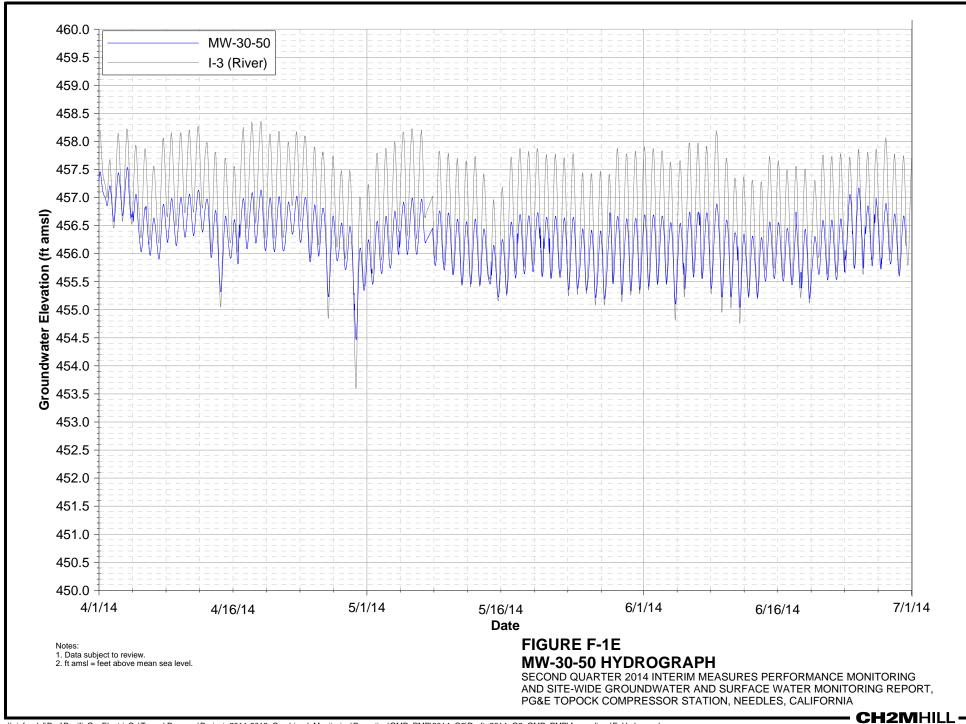
| Well ID   | Aquifer Zone  | April<br>2014 | May<br>2014 | June<br>2014 | Quarter<br>Average | Days in Quarter<br>Average |
|-----------|---------------|---------------|-------------|--------------|--------------------|----------------------------|
| MW-50-095 | Middle Zone   | 456.36        | 456.25      | 456.26       | 456.29             | 91                         |
| MW-51     | Middle Zone   | 455.97        | 456.10      | 456.19       | 456.09             | 91                         |
| MW-54-085 | Deep Zone     | 457.31        | 456.91      | 456.88       | 457.08             | 69                         |
| MW-54-140 | Deep Zone     | 457.37        | 457.03      | 456.93       | 457.11             | 91                         |
| MW-54-195 | Deep Zone     | 457.52        | 457.21      | 457.03       | 457.30             | 71                         |
| MW-55-045 | Middle Zone   | 457.36        | 457.10      | 456.92       | 457.12             | 91                         |
| MW-55-120 | Deep Zone     | 457.25        | 457.02      | 456.84       | 457.04             | 91                         |
| PT2D      | Deep Zone     | 455.27        | 454.89      | 455.06       | 455.07             | 90                         |
| PT5D      | Deep Zone     | 455.87        | 455.46      | 455.55       | 455.62             | 90                         |
| PT6D      | Deep Zone     | 455.91        | 455.53      | 455.64       | 455.69             | 90                         |
| RRB       | River Station | 457.43        | 457.04      | 456.93       | 457.13             | 91                         |


### NOTES:


Averages reported in ft amsl (feet above mean sea level).


Quarterly Average = average of daily averages over reporting period.


INC = Data incomplete, less than 75% of data available over reporting period due to rejection or field equipment malfunction.


Date Printed: 7/18/2014

