
Topock Project I	Executive Abstract
Document Title: Second Quarter 2011 Interim Measures	Date of Document: 8/15/2011
Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor	Who Created this Document?: (i.e. PG&E, DTSC, DOI, Other)
Station, Needles, California	PG&E
Submitting Agency: DTSC	
Final Document? X Yes No	
Priority Status: HIGH MED LOW Is this time critical? Yes No	Action Required: Information Only Review & Comment
Type of Document: ☐ Draft ☐ Report ☐ Letter ☐ Memo	Return to:
Other/Explain:	By Date: Other/Explain:
What does this information pertain to? Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA)/Preliminary Assessment (PA) RCRA Facility Investigation (RFI)/Remedial Investigation (RI) (including Risk Assessment) Corrective Measures Study (CMS)/Feasibility Study (FS) Corrective Measures Implementation (CMI)/Remedial Action California Environmental Quality Act (CEQA)/Environmental Impact Report (EIR) Interim Measures Other / Explain:	Is this a Regulatory Requirement? ☑ Yes ☐ No If no, why is the document needed?
What is the consequence of NOT doing this item? What is the consequence of DOING this item? Report is required to be in compliance with DTSC requirements.	Other Justification/s: Permit Other / Explain:
Brief Summary of attached document:	
Monitoring Program for the Topock Project. Hydraulic and chen hydraulic containment system performance based on a set of st (1) measured groundwater elevations and hydraulic gradient dagroundwater flow is away from the Colorado River and towards	gram and the Groundwater Monitoring Program and Surface Water nical monitoring data were collected and used to evaluate IM andards approved by DTSC. Key items included in this report are: at at compliance well pairs that indicate the direction of
	M performance standard has been met for the second quarter, and June 2011. The average pumping rate for the IM extraction oute, and an estimated 52.9 kilograms of chromium were removed.
Written by: Pacific Gas and Electric Company	
Recommendations: This report is for information only.	
How is this information related to the Final Remedy or Regulatory Req	
This report is required by DTSC as part of the Interim Measures Perform Other requirements of this information?	nance ivionitoring Program.
None	

Version 9

Yvonne J. Meeks Manager

Environmental Remediation Gas Transmission & Distribution Mailing Address 4325 South Higuera Street San Luis Obispo, CA 93401

Location 6588 Ontario Road San Luis Obispo, CA 93405

805.234.2257 Fax: 805.546.5232 E-Mail: <u>Yjm1@Pge.Com</u>

August 15, 2011

Mr. Aaron Yue Project Manager California Environmental Protection Agency, Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Subject: Second Quarter 2011 Interim Measures Performance and Site-Wide Groundwater and

Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles,

California (Document ID: PGE20110815A)

Dear Mr. Yue:

Enclosed is the Second Quarter 2011 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California for PG&E's Interim Measures (IM) Performance Monitoring Program and the Groundwater Monitoring Program and Surface Water Monitoring Program for the Topock project. This report presents the second quarter (April through June 2011) performance monitoring results for the IM hydraulic containment system and summarizes the operations and performance evaluation for the reporting period. This report also presents groundwater and surface water monitoring activities, results, and analyses related to the Groundwater and Surface Water Monitoring Programs during the reporting period.

The IM quarterly performance monitoring report is submitted in conformance with the reporting requirements in the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) IM directive dated February 14, 2005 and updates and modifications approved by DTSC in letters or emails dated October 12, 2007, July 14, 2008, July 17, 2008, March 3, 2010, April 28, 2010, and July 23, 2010.

Please contact me at (805) 234-2257 if you have any questions on the combined monitoring report. Comments regarding the new report format and contents are welcomed.

Sincerely,

Yvonne Meeks

Topock Project Manager

Geonne Meeks

Mr. Aaron Yue August 15, 2011 Page 2

Enclosure

Second Quarter 2011 Interim Measures Performance and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California

cc: Chris Guerre/DTSC Karen Baker/DTSC Susan Young/CA-SLC Nancy Garcia/AZ-SLD Second Quarter 2011
Interim Measures Performance
Monitoring and Site-Wide
Groundwater and Surface Water
Monitoring Report,
PG&E Topock Compressor Station,
Needles, California

Document ID: PGE20110815A

Prepared for

California Department of Toxic Substances Control

on behalf of

Pacific Gas and Electric Company

August 15, 2011

155 Grand Avenue Suite 800 Oakland, CA 94612

Second Quarter 2011 Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report

Interim Measures Performance Monitoring Program and Groundwater Monitoring Program, PG&E Topock Compressor Station, Needles, California

Prepared for

California Department of Toxic Substances Control

On behalf of Pacific Gas and Electric Company

August 15, 2011

This report was prepared under the supervision of a California Professional Geologist

Isaac Wood

Project Hydrogeologist, P.G., C.Hg

Jay Piper

CH2M HILL Project Manager

Contents

Section	on		Page
Acro	nyms a	nd Abbreviations	vii
1.0	Intro	duction	1-1
	1.1	Site-wide Groundwater and Surface Water Monitoring Program	
	1.2	Interim Measure Performance Monitoring Program	
2.0	Seco	nd Quarter 2011 Monitoring Activities	2-1
	2.1	Groundwater Monitoring Program	2-1
		2.1.1 Monthly	2-1
		2.1.2 Quarterly	2-1
	2.2	Surface Water Monitoring Program	2-2
	2.3	Performance Monitoring Program	2-2
3.0	Resu	lts for Site-Wide Groundwater Monitoring and Surface Water Sampl	ing3-1
	3.1	Groundwater Results for Cr(VI) and Chromium	3-1
	3.2	Other Groundwater Monitoring Results	3-1
		3.2.1 COPCs and In situ Byproducts	3-1
		3.2.2 Title 22 Metals	3-1
		3.2.3 Arsenic Sampling in Monitoring Wells	3-2
		3.2.4 Sample Results for Packer Wells	3-2
		3.2.5 Background Study Metals	3-2
	3.3	Surface Water Results for Cr(VI) and Chromium	3-3
	3.4	Data Validation and Completeness	3-3
4.0	IM P	Performance Monitoring Program Evaluation	4-1
	4.1	Water Quality Results for PMP Floodplain Wells	4 - 1
	4.2	Cr(VI) Distribution and Trends in PMP Wells	4-1
	4.3	PMP Contingency Plan Cr(VI) Monitoring	4-2
	4.4	Extraction Systems Operations	4-2
	4.5	Hydraulic Gradient and River Levels during Quarterly Period	4-3
	4.6	Projected River Levels during Next Quarter	4-4
	4.7	Quarterly PMP Evaluation Summary	4-5
5.0	Upco	oming Operation and Monitoring Events	5-1
	5.1	Groundwater Monitoring Program	5-1
		5.1.1 Quarterly Monitoring	5-1
		5.1.2 Monthly Monitoring	5-1
	5.2	Surface Water Monitoring Program	
	5.3	Performance Monitoring Program	
		5.3.1 Extraction	5-1
		5.3.2 Transducer Download	
6.0	Refe	rences	6-1

Tables

- 3-1 Groundwater Sampling Results, April 2010 through June 2011
- 3-2 Groundwater COPC and In Situ Byproducts Sampling Results, December 2010 through June 2011
- 3-3 Title 22 Metals Results, Second Quarter 2011
- 3-4 Surface Water Sampling Results, Second Quarter 2011
- 3-5 COPCs, In Situ Byproducts and Geochemical Indicator Parameters in Surface Water Samples, Second Quarter 2011
- 4-1 Pumping Rate and Extracted Volume for IM System, Second Quarter 2011
- 4-2 Analytical Results for Extraction Wells, January 2010 through June 2011
- 4-3 Average Hydraulic Gradients Measured at Well Pairs, Second Quarter 2011
- 4-4 Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3

Figures

- 1-1 Locations of IM-3 Facilities and Monitoring Locations
- 1-2 Monitoring Locations and Sampling Frequency for GMP
- 1-3 Monitoring Locations and Sampling Frequency for RMP
- 1-4 Locations of Wells and Cross-sections Used for IM Performance Monitoring
- 3-1a Cr(VI) Sampling Results, Shallow Wells in Alluvial Aquifer and Bedrock, Second Quarter 2011
- 3-1b Cr(VI) Sampling Results, Mid-depth Wells in Alluvial Aquifer and Bedrock, Second Quarter 2011
- 3-1c Cr(VI) Sampling Results, Deep Wells in Alluvial Aquifer and Bedrock, Second Quarter 2011
- 4-1 Maximum Cr(VI) Concentrations in Alluvial Aquifer, Second Quarter 2011
- 4-2 Cr(VI) Concentrations Floodplain Cross-section B, Second Quarter 2011
- 4-3 Cr(VI) Concentration Trends in Selected Performance Monitoring Wells, April 2005 through June 2011
- 4-4a Average Groundwater Elevations for Shallow Wells and River Elevations, Second Quarter 2011
- 4-4b Average Groundwater Elevations for Mid-depth Wells, Second Quarter 2011
- 4-4c Average Groundwater Elevations for Deep Wells, Second Quarter 2011
- 4-5 Average Groundwater Elevations for Wells in Floodplain Cross-section A, Second Ouarter 2011
- 4-6 Measured Hydraulic Gradients, River Elevations, and Pumping Rate, Second Quarter 2011
- 4-7 Past and Predicted Future River Levels at Topock Compressor Station

Appendices

- A Lab Reports, Second Quarter 2011 (provided on CD-ROM only with hardcopy submittal)
- B Other Groundwater Monitoring Results
- C Groundwater Monitoring Data for GMP and Interim Measures Monitoring Wells
- D Interim Measures Extraction System Operations Log, Second Quarter 2011
- E Hydraulic Data for Interim Measures Reporting Period

vi BAO\112270004

Acronyms and Abbreviations

μg/L micrograms per liter

ft bgs feet/foot below ground surface

BOR United States Bureau of Reclamation

COPC contaminant of potential concern

Cr(VI) hexavalent chromium

DOI United Department of the Interior

DTSC California Environmental Protection Agency, Department of Toxic

Substances Control

FLUTe Flexible Liner Underground Technologies

ft/ft feet per foot

GMP Groundwater Monitoring Program

gpm gallons per minute

IM Interim Measure

IMCP Interim Measures Contingency Plan

IM-3 Interim Measure Number 3

PG&E Pacific Gas and Electric Company

PMP Performance Monitoring Program

RCRA Resource Conservation and Recovery Act

RMP Surface Water Monitoring Program

TDS total dissolved solids

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing Interim Measures (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The Topock Compressor Station is located in eastern San Bernardino County, 15 miles southeast of the city of Needles, California, as shown in Figure 1-1. (All figures are located at the end of the report.) This report presents the monitoring data from three key PG&E monitoring programs, which include:

- Site-wide Groundwater Monitoring Program (GMP).
- Site-wide Surface Water Monitoring Program (RMP).
- Interim Measure Number 3 (IM-3) Performance Monitoring Program (PMP) (data and evaluations).

The data presented for the GMP were collected from throughout the months of April through June 2011. The data for the RMP were collected from June 7 and 8, 2011. The data collected as part of the GMP and RMP are presented in Section 3.0. The data collected throughout the quarter as part of the PMP are presented in Section 4.0. This combined PMP and GMP (including RMP) reporting format was approved by the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) in May 2009 (DTSC, 2009a). On July 23, 2010, DTSC approved a new sampling event timing and reporting schedule for the PMP, GMP, and RMP programs (DTSC, 2010a). In compliance with this approval, the second quarter 2011 monitoring report contains data from April through June 2011.

1.1 Site-wide Groundwater and Surface Water Monitoring Program

The Topock GMP and RMP were initiated as part of a Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation and Liability Act facility investigation/remedial investigation groundwater investigation. These programs are being regulated under a Corrective Action Consent Agreement issued by the DTSC in 1996 for the Topock site (United States Environmental Protection Agency ID No. CAT080011729).

Groundwater monitoring data collected between July 1997 and October 2007 are presented in the Revised Final RCRA Facility Investigation and Remedial Investigation Report, Volume 2 – Hydrogeological Characterization and Results of Groundwater and Surface Water Investigation, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California, dated February 11, 2009 (CH2M HILL, 2009a). Select groundwater and surface water monitoring data from November 2007 through September 2008 are presented in the Final RCRA Facility Investigation/Remedial Investigation Report, Volume 2 Addendum – Hydrogeologic Characterization and Results of Groundwater and Surface Water Investigation, Pacific Gas and

Electric Company, Topock Compressor Station, Needles, California, dated June 29, 2009 (CH2M HILL, 2009b).

For background (including well construction details) and descriptions of the current groundwater and surface water sampling, analyses, and monitoring programs, refer to PG&E's Fourth Quarter 2010 and Annual Interim Measures Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report, PG&E Topock Compressor Station, Needles, California, dated March 15, 2011 (CH2M HILL, 2011a).

In compliance with the requirements for Groundwater and Surface Water Monitoring Program directive of April 2005 (DTSC, 2005a), this document presents the Second Quarter 2011 GMP and RMP report for the IM monitoring activities from April 1, 2011 through June 30, 2011.

GMP and RMP Monitoring Networks

Figure 1-2 shows the current locations and sampling frequencies of the monitoring wells in the GMP. The complete GMP includes 118 wells, which monitor the Alluvial Aquifer and the bedrock and consist of:

- One hundred one (excluding packer wells) monitoring wells in California.
- Eight monitoring wells in Arizona.
- Two water supply wells.
- Two active extraction wells.
- Five test wells.

Sampling frequencies for the GMP wells were updated beginning in First Quarter 2010 following the DTSC directive dated March 3, 2010 (DTSC, 2010b). Figure 1-2 shows these updated frequencies. Sampling frequencies for the Arizona monitoring wells were updated following the April 23, 2010 approval from the Arizona Department of Environmental Quality (2010) and the April 28, 2010 directive from DTSC (DTSC, 2010c).

Figure 1-3 shows the locations and sampling frequencies of the RMP. The RMP consists of:

- Ten river channel surface water monitoring locations.
- Four shoreline surface water monitoring locations.
- Two other surface water monitoring locations.

During the week of January 18, 2010, a series of storm events occurred that caused flooding of low-lying areas and damaged several wells in the GMP monitoring network, including the bedrock wells of the MW-58 cluster: MW-58-115 and MW-58-205. As a result of this cluster being inundated and filled with floodwater, the Flexible Liner Underground Technologies (FLUTe) well liner that allowed discrete sampling at the 115 foot belowground-surface (ft bgs) and 205 ft bgs depth intervals was damaged and subsequently removed from the borehole. The MW-58 bedrock well cluster was configured as an open rock borehole and temporarily re-designated as MW-58BR. In September 2010, at the direction of DTSC, a packer system was installed into the open borehole MW-58BR at approximately 115 ft bgs, dividing the open borehole into upper and lower intervals designated as MW-58BR-UPR and MW-58BR-LWR, respectively (CH2M HILL, 2010a). In January of 2011, the packer was moved to approximately 160 ft bgs, and the upper and lower intervals were designated as MW-58BR-UPR-160 and MW-58BR-LWR-160,

1-2 BAO\112270004

respectively. In February 2011 DTSC and the United Department of the Interior (DOI) approved an Addendum to the East Ravine Groundwater Investigation (CH2MHILL, 2010b; DTSC, 2011; DOI, 2011a). Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011.

On an August 5, 2010 conference call, DTSC directed PG&E to initiate monthly sampling at the MW-64 well cluster. Following the results from MW-58 packer samples, DTSC directed PG&E to remove the FLUTe liner creating depth-discrete sampling zones in the MW-64 cluster (MW-64-150, MW-64-205, and MW-64-260). The FLUTe liner was removed during the week of December 6, 2010, and the open borehole was temporarily re-designated as MW-64BR. Following removal of the FLUTe system, the open borehole was developed, and a sample of the open borehole was collected on December 20, 2010. A packer system dividing the MW-64 borehole into two depth intervals similar to MW-58BR was installed in January 2011, as directed by DTSC (CH2M HILL, 2010c). This packer was set at about 150 ft bgs, and the upper and lower intervals were designated as MW-64BR-UPR-150 and MW-64BR-LWR-150, respectively. In February 2011 DTSC and DOI approved an Addendum to the East Ravine Groundwater Investigation (CH2MHILL, 2010b; DTSC, 2011; DOI, 2011a). Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011.

The two wells composing the MW-38 cluster, located in Bat Cave Wash adjacent to the Topock Compressor Station, were also damaged in the storm events during the week of January 18, 2010. Plans to repair monitoring well MW-38D and repair or replace monitoring well MW-38S provided in the technical memorandum entitled *Final Revised Implementation Plan for Repair of Monitoring Wells MW-38S and MW-38D and Old Well/Pipe Reconnaissance* (CH2M HILL, 2011b) were approved by DTSC and DOI on February 24 and 25, 2011, respectively (DTSC, 2011; DOI, 2011b). Repair/replacement of MW-38S and MW-38D is pending as of the time of submittal of this report.

1.2 Interim Measure Performance Monitoring Program

In compliance with the requirements for IM monitoring and reporting outlined in the DTSC IM performance directive of February 2005 and in subsequent directives from the DTSC in 2007 (DTSC, 2005b, 2007a-c), this document presents the Second Quarter 2011 PMP evaluation report for the IM monitoring activities from April through June 2011.

The Topock project IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems are collectively referred to as IM-3. The IM only monitors the Alluvial Aquifer. Currently, the IM-3 facilities include a groundwater extraction system (four extraction wells: TW-2D, TW-3D, TW-2S, and PE-1), conveyance piping, a groundwater treatment plant, and an injection well field for the discharge of the treated groundwater. At this time, extraction wells PE-1 and TW-3D operate full time. Figure 1-1 shows the location of the IM-3 extraction, conveyance, treatment, and injection facilities.

In a letter dated February 14, 2005, DTSC established the criteria for evaluating the performance of the IM (DTSC, 2005c). As defined by DTSC, the performance standard for

this IM is to "establish and maintain a net landward hydraulic gradient, both horizontally and vertically, that ensures that hexavalent chromium [Cr(VI)] concentrations at or greater than 20 micrograms per liter [μ g/L] in the floodplain are contained for removal and treatment" (DTSC, 2005b). A draft *Performance Monitoring Plan for Interim Measures in the Floodplain Area, Pacific Gas and Electric Company, Topock Compressor Station, Needles, California* (CH2M HILL, 2005) was submitted to DTSC on April 15, 2005 (herein referred to as the Performance Monitoring Plan).

The February 2005 DTSC directive also defined the monitoring and reporting requirements for the IM (DTSC, 2005b-c). In October 2007, DTSC modified the reporting requirements for the PMP (DTSC, 2007a) to discontinue monthly performance monitoring reports (the quarterly and annual reporting requirements were unchanged). Additional updates and modifications to the PMP were approved by DTSC in letters dated October 12, 2007, July 14, 2008, July 17, 2008 (DTSC, 2007a, 2008a-b), and July 23, 2010 (DTSC, 2010a).

PMP Monitoring Networks

Figure 1-4 shows the locations of wells used for IM extraction, performance monitoring, and hydraulic gradient measurements. With approval from DTSC, the list of wells included in the PMP was modified beginning August 1, 2008. The performance monitoring wells that were in service/active as of June 2011 are defined as:

- Floodplain Wells (monitoring wells on the Colorado River floodplain).
- **Intermediate Wells** (monitoring wells located immediately north, west, and southwest of the floodplain).
- Interior Wells (monitoring wells located upgradient of IM pumping).
- Extraction Wells (TW-2D, TW-3D, TW-2S, and PE-01).

Three extraction wells (TW-2D, TW-3D, and TW-2S) are located on the MW-20 bench. In addition, extraction well PE-1 is located on the floodplain approximately 450 feet east of extraction well TW-3D, as shown in Figure 1-4. As stated earlier, extraction wells TW-3D and PE-1 operate full time.

Groundwater monitoring wells installed on the Arizona side of the Colorado River are not formally part of the PMP, but some of these wells have been used to collect groundwater elevation data for evaluating the hydraulic gradient on the Arizona side of the river.

The PMP monitors hydrogeologic conditions in the Alluvial Aquifer. The wells screened in the unconsolidated alluvial fan and fluvial deposits, which comprise the Alluvial Aquifer, have been separated into three depth intervals to present groundwater quality and groundwater level data. The depth intervals of the Alluvial Aquifer in the floodplain area — designated upper (shallow wells), middle (mid-depth wells), and lower (deep wells) — are based on grouping the monitoring wells screened at common elevations. These divisions do not correspond to any lithostratigraphic layers within the aquifer. The Alluvial Aquifer is considered to be hydraulically undivided. The subdivision of the aquifer into three depth intervals is an appropriate construct for presenting and evaluating spatial and temporal distribution of groundwater quality data in the floodplain. The three-interval concept is also

1-4 BAO\112270004

useful for presenting and evaluating lateral gradients while minimizing effects of vertical gradients and observing the influence of pumping from partially penetrating wells.

2.0 Second Quarter 2011 Monitoring Activities

This section provides a summary of the monitoring and sampling activities completed during Second Quarter 2011.

2.1 Groundwater Monitoring Program

2.1.1 Monthly

The active IM extraction wells (PE-1 and TW-3D) were sampled for Cr(VI) and chromium during April, May, and June 2011.

Open bedrock interval boreholes with packers installed (MW-58BR and MW-64BR) were sampled in April 2011 for Cr(VI), chromium, arsenic, and a larger suite of analytes according to their approved implementation plans (CH2M HILL, 2010a,c). After the April 2011 sampling, DTSC directed that monthly sampling of these wells be continued. Monitoring continues at these wells as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011.

2.1.2 Quarterly

Following the July 23, 2010 sampling schedule approval (DTSC, 2010a), the second quarter 2011 GMP quarterly groundwater monitoring event was conducted between April 28 through May 6, 2011 and consisted of collecting samples from 70 groundwater monitoring wells.

These wells were sampled for Cr(VI), chromium, field oxidation-reduction potential, laboratory specific conductance, and field pH.

In addition, the following monitoring activities were conducted at selected GMP wells during the second quarter 2011 sampling event:

- Two wells (MW-12 and MW-22) screened in alluvial sediments were sampled for California Code of Regulations Title 22 metals analyses, which includes arsenic.
- Two wells (MW-16 and MW-17) were sampled for background metals, as recommended in the background study report (CH2M HILL, 2008).
- Thirty-four GMP wells screened in fluvial sediments were sampled for arsenic, as directed by DTSC in its Corrective Measures Study review comment No. 186 (DTSC, 2009b).
- Arsenic was analyzed in groundwater samples from eight bedrock monitoring wells.
- Samples were also collected from a subset of wells for contaminants of potential concern (COPCs), including molybdenum, nitrate, and selenium and potential in situ byproducts (manganese and arsenic). In an email dated March 3, 2010, DTSC directed monitoring of these COPCs and potential in situ byproducts, as well as fluoride.

2.2 Surface Water Monitoring Program

Quarterly surface water sampling was conducted on June 7 through 8, 2011 from the complete RMP monitoring network. Samples were analyzed for Cr(VI), chromium, specific conductance, and pH. Samples were also analyzed for COPCs (molybdenum, nitrate, and selenium) and potential in situ byproducts (manganese, iron, and arsenic) and geochemical indicator parameters to develop baseline concentrations for remedy performance.

2.3 Performance Monitoring Program

PMP pressure transducers, which monitor the Alluvial Aquifer, are downloaded in the first week of every month (April, May, and June). The transducers in the key monitoring wells (MW-27-085, MW-31-135, MW-33-150, MW-34-100, and MW-45-095a; see Figure 1-4) are downloaded weekly.

2-2 BAO\112270004

3.0 Results for Site-Wide Groundwater Monitoring and Surface Water Sampling

3.1 Groundwater Results for Cr(VI) and Chromium

Table 3-1 presents the results for Cr(VI), chromium, field oxidation-reduction potential, laboratory specific conductance, and field pH in groundwater samples collected from April 2011 through June 2011. During Second Quarter 2011, the maximum detected Cr(VI) concentration was 12,100 μ g/L at well MW-20-130. The laboratory reports for results from April through June 2011 are presented in Appendix A.

Figures 3-1a through 3-1c present the Cr(VI) results for wells monitoring the shallow (upper depth interval), mid-depth (middle depth interval), and deep (lower depth interval) wells of the Alluvial Aquifer and bedrock, respectively, from Second Quarter 2011. Figures 3-1a through 3-1c also show the approximate outlines of Cr(VI) concentration contours greater than 32 μ g/L for the Alluvial Aquifer and bedrock based on results from the more comprehensive groundwater sampling event conducted in December 2010 and the Second Quarter 2011 sampling event. The value of 32 μ g/L is based on the calculated natural background upper tolerance limit for Cr (VI) in groundwater from the background study (CH2M HILL, 2009a).

The areas where Cr(VI) concentrations are greater than 32 μ g/L in the shallow, mid-depth, and deep intervals of the Alluvial Aquifer and East Ravine bedrock wells are generally similar to the previous quarterly monitoring events (CH2M HILL, 2009c-e, 2010d-e, 2011a).

3.2 Other Groundwater Monitoring Results

3.2.1 COPCs and In situ Byproducts

Table 3-2 presents the COPC sampling results for groundwater monitoring wells in the second quarter sampling. During Second Quarter 2011, the maximum detected molybdenum concentration was 170 μ g/L at well MW-46-175. The maximum nitrate result was collected from TW-01 at 24.0 mg/L. The maximum selenium result was collected from MW-60-125 at 34.0 μ g/L. The maximum detected manganese result was collected from MW-22 at 2300 μ g/L. Fluoride was only collected from MW-10 with a result of 7.7 mg/L. Arsenic results are discussed in Section 3.2.3.

3.2.2 Title 22 Metals

Table 3-3 presents the Title 22 metals results for the GMP monitoring well MW-12 and MW-22 sampled during Second Quarter 2011. In addition to chromium, the trace metals detected in MW-12 during the second quarter 2011 groundwater sampling event were arsenic, barium, molybdenum, selenium, and vanadium. The trace metals detected at MW-22 during the second quarter 2011 groundwater sampling event were arsenic, barium,

and molybdenum. The dissolved concentrations of the trace metals detected during the second quarter 2011 event—other than chromium and arsenic—are below the respective federal and California maximum contaminant level drinking water standards.

3.2.3 Arsenic Sampling in Monitoring Wells

Thirty-four Alluvial Aquifer wells were sampled for arsenic in the second quarter 2011 event. These results are presented in Table B-1 in Appendix B. Seven of the monitoring well samples had arsenic concentrations greater than the California maximum contaminant level of 10 μ g/L (MW-12, MW-22, MW-32-35, MW-33-40, MW-36-90, MW-42-55, and MW-43-25). The maximum concentration was detected in MW-12 at 49.0 μ g/L. The arsenic concentrations are within the previously observed ranges for each well.

Eight bedrock wells were sampled for arsenic in the second quarter 2011 event. These results are presented in Table B-1 in Appendix B. Two of the bedrock monitoring well samples had arsenic concentrations greater that the California maximum contaminant level of $10 \,\mu\text{g/L}$ (MW-57-185 at $12.0 \,\mu\text{g/L}$ and MW-62-110 at $14.0 \,\mu\text{g/L}$).

3.2.4 Sample Results for Packer Wells

In January 2011, at the direction of DTSC, the packer system installed into the open borehole MW-58BR was moved to 160 ft bgs, dividing the open borehole into upper and lower intervals designated as MW-58BR-UPR-160 and MW-58BR-LWR-160, respectively. In January 2011, a packer system was also installed into the open borehole MW-64BR at about 150 ft bgs, dividing the open borehole into upper and lower intervals designated as MW-64BR-UPR-150 and MW-64BR-LWR-150.

The packer-equipped boreholes MW-58BR and MW-64BR were sampled for arsenic during April 2011. These results are presented in Tables B-1 and B-2 in Appendix B. No results exceeded the California maximum contaminant level of $10 \,\mu\text{g}/\text{L}$. Results for additional analytes in Second Quarter 2011 are presented in Table B-2 in Appendix B.

3.2.5 Background Study Metals

Table B-3 in Appendix B presents the background metals sampling results for Second Quarter 2011 sampling from monitoring wells MW-16 and MW-17, as recommended in the background study report (CH2M HILL, 2008a).

In addition to chromium, the background metals detected in MW-16 during the second quarter 2011 groundwater sampling event were arsenic, barium, boron, calcium, iron, magnesium, molybdenum, selenium, and vanadium. The dissolved concentrations of the trace metals detected during the second quarter 2011 event—other than arsenic—are below the respective federal and California maximum contaminant level drinking water standards.

In addition to chromium, the background metals detected in MW-17 during the second quarter 2011 groundwater sampling event were arsenic, barium, boron, calcium, magnesium, molybdenum, selenium, vanadium and zinc. The dissolved concentrations of the trace metals detected during the second quarter 2011 event are below the respective federal and California maximum contaminant level drinking water standards.

3-2 BAO\112270004

3.3 Surface Water Results for Cr(VI) and Chromium

Table 3-4 presents results of Cr(VI), chromium, specific conductance, and lab pH from the surface water sampling event conducted in June 2011. Cr(VI) was not detected above the reporting limit at any in-channel, shoreline, or other surface water monitoring locations during Second Quarter 2011. Chromium was not detected above the reporting limit at any in-channel, shoreline, or other surface water monitoring locations during Second Quarter 2011, with the exception of R-63 which showed a total chromium concentration of 1.2 μ g/L. Note that a sample from R-63 collected at the same time as the total chromium sample was non-detect for hexavalent chromium, at a reporting limit of 0.2 μ g/L. Table 3-5 presents the COPCs (molybdenum, nitrate, and selenium) and, potential in situ byproducts (manganese, iron, and arsenic), and other geochemical indicator parameters.

3.4 Data Validation and Completeness

Laboratory analytical data from the second quarter 2011 GMP sampling event were reviewed by project chemists to assess data quality and to identify deviations from analytical requirements. In addition to the typical metals, anions, total organic carbon, etc. that are typically analyzed for in the Topock monitoring wells, volatile organic compounds analysis by method SW8260B was also requested at MW-58BR and MW-64BR subsequent to removal of the FLUTe liners.

The following bullets summarize the notable analytical qualifications in the data reported this quarter:

• MW-53D had a hexavalent chromium [Cr(VI)] detection of 6.6 μ g/L (E218.6), however the dissolved chromium [Cr(T)] was non-detect at 1 μ g/L (SW6020A). The fact that Cr(T) was non-detect suggests an issue with the Cr(VI) analysis, since it is theoretically impossible to have Cr(VI) greater than Cr(T).

A negative ORP (around -150 mV) and the presence of dissolved Mn and Fe (from 4Q 2010 and/or 2Q 2011 samples) are not consistent with the presence of Cr(VI) at this well. Also, specific conductance at this well ranges from 25,000 to 32,000 uS/cm; indicating high dissolved solid concentrations. The Cr(VI) methods using chromatography (i.e. E218.6, SW7199) are sensitive to interference from chloride or sulfate anions at high concentrations.

The MW-53D sample was re-analyzed by the lab for both Cr(T) and Cr(VI). Three Cr(T) results were non-detect (including a SW6020A analysis of the Cr(VI) container); but both Cr(VI) results were 6.6 μ g/L, after repeating the analyses at 25x dilution. Even at a 25X dilution, interference was evident in the chromatogram. A notation that dilution was necessary to overcome analytical interference is seen in historical non-detect results at this well with Cr(VI) reporting limits ranging from 1 to 5.2 μ g/L (at 5 – 25x dilution). The Cr(VI) detect result was qualified and flagged "I".

• Eight of the method SW8260B VOCs (2-butanone, 1,2,4-trimethylbenzene, 2,2-dichloropropane, acetone, acrolein, acrylonitrile, styrene, and toluene) had matrix

BAO\112270004 3-3 spike recoveries that were outside the control limits, and the associated samples were qualified and flagged "J" (detect results) and "UJ" (non-detect results). Three Continuing Calibration Verification samples were outside the control limits for 2,2-dichloropropane (SW8260B); three non-detect sample results were qualified and flagged "UJ."

- Five sample results for chromium, arsenic, and manganese (E200.8) had internal standards outside the control limits and were qualified and flagged "J" (detect results) and "UJ" (non-detect results).
- Three field duplicate pairs had relative percent differences greater than the upper control limit for chromium, molybdenum, and manganese (SW6020A); the detect results were qualified and flagged "J."
- MW-53D also exhibited a matrix issue for arsenic (SW6020A) where a 25x dilution was required to achieve satisfactory internal standard recovery (Note: the arsenic analysis was performed by a different laboratory then the chromium analysis). The sample result was qualified and flagged "J."
- One laboratory control sample's recovery for arsenic (SW6020A) was greater than
 the upper control limit, and the 11 associated detect sample results were qualified
 and flagged "J."
- Based on the March 2007 United States Environmental Protection Agency ruling, pH has a 15-minute holding time. As a result, pH (SM4500-HB) samples analyzed in a certified lab require qualification. Therefore, all of the pH results for the River Monitoring Program samples were qualified as estimated and flagged "J."

No other significant analytical deficiencies were identified in the second quarter 2011 GMP data. Additional details are provided in the data validation reports, which are kept in the project file and are available upon request.

3-4 BAO\112270004

4.0 IM Performance Monitoring Program Evaluation

4.1 Water Quality Results for PMP Floodplain Wells

Table C-1 in Appendix C presents the results of the general chemistry and stable isotope analyses for 15 PMP monitoring wells and two river stations during sampling events from March 2005 through June 2011. In July 2008, DTSC approved modifications to the PMP IM chemical performance monitoring program (DTSC, 2008b). With those modifications, there are now 10 monitoring wells and one river station sampled for IM chemical performance monitoring. Figure 1-4 shows the locations of the monitoring wells sampled for the performance monitoring parameters. Water samples from the selected performance monitoring locations are analyzed for general chemistry parameters, including total dissolved solids (TDS), chloride, sulfate, nitrate, bromide, calcium, potassium, magnesium, sodium, boron, alkalinity, deuterium, and oxygen-18 to monitor the effects of IM pumping on groundwater chemistry.

4.2 Cr(VI) Distribution and Trends in PMP Wells

The April through June 2011 distribution of Cr(VI) in the upper (shallow wells), middle (mid-depth wells), and lower (deep wells) intervals of the Alluvial Aquifer is shown in plan view and cross-section on Figure 4-1¹. Figure 4-2 presents the April through June 2011 Cr(VI) results for cross-section B, oriented parallel to the Colorado River. The location of cross-section B is shown on Figure 1-4. The Cr(VI) concentration contours shown for the Alluvial Aquifer on these figures are based on results from the more comprehensive groundwater sampling conducted in December 2010 and the second quarter 2011 sampling event.

Figure 4-3 presents Cr(VI) concentration trend graphs for selected deep monitoring wells in the floodplain area through June 2011. Sampling results are plotted for wells MW-34-100, MW-36-90, MW-36-100, MW-44-115, MW-44-125, and MW-46-175. The locations of the deep wells selected for performance evaluation are shown on Figure 1-4. Appendix C includes Cr(VI) concentration trend graphs for selected monitoring well clusters through June 2011.

Wells showing marked decreases in concentration are generally in the floodplain area where IM pumping is removing chromium in groundwater. Wells with historic detections near or at reporting limits remained at these levels during the second quarter 2011 period. A review of Figure 4-3 and Appendix C indicates that Cr(VI) concentrations have remained steady or

BAO\112270004

¹ In Figures 4-1 and 4-2, the Cr(VI) concentrations are color-coded based on the groundwater background Cr(VI) concentration, which is 32 μg/L (CH2M HILL, 2009a). The 20 μg/L and 50 μg/L Cr(VI) concentration contours presented in Figures 4-1 and 4-2 are shown in accordance with DTSC's 2005 IM directive and are not based on the background Cr(VI) concentration for groundwater.

have decreased in many wells since IM and PE-1 pumping began in 2004 and 2005, respectively.

Key trends for PMP groundwater monitoring wells sampled during the Second Quarter 2011 include:

- Concentrations at the MW-20 cluster (located near the TW-3D pumping well) indicate steady concentrations at MW-20-070 (since 2007), decreasing concentrations at MW-20-100 (since May 2007), and variable concentrations at MW-20-130, as shown in Figure C-3 in Appendix C.
- Mid-depth and deep MW-33 cluster Cr(VI) concentrations have shown stable to slightly increasing trends since 2005, while shallow well MW-33-40 has remained below or near the reporting limit since 2004 as presented in Figure C-5 in Appendix C.
- Concentrations at MW-34-100 have been variable, but generally declining, since June 2006. The sample result for April 2011 (16.1 µg/L) was the lowest concentration reported at this well to date, as shown on Figure 4-3. Superimposed on this primary overall downward trend in Cr(VI) concentration, MW-34-100 also shows a secondary seasonal effect in concentration related to high (spring/summer) and low (winter) Colorado River levels. The transitions between high and low river stages are believed to result in relatively small changes in the direction of the flow paths around MW-34-100 (both horizontally and/or vertically). Such changes in flowpaths could result in seasonal variations in the concentrations observed in MW34-100 as groundwater is pulled from areas of higher concentrations and/or lower ORP. The secondary trend of seasonal fluctuation in Cr(VI) is also seen in other monitoring wells near MW-34-100: superimposed on the overall deceasing trends at MW-44-125 and MW-44-115, and on a stable Cr(VI) trend at MW-46-175. River levels are discussed in Section 4.6.
- Concentrations in well MW-50-095 have declined since June 2007, and the lowest concentration reported to date was reported in December 2010, as shown in Figure C-12 in Appendix C.

4.3 PMP Contingency Plan Cr(VI) Monitoring

The Topock Interim Measures Contingency Plan (IMCP) was developed to detect and control any possible migration of the Cr(VI) plume toward the Colorado River. Currently, the IMCP consists of 24 wells (CH2M HILL, 2005, 2006; PG&E, 2007, 2008). Appendix C includes Cr(VI) concentration trend graphs for the IMCP wells. The IMCP well Cr(VI) results in Second Quarter 2011 were all below their assigned trigger levels.

4.4 Extraction Systems Operations

Pumping data for the IM-3 groundwater extraction system for the second quarter reporting period of April 1, 2011 through June 30, 2011 are presented in Table 4-1. From April 1, 2011 through June 30, 2011, the volume of groundwater extracted and treated by the IM-3 system was 16,334,980 gallons. This resulted in removal of an estimated 116.6 pounds (52.9)

4-2 BAO\112270004

kilograms) of chromium from the aquifer during the period from April 1, 2011 through June 30, 2011.

During Second Quarter 2011, extraction wells TW-3D and PE-1 operated at a combined pumping rate of 124.6 gallons per minute (gpm), including periods of planned and unplanned downtime. The average monthly pumping rates were 116.0 gpm (April 2011), 133.3 gpm (May 2011), and 124.4 (June 2011) during the reporting period. Extraction wells TW-2S and TW-2D were not operated during Second Quarter 2011. The operational runtime percentage for the IM extraction system was 92.8 percent during this reporting period. The operations log for the extraction system during Second Quarter 2011, including planned and unplanned downtime, is included in Appendix D.

The concentrate (i.e., saline water) from the reverse osmosis system was shipped offsite as a RCRA non-hazardous waste and was transported to Liquid Environmental Solutions in Phoenix, Arizona for treatment and disposal. Six containers of solids from the IM-3 facility were disposed of at the Kettleman Hills Chemical Waste Management facility during Second Quarter 2011. Daily IM-3 inspections included general facility inspections, flow measurements, and site security monitoring. Daily logs with documentation of inspections are maintained onsite.

During the second quarter 2011 reporting period, Cr(VI) concentrations in TW-3D have remained stable, ranging from a maximum value of 1,130 μ g/L in April 2011 to a minimum value of 1,030 μ g/L in June 2011, as shown in Table 4-2. TDS concentrations in TW-3D for this period have remained relatively stable, averaging about 5,100 milligrams per liter, as shown in Table 4-2.

The Cr(VI) concentrations in the extracted groundwater at well PE-1, located on the floodplain, have ranged from to 9.5 to 10.5 μ g/L during the reporting period, as shown in Table 4-2. TDS concentrations in PE-1 for this period have also remained stable, averaging about 3,100 milligrams per liter.

4.5 Hydraulic Gradient and River Levels during Quarterly Period

During the reporting period, water levels were recorded at intervals of 30 minutes with pressure transducers in 53 wells in the Alluvial Aquifer and two river monitoring stations (I-3 and RRB). The data are typically continuous, with only short interruptions for sampling or maintenance. The locations of the wells monitored are shown in Figure 1-4.

Daily average groundwater and river elevations calculated from the pressure transducer data for the second quarter 2011 reporting period are summarized in Table E-1 in Appendix E. Groundwater elevations (or hydraulic heads) are adjusted for temperature and salinity differences between wells (i.e., adjusted to a common freshwater equivalent), as described in the Performance Monitoring Plan. Groundwater elevation hydrographs for the PMP wells during the second quarter 2011 reporting period are included in Appendix E. The elevation of the Colorado River measured at the I-3 gauge station (location shown in Figure 1-4) is also shown on the hydrographs in Appendix E.

BAO\112270004 4-3 Average Second Quarter 2011 groundwater elevations for the shallow, mid-depth, and deep wells are presented and contoured in plan view in Figures 4-4a through 4-4c. Average groundwater elevations for wells on floodplain cross-section A are presented and contoured in Figure 4-5. Several monitoring wells are significantly deeper than other wells in the lower depth interval. Due to vertical gradients present at the Topock site, water levels in deeper wells tend to be higher than water levels in shallower wells. Consequently, some of the wells with screen intervals significantly deeper than most of the lower-interval wells exhibit water levels that are not contoured in the plan view in Figure 4-4c.

For the second quarter 2011 reporting period, a full set of transducer data was recorded in wells located on the Arizona side of the Colorado River. The quarterly average groundwater elevations for wells MW-55-120, MW-54-85, MW-54-140, and MW-54-195 are presented on Figure 4-4c and are used for contouring, where appropriate. With the exception of well MW-55-45, all of the wells in the MW-54 and MW-55 clusters are screened in the deep interval of the Alluvial Aquifer. Well MW-55-45 is screened over the boundary between the shallow and middle intervals.

Deep zone water levels shown in Figure 4-4c indicate that potentiometric levels in monitoring wells in Arizona are higher than those in wells across the river on the California floodplain. This means that the hydraulic gradient on the Arizona side of the river is directed to the west and, as a result, groundwater flow would also be towards the west in that area. This is consistent with the site conceptual model and with the current numerical groundwater flow model (CH2M HILL, 2009a, 2009f).

Hydraulic gradients were measured during the second quarter 2011 reporting period for well pairs selected for performance monitoring of the two pumping centers (TW-3D and PE-1). The following well pairs were approved by DTSC on October 12, 2007 (DTSC, 2007a) to define the gradients induced while pumping from two locations:

- MW-31-135 and MW-33-150 (northern gradient pair)
- MW-45-95 and MW-34-100 (central gradient pair)
- MW-45-95 and MW-27-85 (southern gradient pair)

Table 4-3 presents the average monthly hydraulic gradients that were measured between the gradient well pairs in Second Quarter 2011. Figure 4-6 presents graphs of the hydraulic gradients, monthly average pumping rates, and river levels for the quarterly period. Strong landward gradients were measured each month. The overall average gradients for all well pairs ranged from 0.0042 to 0.0052 feet per foot (ft/ft). This is 4.2 to 5.2 times greater than the required gradient of 0.001 ft/ft. The gradient for the northern well pair ranged from 2.0 to 2.2 times the target gradient of 0.001 ft/ft. For the central well pair, the average landward gradient ranged from 7.7 to 10.1 times the target gradient. The southern well pair gradients averaged 2.9 to 3.5 times the target gradient for the second quarter 2011 reporting period.

4.6 Projected River Levels during Next Quarter

Colorado River stage near the Topock Compressor Station is measured at the I-3 location and is directly influenced by releases from Davis Dam and, to a lesser degree, from Lake Havasu elevations, both of which are controlled by the United States Bureau of Reclamation (BOR). Total releases from Davis Dam follow a predictable annual cycle, with largest

4-4 BAO\112270004

monthly releases typically in spring and early summer and smallest monthly releases in late fall/winter (November and December). Superimposed on this annual cycle is a diurnal cycle determined primarily by daily fluctuations in electric power demand. Releases within a given 24-hour period often fluctuate over a wider range of flows than that of monthly average flows over an entire year.

Figure 4-7 shows river stage measured at I-3 superimposed on the projected I-3 river levels. Projected river levels for future months are based on the BOR projections of Davis Dam discharge and Lake Havasu levels from the month preceding. For example, the projected river level for July 2011 is based on the June 2011 BOR data of Davis Dam release and Lake Havasu level not the actual release and level values. The variability between measured and projected river levels is due to the difference between measured and actual Davis Dam release and Lake Havasu levels. The more recent data plotted in Figure 4-7 are summarized in Table 4-4. The future projections shown in Figure 4-7 are based on BOR long-range projections of Davis Dam releases and Lake Havasu levels from June 2011. There is more uncertainty in these projections at longer times in the future since water demand is based on various elements including climatic factors.

Current BOR projections, presented in Table 4-4, show that the average projected Davis Dam release for July 2011 (15,500 cubic feet per second) will be less than the actual release in June 2011 (16,024 cubic feet per second). Based on July 2011 BOR predictions, it is anticipated that the Colorado River level at the I-3 gage location in July 2011 will be approximately 0.45 foot lower compared to the actual levels in June 2011. Current projections show that the water levels will decrease during the next quarterly reporting period (July through October 2011), as shown in Figure 4-7.

4.7 Quarterly PMP Evaluation Summary

The groundwater elevation and hydraulic gradient data from April 2011 through June 2011 performance monitoring indicate that the minimum landward gradient target of 0.001 ft/ft was exceeded each month during the quarterly reporting period. The overall average landward gradients during the second quarter 2011 were 4.2 to 5.2 times the required minimum magnitude. The current gradient well pairs are adequate to define the capture of the hexavalent chromium plume while pumping from extraction wells TW-3D and PE-1. Based on the hydraulic and monitoring data and evaluation presented in this report, the IM performance standard has been met for the second quarter 2011 reporting period.

A total of 16,334,980 gallons of groundwater was extracted between April and June 2011 by the IM-3 treatment facility. The average pumping rate for the IM extraction system during Second Quarter 2011, including system downtime, was 124.6 gpm. An estimated 116.6 pounds (52.9 kilograms) of chromium were removed and treated during Second Quarter 2011.

A review of the groundwater gradient maps for Second Quarter 2011 (Figures 4-4a to 4-4c) shows that floodplain PMP monitoring wells where Cr(VI) was detected at greater than 20 μ g/L are within the IM capture zone of the pumping well(s) during the reporting period. That is, the inferred groundwater flow lines from floodplain PMP wells with Cr(VI) greater than 20 μ g/L are oriented towards the TW-3D and PE-1 extraction wells.

BAO\112270004 4-5 The wells that are monitored in the IM pumping area (e.g., MW-36-100, MW-39-70, MW-39-80, and MW-39-100) generally continue to show overall declining Cr(VI) concentrations relative to prior monitoring results, as shown in Figure 4-3 and Appendix C. Presentation and evaluation of the Cr(VI) trends observed in the performance monitoring area during the second quarter 2011 reporting period are discussed in Section 4.2.

4-6 BAO\112270004

5.0 Upcoming Operation and Monitoring Events

Reporting of the IM extraction and monitoring activities will continue as described in the PMP and under direction from DTSC. All monitoring results, operations, and performance monitoring data will be reported in the third quarter 2011 monitoring report, which will be submitted by November 30, 2011.

5.1 Groundwater Monitoring Program

5.1.1 Quarterly Monitoring

As described in the July 23, 2010 DTSC sampling schedule approval (DTSC, 2010a), the third quarter monitoring event will occur September 26 through October 7, 2011. This sampling event will include approximately 30 GMP wells.

5.1.2 Monthly Monitoring

Monthly sampling of the two active extraction wells (TW-3D and PE-1) will continue to be performed during the first two weeks of each month.

5.2 Surface Water Monitoring Program

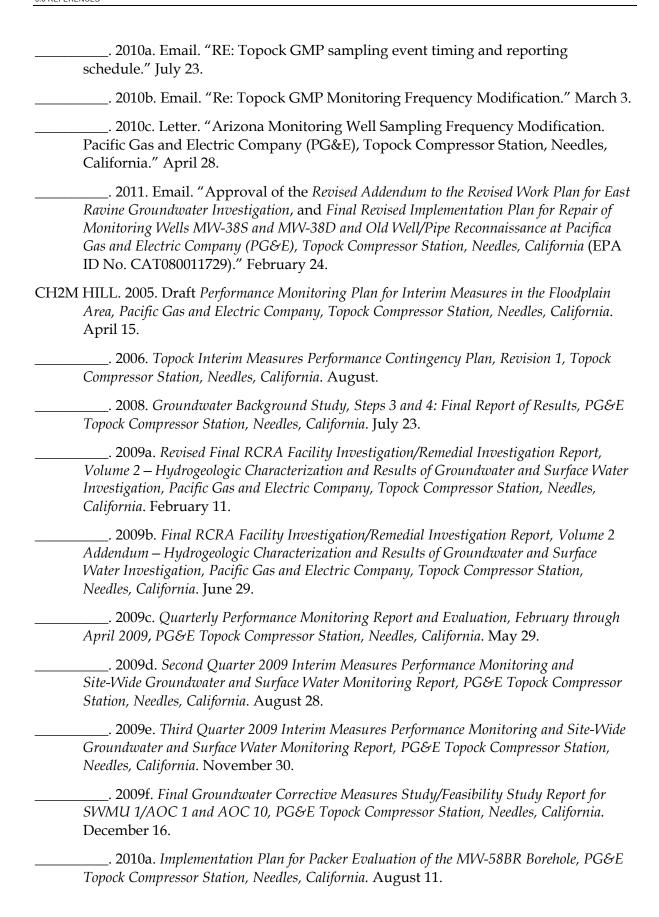
The third quarter 2011 surface water monitoring event will be conducted at locations in the RMP monitoring network and is scheduled to occur on October 11 and 12, 2011. Results will be reported in the third quarter 2011 quarterly monitoring report.

5.3 Performance Monitoring Program

5.3.1 Extraction

Per DTSC direction, PG&E will continue to operate wells TW-3D and PE-1 at a target combined pumping rate of 135 gpm during Third Quarter 2011, except for periods when planned and unplanned downtime occurs. Extracted groundwater treated at the IM-3 facility will be discharged into the IM-3 injection wells in accordance with Waste Discharge Requirements Order No. R7-2006-0060. Saline water and solids generated as byproducts of the treatment process will continue to be transported for offsite disposal.

PG&E will balance the pumping rates between wells TW-3D and PE-1 to maintain the target pumping rate and to maintain the DTSC-specified hydraulic gradients across the Alluvial Aquifer. Well TW-2D will serve as a backup to extraction wells TW-3D and PE-1.


5.3.2 Transducer Download

Downloads of the transducers in the key gradient control wells (MW-27-085, MW-31-135, MW-33-135, MW-34-100, and MW-45-095) will continue to be conducted weekly during the third quarter 2011 reporting period. Downloads of the remainder of the transducers will occur during the first week of each month during the third quarter 2011 reporting period.

5-2 BAO\112270004

6.0 References

- ARCADIS. 2010. Third Quarter 2010 Monitoring Report for the Upland Reductive Zone In-Situ *Pilot Test*. November 16.
- Arizona Department of Environmental Quality. 2010. Email. "Re: Reminder sampling frequency modification for Arizona wells proposed with 4Q2009 data submittal." April 23.
- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2005a. Letter to PG&E. "Requirements for Groundwater and Surface Water Monitoring Program, Pacific Gas & Electric Company, Topock Compressor Station, Needles, California (EPA ID No. CAT080011729)." April 26.
- _____. 2005b. Letter. "Criteria for Evaluating Interim Measures Performance Requirements to Hydraulically Contain Chromium Plume in Floodplain Area, Pacific Gas & Electric Company, Topock Compressor Station." February 14.
- ______. 2005c. Letter. "Contingency Plan for Sentry Well Groundwater Monitoring." February 14.
- _____. 2007a. Letter. "Approval of Updates and Modifications to the Interim Measures Performance Monitoring Program. Pacific Gas & Electric Company, Topock Compressor Station." October 12.
 - _______. 2007b. Letter. "Updates and Modifications to the PG&E's Topock Interim Measures Performance Monitoring Program. PG&E Topock Compressor Station, Needles, California." July 27.
- _____. 2007c. Letter. "Conditional Approval of Updates and Modifications to the Groundwater and Surface Water Monitoring Program, Pacific Gas & Electric Company, Topock Compressor Station." September 28.
 - _____. 2008a. Letter. "Modifications to Hydraulic Data Collection for the Interim Measures Performance Monitoring Program at Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California." July 14.
- ______. 2008b. Letter. "Modifications to Chemical Performance Monitoring and Contingency Plan for the Floodplain Interim Measures Performance Monitoring Program at Pacific Gas and Electric Company (PG&E), Topock Compressor Station, Needles, California." July 17.
- _____. 2009a. Email. "Re: Request for Combined Reporting of Topock GMP and PMP." May 26.
 - _____. 2009b. Letter. "Comments on January 27, 2009 Draft Corrective Measures Study/Feasibility Study (CMS/FS) Report for SWMU1/AOC1, (EPA ID NO. CAT080011729)." March 26.

6-2 BAO\112270004

BAO\112270004

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selected Water Quality Parameters		
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-9	SA	15-Dec-10	312	334	93	3,310	7.4
MW-10	SA	07-Dec-10	912	949	82	2,710	7.9
		07-Dec-10 FD	900	909	FD	FD	FD
		05-May-11	411	384	-15	3,000	7.7
		05-May-11 FD	391	401	FD	3,000	FD
MW-12	SA	06-Apr-10	1,960	1,900	74	6,150	8.4
		06-Apr-10 FD	1,960	1,840	FD	FD	FD
		06-May-10	2,650	2,700	84	5,820	8.4
		06-May-10 FD	2,650	2,890	FD	FD	FD
		30-Sep-10	2,930	2,810	210	6,390	8.2
		30-Sep-10 FD	3,110	2,810	FD	FD	FD
		16-Dec-10	2,770	2,800	59	6,430	8.3
		10-Feb-11	2,950	3,160	180	6,250	8.4
		06-May-11	2,910	2,870	150	6,400	8.2
MW-13	SA	07-Dec-10	21.9	22.6	3.8	2,030	7.9
MW-14	SA	07-Dec-10	22.1	22.1	14	1,560	8.0
MW-15	SA	14-Dec-10	13.8	13.4	150	1,810	7.7
MW-16	SA	10-Dec-10	10.1	10.2	22	1,130	8.0
		02-May-11	10.0	10.6		1,100	8.5
MW-17	SA	14-Dec-10	16.7	17.0	150	1,590	7.9
		03-May-11	15.0	15.9		1,500	8.0
MW-18	SA	14-Dec-10	21.1	19.4	120	1,360	7.6
MW-19	SA	15-Dec-10	387	418	120	2,360	7.5
		04-May-11	497	494	-2.1	2,200	7.8
MW-20-70	SA	16-Dec-10	3,130	3,430	75	3,030	7.6
		06-May-11	3,570	3,510	150	2,700	7.4
MW-20-100 ²	MA	10-Feb-11	4,500	4,520	210	3,090	7.5
		06-May-11	5,640	5,600	140	3,100	7.1
MW-20-130 ²	DA	10-Feb-11	10,100	10,600	220	12,200	7.6
		06-May-11	12,100	11,500	120	12,000	7.3
MW-21	SA	04-May-10	2.0	3.8	-30	8,420	7.1
		28-Sep-10	ND (1.0)	1.1	-84	13,100	7.1

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selected Water Quality Parameters		
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-21	SA	07-Dec-10	ND (1.0)	ND (1.0)	13	12,400	7.2
		08-Feb-11	3.3	3.6	190	8,450	7.4
		03-May-11	2.0	2.3		9,000	7.6
MW-22	SA	07-Dec-10	ND (1.0)	ND (1.0)	-66	28,500	6.7
		03-May-11	ND (1.0)	ND (1.0)	-64	14,000	8.5
MW-23-060	BR-S	03-May-10	24.7	23.9	-32	14,700	
		29-Sep-10	29.6	31.1	51	16,500	
		14-Dec-10	30.4	33.3	53	16,100	
		09-Feb-11	31.5	30.8	93	16,900	
		04-May-11	30.2	31.3	-77	15,000	
MW-23-080	BR-S	04-May-10	21.8	20.5	-77	18,000	
		29-Sep-10	6.0	8.0	-53	17,300	
		14-Dec-10	12.2	12.8	3.5	17,400	
		09-Feb-11	19.8	20.7	63	17,400	
		04-May-11	14.1	13.3	-170	15,000	
		04-May-11 FD	14.4	12.5	FD	16,000	FD
MW-24BR	BR	05-May-10	ND (1.0)	ND (1.0)	-150	15,400	8.4
		30-Sep-10	ND (1.0)	1.1	-170	15,000	8.0
		08-Dec-10	ND (1.0)	ND (1.0)	-160	15,000	8.3
		08-Feb-11	ND (1.0)	ND (1.0)	-170	14,900	8.1
		05-May-11	ND (1.0)	ND (1.0)	-130	14,000	8.5
MW-25	SA	07-Dec-10	280	344	35	1,360	7.6
MW-26	SA	15-Dec-10	1,890	2,030	110	4,120	7.4
		05-May-11	2,010	1,890	63	4,000	7.3
MW-27-20	SA	07-Dec-10	ND (0.2)	ND (1.0)	-170	1,000	7.7
MW-27-60	MA	07-Dec-10	ND (0.2)	ND (1.0)	-160	1,180	8.2
MW-27-85	DA	29-Apr-10	ND (1.0)	ND (1.0)	-29	15,400	7.2
		01-Oct-10	ND (1.0)	1.2	-37	15,100	7.2
		07-Dec-10	ND (1.0)	ND (1.0)	-80	14,400	7.2
		08-Feb-11	ND (1.0)	ND (1.0)	-53	14,400	7.2
		08-Feb-11 FD	ND (1.0)	ND (1.0)	FD	FD	FD
		28-Apr-11	ND (1.0)	ND (1.0)	20	13,000	7.4
		28-Apr-11 FD	ND (1.0)	ND (1.0)	FD	13,000	FD

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selected Water Quality Parameters		
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-28-25	SA	08-Dec-10	ND (1.0)	ND (1.0)	-34	1,140	7.3
		02-May-11	ND (0.2)	1.2	-8.8	1,000	7.6
MW-28-90	DA	29-Apr-10	ND (1.0)	ND (1.0)	-100	7,980	7.4
		28-Sep-10	ND (0.2)	ND (1.0)	-110	7,480	7.3
		08-Dec-10	ND (1.0)	ND (1.0)	-140	7,670	7.3
		08-Feb-11	ND (0.2)	ND (1.0)	-79	7,730	7.2
		02-May-11	ND (0.2)	ND (1.0)	-70	7,100	8.1
MW-29	SA	14-Dec-10	ND (0.2)	ND (1.0)	-140	2,330	7.3
		29-Apr-11	0.24	ND (1.0)	-120	2,200	7.3
MW-30-30	SA	07-Dec-10	ND (1.0)	ND (1.0)	-170	22,800	7.3
		03-May-11	ND (1.0)	ND (1.0)	-160	12,000	7.4
MW-30-50	MA	07-Dec-10	ND (0.2)	ND (1.0)	-210	1,330	8.0
MW-31-60	SA	15-Dec-10	353	386	150	3,300	7.5
		04-May-11	331	324	-6.2	3,800	7.8
MW-31-135	DA	15-Dec-10	17.8	15.9	89	11,700	7.8
MW-32-20	SA	08-Dec-10	ND (1.0)	ND (1.0)	-140	51,700	6.8
MW-32-35	SA	09-Dec-10	ND (1.0)	3.0	-180	19,700	7.2
		02-May-11	ND (1.0)	ND (1.0)	-230	17,000	7.7
MW-33-40	SA	30-Apr-10	ND (0.2)	ND (1.0)	-37	5,920	8.3
		28-Sep-10	ND (0.2)	3.5	-26	5,490	8.2
		10-Dec-10	ND (1.0)	ND (1.0)	45	14,000	7.7
		09-Feb-11	ND (1.0)	1.7	22	10,500	7.7
		02-May-11	ND (0.2)	ND (1.0)	-150	5,900	8.5
MW-33-90	MA	30-Apr-10	24.2	22.7	-32	10,900	7.5
		29-Sep-10	24.4	20.9	-24	10,700	7.4
		10-Dec-10	24.5	25.0	-91	10,600	7.5
		09-Feb-11	24.2	25.3	7.7	10,600	7.4
		04-May-11	20.7	21.3	100	9,600	7.5
MW-33-150	DA	30-Apr-10	9.5	9.3	-33	17,600	7.6
		30-Apr-10 FD	10.4	9.7	FD	FD	FD
		29-Sep-10	10.8	10.8	62	17,500	7.4
		29-Sep-10 FD	11.2	11.0	FD	FD	FD
		10-Dec-10	11.5	11.9	-44	17,600	7.6

Date Printed: 8/12/2011

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selected Water Quality Parameters		
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-33-150	DA	09-Feb-11	12.2	12.3		17,700	7.5
		04-May-11	11.2	11.4	-93	15,000	7.4
MW-33-210	DA	30-Apr-10	11.3	11.8	-27	20,400	7.4
		29-Sep-10	13.0	13.5	88	19,600	7.3
		10-Dec-10	14.1	15.5	-69	19,900	7.4
		09-Feb-11	14.8	15.2	61	20,000	7.3
		04-May-11	10.7	11.0	-170	1,700	7.2
MW-34-55	MA	07-Dec-10	ND (0.2)	ND (1.0)	-150	1,020	7.7
MW-34-80	DA	29-Apr-10	ND (1.0)	ND (1.0)	-6.9	8,570	7.4
		01-Oct-10	ND (0.2)	ND (1.0)	-60	8,400	7.4
		07-Dec-10	ND (0.2)	ND (1.0)	-100	7,830	7.4
		07-Feb-11	ND (0.2)	1.3	3.9	7,660	7.4
		07-Feb-11 FD	ND (0.2)	ND (1.0)	FD	FD	FD
		28-Apr-11	ND (1.0)	ND (1.0)	-19	7,600	7.6
MW-34-100	DA	29-Apr-10	71.3	73.5	29	19,500	7.5
		29-Apr-10 FD	78.7	73.6	FD	FD	FD
		01-Oct-10	75.1	66.6	33	18,500	7.4
		01-Oct-10 FD	75.6	67.1	FD	FD	FD
		09-Nov-10	110	104	83	18,400	8.9
		08-Dec-10	145	132	-76	18,600	7.5
		08-Dec-10 FD	141	127	FD	FD	FD
		11-Jan-11	290	259	150	18,400	7.5
		07-Feb-11	210	201	28	18,400	7.5
		28-Apr-11	15.9	15.8	12	16,000	7.6
		28-Apr-11 FD	16.1	16.8	FD	16,000	FD
MW-35-60	SA	14-Dec-10	30.2	25.4	110	7,490	7.3
		04-May-11	26.1	26.4	-19	6,700	7.9
MW-35-135	DA	14-Dec-10	37.8	34.8	130	10,100	7.7
		04-May-11	29.4	31.0	-37	9,800	8.1
MW-36-20	SA	07-Dec-10	ND (0.2)	ND (1.0)	-170	7,260	7.6
MW-36-40	SA	07-Dec-10	ND (0.2)	ND (1.0)	-200	2,120	7.9
MW-36-50	MA	08-Dec-10	ND (0.2)	ND (1.0)	-110	1,810	7.5
MW-36-70	MA	07-Dec-10	ND (0.2)	ND (1.0)	-100		8.1

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selecte	ed Water Quality	Parameters
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-36-90	DA	08-Dec-10	ND (0.2)	ND (1.0)	-69	1,430	8.2
		08-Dec-10 FD	ND (0.2)	ND (1.0)	FD	FD	FD
		02-May-11	ND (0.2)	ND (1.0)	-71	1,300	8.9
MW-36-100	DA	15-Dec-10	69.6	64.6	-160	11,000	7.1
		03-May-11	56.4	62.5	-140	9,700	7.0
MW-37S	MA	10-Dec-10	9.6	10.0	120	5,240	7.7
MW-37D	DA	15-Dec-10	128	146	92	16,000	7.7
		05-May-11	178	172	90	15,000	7.6
MW-39-50	MA	08-Dec-10	ND (0.2)	ND (1.0)	-7.5	1,720	8.0
MW-39-60	MA	09-Dec-10	ND (0.2)	ND (1.0)	-63	2,040	7.9
MW-39-70	MA	08-Dec-10	ND (0.2)	ND (1.0)	79	3,850	7.4
MW-39-80	DA	09-Dec-10	ND (0.2)	ND (1.0)	-38	9,460	7.0
MW-39-100	DA	14-Dec-10	206	240	6.4	20,300	6.7
MW-40D	DA	15-Dec-10	172	159	22	16,200	7.5
		05-May-11	140	124	-7.7	14,000	7.4
MW-41S	SA	08-Dec-10	19.5	16.4 J	-66	5,090	8.1
		08-Dec-10 FD	19.7	21.3 J	FD	FD	FD
MW-41M	DA	08-Dec-10	11.0	10.4	-83	15,700	7.8
MW-41D	DA	08-Dec-10	2.2	3.1	-110	22,100	7.9
		02-May-11	1.9	2.4		18,000	7.8
MW-42-30	SA	06-Dec-10	ND (0.2)	ND (1.0)	-220	4,850	7.8
MW-42-55	MA	29-Apr-10	ND (1.0)	ND (1.0)	-100	10,500	7.5
		27-Sep-10	ND (0.2)	ND (1.0)		9,130	7.2
		06-Dec-10	ND (1.0)	ND (1.0)	-170	8,830	7.3
		07-Feb-11	ND (0.2)	ND (1.0)	-110	8,650	7.4
		29-Apr-11	ND (0.2)	ND (1.0)	-100	7,500	7.3
MW-42-65	MA	29-Apr-10	ND (1.0)	ND (1.0)	-31	13,600	7.2
		27-Sep-10	ND (1.0)	ND (1.0)		10,800	7.1
		06-Dec-10	ND (1.0)	ND (1.0)	-110	11,200	7.1
		07-Feb-11	ND (1.0)	ND (1.0)	-59	11,500	7.1
		29-Apr-11	ND (1.0)	ND (1.0)	-62	9,500	7.1

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selecte	d Water Quality	Parameters
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-43-25	SA	09-Dec-10	ND (0.2)	ND (1.0)	-190	1,260	7.6
		29-Apr-11	ND (0.2)	ND (1.0)	-180	1,200	7.4
MW-43-75	DA	09-Dec-10	ND (1.0)	ND (1.0)	-170	11,700	7.6
MW-43-90	DA	09-Dec-10	ND (1.0)	ND (1.0)	-98	18,400	7.0
		29-Apr-11	ND (1.0)	ND (1.0)	-92	17,000	6.8
MW-44-70	MA	09-Dec-10	ND (0.2)	ND (1.0)	-230	2,850	7.6
		03-May-11	ND (0.2)	ND (1.0)	-160	2,500	7.4
MW-44-115	DA	30-Apr-10	269	270	-100	12,600	7.9
		30-Apr-10 FD	320	273	FD	FD	FD
		28-Sep-10	228	218	-200	11,800	7.9
		28-Sep-10 FD	236	219	FD	FD	FD
		09-Dec-10	219	191	-230	12,100	8.0
		09-Dec-10 FD	187	191	FD	FD	FD
		08-Feb-11	203	206	-170	9,990	7.8
		03-May-11	184	201	-120	11,000	7.7
MW-44-125	DA	30-Apr-10	9.4	40.8	-210	13,000	8.0
		28-Sep-10	ND (0.2)	16.0	-220	12,000	7.7
		09-Dec-10	24.5	26.9	-280	12,900	7.9
		09-Dec-10 FD	25.0	27.4	FD	FD	FD
		08-Feb-11	65.6	71.1	-230	13,300	7.8
		08-Feb-11 FD	65.4	75.1	FD	FD	FD
		03-May-11	ND (0.2)	10.8 J	-320	11,000	7.5
		03-May-11 FD	1.0	14.7 J	FD	10,000	FD
MW-45-095a	DA	14-Dec-10			-98	9,550	7.5
MW-46-175	DA	30-Apr-10	81.7	79.8	-120	18,400	8.5
		28-Sep-10	74.5	72.3	-210	17,300	8.3
		09-Nov-10	102	115	-65	17,600	8.6
		08-Dec-10	130	123	-190	17,700	8.3
		08-Dec-10 FD	134	124	FD	FD	FD
		11-Jan-11	169	174	60	18,000	8.2
		08-Feb-11	149	151	-65	18,100	8.3
		03-May-11	53.4	55.9	-200	16,000	8.3
		03-May-11 FD	53.2	56.8	FD	16,000	FD
MW-46-205	DA	08-Dec-10	5.6	6.4	-100	21,800	8.3

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selecte	ed Water Quality	Parameters
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-46-205	DA	04-May-11	5.8	6.6	41	18,000	8.1
MW-47-55	SA	13-Dec-10	25.0	22.0	69	4,810	7.4
		13-Dec-10 FD	23.2	22.3	FD	FD	FD
		03-May-11	19.3	19.4	65	4,300	7.5
MW-47-115	DA	13-Dec-10	22.5	18.4	58	14,300	7.4
		03-May-11	22.5	24.4	-40	12,000	7.5
MW-48	BR	08-Apr-10	ND (1.0)	ND (1.0)	89	19,200	7.0
		05-May-10	ND (1.0)	ND (1.0)	-27	19,500	7.8
		29-Sep-10	ND (1.0)	ND (1.0)	110	16,800	7.1
		08-Dec-10	ND (1.0)	ND (1.0)	-4.3	21,400	7.5
		09-Feb-11	ND (1.0)	ND (1.0)	160	18,300	7.0
		04-May-11	ND (1.0)	ND (1.0)	-120	16,000	7.3
MW-49-135	DA	13-Dec-10	ND (1.0)	3.1	-1.2	14,400	7.8
MW-49-275	DA	13-Dec-10	ND (1.0)	1.8	-200	26,400	8.1
MW-49-365	DA	13-Dec-10	ND (2.1)	ND (1.0)	-220	40,200	7.9
MW-50-095	MA	10-Dec-10	18.9	19.7	36	5,240	7.8
		03-May-11	18.3	18.9		5,000	8.2
MW-50-200 ²	DA	06-May-10	10,800	9,840	110	22,400	7.8
		30-Sep-10	10,200	9,670	170	21,700	7.7
		10-Feb-11	9,160	9,350	230	21,800	7.9
		10-Feb-11 FD	9,100	9,240	FD	FD	FD
		06-May-11	9,720	9,080	51	18,000	7.7
MW-51	MA	16-Dec-10	4,590	4,720	80	11,100	7.4
		06-May-11	4,730	4,690	130	10,000	7.4
MW-52S	MA	09-Dec-10	ND (1.0)	ND (1.0)	-180	11,200	7.2
		03-May-11	ND (2.1)	ND (1.0)	-130	10,000	8.8
MW-52M	DA	09-Dec-10	ND (1.0)	ND (1.0)	-210	16,800	7.6
		03-May-11	ND (2.1)	ND (1.0)	-140	15,000	9.0
MW-52D	DA	09-Dec-10	ND (1.0)	ND (1.0)	-220	21,700	8.0
		03-May-11	ND (1.0)	ND (1.0)	-150	18,000	9.3
MW-53M	DA	10-Dec-10	ND (1.0)	ND (1.0)	-210	21,000	8.1
		03-May-11	ND (1.0)	ND (1.0)	-150	18,000	

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selecte	ed Water Quality	Parameters
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-53D	DA	09-Dec-10	ND (1.0)	ND (1.0)	-220	26,200	8.4
		03-May-11	6.6 J	ND (1.0)	-150	32,000	
MW-54-85	DA	14-Dec-10	ND (1.0)	ND (1.0)	-190	10,700	7.6
		05-May-11	ND (0.2)	ND (1.0)	-200	10,100	7.4
MW-54-140	DA	14-Dec-10	ND (1.0)	ND (1.0)	-110	13,100	7.8
		05-May-11	ND (0.2)	ND (1.0)	-40	13,000	8.1
MW-54-195	DA	14-Dec-10	ND (1.0)	ND (1.0)	-250	19,700	8.1
		05-May-11	ND (1.0)	ND (1.0) J	-180	20,000	8.9
		05-May-11 FD	ND (1.0)	ND (5.0)	FD	20,000	FD
MW-55-45	MA	09-Dec-10	ND (0.2)	ND (1.0)	-200	1,560	7.8
MW-55-120	DA	09-Dec-10	6.2	6.8	-120	9,320	8.0
		09-Dec-10 FD	6.2	6.8	FD	FD	FD
MW-56S	SA	14-Dec-10	ND (0.2)	ND (1.0)	-140	6,440	7.3
		04-May-11	ND (0.2)	ND (1.0)	-150	6,310	7.1
MW-56M	DA	14-Dec-10	ND (2.0)	ND (1.0)	-130	15,300	7.2
		04-May-11	ND (0.2)	ND (1.0) J	-150	14,900	7.1
MW-56D	DA	14-Dec-10	ND (2.0)	ND (1.0)	-110	22,400	7.8
		04-May-11	ND (1.0)	ND (5.0)	-100	21,700	7.6
MW-57-070	BR	05-May-10	452	452	3.5	1,830	7.4
		30-Sep-10	856	733	36	1,940	7.2
		15-Dec-10	456 J	438	1.8	2,160	7.2
		15-Dec-10 FD	330 J	368	FD	FD	FD
		10-Feb-11	507	612	130	2,510	7.3
		05-May-11	486	475	58	2,400	7.0
		05-May-11 FD	500	421	FD	2,400	FD
MW-57-185	BR-D	05-May-10	3.9	4.7	-50	19,700	8.7
		29-Sep-10	5.6	5.9	11	18,900	8.6
		09-Dec-10	3.7	2.4	-180	19,500	8.7
		08-Feb-11	5.9	6.6	-20	19,200	8.6
		03-May-11	6.3	7.2		17,000	8.4
MW-58BR-LWR	BR	16-Sep-10	200	200			
		07-Oct-10	199	173	-66	9,890	7.5

Table 3-1
Groundwater Sampling Results, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

					Selecte	ed Water Quality	Parameters
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-58BR-LWR-160	BR	10-Feb-11	140	130			
		04-Apr-11	100	110			
MW-58BR-UPR	BR	14-Sep-10	3.8	3.5			
		06-Oct-10	4.7	8.4	-78	11,800	8.0
MW-58BR-UPR-160	BR	01-Feb-11	ND (1.0)	ND (1.0)			
		18-Mar-11	ND (5.0)	ND (1.0)			
MW-59-100	SA	06-May-10	4,940	4,850	93	10,500	7.0
		30-Sep-10	5,140	4,630	240	10,700	6.9
		16-Dec-10	5,660	4,830	110	9,940	7.0
		10-Feb-11	5,090	5,020	210	10,200	7.2
		10-Feb-11 FD	5,110	5,120	FD	FD	FD
		06-May-11	5,240	4,520	120	10,000	6.9
MW-60-125	BR-S	06-May-10	1,120	1,080	76	9,610	7.4
		30-Sep-10	806	795	-16	9,210	7.4
		16-Dec-10	1,090	992	49	9,250	7.3
		16-Dec-10 FD	1,070	1,000	FD	FD	FD
		10-Feb-11	1,160	1,170	170	9,330	7.5
		05-May-11	1,040	959	-14	8,700	7.3
MW-61-110	BR-S	06-May-10	480	511	110	16,600	7.5
		30-Sep-10	512	507	38	16,400	7.4
		15-Dec-10	567	510	-100	16,600	7.6
		09-Feb-11	684	653	60	16,300	7.5
		05-May-11	522	531	-31	15,000	7.3
MW-62-065	BR-S	06-May-10	436	456	120	6,580	7.4
		30-Sep-10	500	462	130	6,640	7.3
		15-Dec-10	598	494	19	6,270	7.4
		09-Feb-11	481	475	110	6,430	7.4
		05-May-11	488	472	51	6,000	7.3
MW-62-110	BR-M	04-May-10	579	569	-54	9,220	8.0
		29-Sep-10	414	363	-60	9,130	7.8
		16-Dec-10	390	378	110	8,880	7.8
		09-Feb-11	565	540	190	8,850	7.6
		05-May-11	569	531	95	8,500	7.6
MW-62-190	BR-D	04-May-10	ND (1.0)	ND (1.0)	-95	19,500	8.0
		, , , , , , , , , , , , , , , , , , ,	= ()	()		,	

Table 3-1 Groundwater Sampling Results, April 2010 through June 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

					Selecte	ed Water Quality	Parameters
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (μg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
MW-62-190	BR-D	29-Sep-10	ND (1.0)	ND (1.0)	43	19,100	7.7
		16-Dec-10	ND (1.0)	1.3	-30	17,500	7.9
		09-Feb-11	ND (1.0)	ND (1.0)	130	18,100	7.8
		05-May-11	ND (1.0)	ND (1.0)	-110	17,000	7.7
MW-63-065	BR-S	03-May-10	1.4	2.1	15	8,070	7.1
		03-May-10 FD	1.4	2.4	FD	FD	FD
		27-Sep-10	1.7	2.2	73	7,440	7.1
		27-Sep-10 FD	1.7	2.2	FD	FD	FD
		06-Dec-10	1.2	ND (1.0)	-23	8,250	7.1
		08-Feb-11	1.3	1.7	61	7,530	7.2
		03-May-11	1.0	1.7	-120	7,200	7.0
MW-64-150	BR-S	04-May-10	ND (1.0)	ND (1.0)	38	11,300	6.9
		25-Aug-10	ND (1.0)	ND (1.0)	-51	10,900	7.2
		29-Sep-10	ND (1.0)	ND (1.0)	18	10,500	6.7
		20-Oct-10	ND (0.2)	ND (1.0)	-49	8,340	7.1
		11-Nov-10	ND (0.2)	ND (1.0)	-26	8,550	7.3
MW-64-205	BR-D	04-May-10	ND (1.0)	2.6	-170	16,300	7.2
		25-Aug-10	ND (1.0)	3.9	-72	15,800	7.6
		29-Sep-10	ND (1.0)	3.8	-110	15,900	6.8
		20-Oct-10	ND (1.0)	3.6	-46	14,900	7.0
		11-Nov-10	ND (1.0)	4.0	-56	14,700	7.3
MW-64-260	BR-D	04-May-10	ND (1.0)	ND (1.0)	-190	16,100	7.2
		25-Aug-10	ND (1.0)	ND (1.0)	-210	15,900	8.1
		29-Sep-10	ND (1.0)	ND (1.0)	-180	15,900	6.7
		20-Oct-10	ND (1.0)	ND (1.0)	-140	14,800	6.9
		11-Nov-10	ND (1.0)	ND (1.0)	-160	14,500	7.2
MW-64BR ³	BR	20-Dec-10	140	140			
MW-64BR-LWR-150	BR	24-Feb-11	100	97.0			
		20-Apr-11	2.1	3.2			
MW-64BR-UPR-150	BR	26-Jan-11	220	220			
		12-Apr-11	130	140			
OW-3S	SA	08-Dec-10	25.2	25.6	-49	1,650	7.9
OW-3M	MA	08-Dec-10	18.0	18.6	-100	5,730	8.2

Table 3-1 Groundwater Sampling Results, April 2010 through June 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

					Selecte	d Water Quality	Parameters
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Field ORP (mV)	Specific ¹ Conductance (µS/cm)	Field pH
OW-3D	DA	08-Dec-10	9.4	10.4	-110	8,920	8.2
PE-1	DA	07-Apr-10	13.7	15.4 LF			
		04-May-10	13.0	14.6 LF			
		02-Jun-10	14.0	13.4 UF			
		07-Jul-10	13.7	11.4 LF			
		04-Aug-10	12.4	11.9 LF			
		01-Sep-10	14.9	12.4 LF			
		05-Oct-10	13.2	12.3 LF			
		03-Nov-10	12.9	12.0 LF			
		07-Dec-10	15.2	14.4 LF			
		04-Jan-11	17.5	16.6 LF			
		01-Feb-11	15.4	13.4 LF			
		01-Mar-11	12.9	15.2 LF			
		05-Apr-11	10.5	10.0 LF		5,180	
		02-May-11	9.9	10.5 LF		5,240	
		07-Jun-11	9.5	11.0 LF		5,180	
PGE-7BR	BR	09-Dec-10	ND (1.0)	ND (1.0)	-250	20,400	7.3
PGE-8 ²	BR	08-Apr-10	ND (1.0)	3.0	-270	21,600	8.3
		10-Feb-11	ND (1.0)	2.0	-330	20,800	8.0
Park Moabi-3	MA	10-Dec-10	11.9	10.5 UF	48	1,300	7.6
Park Moabi-4	MA	10-Dec-10	21.0	20.6 UF	40	1,960	7.4
TW-1	SA-MA-DA	05-May-10	3,700	3,700	31	7,450	7.4
		28-Sep-10	3,690	3,490	2.1	7,130	7.3
		09-Dec-10	3,520	3,780	29	7,330	7.4
		09-Feb-11	3,710	3,620	32	7,440	7.2
		05-May-11	3,700	3,520		6,900	7.4
TW-2S	MA	15-Dec-10	700	815	200	2,550	7.6
TW-2D	DA	15-Dec-10	274	287	230	9,370	7.2
TW-3D	DA	07-Apr-10	1,380	1,310 LF			
		04-May-10	1,000	1,240 LF			
		02-Jun-10	1,500	1,230 UF			
		07-Jul-10	1,100	1,130 LF			
		04-Aug-10	1,280	1,100 LF			

Table 3-1 Groundwater Sampling Results, April 2010 through June 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

				mium g/L) Chromium (μg/L) ORP (mV) Conductance (μS/cm) 130 1,160 LF 280 1,150 LF 160 1,130 LF 100 1,200 LF 100 1,200 LF 130 1,320 LF 8,710 100 1,070 LF 8,620	Parameters		
Location ID	Aquifer Zone	Sample Date	Hexavalent Chromium (µg/L)	Chromium	ORP	Conductance	Field pH
TW-3D	DA	01-Sep-10	1,130	1,160 LF			
		05-Oct-10	1,280	1,150 LF			
		03-Nov-10	1,160	1,130 LF			
		07-Dec-10	1,080	1,170 LF			
		04-Jan-11	1,100	1,200 LF			
		01-Feb-11	1,000	1,100 LF			
		01-Mar-11	1,090	1,320 LF			
		05-Apr-11	1,130	1,220 LF		8,710	
		02-May-11	1,100	1,070 LF		8,620	
		07-Jun-11	1,030	1,090 LF		8,530	
TW-4	DA	13-Dec-10	11.4	11.9	83	21,700	7.4
TW-5	DA	10-Dec-10			63	14,500	7.7

Table 3-1

Groundwater Sampling Results, April 2010 through June 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

NOTES:

ND = not detected at listed reporting limit (RL)

FD = field duplicate sample

UF = unfiltered

LF = lab filtered

J = concentration or RL estimated by laboratory or data validation

(---) = data not collected, available, rejected, or field instrument malfunction

μg/L= micrograms per liter

mV = millivolts

ORP = oxidation-reduction potential

 μ S/cm = microSiemens per centimeter

Beginning February 1, 2008, hexavalent chromium samples are field filtered per DTSC - approved change from analysis method SW7199 to E218.6.

The RLs for certain hexavalent chromium results from Method SW7199 analyses have been elevated above the standard RL of 0.2 µg/L due to required sample dilution to accommodate matrix interferences.

Monitoring wells MW-11, MW-24A, MW-24B, MW-38S, and MW-38D are currently sampled as part of the upland in-situ pilot test monitoring. Results from these wells are presented in the in-situ pilot test reports (ARCADIS, 2010) and are not included in this table.

As a results of a series of storm events in January 2010 the MW-58 cluster (MW-58-115 and MW-58-205) was inundated with flood water. This floodwater destroyed the Flexible Liner Underground TechnologiesTM well liner that allowed discrete sampling at the 115 feet below ground surface (bgs) and 205 feet bgs depth intervals and was consequently removed from the borehole. The MW-58 bedrock well cluster is now an open borehole with a packer system installed. In September 2010 a packer system was installed in the borehole at about 115 ft bgs that divided the open borehole into upper (UPR) and lower (LWR) intervals. In January 2011 the packer was moved to a new location at about 160 ft bgs. Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011 (CH2M HILL, 2010b).

In accordance with DTSC direction, the Flexible Liner Underground Technologies (FLUTe) multi-level monitoring system, which allowed discrete sampling at the 150, 205 and 260 ft bgs depth intervals, was removed from the MW-64BR borehole in December 2010. Following removal of the FLUTe system, the open borehole was developed and a sample of the open borehole was collected on December 20, 2010. At the direction of DTSC, a packer system was installed in January 2011 at about 150 ft bgs. Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011 (CH2M HILL, 2010b).

TW-1 not posted on contour maps (Figure 3-1a-c and Figure 4-1) because well is constructed across all three depth intervals.

ORP is reported to two significant figures. Specific Conductance is reported to three significant figures.

Wells are assigned to separate Aquifer zones for results reporting:

SA: shallow interval of Alluvial Aquifer

MA: mid-depth interval of Alluvial Aquifer

DA: deep interval of Alluvial Aquifer

PA: perched aquifer (unsaturated zone)

BR: well completed in bedrock (Miocene Conglomerate or pre-Tertiary crystalline rock)

BR-S: well completed in shallowest portion of BR

BR-M: well completed in middle portion of BR

BR-D: well completed in deeper portion of BR

¹ Field Specific Conductance reported through First Quarter 2011; Lab Specific Conductance reported starting in Second Quarter 2011.

² Data collected February 2011 due to field logistical issues.

³ One-time sample collected from an open borehole.

Table 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, December 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Arsenic Dissolved (µg/L)	Iron Dissolved (µg/L)	Molydenum Dissolved (µg/L)	Selenium Dissolved (µg/L)	Manganese Dissolved (µg/L)	Nitrate as N (mg/L)	Fluoride (mg/L)
MW-9	SA	15-Dec-10		21.0	1.7	5.9	ND (10)	9.20	
MW-10	SA	07-Dec-10	7.2	ND (20)	100	4.6	ND (10)	11.0	12.0
		07-Dec-10 _{FD}	6.9	ND (20)	110	4.6	ND (10)	11.0	12.0
		05-May-11			64.0	5.5		11.0	7.70
		05-May-11 _{FD}			61.0	5.5		11.0	7.70
MW-12	SA	16-Dec-10	53.0	31.0	14.0	10.0	ND (10)	9.80	
		10-Feb-11	48.0		13.0	9.8			
		06-May-11	49.0		13.0	9.5		10.0	
MW-13	SA	07-Dec-10	1.9	ND (20)			ND (10)	4.40	
MW-14	SA	07-Dec-10		ND (20)			ND (10)	5.10	
MW-15	SA	14-Dec-10		ND (20)			ND (10)	5.10	
MW-16	SA	10-Dec-10	9.7	22.0	11.0	1.5	ND (10)	3.00	
		02-May-11	10.0	30.0	13.0	1.6	ND (10)		
MW-17	SA	14-Dec-10	1.2	ND (20)	24.0	11.0	ND (10)	4.70	
		03-May-11	1.3	ND (20)	15.0	11.0	ND (10)		
MW-18	SA	14-Dec-10		ND (20)			ND (10)	3.60	
MW-19	SA	15-Dec-10		ND (20)			ND (10)	4.20	
MW-20-70	SA	16-Dec-10		ND (20)	30.0	9.9	ND (10)	16.0	
		06-May-11			35.0	9.0		13.0	
MW-20-100 ¹	MA	10-Feb-11		150	4.4	6.2	ND (10)	15.0	
		06-May-11			4.2	11.0		18.0	
MW-20-130 ¹	DA	10-Feb-11	4.9	26.0	40.0	21.0	ND (10)	13.0	
		06-May-11	5.1		43.0	16.0	ND (2.5)	11.0	
MW-21	SA	07-Dec-10		77.0			61.0	1.00	
		03-May-11			59.0	21.0		2.10	
MW-22	SA	07-Dec-10	12.0	9400	23.0	1.1	4400	ND (2.5)	
		03-May-11	12.0		28.0	ND (2.5)	2300		
MW-23-060	BR-S	14-Dec-10	3.0	ND (20)			ND (10)	3.70	
		04-May-11	2.5				0.51		
MW-23-080	BR-S	14-Dec-10	2.6	ND (20)			ND (10)	3.90	
		04-May-11	3.3				ND (0.5)		
		04-May-11 _{FD}	3.4				ND (2.5)		
MW-24BR	BR	08-Dec-10		ND (20)	64.0	ND (0.5)	480	ND (2.5)	
MW-25	SA	07-Dec-10	1.5	ND (20)			ND (10)	4.80	
MW-26	SA	15-Dec-10	1.7	27.0	34.0	30.0	ND (10)	12.0	
		05-May-11	1.4		17.0	5.6	16.0	14.0	
MW-27-20	SA	07-Dec-10	2.9	720			110	ND (0.5)	

Table 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, December 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Arsenic Dissolved (µg/L)	Iron Dissolved (µg/L)	Molydenum Dissolved (µg/L)	Selenium Dissolved (µg/L)	Manganese Dissolved (µg/L)	Nitrate as N (mg/L)	Fluoride (mg/L)
MW-27-60	MA	07-Dec-10	7.1	ND (20)			18.0	ND (0.5)	
MW-27-85	DA	07-Dec-10	1.4	240			140	ND (1.0)	
		08-Feb-11	1.3						
		08-Feb-11 _{FD}	1.3						
		28-Apr-11	1.4						
		28-Apr-11 _{FD}	1.4						
MW-28-25	SA	08-Dec-10	1.7	63.0			160	ND (0.5)	
		02-May-11	2.0						
MW-28-90	DA	08-Dec-10	1.8	810	18.0	ND (0.5)	180	ND (1.0)	
		08-Feb-11	1.7						
		02-May-11	2.0						
MW-29	SA	14-Dec-10	21.0	1800			180	ND (0.5)	
		29-Apr-11	9.0				400		
MW-30-30	SA	07-Dec-10	1.6	3000	25.0	0.71	320	ND (1.0)	
		03-May-11			24.0	ND (2.5)		ND (1.0)	
MW-30-50	MA	07-Dec-10	9.7	ND (20)	5.9	ND (0.5)	30.0	ND (0.5)	
MW-31-60	SA	15-Dec-10	1.1	ND (20)			ND (10)	3.50	
MW-31-135	DA	15-Dec-10	3.7	ND (20)	28.0	0.52	ND (10)	ND (1.0)	
MW-32-20	SA	08-Dec-10	2.6	15000			1000	ND (5.0)	
MW-32-35	SA	09-Dec-10	22.0	15000 J			2300 J	ND (2.5)	
		02-May-11	26.0				2200		
MW-33-40	SA	10-Dec-10	11.0	ND (20)			ND (10)	ND (2.5)	16.0
		09-Feb-11	12.0						
		02-May-11	19.0						
MW-33-90	MA	10-Dec-10	1.3	ND (20)	22.0	0.91	ND (10)	1.80	
MW-33-150	DA	10-Dec-10		ND (20)	38.0	0.75	ND (10)	ND (2.5)	
MW-33-210	DA	10-Dec-10		ND (20)	15.0	0.72	ND (10)	ND (2.5)	
MW-34-55	MA	07-Dec-10	2.5	160			63.0	ND (0.5)	
MW-34-80	DA	07-Dec-10	1.3	49.0			27.0	ND (1.0)	
		07-Feb-11	1.3						
		07-Feb-11 _{FD}	1.2						
		28-Apr-11	1.4						
MW-34-100	DA	08-Dec-10	1.3	ND (20)	40.0	ND (0.5)	ND (10)	ND (2.5)	
		08-Dec-10 _{FD}	1.3	ND (20)	40.0	ND (0.5)	ND (10)	ND (1.0)	
		11-Jan-11	1.2						
		07-Feb-11	1.5						
		28-Apr-11	1.4						

Table 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, December 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Arsenic Dissolved (µg/L)	Iron Dissolved (μg/L)	Molydenum Dissolved (µg/L)	Selenium Dissolved (µg/L)	Manganese Dissolved (μg/L)	Nitrate as N (mg/L)	Fluoride (mg/L)
MW-34-100	DA	28-Apr-11 _{FD}	1.3						
MW-35-60	SA	14-Dec-10		ND (20)			ND (10)	1.90	
MW-35-135	DA	14-Dec-10	0.9	ND (20)			ND (10)	2.50	
MW-36-20	SA	07-Dec-10	1.9	900			130	ND (0.5)	
MW-36-40	SA	07-Dec-10	4.7	570	6.2	ND (0.5)	120	ND (0.5)	
MW-36-50	MA	08-Dec-10	3.6	170			250	ND (0.5)	
MW-36-70	MA	07-Dec-10	7.1	42.0			44.0	ND (0.5)	
MW-36-90	DA	08-Dec-10	17.0	ND (20)			10.0	ND (0.5)	
		08-Dec-10 _{FD}	18.0	ND (20)			12.0	ND (0.5)	
		02-May-11	19.0						
MW-36-100	DA	15-Dec-10	5.1	29.0	38.0	ND (0.5)	75.0	ND (2.5)	
		03-May-11	6.3		42.0	0.77	75.0	ND (1.0)	
MW-37D	DA	15-Dec-10		28.0			ND (10)	ND (2.5)	
		05-May-11			47.0	ND (2.5)		ND (2.5)	
MW-37S	MA	10-Dec-10	1.7	ND (20)			ND (10)	1.50	
MW-39-50	MA	08-Dec-10	8.6	ND (20)	9.7	ND (0.5)	29.0	ND (0.5)	
MW-39-60	MA	09-Dec-10	6.0	ND (20)	26.0	ND (0.5)	18.0	ND (0.5)	
MW-39-70	MA	08-Dec-10		ND (20)			ND (10)	ND (0.5)	
MW-39-80	DA	09-Dec-10		ND (20)			ND (10)	ND (1.0)	
MW-39-100	DA	14-Dec-10	2.2	ND (20)	8.4	ND (0.5)	ND (10)	ND (2.5)	
MW-40D	DA	15-Dec-10	4.2	ND (20)	47.0	2.0	ND (10)	2.90	
		05-May-11	4.3		48.0	ND (2.5)	5.6	2.70	
MW-41D	DA	08-Dec-10	2.4	43.0			63.0	ND (2.5)	
MW-41M	DA	08-Dec-10	2.0	ND (20)			ND (10)	ND (1.0)	
MW-41S	SA	08-Dec-10	2.0	ND (20)			ND (10)	1.30	
		08-Dec-10 _{FD}	1.9	ND (20)			ND (10)	1.30	
MW-42-30	SA	06-Dec-10	2.2		26.0	ND (0.5)		ND (0.5)	
MW-42-55	MA	06-Dec-10	12.0	1300			670	ND (1.0)	
		07-Feb-11	12.0						
		29-Apr-11	13.0						
MW-42-65	MA	06-Dec-10	1.8	110			1700	ND (1.0)	
		07-Feb-11	1.9						
		29-Apr-11	2.2				1600		
MW-43-25	SA	09-Dec-10	19.0	3100			240	ND (0.5)	
		29-Apr-11	20.0				270		
MW-43-75	DA	09-Dec-10	11.0	1900			280	ND (2.5)	
MW-43-90	DA	09-Dec-10	3.7	4500			1000	ND (2.5)	

Table 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, December 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Arsenic Dissolved (µg/L)	Iron Dissolved (µg/L)	Molydenum Dissolved (µg/L)	Selenium Dissolved (µg/L)	Manganese Dissolved (μg/L)	Nitrate as N (mg/L)	Fluoride (mg/L)
MW-43-90	DA	29-Apr-11	3.3				1000		
MW-44-70	MA	09-Dec-10	3.1	260			120	ND (0.5)	
		03-May-11	3.3						
MW-44-115	DA	09-Dec-10	5.1	ND (20)	82.0	ND (0.5)	ND (10)	ND (2.5)	
		09-Dec-10 _{FD}	5.0	ND (20)	77.0	ND (0.5)	ND (10)	ND (2.5)	
		03-May-11	5.6		83.0	ND (2.5)	5.2	ND (1.0)	
MW-44-125	DA	09-Dec-10	4.0	78.0 J	160	ND (0.5)	610	ND (2.5)	
		09-Dec-10 _{FD}	3.8	140 J	170	ND (0.5)	620	ND (2.5)	
		03-May-11	3.7		83.0 J	0.81	480 J	ND (1.0)	
		03-May-11 _{FD}	3.4		130 J	ND (2.5)	750 J	0.55	
MW-45-095a	DA	14-Dec-10	3.6	ND (20)			ND (10)	ND (1.0)	
MW-46-175	DA	08-Dec-10		ND (20)	200	0.83	ND (10)	ND (1.0)	
		08-Dec-10 _{FD}		24.0	200	0.84	ND (10)	ND (1.0)	
		03-May-11			170	2.9		ND (2.5)	
		03-May-11 _{FD}			170	4.9		ND (2.5)	
MW-46-205	DA	08-Dec-10		ND (40)			31.0	ND (2.5)	
MW-47-55	SA	13-Dec-10	1.1	ND (20)			ND (10)	1.60	
		13-Dec-10 _{FD}	1.2	ND (20)			ND (10)	1.60	
MW-47-115	DA	13-Dec-10		ND (20)			ND (10)	ND (2.5)	
MW-48	BR	08-Dec-10		ND (20)			38.0	ND (1.0)	
MW-49-135	DA	13-Dec-10	1.6	620			560	ND (2.5)	
MW-49-275	DA	13-Dec-10		61.0			470	ND (2.5)	
MW-49-365	DA	13-Dec-10		ND (100)			150	ND (5.0)	
MW-50-095	MA	10-Dec-10		ND (20)			ND (10)	1.50	
MW-50-200 ¹	DA	10-Feb-11		ND (40)			ND (20)	6.40	
		10-Feb-11 _{FD}		ND (40)			ND (20)	6.10	
MW-51	MA	16-Dec-10	3.9	ND (20)			ND (10)	10.0	
		06-May-11	3.9		39.0	13.0	ND (2.5)	10.0	
MW-52D	DA	09-Dec-10	3.3	530			290	ND (2.5)	
		03-May-11	3.3				280		
MW-52M	DA	09-Dec-10	1.3	1000			180	ND (2.5)	
		03-May-11	1.2						
MW-52S	MA	09-Dec-10	0.35	6200			990	ND (1.0)	
		03-May-11	0.5						
MW-53D	DA	09-Dec-10	2.9	190			2000	ND (2.5)	
	_,,	03-May-11	3.2 J				1900		
MW-53M	DA	10-Dec-10	1.0	290			420	ND (2.5)	

Table 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, December 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Arsenic Dissolved (µg/L)	Iron Dissolved (µg/L)	Molydenum Dissolved (µg/L)	Selenium Dissolved (µg/L)	Manganese Dissolved (µg/L)	Nitrate as N (mg/L)	Fluoride (mg/L)
MW-53M	DA	03-May-11	0.96				400		
MW-54-85	DA	14-Dec-10		1150			1190	ND (0.5)	
		05-May-11	ND (5.0)				838		
MW-54-140	DA	14-Dec-10		ND (100)			246	0.659	
		05-May-11	ND (5.0)				217 J		
MW-54-195	DA	14-Dec-10		112			585	ND (0.5)	
		05-May-11	ND (5.0) J				614		
		05-May-11 _{FD}	ND (5.0) J				613		
MW-55-45	MA	09-Dec-10		ND (100)			1030	ND (0.5)	
MW-55-120	DA	09-Dec-10		ND (100)			33.7	1.40	
		09-Dec-10 _{FD}		ND (100)			33.9	1.40	
MW-56D	DA	14-Dec-10		634			639	ND (0.5)	
MW-56M	DA	14-Dec-10		3190			720	ND (0.5)	
MW-56S	SA	14-Dec-10		2960			546	ND (0.5)	
MW-57-070	BR	15-Dec-10	1.4	79.0	3.0	2.0	17.0	6.20	
		15-Dec-10 _{FD}	1.5	69.0	3.1	1.9	25.0	6.20	
MW-57-185	BR-D	09-Dec-10	11.0	ND (20)	87.0	0.52	580	ND (2.5)	
		03-May-11	12.0		88.0	3.3	540	ND (2.5)	
MW-58BR-LWR-	BR	10-Feb-11	1.6					1.20	
		04-Apr-11	1.6					1.10	
MW-58BR-UPR-	BR	01-Feb-11	1.9					ND (1.0)	
		18-Mar-11	1.8					ND (1.0)	
MW-59-100	SA	16-Dec-10	2.1	ND (20)	4.6	5.0	ND (10)	5.90	
		06-May-11	2.0		ND (12)	4.7	3.4	3.80	
MW-60-125	BR-S	16-Dec-10	1.4	ND (20)	17.0	5.2 J	29.0	3.60	
		16-Dec-10 _{FD}	1.5	ND (20)	18.0	5.3 J	35.0	3.30	
		05-May-11	1.8		32.0	34.0	ND (0.5)	3.60	
MW-61-110	BR-S	15-Dec-10	3.2	130	27.0	1.0	520	ND (2.5)	
		05-May-11	3.4		23.0	ND (2.5)	360	ND (2.5)	
MW-62-065	BR-S	15-Dec-10	0.99	ND (20)	13.0	3.1	ND (10)	3.60	
MW-62-110	BR-M	16-Dec-10	14.0	ND (20)	57.0	2.4	230	2.80	
		09-Feb-11	14.0						
		05-May-11	14.0		60.0	2.5	240	2.50	
MW-62-190	BR-D	16-Dec-10	8.1	49.0	87.0	0.51	1300	ND (2.5)	
		09-Feb-11	8.0						
		05-May-11	6.5		82.0	ND (2.5)	1000	ND (2.5)	
MW-63-065	BR-S	06-Dec-10	1.6	26.0	28.0	0.88	57.0	1.30	

Table 3-2
Groundwater COPCs and In Situ Byproducts Sampling Results, December 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Arsenic Dissolved (µg/L)	Iron Dissolved (µg/L)	Molydenum Dissolved (µg/L)	Selenium Dissolved (µg/L)	Manganese Dissolved (µg/L)	Nitrate as N (mg/L)	Fluoride (mg/L)
MW-63-065	BR-S	03-May-11	1.6		27.0	1.8	43.0	1.00	
MW-64BR ²	BR	20-Dec-10	5.3					2.10	
MW-64BR-LWR-	BR	24-Feb-11	4.5					ND (2.5)	
		20-Apr-11	3.9					ND (2.5)	
MW-64BR-UPR-	BR	26-Jan-11	2.8					2.60	
		12-Apr-11	3.1					3.40	
OW-3D	DA	08-Dec-10	2.6	ND (20)	26.0	0.56	ND (10)	ND (1.0)	
OW-3M	MA	08-Dec-10		ND (20)			ND (10)	1.10	
OW-3S	SA	08-Dec-10		61.0			ND (10)	3.20	
PGE-7BR	BR	09-Dec-10		110000			4600	ND (2.5)	
PGE-8 ¹	BR	10-Feb-11		240	85.0	ND (2.5)	610	ND (2.5)	
Park Moabi-3	MA	10-Dec-10		ND (20)			ND (10)	3.30	
Park Moabi-4	MA	10-Dec-10		ND (20)			ND (10)	2.20	
TW-1	SA-MA-DA	09-Dec-10		ND (20)	15.0	36.0	ND (10)	25.0	
		05-May-11			14.0	28.0		24.0	
TW-2D	DA	15-Dec-10		ND (20)			ND (10)	1.10	
TW-2S	MA	15-Dec-10		ND (20)			ND (10)	4.40	
TW-4	DA	13-Dec-10		ND (40)			ND (20)	ND (2.5)	
TW-5	DA	10-Dec-10		ND (20)			ND (10)	ND (2.5)	

Table 3-2

Groundwater COPCs and In Situ Byproducts Sampling Results, December 2010 through June 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

NOTES:

μg/L = micrograms per liter mg/L = milligrams per liter

ND = not detected at listed reporting limit

FD = field duplicate sample

--- = data not collected, available, rejected, or field instrument malfunction

J = concentration or RL estimated by laboratory or data validation mg/L

The Background Study Upper Tolerance Limit (UTL) for Arsenic is 24.3 µg/L.

The U.S. EPA and California Maximum Contaminant Level for Arsenic is 10 µg/L.

The secondary U.S. EPA and California Maximum Contaminant Level for Iron is 300 ug/L.

The Background Study Upper Tolerance Limit (UTL) for Molybdenum is 36.3 $\mu g/L$.

There is no U.S. EPA and California Maximum Contaminant Level for Molybdenum.

The Background Study Upper Tolerance Limit (UTL) for Selenium is 10.3 µg/L.

The U.S. EPA and California Maximum Contaminant Level for Selenium is 50.0 µg/L.

The secondary U.S. EPA and California Maximum Contaminant Level for Manganese is 50 ug/L.

The Background Study Upper Tolerance Limit (UTL) for Nitrate as N is 5.03 mg/L.

The U.S. EPA and California Maximum Contaminant Level for Nitrate as N is 10 mg/L.

The Background Study Upper Tolerance Limit (UTL) for Fluoride is 7.1 mg/L

The U.S. EPA and California Maximum Contaminant Level for Fluoride is 4 mg/L.

The secondary U.S. EPA and California Maximum Contaminant Level for Fluoride is 2 mg/L.

Wells are assigned to separate Aquifer zones for results reporting:

SA: shallow interval of Alluvial Aquifer

MA: mid-depth interval of Alluvial Aquifer

DA: deep interval of Alluvial Aquifer

PA: perched aguifer (unsaturated zone)

BR: well completed in bedrock (Miocene Conglomerate or pre-Tertiary crystalline rock)

BR-S: well completed in shallow portion of BR BR-M: well completed in middle portion of BR

BR-D: well completed in deep portion of BR

¹ Data collected February 2011 due to field logistical issues.

²One-time sample collected from a Borehole.

Table 3-3 Title 22 Metals Results, Second Quarter 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

	California MCL:	6	10	1,000	4	5	NE	50	1,000*	15	2	NE	100	50	100*	2	NE	5,000*
Well ID	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Chromium	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
MW-12	05/06/2011	ND (10)	49.0	59.0	ND (1.0)	ND (3.0)	ND (3.0)	2,870	ND (5.0)	ND (10)	ND (0.2)	13.0	ND (5.0)	9.5	ND (3.0)	ND (2.5)	9.9	ND (10)
MW-22	05/03/2011	ND (10)	12.0	60.0	ND (1.0)	ND (3.0)	ND (3.0)	ND (1.0)	ND (5.0)	ND (10)	ND (0.2)	28.0	ND (5.0)	ND (2.5)	ND (3.0)	ND (12)	ND (3.0)	ND (10)

Notes:

ND not detected at listed reporting limit FD field duplicate sample

NE not established

* Secondary USEPA MCL

Title 22 metals are the metals listed in California Code of Regulations, Title 22, Section 66261.24(a)(2)(A).

The maximum contaminant levels (MCLs) listed, in micrograms per liter (µg/L), are the California primary drinking water standards, except where noted.

All results are dissolved metals concentrations in $\mu g/L$ from field-filtered samples.

Metals analyzed by Methods SW6010B or SW6020A or SW7470A.

\\\\Zinfande\\\Proj\\PacificGasElectricCo\\TopockProgram\\Database\\Tuesdai\\PMR\\Topock_PMR-GMP2011.mdb\\rptTable3-2_Title22 pkumar2 08/10/2011 12:36:34

Page 1 of 1 Date Printed: 8/10/2011

Table 3-4
Surface Water Sampling Results, Second Quarter 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Location	Sample Date	Hexavalent Chromium (µg/L)	Dissolved Chromium (µg/L)	Specific Conductance (µS/cm)	Lab pH
In-channel Lo	cations			. ,	•
C-BNS-D	06/07/2011	ND (0.2)	ND (1.0)	987	7.99 J
C-CON-S	06/08/2011	ND (0.2)	ND (1.0)	940	8.05 J
C-CON-D	06/08/2011	ND (0.2)	ND (1.0)	948	7.91 J
C-I-3-S	06/07/2011	ND (0.2)	ND (1.0)	952	8.17 J
C-I-3-D	06/07/2011	ND (0.2)	ND (1.0)	953	8.17 J
C-MAR-S	06/07/2011	ND (0.2)	ND (1.0)	970	7.80 J
C-MAR-D	06/07/2011	ND (0.2)	ND (1.0)	980	7.83 J
C-NR1-S	06/08/2011	ND (0.2)	ND (1.0)	944	8.14 J
C-NR1-D	06/08/2011	ND (0.2)	ND (1.0)	954	8.12 J
C-NR3-S	06/08/2011	ND (0.2)	ND (1.0)	948	8.11 J
C-NR3-D	06/08/2011	ND (0.2)	ND (1.0)	950	8.13 J
C-NR4-S	06/08/2011	ND (0.2)	ND (1.0)	953	8.07 J
C-NR4-D	06/08/2011	ND (0.2)	ND (1.0)	951	8.12 J
C-R22a-S	06/07/2011	ND (0.2)	ND (1.0)	957	8.27 J
C-R22a-D	06/07/2011	ND (0.2)	ND (1.0)	939	8.24 J
C-R27-S	06/07/2011	ND (0.2)	ND (1.0)	947	8.23 J
C-R27-D	06/07/2011	ND (0.2)	ND (1.0)	943	8.23 J
C-TAZ-S	06/07/2011	ND (0.2)	ND (1.0)	955	8.27 J
C-TAZ-D	06/07/2011	ND (0.2)	ND (1.0)	958	8.26 J
Shoreline San	nples	•			
R-19	06/08/2011	ND (0.2)	ND (1.0)	942	8.25 J
R-28	06/08/2011	ND (0.2)	ND (1.0)	947	8.26 J
R63	06/07/2011	ND (0.2)	1.20	952	8.33 J
RRB	06/08/2011	ND (0.2)	ND (1.0)	947	8.17 J
Other Surface	Water Monitoring Lo	ocations			
SW1	06/07/2011	ND (0.2)	ND (1.0)	968	7.60 J
SW2	06/07/2011	ND (0.2)	ND (1.0)	960	7.81 J

Table 3-4

Surface Water Sampling Results, Second Quarter 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

Notes:

μg/L micrograms per liter

 $\begin{array}{ll} \mu \text{S/cm} & \text{microSiemens per centimeter} \\ \text{ND} & \text{not detected at listed reporting limit} \end{array}$

J concentration or reporting limit estimated by laboratory or data validation

Hexavalent chromium analytical method EPA 218.6 (reporting limit 0.2 µg/L for undiluted samples).

Other analytical methods: dissolved chromium - method SW6020A, specific conductance $\,$ - EPA 120.1, pH -SM4500-HB.

Table 3-5
COPCs, In Situ Byproducts and Geochemical Indicator Parameters in Surface Water Samples, Second Quarter 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Location Sample Date		Alkalinity, bicarb. as CaCO3	Alkalinity, carb as CaCO3	Alkalinity, total as CaCO3	Arsenic, Total	Arsenic, dissolved	Iron, Total	Iron, dissolved	Manganese, Total	Manganese, dissolved	Molybdenum, dissolved	Nitrate as Nitrogen	Selenium, dissolved	Total suspended solids
	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	μg/L	mg/L	
In-channel Loc	cations	•												
C-BNS-D	06/07/2011	127	ND (5)	127	2.7	2.8	51.8	ND (20)	ND (11.1)	ND (10)	ND (11.1)	ND (0.5)	ND (11.1)	ND (2.5)
C-CON-S	06/08/2011	123	ND (5)	123	2.2 J	2.5	25.8	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-CON-D	06/08/2011	120	ND (5)	120	2.4 J	2.4	24.7	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-I-3-S	06/07/2011	125	ND (5)	125	2.6	2.8	89.5	ND (20)	ND (11.1)	ND (10)	ND (11.1)	ND (0.5)	ND (11.1)	ND (2.5)
C-I-3-D	06/07/2011	116	ND (5)	116	2.6	2.5	32.3	ND (20)	ND (11.1)	ND (10)	ND (11.1)	ND (0.5)	ND (11.1)	ND (2.5)
C-MAR-S	06/07/2011	135	ND (5)	135	3.2	2.5	675	40.9	33	17.6	ND (11.1)	1.88	ND (11.1)	18.8
C-MAR-D	06/07/2011	125	ND (5)	125	2.9	2.4	650	ND (20)	32	16.3	ND (11.1)	ND (0.5)	ND (11.1)	15.8
C-NR1-S	06/08/2011	108	ND (5)	108	2.4 J	2	24	ND (20)	13.2	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-NR1-D	06/08/2011	115	ND (5)	115	2.7 J	2.3	38.7	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-NR3-S	06/08/2011	135	ND (5)	135	2.5 J	2.3	ND (20)	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-NR3-D	06/08/2011	124	ND (5)	124	2.5 J	2.2	20.8	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-NR4-S	06/08/2011	116	ND (5)	116	2.6 J	2.2	ND (20)	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-NR4-D	06/08/2011	116	ND (5)	116	2.4 J	2.2	23.3	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-R22a-S	06/07/2011	126	ND (5)	126	2.6	2.8	22.9	ND (20)	ND (11.1)	ND (10)	ND (11.1)	ND (0.5)	ND (11.1)	ND (2.5)
C-R22a-D	06/07/2011	114	ND (5)	114	2.5	2.6	33	ND (20)	ND (11.1)	ND (10)	ND (11.1)	ND (0.5)	ND (11.1)	ND (2.5)
C-R27-S	06/07/2011	132	ND (5)	132	2.5	2.8	23.5	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-R27-D	06/07/2011	125	ND (5)	125	2.5	2.2	20.6	ND (20)	ND (11.1)	ND (10)	ND (11.1)	ND (0.5)	ND (11.1)	ND (2.5)
C-TAZ-S	06/07/2011	122	ND (5)	122	2.6	2.5	ND (20)	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
C-TAZ-D	06/07/2011	120	ND (5)	120	2.6	2.5	38.3	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
Shoreline Sam	nples													
R-19	06/08/2011	114	ND (5)	114	2.4 J	2.4	22.4	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
R-28	06/08/2011	116	ND (5)	116	2.4 J	2.1	24.3	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
R63	06/07/2011	120	ND (5)	120	2.8	2.4	89	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)
RRB	06/08/2011	115	ND (5)	115	2.3 J	2.7	42.2	ND (20)	ND (11.1)	ND (10)	ND (10)	ND (0.5)	ND (11.1)	ND (2.5)

Notes:

μg/L micrograms per liter mg/L milligrams per liter

ND not detected at listed reporting limit

J concentration or reporting limit estimated by laboratory or data validation

Methods:

Alkalinity - SM2320B Metals - SW6010B/SW6020A

Nitrate - EPA 300.0

Total Suspended Solids - SM2540D

TABLE 4-1
Pumping Rate and Extracted Volume for IM System, Second Quarter 2011
Second Quarter 2011 Interim Measures Performance Monitoring
and Site-Wide Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	April 201	1	May 2011		June 201	I	Second Quarter 2011		
Extraction Well ID	Average Pumping Rate ^a (gpm)	Volume Pumped (gal)							
TW-02S	0.00	0	0.00	0	0.00	0	0.00	0	
TW-02D	0.00	0	0.00	0	0.00	0	0.00	0	
TW-03D	93.09	4,021,693	106.93	4,773,302	99.83	4,312,859	99.95	13,107,853	
PE-01	22.89	988,946	26.40	1,178,718	24.52	1,059,462	24.61	3,227,126	
TOTAL	116.0	5,010,639	133.3	5,952,020	124.4	5,372,321	124.6	16,334,980	

Chromium Removed This Quarter (kg) 52.9
Chromium Removed Project to Date (kg) 3,057.5
Chromium Removed This Quarter (lb) 116.6
Chromium Removed Project to Date (lb) 6,740.5

NOTES:

gpm gallons per minute

gal gallons ac-ft acre-feet kg kilograms lb pounds

^a The "Average Pumping Rate" is the overall average during the reporting period, including system downtime, based on flow meter readings.

Table 4-2
Analytical Results for Extraction Wells, January 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Sample Date	Dissolved Chromium (μg/L)	Hexavalent Chromium (μg/L)	Total Dissolved Solids (mg/L)
TW-3D	06-Jan-10	1,350 LF	1,300	5,350
	03-Feb-10	1,320 LF	1,400	5,220
	03-Mar-10	1,340 LF	1,380	5,080
	07-Apr-10	1,310 LF	1,380	5,110
	04-May-10	1,240 LF	1,000	5,210
	02-Jun-10	1,230 UF	1,500	5,500
	07-Jul-10	1,130 LF	1,100	5,280
	04-Aug-10	1,100 LF	1,280	5,330
	01-Sep-10	1,160 LF	1,130	4,900
	05-Oct-10	1,150 LF	1,280	5,160
	03-Nov-10	1,130 LF	1,160	5,360
	07-Dec-10	1,170 LF	1,080	5,530
	04-Jan-11	1,200 LF	1,100	5,550
	01-Feb-11	1,100 LF	1,000	4,700
	01-Mar-11	1,320 LF	1,090	5,380
	05-Apr-11	1,220 LF	1,130	5,120
	02-May-11	1,070 LF	1,100	5,080
	07-Jun-11	1,090 LF	1,030	5,120
PE-1	06-Jan-10	19.6 LF	20.0	3,110
	03-Feb-10	19.1 LF	22.6	3,330
	03-Mar-10	17.3 LF	20.8	3,080
	07-Apr-10	15.4 LF	13.7	3,120
	04-May-10	14.6 LF	13.0	3,280
	02-Jun-10	13.4 UF	14.0	3,450
	07-Jul-10	11.4 LF	13.7	3,350
	04-Aug-10	11.9 LF	12.4	3,180
	01-Sep-10	12.4 LF	14.9	3,420
	05-Oct-10	12.3 LF	13.2	3,290
	03-Nov-10	12.0 LF	12.9	3,300
	07-Dec-10	14.4 LF	15.2	3,160
	04-Jan-11	16.6 LF	17.5	3,110
	01-Feb-11	13.4 LF	15.4	3,120
	01-Mar-11	15.2 LF	12.9	3,200
	05-Apr-11	10.0 LF	10.5	2,920
	02-May-11	10.5 LF	9.90	3,100
	07-Jun-11	11.0 LF	9.50	3,190

NOTES:

 $\mu g/L = concentration \ in \ micrograms \ per \ liter \\ mg/L = concentration \ in \ milligrams \ per \ liter$

LF = lab filtered

UF = unfiltered

Groundwater samples from active extraction wells are taken at sample taps in Valve Vault 1 on the MW-20 Bench.

Dissolved chromium was analyzed by Method SW6020A or EPA200.8 or EPA200.7, hexavalent chromium analyzed by Method SM3500-CrB or EPA218.6 and total dissolved solids were analyzed by Method SM2540C.

TABLE 4-3
Average Hydraulic Gradients Measured at Well Pairs, Second Quarter 2011
Second Quarter 2011 Interim Measures Performance Monitoring
and Site-Wide Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well Pair ^a	Reporting Period	Mean landward b Hydraulic Gradient (feet/foot)	Days in _C Monthly Average	
	April	0.0042	NA	
Overall Average	May	0.0052	NA	
	June	0.0043	NA	
Northern Gradient Pair	April	0.0020	30 / 30	
MW-31-135 / MW-33-150	May	0.0021	31 / 31	
	June	0.0022	30 / 30	
Central Gradient Pair	April	0.0077	30 / 30	_
MW-45-95 / MW-34-100	May	0.0101	31 / 31	
	June	0.0080	30 / 30	
Southern Gradient Pair	April	0.0029	30 / 30	
MW-45-95 / MW-27-85	May	0.0035	31 / 31	
	June	0.0029	30 / 30	

Notes:

NA = All available data used in calculating overall average except where noted.

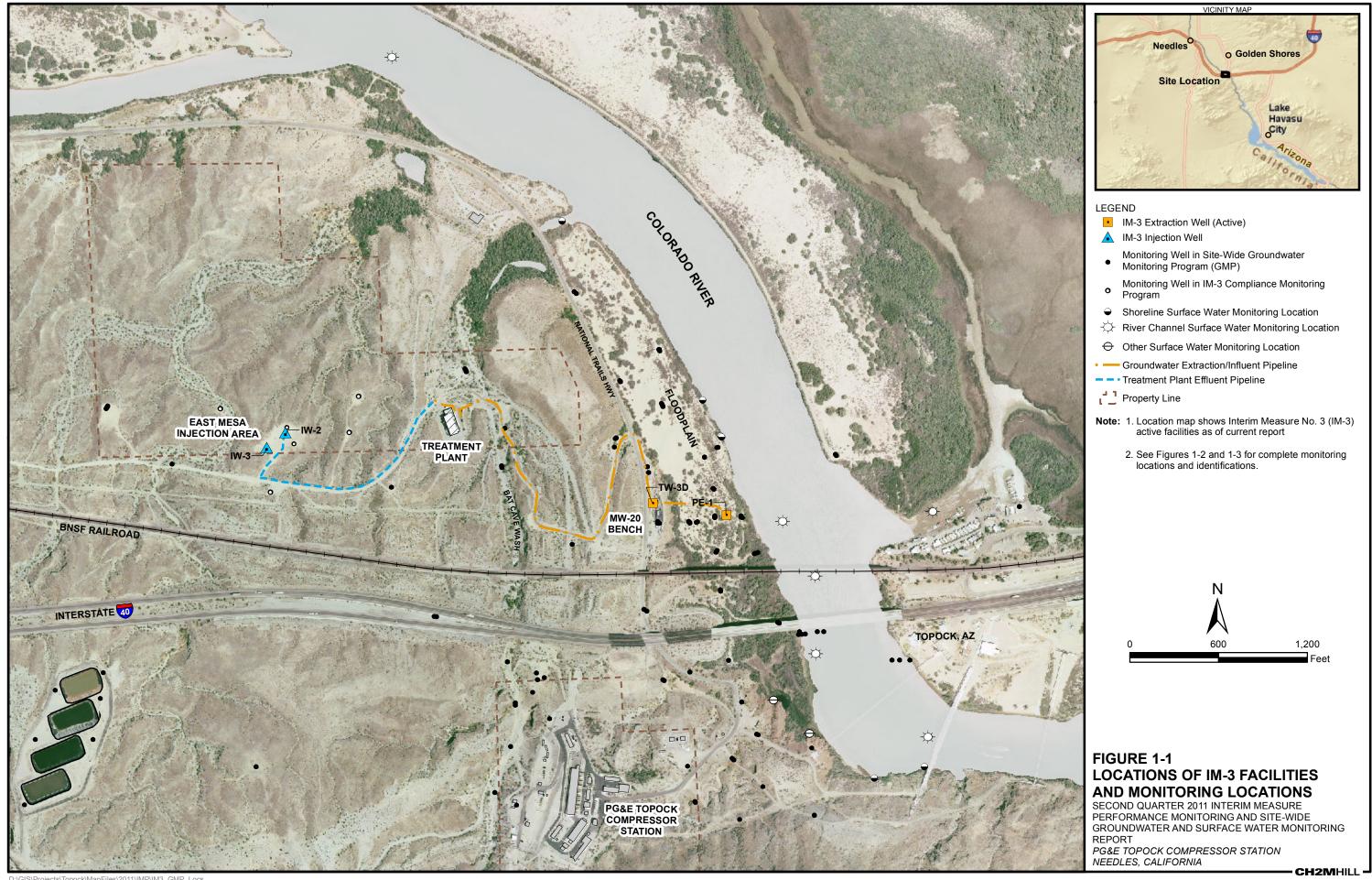
- a Refer to Figure 1-3 for location of well pairs
- b For IM pumping, the target landward gradient for the selected well pairs is 0.001 feet/foot
- c Number of days transducers in both wells were operating correctly / Total number of days in month.

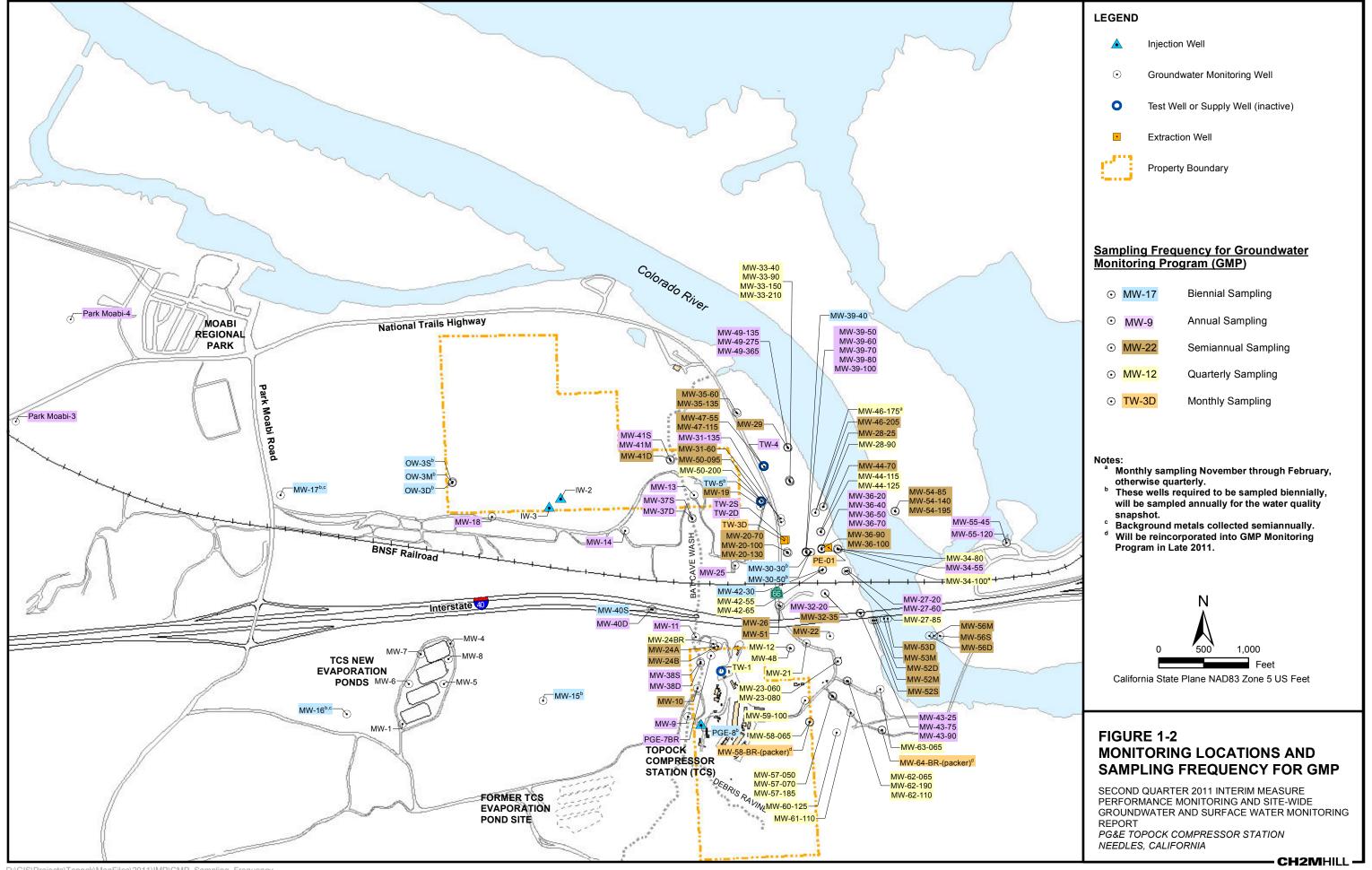
Date Printed: 7/14/2011

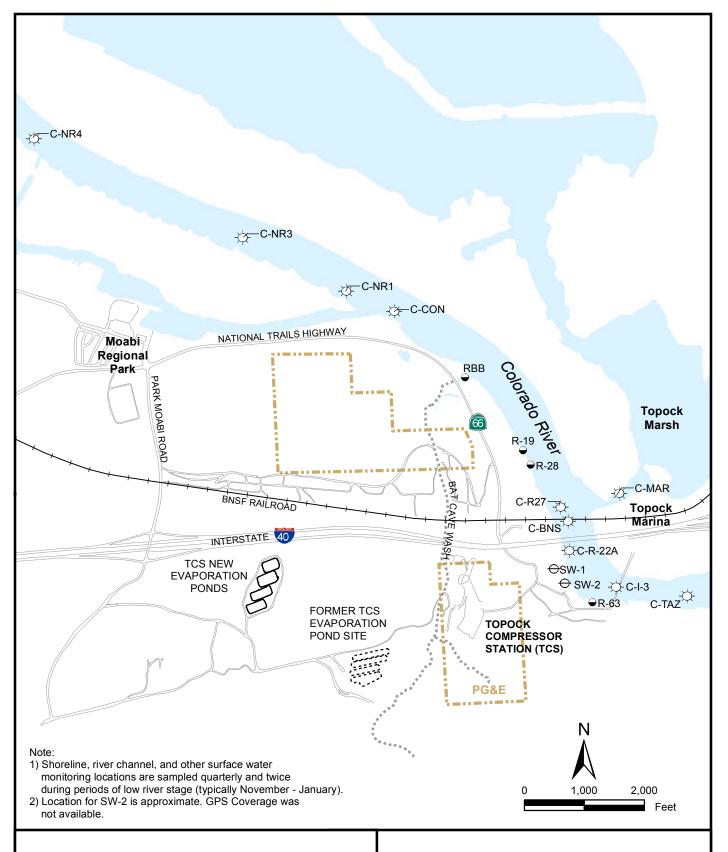
TABLE 4-4Predicted and Actual Monthly Average Davis Dam Discharge and Colorado River Elevation at I-3
Second Quarter 2011 Interim Measures Performance Monitoring and
Site-Wide Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Da	avis Dam Relea	se	Colorado River Elevation at I-3				
Month	Projected	Actual (cfs)	Difference	Predicted	Actual	Difference (feet)		
	(cfs)	. ,	(cfs)	(ft amsl)	(ft amsl)	` ′		
January 2008	9,300	8,900	400	453.5	453.6	0.1		
February 2008	10,100	12,463	-2,363	454.5	454.7	0.1		
March 2008	15,200	15,837	-637	455.6	455.9	0.3		
April 2008	17,600	18,554	-954	456.6	457.0	0.4		
May 2008	17,200	16,155	1,045	456.6	456.4	-0.3		
June 2008	15,400	15,655	-255	456.2	456.5	0.3		
July 2008	14,500	14,574	-74	455.8	456.0	0.2		
August 2008	13,100	12,976	124	455.2	455.2	0.0		
September 2008	12,300	11,731	569	454.9	455.0	0.1		
October 2008	10,500	10,272	228	454.1	454.2	0.1		
November 2008	10,400	10,130	270	454.1	454.03	-0.1		
December 2008	5,800	5,506	294	452.3	452.45	0.2		
January 2009	9,300	10,644	-1,344	452.6	454.02	1.4		
February 2009	10,800	11,319	-519	454.2	454.34	0.2		
March 2009	16,200	16,826	-626	456.1	456.37	0.3		
April 2009	18,800	18,432	368	457.2	457.13	-0.1		
May 2009	15,800	14,889	911	456.4	456.26	-0.1		
June 2009	14,100	13,246	854	455.8	455.73	0.0		
July 2009	13,500	13,579	-79	455.5	455.65	0.1		
August 2009	11,900	12,296	-396	454.8	455.08	0.3		
September 2009	12,700	12,203	497	454.9	455.24	0.4		
October 2009	9,500	10,128	-628	453.8	454.04	0.3		
November 2009	10,200	9,909	291	454.1	454.27	0.2		
December 2009	9,000	8,650	350	453.6	453.54	-0.1		
January 2010	9,900	7,415	2,485	453.9	453.36	-0.5		
February 2010	7,700	7.961	-261	453.0	453.41	0.4		
March 2010	14,700	14,014	686	455.5	455.40	-0.1		
April 2010	16,100	14,762	1,338	455.3	455.94	0.7		
May 2010	15,500	15,246	254	456.2	456.41	0.3		
June 2010	15,800	15,332	468	456.4	456.45	0.0		
July 2010	14,500	14,841	-341	455.9	456.34	0.4		
August 2010	13,500	13,627	-127	455.4	455.87	0.5		
September 2010	13,400	13,555	-155	455.2	455.79	0.6		
October 2010	12,300	12,463	-163	454.7	455.41	0.7		
November 2010	10,900	10,597	303	454.3	454.92	0.6		
December 2010	9,800	9,286	514	453.9	453.86	-0.1		
January 2011	7,700	8,172	-472	453.1	453.34	0.2		
February 2011	11,000	10,547	453	454.2	454.38	0.2		
March 2011	15,900	15,875	25	455.9	456.22	0.3		
April 2011	17,900	17,595	305	456.9	457.02	0.2		
May 2011	16,400	15,437	963	456.6	456.40	-0.2		
June 2011	16,100	16,024	76	456.5	456.75	0.2		
July 2011	15,500	10,024	70	456.3	430.73	0.2		
July 2011	13,300			450.5				

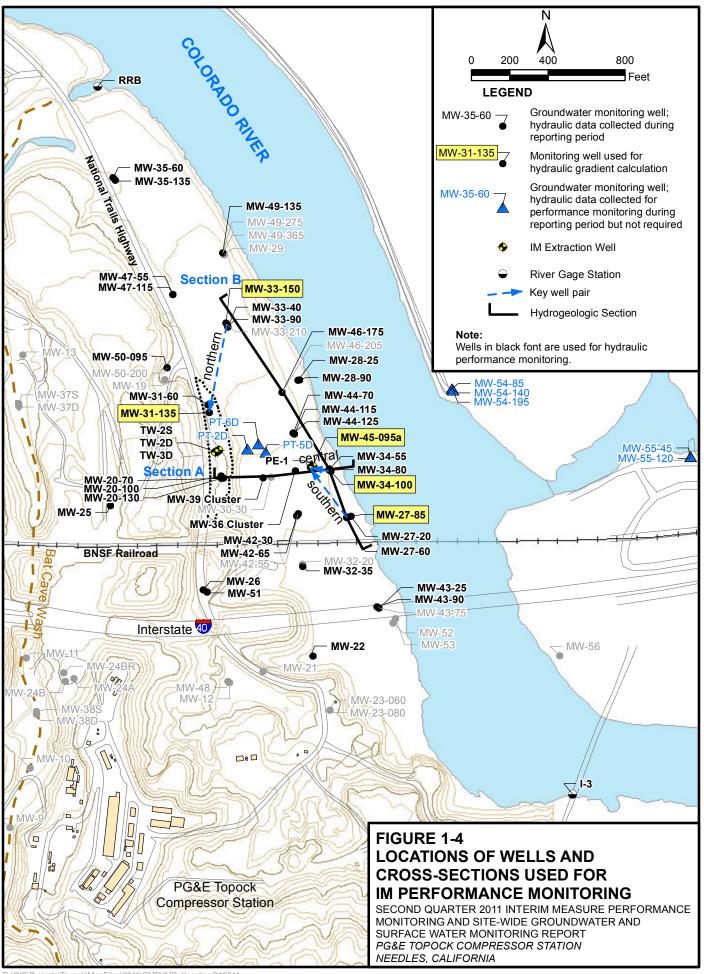
NOTES:

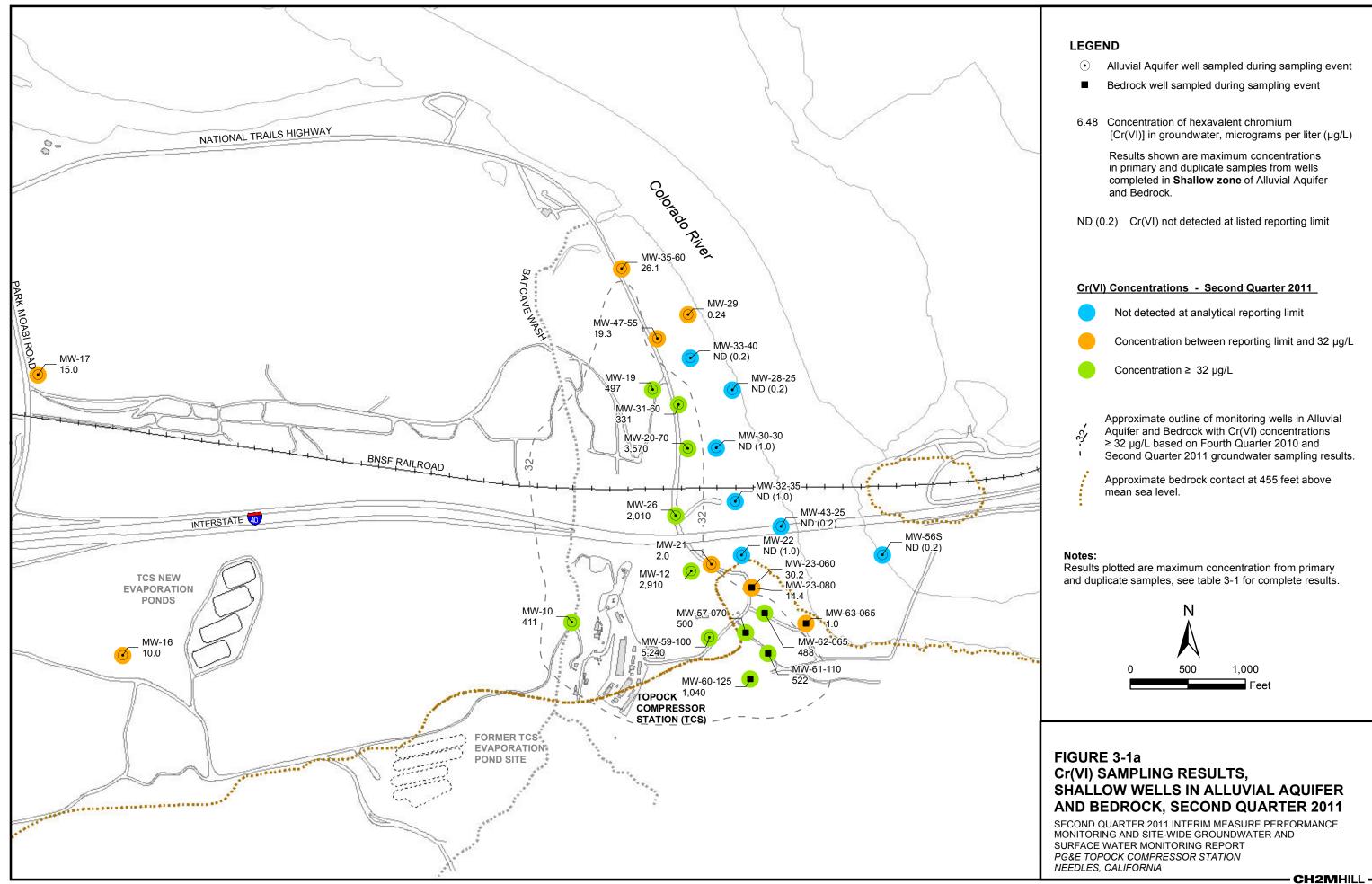

cfs = cubic feet per second; ft amsl = feet above mean sea level.

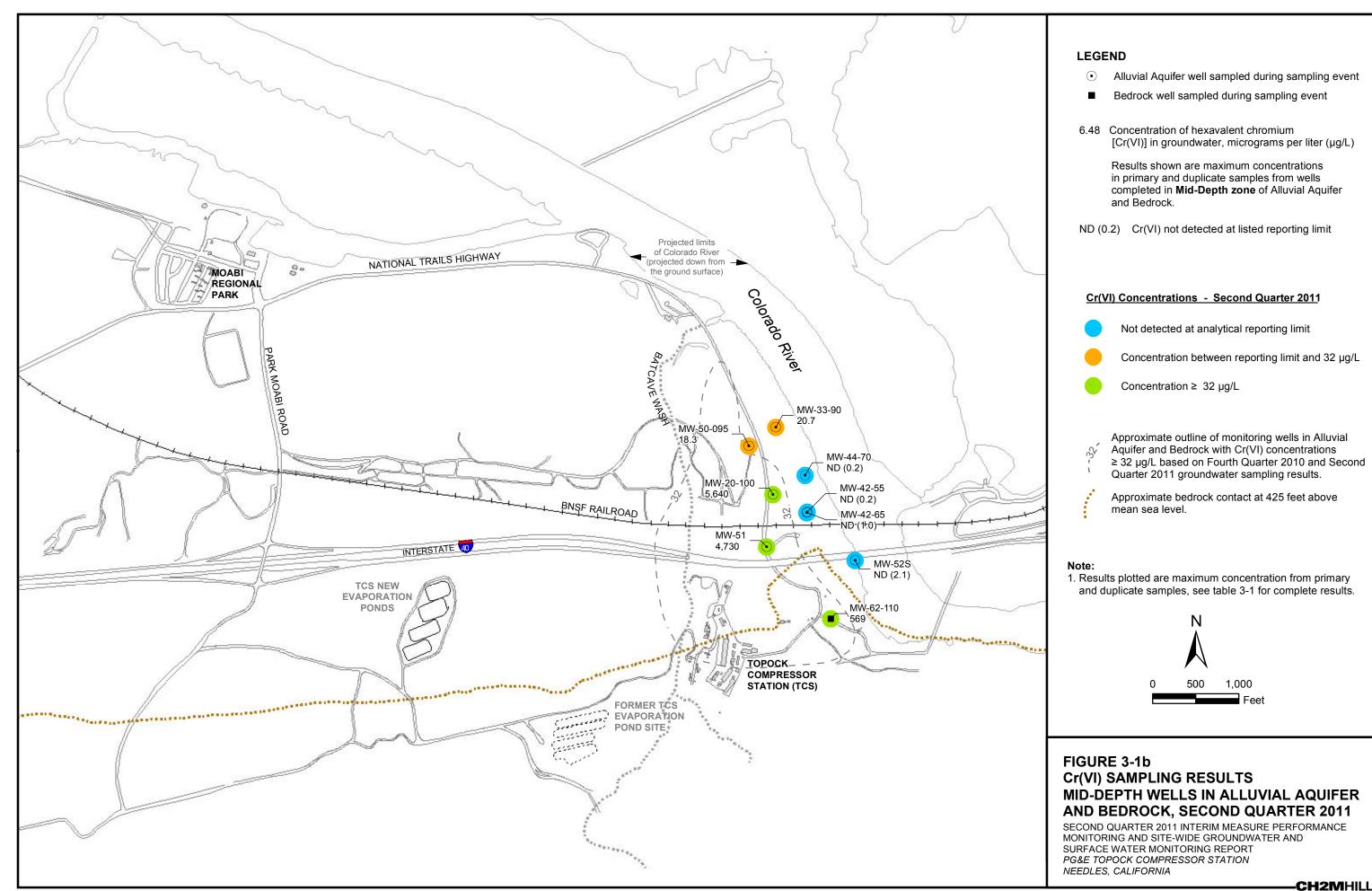

Projected river level for each month in the past is calculated based on the preceding months USBR projections of Davis Dam release and stage in Lake Havasu. Future projections of river level at I-3 are based upon July 2011 USBR projections. These data are reported monthly by the US Department of Interior, at http://www.usbr.gov/lc/region/g4000/24mo.pdf

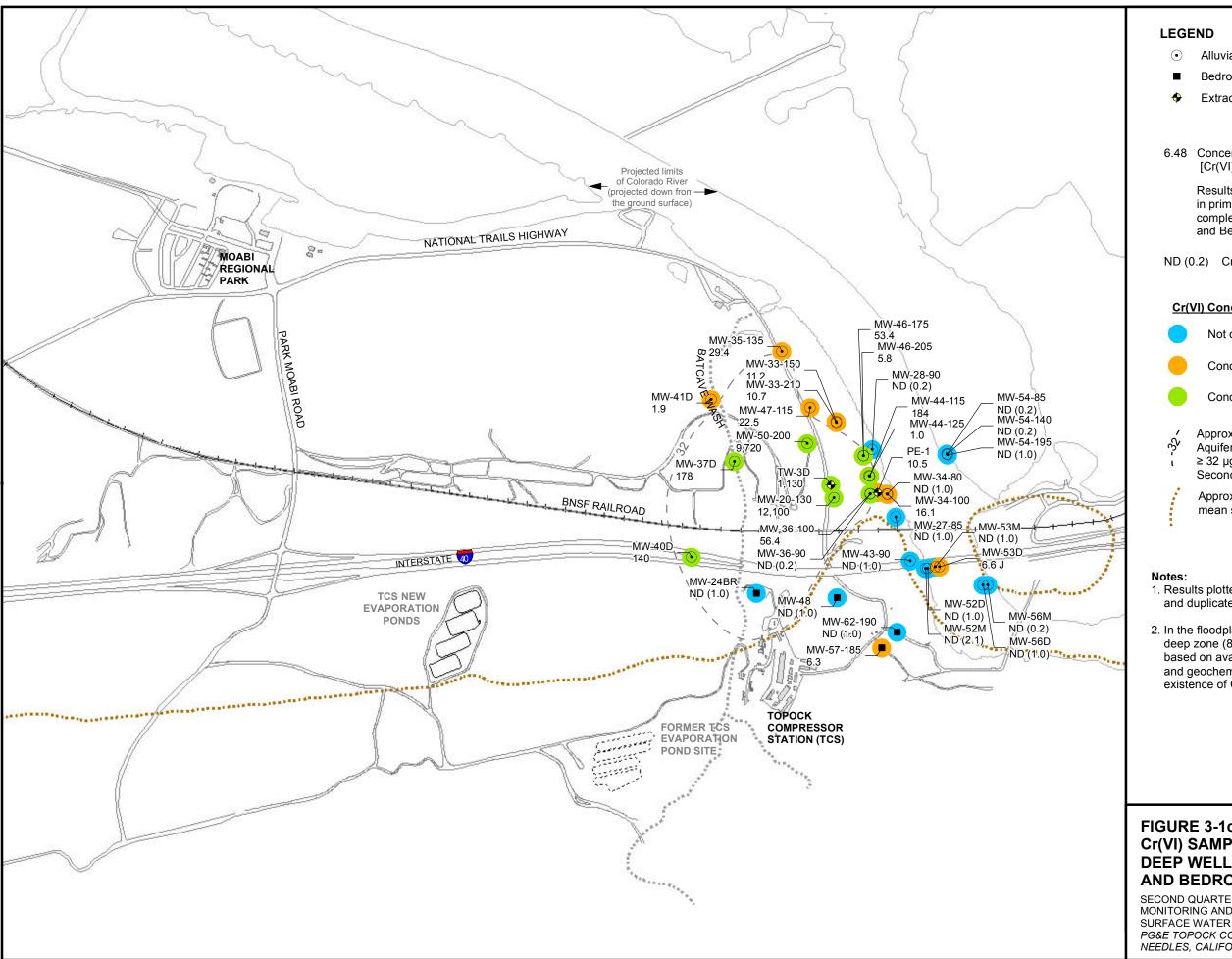

The difference in I-3 elevation is the difference between the I-3 elevation predicted and the actual elevation measured at I-3. The source of this difference is differences between BOR projections and actual dam releases/Havasu reservoir levels, rather than the multiple regression error.

For data prior to 2008 please see Fourth Quarter 2009 and Annual Interim Measure Performance Monitoring Report, PG&E Topock Compressor Station, Needles, California (CH2M HILL, 2010a).

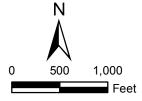



LEGEND


- Shoreline Surface Water Monitoring Location
- River Channel Surface Water Monitoring Location
- Other Surface Water Monitoring Location


FIGURE 1-3 MONITORING LOCATIONS AND SAMPLING FREQUENCY FOR RMP

SECOND QUARTER 2011 INTERIM MEASURE PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA CH2MHILL


- Alluvial Aguifer well sampled during sampling event
- Bedrock well sampled during sampling event
- Extraction well sampled during sampling event
- 6.48 Concentration of hexavalent chromium [Cr(VI)] in groundwater, micrograms per liter (μg/L)

Results shown are maximum concentrations in primary and duplicate samples from wells completed in **Deep zone** of Alluvial Aquifer and Bedrock.

ND (0.2) Cr(VI) not detected at listed reporting limit

Cr(VI) Concentrations - Second Quarter 2011

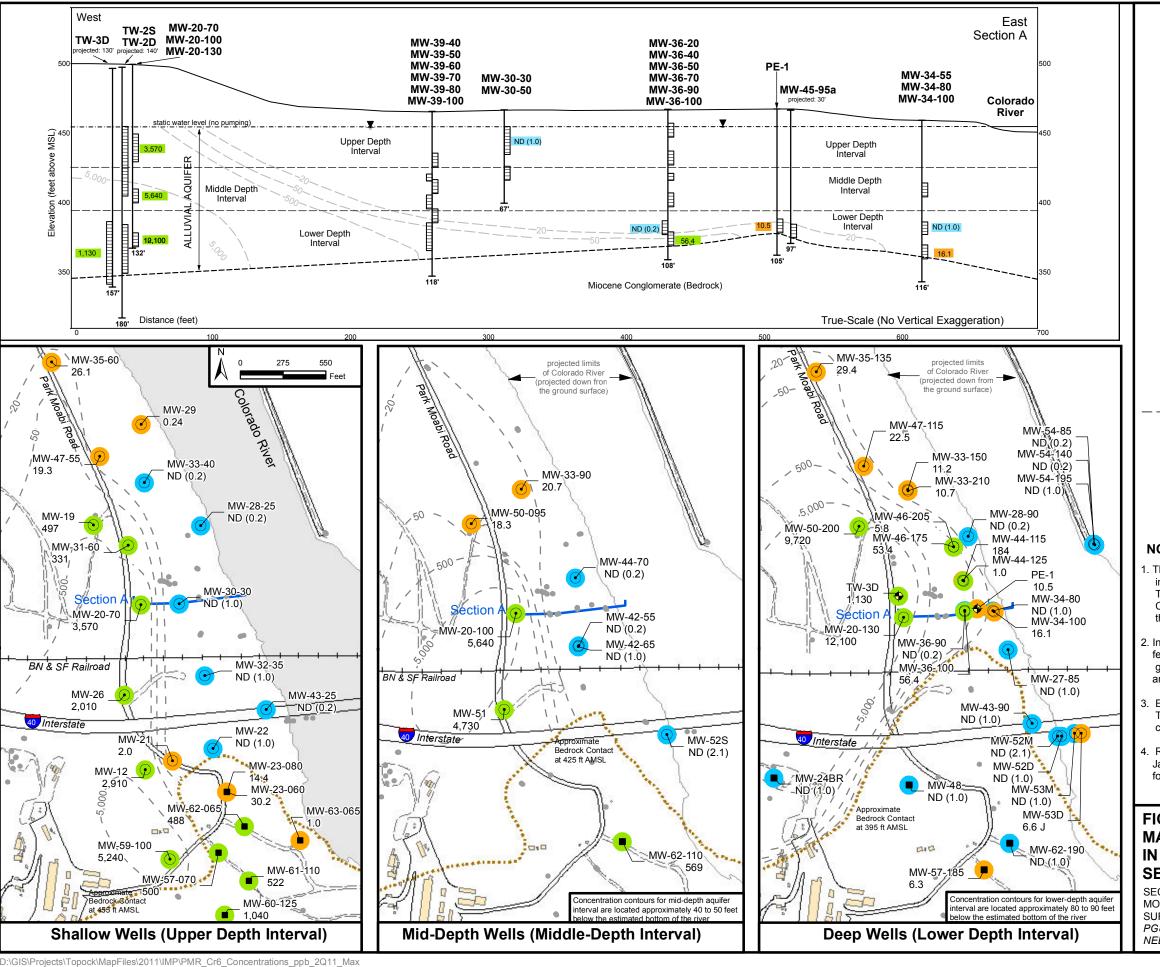

- Not detected at analytical reporting limit
- Concentration between reporting limit and 32 μg/L
- Concentration ≥ 32 μg/L
 - Approximate outline of monitoring wells in Alluvial Aquifer and Bedrock with Cr(VI) concentrations ≥ 32 µg/L based on Fourth Quarter 2010 and Second Quarter 2011 groundwater sampling resutls.
 - Approximate bedrock contact at 395 feet above mean sea level.
- 1. Results plotted are maximum concentration from primary and duplicate samples, see table 3-1 for complete results.
- 2. In the floodplain area, the 32 µg/L line for Cr(VI) in deep zone (80-90 feet below Colorado River) is estimated based on available groundwater sampling, hydrogeologic and geochemical data. There are no data confirming the existence of Cr(VI) under the Colorado River.

FIGURE 3-1c Cr(VI) SAMPLING RESULTS, DEEP WELLS IN ALLUVIAL AQUIFER AND BEDROCK, SECOND QUARTER 2011

SECOND QUARTER 2011 INTERIM MEASURE PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA

CH2MHILL

LEGEND

- Alluvial Aquifer well sampled during sampling event
- Bedrock well sampling during sampling event
- Extraction well sampled during sampling event
- Well not sampled during sampling event
- 6.48 Concentration of hexavalent chromium [Cr(VI)] in groundwater, micrograms per liter (µg/L). Results posted are maximum Cr(VI) concentrations.

ND (0.2) Cr(VI) not detected at listed reporting limit

Cr(VI) Concentrations - Second Quarter 2011

Not detected at analytical reporting limit

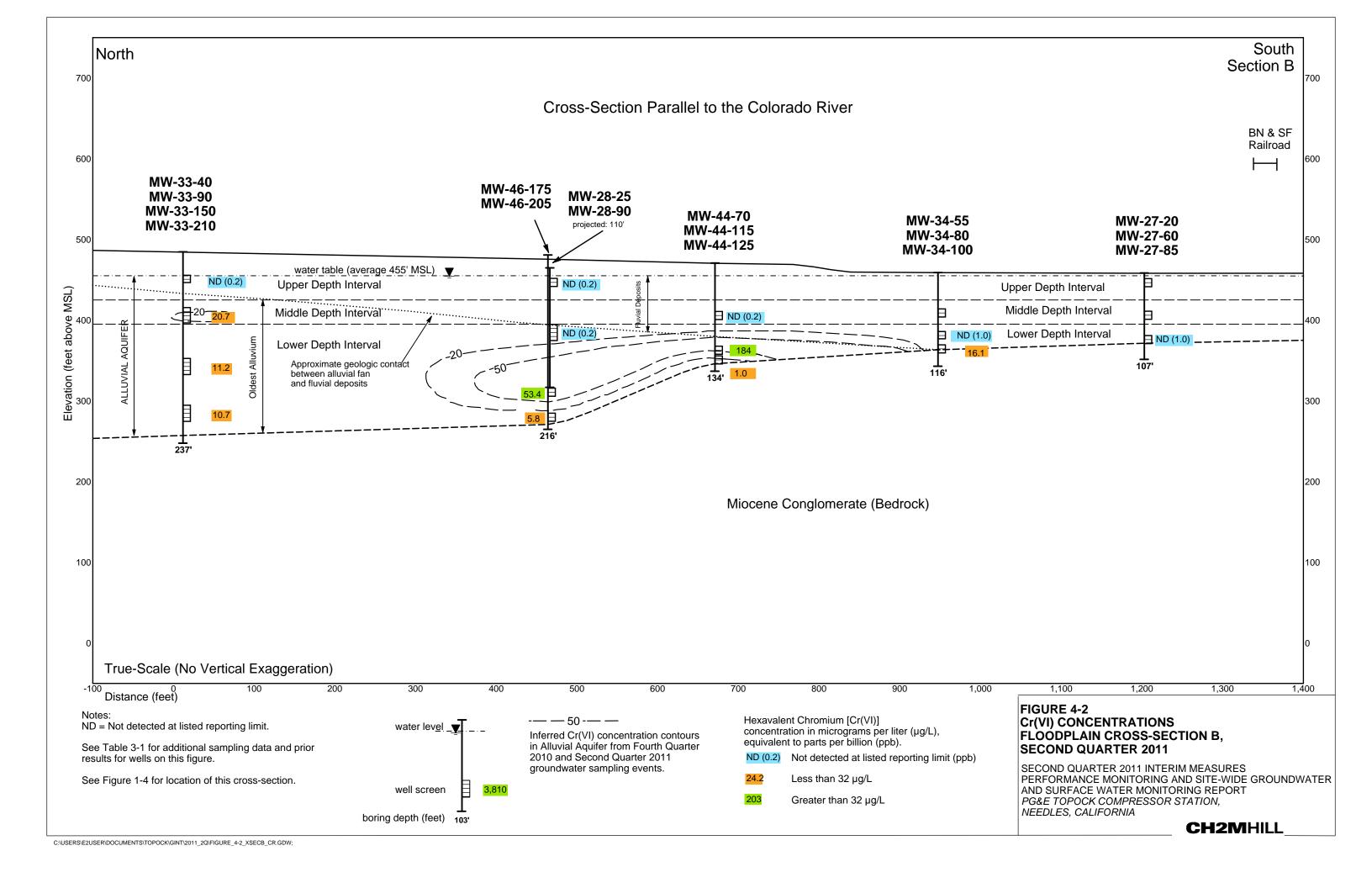
Concentration between reporting limit and 32 µg/L

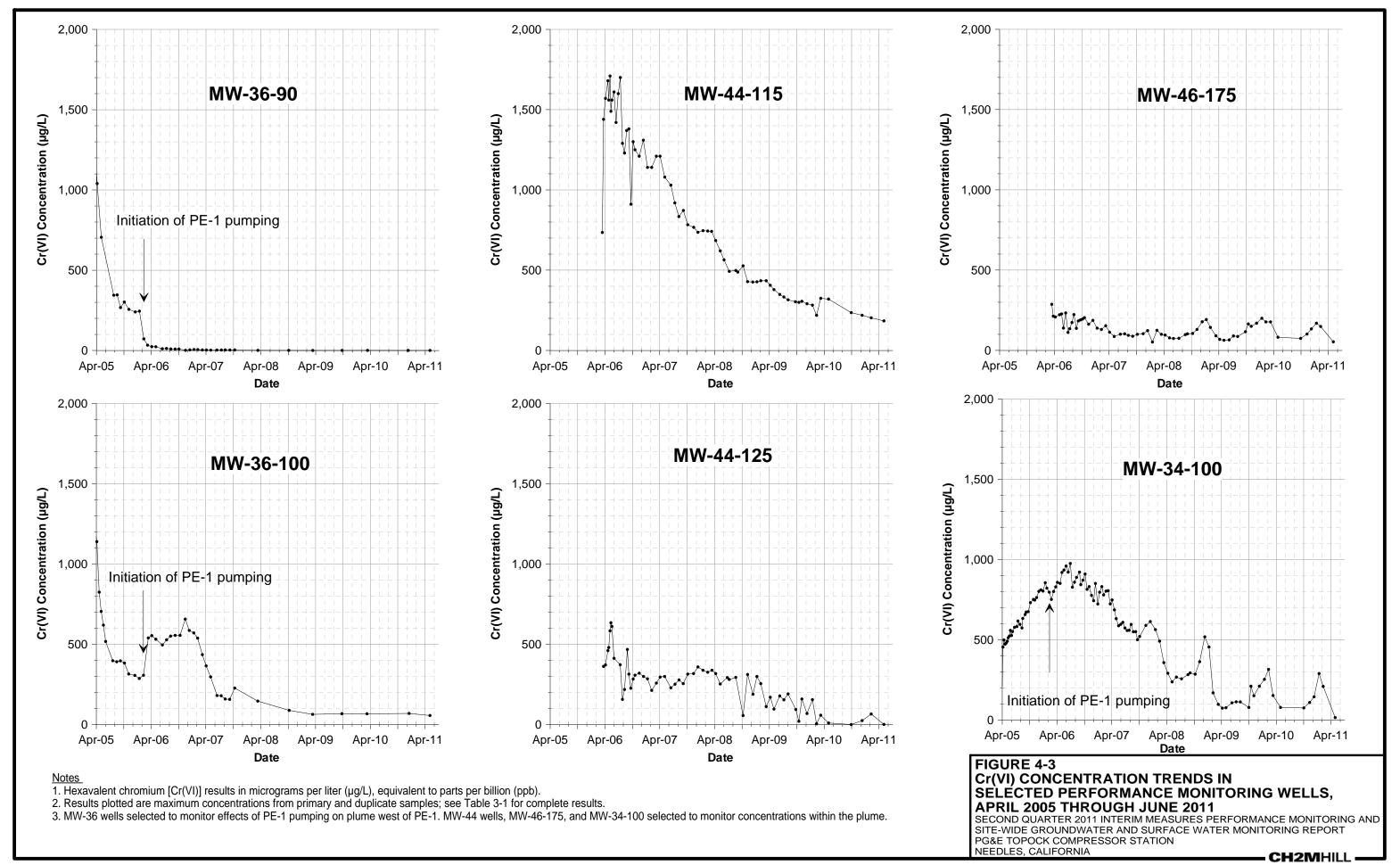
Inferred Cr(VI) concentration contour within Alluvial aquifer depth interval based on Fourth Quarter 2010 and Second Quarter

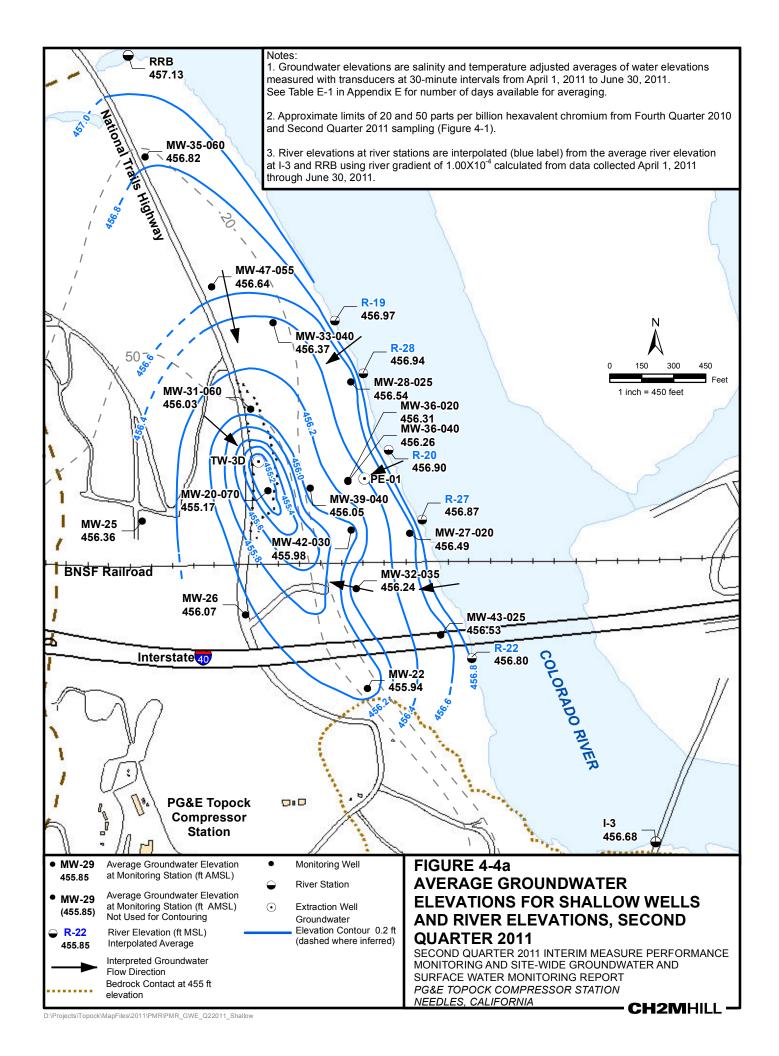
Approximate bedrock contact

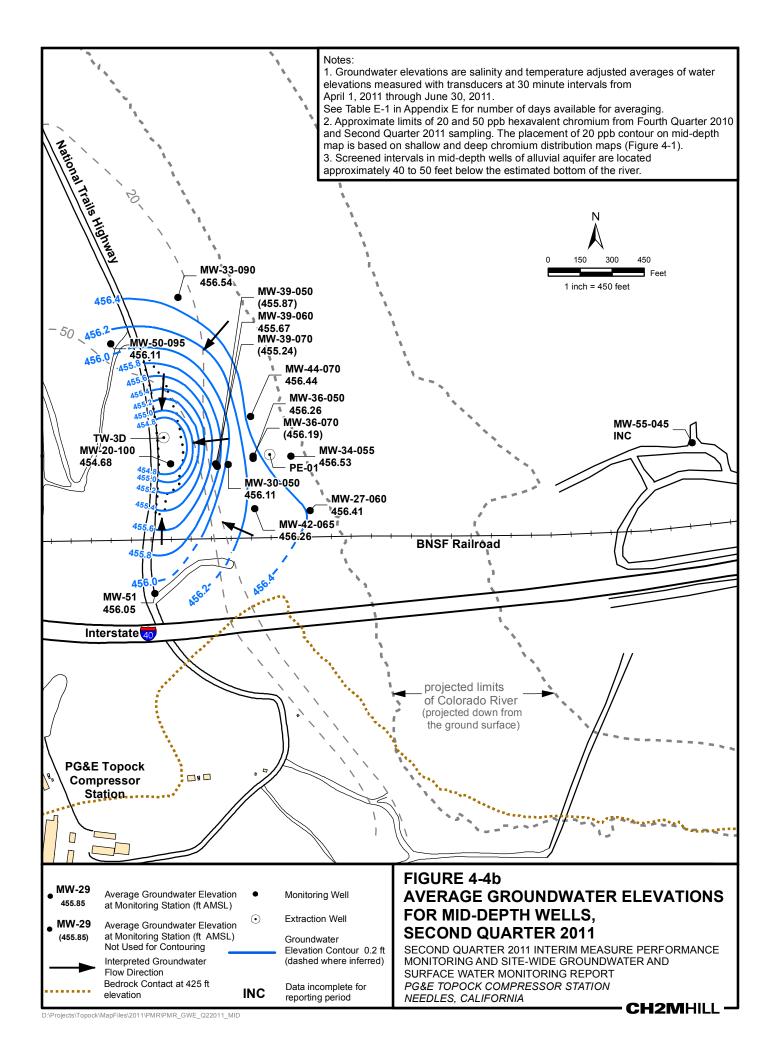
2011 groundwater sampling results.

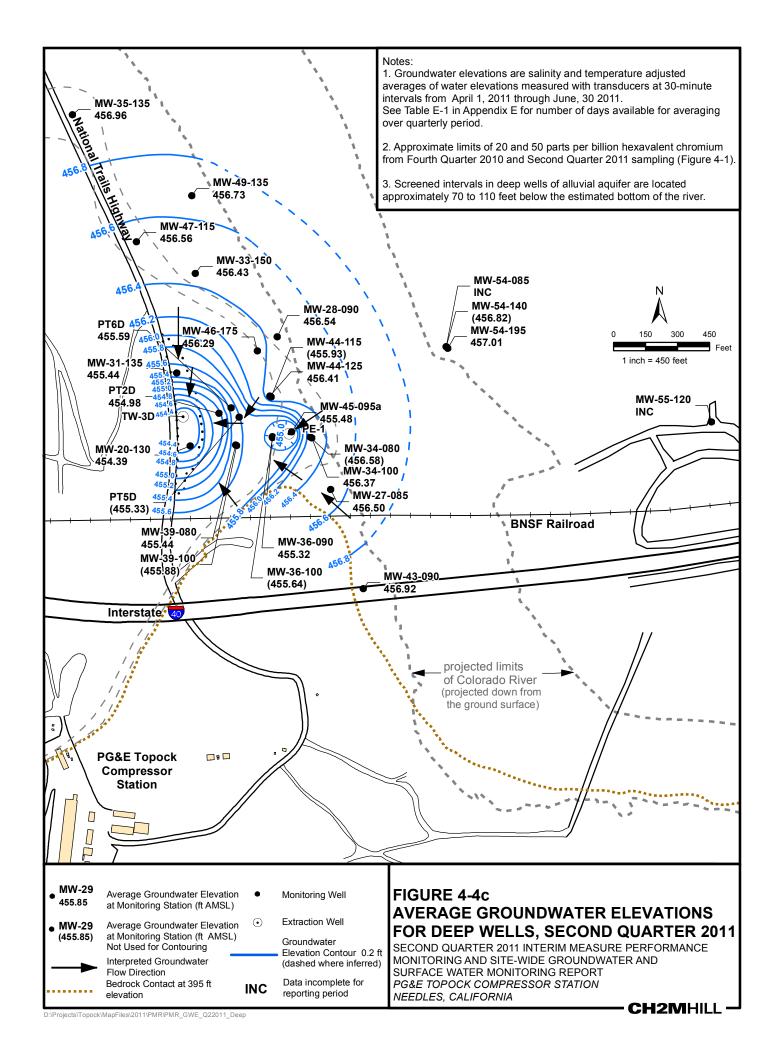
Concentration ≥ 32 µg/L

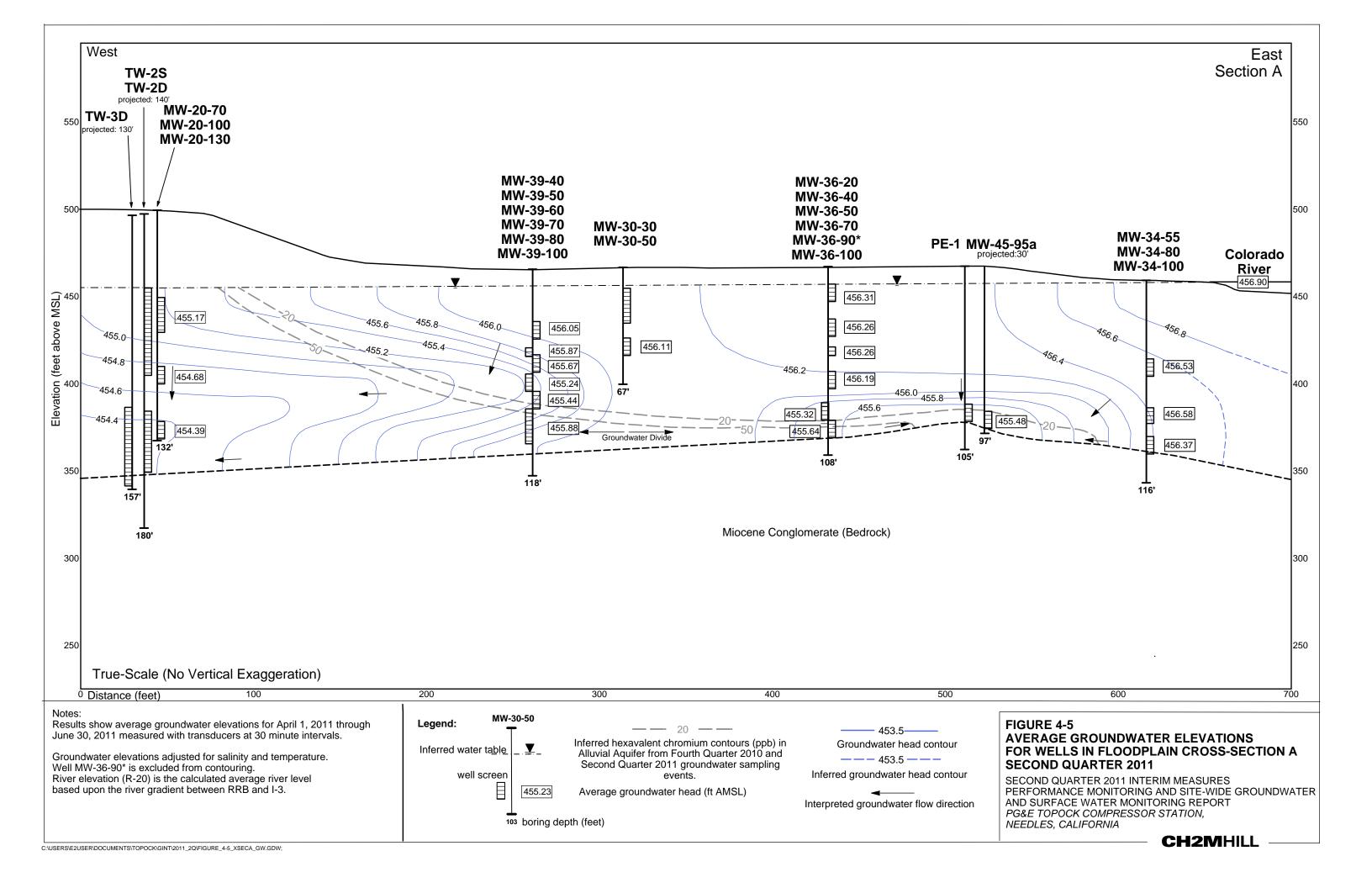

Hydrogeologic Section A

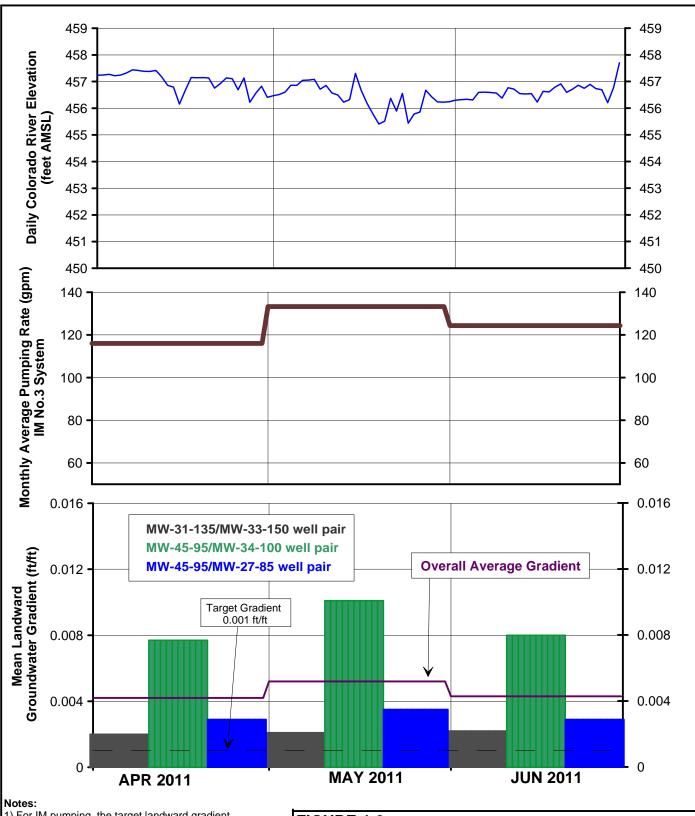

NOTES ON CONTOUR MAPS

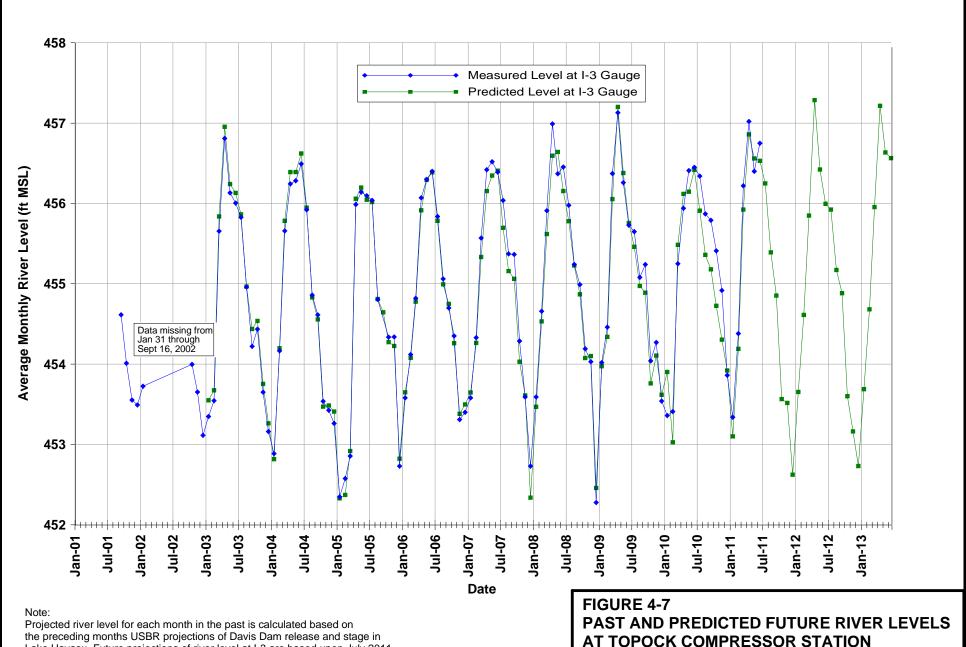

- . The Cr(VI) concentration contours of 20 and 50 μ g/L are shown in accordance with DTSC's 2005 IM performance monitoring directive. The IM performance standard was established for containment of Cr(VI) concentrations greater than 20 ug/L in the floodplain portion of the Alluvial Aquifer.
- 2. In the floodplain area, the 20 µg/L line for Cr(VI) in deep zone (80-90 feet below Colorado River) is estimated based on available groundwater sampling, hydrogeologic and geochemical data. There are no data confirming the existence of Cr(VI) under the Colorado River.
- Extraction wells PE-1 and TW-3D are not included in contouring. These wells draw water from a larger area and do not represent Cr(VI) concentrations at their specific locations.
- Results from TW-3D. PE-01. MW-46-175 and MW-34-100 are from January 2011; the remainder are from February 2011. See table 3-1 for complete results.


FIGURE 4-1 **MAXIMUM Cr(VI) CONCENTRATIONS** IN ALLUVIAL AQUIFER, **SECOND QUARTER 2011**


SECOND QUARTER 2011 INTERIM MEASURE PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA **CH2M**HILL







- For IM pumping, the target landward gradient for well pairs is 0.001 feet/foot.
- Refer to Table 4-1 and Section 4.4 for discussion of pumping data.
- Pumping rate plotted is the combined rate of extraction wells TW-3D and PE-1 in operation each month.
- 4) Refer to Table 4-3 and Section 4.5 for discussion of gradient data.

FIGURE 4-6 MEASURED HYDRAULIC GRADIENTS, RIVER ELEVATIONS, AND PUMPING RATE, SECOND QUARTER 2011

SECOND QUARTER 2011 INTERIM MEASURES
PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER
AND SURFACE WATER MONITORING REPORT
PG&E TOPOCK COMPRESSOR STATION
NEEDLES, CALIFORNIA
CH2MHILL

Projected river level for each month in the past is calculated based on the preceding months USBR projections of Davis Dam release and stage in Lake Havasu. Future projections of river level at I-3 are based upon July 2011 USBR projections. These data are reported monthly by the US Department of Interior, at http://www.usbr.gov/lc/region/g4000/24mo.pdf

SECOND QUARTER 2011 INTERIM MEASURES PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT PG&E TOPOCK COMPRESSOR STATION, NEEDLES, CALIFORNIA

CH2MHILL

Appendix A
Lab Reports, Second Quarter 2011
(Provided on CD-ROM with hardcopy submittal)

1835 W. 205th Street Torrance, CA 90501

Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 05-23-2011

EMAX Batch No.: 11E036

Attn: Shawn Duffy

CH2M HILL 2525 Airport Dr. Redding, CA 96001

Subject: Laboratory Report

Project: PG&E's Topock Gas Compressor Stat

Enclosed is the Laboratory report for samples received on 05/05/11.

Enclosed is the Laboratory report for samples received on 05/05/11. The data reported relate only to samples listed below:

Sample ID	Control #	Col Date	Matrix	Analysis

MW-56D-177	E036-01	05/04/11	WATER	SPECIFIC CONDUCTANCE
				CHROMIUM HEXAVALENT BY IC
				DISSOLVED METALS IN WATER & WASTE
MW-56M-177	E036-02	05/04/11	WATER	SPECIFIC CONDUCTANCE
				CHROMIUM HEXAVALENT BY IC
				DISSOLVED METALS IN WATER & WASTE
MW-568-177	E036-03	05/04/11	WATER	SPECIFIC CONDUCTANCE
				CHROMIUM HEXAVALENT BY IC
				DISSOLVED METALS IN WATER & WASTE

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sinceraly yours,

Caspar J. Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that the results included in this report meets all NELAC & DOD requirements unless noted in the Case Narrative.

NELAC Accredited Certificate Number 02116CA L-A-B Accredited Certificate Number L2278 Testing EMax

CH2MHILL CH-040	B -	,				CHAIN OF CUSTODY RECORD	5/4/2011 3:09:42 PM	Page	_1_ C	F <u>1</u>
Project Name PG&E Topock		Container	2x250 ml Poly	500 ml Poly	1 Liter Poly					
Location Topock Project Number 405681.MP.02.GM	1.04	Preservatives	(NH4)2SO 4/NH4OH, 4°C	H N O3, 4°C	4°C					
Project Manager Jay Piper		Filtered	Field	Field	NA	,				
Sample Manager Shawn Duffy	9	Holding Time:	28	180	2	2 les is a some vided with 2	Cr6 bottles			
Task Order Project 2011-GMP-177-AZ Turnaround Time 12 Days Shipping Date: 5/4/2011 COC Number: 7	ΟΑΤΕ Π	ME Matrix	Cr6 (E218.6R) Field Filtered	Metals (6020A) Field Filtered Chromium	Specific Conductance (E120.1)	* Where provided w/2 please analyze 1+	hold 1	Number of Containers	сомі	MENTS
/ MW-56D-177 5/4	4/2011 10	:50 Water	х	X	x			4		
. MW-56M-177 5/4	4/2011 11	:50 Water	х	х	х			4		
MW-56S-177 5/4	4/2011 12	::20 Water	х	х	х			4		-
					•		TOTAL NUMBER OF CONTAINERS	12		

T= 2.8°C

Signat		Shipping Details		Special Instructions:
Approved by	5-4-11 1510	Method of Shipment: FedEx	ATTN:	May 2-13, 2011
Relinquished by	1510	On Ice: yes / no	Sample Custody	
	15:10	Airbill No:		Report Copy to
Relinquished by Rofall Do	vila 5-4-11	Lab Name:	A (21/C)	Shawn Duffy
Received by State has un't	21.38	Lab Phone: Keith Hait 5/5/1	0940	(530) 229-3303

SAMPLE RECEIPT FORM 1

1002

Type	of Delivery	/ /Del	ivered By/Airbill	ECN //E 036
EMAX Courier		SEE CO		Recepient 1 - LUNA
☐ Client Delivery				Date 5-5-11
☐ Third Party				Time 1455
Client Name	Client PM/FC		spection B Sampling Date/Time/Location	Sample ID Matrix
☐ Address	Tel # / Fax #	Sampler Name		Sample ID Divisitix Dreservative (if any) DTAT
afety Issues	None	☐ Courier Signature ☐ High concentrations expected	☐ Analysis Required ☐ Superfund Site samples	
Comments:	1NONE	in Aigh concentrations expected	☐ Supertund Site samples	☐ Rad screening required
Comments.				
			Inspection	
ontainer	Cooler	□ Box	□ Other	· · · · · · · · · · · · · · · · · · ·
Condition	□ Custody Seal	□ mact	□ Damaged ——	
ackaging	Bubble Pack	☐ Styrofoam	□ Popcom	
'emperatures Cool, ≤6 °C but not frozen)	4 p Cooler 2.8 °c	☐ Cooler 2°C	☐ Cooler 3°C	☐ Cooler 4°C ☐ Cooler 5°C
	☐ Cooler 6°C	□ Cooler 7°C	☐ Cooler 8°C	☐ Cooler 9°C ☐ Cooler 10°C
Thermometer:	A - S/N 101541371	<i>B - S/N 101541382</i> ant coolers immediately.		
Commitmes I Fire was the	rotined on non-combin	me coolers miniculately.		
<u>.</u>		. ALCONET	DANCIES	
LSID	LSCID	Sample Label 1D/COC ID	Discrepancy Code	Corrective Action Code
2010		Sample Label 15/COC 15	Discrepancy Code	Contente Action code
			- 	
	- 		-	
	_ 			
		<u> -</u>		
				
	<u> </u>			
		0.100		
REVIEWS		7"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1//
Sample Labeli	A Company	1-1/M)	SRF (PM K
Di	7-7-1	/ ''/W	Date	Date
	77	1	1/8/11	
EGEND:		/	$^{\circ}PIII$	
Code Description-Sample Mai	nagement V	Code Description-Sample Managem	ent Cod	e Description-Project Management
Al Analysis is not indicated in	COC	D1 Date and/or time is not indicated	in COC	R1 Hold sample(s); wait for further instructions
A2 Analysis is not indicated in	a label	D2 Date and/or time is not indicated	in label	R2 Proceed as indicated in COC
A3 Analysis is inconsistent in	COC vis-à-vis label	D3 Date and/or time is inconsistent	in COC vis-à-vis label	R3 Refer to attached instruction
A4		El Insuficient preservative		R4 Cancel the analysis
B1 Sample ID is not indicated	in COC	E2 Improper preservation		R5
B2 Sample ID is not indicated	in label	F1 Insufficient Sample		R6
B3 Sample ID is inconsistent i		F2 Bubble is> 6mm		
-		G1 Temperature is out of range		
		G2 Out of Holding Time		
		STA CONTOR HONGING Time		
C1 Wrong container		_		
C1 Wrong container C2 Broken container C3 Leaking container		G3 >20 % solid particle		

CLIENT: CH2M HILL TOPOCK

SDG: 11E036

Analyst names:

200-8 : Chris Capulong
 218-6 : Andy Mai
 120.1 : Nina Macalinao

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 11E036

METHOD 200.8
DISSOLVED CHROMIUM BY ICP-MS

A total of three (3) water samples were received on 05/05/11 for Dissolved Metals In Water & Wast analysis, Method 200.8 in accordance with Methods for the Determination of Metals in Environmental Samples, Supplement 1 (EPA/600/R-94/111).

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IME015WL/C were all within QC limits.

Matrix QC Sample

Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recoveries for E036-01M/S were within project QC limits. In addition, analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

Sample E036-01 was reported at 5x dilution due to matrix interference.

LAB CHRONICLE DISSOLVED CHROMIUM BY ICP-MS

: CH2M HILL Client

Project

SDG NO. : 11E036 : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : T-198

WATER Client Laboratory Dilution % Analysis Extraction Calibration Prep. Sample Sample ID Sample ID Factor Moist DateTime DateTime Data FN Batch Data FN Notes -----MBLK1W IME015WB 1 05/13/1117:53 98E11043 NA 05/09/1111:30 98E11041 IME015W Method Blank LCS1W IME015WL 05/13/1117:57 1 98E11044 98E11041 IME015W Lab Control Sample (LCS) 05/09/1111:30 LCD1W IME015VC 1 05/13/1118:01 05/09/1111:30 98E11045 98E11041 1ME015W LCS Duplicate MW-56N-177 E036-02 1 05/13/1123:54 98E11131 98E11124 IME015W Field Sample 05/09/1111:30 MW-56S-177 E036-03 05/13/1123:58 IME015W Field Sample NA 05/09/1111:30 98E11132 98E11124 5 Matrix Spike Sample (MS) MW-56D-177MS E036-01M 05/17/1100:08 05/09/1111:30 98E12105 98E12103 IME015W 5 MS Duplicate (MSD) MW-56D-177MSD E036-01S 05/17/1100:12 05/09/1111:30 98E12106 98E12103 IME015W MW-56D-177AS E036-01A 5 05/17/1100:16 98E12107 98E12103 IME015W Analytical Spike Sample 05/09/1111:30 MW-56D-177 E036-01T 5 05/17/1100:20 98E12108 98E12103 IME015W Diluted Sample 05/09/1111:30 MW-56D-177DL E036-01J 25 05/17/1100:24 98E12109 98E12103 IME015W Diluted Sample 05/09/1111:30

- Filename

% Moist - Percent Moisture

Client : CH2M HILL Date Collected: 05/04/11
Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Date Received: 05/05/11
SDG NO. : 11E036 Date Extracted: 05/09/11 11:30
Sample ID: MW-560-177 Date Analyzed: 05/17/11 00:20
Lab Samp ID: E036-01T Dilution Factor: 5
Lab File ID: 98E12108 Matrix : WATER
Ext Btch ID: IME015W % Moisture : NA
Calib. Ref.: 98E12103 Instrument ID : T-198

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Chromium	ND	5.00	1.00

=======================================	=======================================
Client : CH2M HILL	Date Collected: 05/04/11
Project : PG&E'S TOPOCK GAS COMPRESSOR ST	AT Date Received: 05/05/11
SDG NO. : 11E036	Date Extracted: 05/09/11 11:30
Sample ID: MW-56M-177	Date Analyzed: 05/13/11 23:54
Lab Samp ID: E036-02	Dilution Factor: 1
Lab File ID: 98E11131	Matrix : WATER
Ext Btch ID: IME015W	% Moisture : NA
Calib. Ref.: 98E11124	Instrument ID : T-198
##====================================	=======================================
	ESULTS RL MDL
PARAMETERS	(ug/L) (ug/L) (ug/L)
Chromium	ND 1.00 0.200

=========		=======================================		=============	
Client :	CH2M HILL		Date Collecte	ed: 05/04/11	
Project :	PG&E'S TOPOCK GAS	COMPRESSOR STAT	Date Receive	ed: 05/05/11	
SDG NO. :	11E036		Date Extracte	ed: 05/09/11 11: 3 0	
Sample ID:	MW-56S-177		Date Analyz	ed: 05/13/11 23:58	
Lab Samp ID:	E036-03		Dilution Facto	or: 1	
Lab File ID:	98E11132		Matrix	: WATER	
Ext Btch ID:	IME015W		% Moisture	: NA	
Calib. Ref.:	98E11124		Instrument ID	: T-I98	
=======================================		=======================================		######################################	
		RESI	JLTS · I	RL MDL	
PARAMETERS		(u	g/L) (ug/l	L) (ug/L)	
Chromium		ı	ND 1.0	00 0.200	

==========		=======================================	=======		:::::::::	=====
Client :	CH2M HILL		Date C	ollected:	NA	
Project :	PG&E'S TOPOCK GAS	COMPRESSOR STAT	Date	Received:	05/09/11	
SDG NO. :	11E036		Date E	xtracted:	05/09/11	11:30
Sample ID:	MBLK1W		Date	Analyzed:	05/13/11	17:53
Lab Samp ID:	IME015WB		Dilutio	n Factor:	1	
Lab File ID:	98E11043		Matrix	:	WATER	
Ext Btch ID:	IME015W		% Moist	ure :	NA	
Calib. Ref.:	98E11041		Instrum	ent ID :	T-198	
	: # # # # # # # # # # # # # # # # # # #		=======		=======	=====
		RES	ULTS	RL		MDL
PARAMETERS		(u	g/L)	(ug/L)	(ug/L)
			-	*	-	
Chromium			ND	1.00		0.200

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG NO.:

11E036

METHOD:

METHOD 200.8 (DISSOLVED)

MATRIX: DILTN FACTR: WATER

1

% MOISTURE:

NA

SAMPLE ID: MBLK1W
CONTROL NO.: IME015WB
LAB FILE ID: 98E11043

1

98E11044 IME015WL

1

I MEO 15 VC 98E11045

DATIME EXTRCTD: 05/09/1111:30 05/09/1111:30 05/09/1111:30 DATE COLLECTED: NA

DATIME ANALYZD: 05/13/1117:53 05/13/1117:57 05/13/1118:01 DATE RECEIVED: 05/09/11

PREP. BATCH: CALIB. REF:

IME015W 98E11041 IME015W 98E11041

IME015W 98E11041

ACCESSION:

BLNK RSLT SPIKE AMT BS RSLT BS SPIKE AMT BSD RSLT BSD RPD QC LIMIT MAX RPD ug/L ug/L % REC ug/L ug/L % REC % % % PARAMETER ND 25.0 25.7 103 25.0 25.6 102 1 85-115 20 Chromium

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:

CH2M HILL

CLIENT: CH2M HILL
PROJECT: PG&E 'S TOPOCK GAS COMPRESSOR STAT

5

SDG NO.:

11E036

METHOD: METHOD 200.8 (DISSOLVED)

MATRIX:

WATER

% MOISTURE: NA

DILTH FACTR: SAMPLE ID: CONTROL NO.:

LAB FILE ID:

5

MW-56D-177

E036-01T 98E12108

E036-01M

E036-01S 98E12106

98E12105 DATIME EXTRCTD: 05/09/1111:30 05/09/1111:30 05/09/1111:30 DATE COLLECTED: 05/04/11

5

DATIME ANALYZD: 05/17/1100:20 05/17/1100:08 05/17/1100:12

DATE RECEIVED: 05/05/11

PREP. BATCH: CALIB. REF:

IME015W

IME015W

IME015W 98E12103

98E12103

98E12103

ACCESSION:

	SMPL RSLT	SPIKE AMT	MS RSLT	MS	SPIKE AMT	MSD RSLT	MSD	RPD	QC LIMIT	MAX RPD
PARAMETER	ug/L	ug/L	ug/L	% REC	ug/L	ug/L	% REC	%	%	%
Chromium	ND	25.0	25.0	100	25.0	24.8	99	1	75 -125	20

EMAX QUALITY CONTROL DATA SERIAL DILUTION ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E036

METHOD: METHOD 200.8 (DISSOLVED)

MATRIX:

WATER

% MOISTURE:

DILUTION FACTOR: 5

25 MW-56D-177DL MW-56D-177

SAMPLE ID: EMAX SAMP ID:

E036-01T

E036-01J

LAB FILE ID:

98E12108

98E12109

DATE EXTRACTED: 05/09/1111:30 05/09/1111:30

DATE ANALYZED: 05/17/1100:20 05/17/1100:24

DATE COLLECTED: 05/04/11 DATE RECEIVED: 05/05/11

PREP. BATCH:

IME015W

IME015W

CALIB. REF:

98E12103

98E12103

ACCESSION:

SMPL RSLT SERIAL DIL RSLT DIF RSLT QC LIMIT

PARAMETER

(ug/L) (ug/L) % (%)

Chromium

ND

ND

0 10

EMAX QUALITY CONTROL DATA ANALYTICAL SPIKE ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG NO.:

11E036

METHOD 200.8 (DISSOLVED) METHOD:

MATRIX:

WATER

% MOISTURE: NA

DILTN FACTR: SAMPLE ID:

5

MW-56D-177

E036-01T

E036-01A 98E12107

5

CONTROL NO.: LAB FILE ID:

98E12108

DATIME EXTRCTD: 05/09/1111:30 05/09/1111:30

DATE COLLECTED: 05/04/11

PREP. BATCH:

IME015W

DATIME ANALYZD: 05/17/1100:20 05/17/1100:16 DATE RECEIVED: 05/05/11

CALIB. REF:

98E12103

IME015W 98E12103

ACCESSION:

PARAMETER

SMPL RSLT SPIKE AMT

(ug/L) (ug/L) % REC (%)

AS RSLT

AS QC LIMIT

-----Chromium

ND 125 125 100 75-125

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 11E036

METHOD 120.1 SPECIFIC CONDUCTANCE

A total of three (3) water samples were received on 05/05/11 for Specific Conductance analysis, Method 120.1 in accordance with Methods for the Chemical Analysis of Water and Wastes (MCAWW) (EPA/600/4~79/020.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Calibration was performed as prescribed by the method. All calibration requirements were within acceptance criteria.

Matrix QC Sample

No matrix QC sample was designated for this SDG.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHO0 120.1 SPECIFIC CONDUCTANCE

Client : CH2M H1LL

: WATER Matrix Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : D4

Batch No. : 11E036

SAMPLE ID	EMAX SAMPLE ID	RESULTS (umhos/cm)	DLF M	101ST(u	RL mhos/cm)(u	MDL (mhos/cm	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
						-							
MW-56D-177	E036-01	21700	1	NA	2.00	2.00	05/09/1112:04	NA	ECE00107	ECE00101	ECE001W	05/04/1110:50	05/05/11
MW-56N-177	E036-02	1490 0	1	NA	2.00	2.00	05/09/1112:08	NA	ECE00108	ECE00101	ECE001W	05/04/1111:50	05/05/11
MW-56S-177	E036-03	6310	1	NA	2.00	2.00	05/09/1112:14	NA	ECE00109	ECE00101	ECE001W	05/04/1112:20	05/05/11

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 11E036

METHOD 218.6 HEXAVALENT CHROMIUM

A total of three (3) water samples were received on 05/05/11 for Chromium Hexavalent by IC analysis, Method 218.6 in accordance with Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100).

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HCE011WL/C were all within QC limits.

Matrix QC Sample

Matrix QC sample was analyzed at the frequency prescribed by the project. Percent recovery for E036-01U was within project QC limits. Percent recovery for E036-02M was within project QC limits. Percent recovery for E036-03M was within project QC limits.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

Sample E036-01 was reported at DF 5 due to low recovery of its spike at DF1.

METHOD 218.6 HEXAVALENT CHROMIUM

Client : CH2M HILL

0.982

1

NA

0.200

: WATER Matrix Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : 159

Batch No. : 11E036

EMAX RESULTS RL MDL Analysis Extraction Collection Received SAMPLE ID SAMPLE ID (ug/L) DLF MOIST (ug/L) (ug/L) DATETIME DATETIME LFID CAL REF PREP BATCH DATETIME DATETIME --- ----------------------**--**MBLK1W HCE011WB HCE011W ND 1 NA 0.200 0.100 05/19/1115:47 NA IE20003 IE20001 NA NA LCS1W HCE011W HCE011WL 1E20004 NA NA 1.92 NA 0.2000.100 05/19/1115:57 NA IE20001 LCD1W HCE011WC 1.94 IE20005 IE20001 HCE011₩ NA NA 1 NA 0.200 0.100 05/19/1116:08 NΑ MW-56D-177 E036-01T 5 IE20009 HCE011W 05/04/1110:50 05/05/11 ND IE20001 NA 1.00 0.500 05/19/1116:49 NA MW-56D-177MS E036-01U 5 05/04/1110:50 05/05/11 4.56 NA 1.00 0.500 05/19/1117:00 1E20010 IE20001 HCE011W NA MW-56M-177 E036-02 1 IE20011 1E20001 HCE011W 05/04/1111:50 05/05/11 ND 0.200 NA 0.100 05/19/1117:10 05/04/1111:50 05/05/11 MW-56M-177MS IE20012 HCE011W E036-02M 1.02 1 0.200 0.100 05/19/1117:21 IE20001 NA NA 05/04/1112:20 05/05/11 MW-56S-177 E036-03 IE20017 IE20013 HCE011W ND 1 NA 0.200 0.100 05/19/1118:13 NA 05/04/1112:20 05/05/11 MW-56S-177MS E036-03M IE20018 IE20013 HCE011W

0.100 05/19/1118:23

NA

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E036

METHOD: METHOD 218.6

MATRIX: DILUTION FACTOR: 1

WATER

1

% MOISTURE:

NA

SAMPLE ID: LAB SAMP ID:

MBLK1W HCE011WB

HCE011WL

HCE 011WC

TE20004 1E20003

IE20005

1

NA

DATE COLLECTED: NA

DATE ANALYZED:

LAB FILE ID:

PREP. BATCH:

DATE EXTRACTED: NA

HCEO11W

HCE011W

NA

05/19/1115:47 05/19/1115:57 05/19/1116:08 HCE011W

DATE RECEIVED: NA

CALIB. REF:

1E20001

IE20001

IE20001

ACCESSION:

	BLNK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	% REC	(ug/L)	(ug/L)	% REC	(%)	(%)	(%)
Hexavalent Chromium	ND	2.00	1.92	96	2.00	1.94	97	1	90-110	20

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT:

CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E036

METHOD 218.6 METHOD:

% MOISTURE:

NA

DATE COLLECTED: 05/04/11 10:50

DATE RECEIVED: 05/05/11

MATRIX: WATER DILUTION FACTOR: 5

5

SAMPLE ID: MW-56D-177

LAB SAMP ID: E036-01T

E036-01U IE20009 IE20010

LAB FILE ID: DATE EXTRACTED: NA NA

05/19/1116:49 05/19/1117:00 DATE ANALYZED: PREP. BATCH: HCEQ11W HCEO11W

CALIB. REF: IE20001 IE20001

ACCESSION:

SMPL RSLT SPIKE AMT MS RSLT MS QC LIMIT (ug/L) (ug/L) (ug/L) % REC (%) PARAMETER ------5.00 4.56 91 90-110 Hexavalent Chromium ND

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT:

CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E036

METHOD: METHOD 218.6

MATRIX: DILUTION FACTOR: 1

1

SAMPLE ID: MW-56M-177

LAB SAMP ID: E036-02 E036-02M IE20012 LAB FILE ID: 1E20011

DATE EXTRACTED: NA NA DATE COLLECTED: 05/04/11 11:50

% MOISTURE:

DATE ANALYZED: 05/19/1117:10 05/19/1117:21 DATE RECEIVED: 05/05/11

PREP. BATCH: HCE011W HCE011W CALIB. REF: IE20001 1E20001

ACCESSION:

MS QC LIMIT SMPL RSLT SPIKE AMT MS RSLT (ug/L) (ug/L) (ug/L) % REC (%) PARAMETER ------ND 1.00 1.02 102 90-110 Hexavalent Chromium

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT:

CH2M HILL

PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.: METHOD:

11E036 METHOD 218.6

% MOISTURE:

NA

MATRIX: WATER DILUTION FACTOR: 1 SAMPLE ID:

1

MW-56S-177

LAB SAMP ID: E036-03 E036-03M LAB FILE ID: IE20017 IE20018

DATE EXTRACTED: NA NA

DATE COLLECTED: 05/04/11 12:20 DATE RECEIVED: 05/05/11 DATE ANALYZED: 05/19/1118:13 05/19/1118:23

PREP. BATCH: HCEO11W HCE011W

CALIB. REF:

IE20013 IE20013

ACCESSION:

	SMPL RSLT	SPIKE AMT	MS RSLT	MS	QC LIMIT
PARAMETER	(ug/L)	(ug/L)	(ug/L)	% REC	(%)
Hexavalent Chromium	ND	1.00	0.982	98	90-110

1835 W. 205th Street

Torrance, CA 90501 Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 05-23-2011 EMAX Batch No.: 11E064

Attn: Shawn Duffy

CH2M HILL 2525 Airpark Dr. Redding CA 96001

Subject: Laboratory Report

Project: PG&E's Topock Gas Compressor Stat

Enclosed is the Laboratory report for samples received on 05/09/11.

The data reported relate only to samples listed below:

Sample ID	Control #	Col Date	Matrix	Analysis
MW-54-085-177	E064-01	05/05/11	WATER	SPECIFIC CONDUCTANCE
				DISSOLVED METALS IN WATER & WASTE
				CHROMIUM HEXAVALENT BY IC
MW-54-140-177	E064-02	05/05/11	WATER	SPECIFIC CONDUCTANCE
				DISSOLVED METALS IN WATER & WASTE
				CHROMIUM HEXAVALENT BY IC
MW-54-195-177	E064-03	05/05/11	WATER	SPECIFIC CONDUCTANCE
				DISSOLVED METALS IN WATER & WASTE
				CHROMIUM HEXAVALENT BY IC
MW-90-195-177	E064-04	05/05/11	WATER	SPECIFIC CONDUCTANCE
				DISSOLVED METALS IN WATER & WASTE
				CHROMIUM HEXAVALENT BY IC

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours.

Caspar J. Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that the results included in this report meets all NELAC & DOD requirements unless noted in the Case Narrative.

NELAC Accredited Certificate Number 02116CA L-A-B Accredited Certificate Number L2278 Testing EMax

11E064

CH2MHILL OF-04	~ <u>8</u> _				I	CHAIN	OF CUSTODY RECORD	5/6/2011 10:49:09 AM	Page	1	OF.	1
Project Name PG&E Topock		Container	mi Poly		500 mi Poly	1 Liter Poly						
Location Topock Project Number 405681.MP.02.GN	л.04	Preservatives	(NH4)2SO 4/NH4OH, 4°C	HN03, 4°C	HNO3, 4°C	4°C						
Project Manager Jay Piper		Filtered	Field	Field	Field	NA		•	1	}		
Sample Manager Shawn Duffy	1	Holding Time	28	180	180	2						
Task Order Project 2011-GMP-177-AZ Turnaround Time 12 Days Shipping Date: 5/6/2011 COC Number: 10	Date ti	ME Matrix	Сr6 (E218.6R) Field Filtered	Metals (6020A) Field Filtered Chromium	Metals (SW6010B/SW6020A) Field Filtered As,Mn	Specific Conductance (E120.1)			Number of Containers	CO	OMMEN	ιτs
MW-54-085-177 5/5	5/2011 9:	:06 Water	х	x	x	x			5	4		
MW-54-140-177 5/	5/2011 10	0:00 Water	х	х	х	x			15	4		
	5/2011 11	:04 Water	х	x	х	x			<i>is</i>	Y	.oe	
	5/2011 10):25 Water	X	х	х	х			5	4	BE	
		 _		· ·				TOTAL NUMBER OF CONTAINERS	28	\$	>	

Approved by	Signatures	Date/Time	Shipping Deta	ails		Special Instructions:	
Sampled by		5-6-11	Method of Shipment: cos	urier	ATTN:	May 2-13, 2011 T= 2.9	. o C
Relinquished t	War.	15:30	On Ice: yes / no	i	Sample Custody		!
Received by	Kafay Davila	5-6-11	Airbill No:	- !	· .	Report Copy to	}
Relinquished I	W Kakul Dav. la s		I AN NAMA' AF III II A W			Shawn Duffy	
Received by		16/11-21:00	Lab Phone:	Worth St	out 5/9/11	9_2_1 (530) 229-3303	

Tyne	of Delivery	/hall	ivered By/Airbill	ECN //E064			
DEMAX Courier		SEE LOC		Recopient /-LUNA			
□ Client Delivery				Date 5-9-11			
☐ Third Party			·	Time /4/00			
		<u>.</u>		Time			
		COC ins		·			
Citent Name	Delient PM/FC	Sampler Name	Sampling Date/Time/Lucation	a Sample ID Afrix			
□ Address	. □ Tel # / Fax #	☐ Courier Signature	Analysis Required	Preservative (if any)			
Safety Issues	None	☐ High concentrations expected	☐ Superfund Site samples	☐ Rad screening required			
Comments:							
							
		Packaging	Inspection				
Container	Cooler	□ Box	☐ Other				
Condition	☐ Custody Seal	er Intact	□ Damaged				
ackaging	☐ Bubble Pack	C] Styrofoam	□ Popcorn	Sufficient 🗆			
Temperatures /	Cooler 2.9 °C	□ Cooler 2 °C	□ Cooler 3 °C	"□ Cooler 4 °C □ Conier 5			
Cool, ≤6 °C but not frozen)	□ Cooler 6°C	Cooler ? °C	□ Cooler 8°C	□ Cooler 9 °C □ Cooler 10			
Thermometer:	A - S/N 101541371	B - S/N 101541382					
		liant coolers immediately.					
							
		DISCRE	ANCIES				
LSID	LSCID	Sample Label ID/COC ID	Discrepancy Code	Corrective Action Code			
	\ <u></u>						
	+	· 					
	-						
	-	- 	_				
				<u> </u>			
<u></u>	<u>- </u>						
·							
·							
				1			
REVIEWS							
Sample Labelit	W. T.		SRF /	PM X Q f			
Da	1 1/2	-/- / /	Date · · · · ·	Date C			
	777		- 77 47 //				
EGEND:	/	•	/ 5/1				
ode Description-Sample Man	agement	Code Description-Sample Manageme	ent Cod	le Description-Project Management			
Al Analysis is not indicated in	COC	D1 Date and/or time is not indicated	in COC	R1 Hold sample(s); wait for further instructions			
A2 Analysis is not indicated in	label	D2 Date and/or time is not indicated	in label	R2 Proceed as indicated in COC			
A3 Analysis is inconsistent in	COC vis-à-vis label	D3 Date and/or time is inconsistent in	n COC vis-à-vis label	R3 Refer to attached instruction			
A4		E1 Insuficient preservative		R4 Cancel the analysis			
B1 Sample ID is not indicated		E2 Improper preservation		R5			
B2 Sample ID is not indicated		F1 Insufficient Sample		R6			
		•		KU			
B3 Sample ID is inconsistent in	n COC viş-à-vis label	F2 Bubble is> 6mm					
		G) Temperature is out of range					
C1 Wrong container		G2 Out of Holding Time					
C2 Broken container		G3 >20 % solid particle	•				
C3 Leaking container		H1	· .				

CLIENT: CH2M HILL TOPOCK

SDG: 11E064

Analyst names:

200-8 : Chris Capulong
 218-6 : Andy Mai

3. 120.1 : Nina Macalinao

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 11E064

METHOD 200.8 DISSOLVED METALS BY ICP-MS

A total of four (4) water samples were received on 05/09/11 for Dissolved Metals in Water & Waste analysis, Method 200.8 in accordance with Methods for the Determination of Metals in Environmental Samples, Supplement 1 (EPA/600/R-94/111).

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Initial Calibration was established as prescribed by the method and was verified using a secondary source. Interference checks were performed and results were within required limits. Continuing calibration verifications and continuing calibration blanks were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for IME021WL/C were all within QC limits.

Matrix QC Sample

No matrix QC sample was designated for this SDG. Analytical spike and serial dilution were analyzed for matrix interference evaluation. Results were within method acceptance criteria.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

LAB CHRONICLE DISSOLVED METALS BY ICP-MS

Client : CH2M HILL SDG NO. : 11E064
Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : T-198

WATER									
Client	Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibratio	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
	•						*		
MBLK1W	IME021WB	1	NA	05/17/1122:10	05/11/1111:45	98E13133	98E13131	IMEO21W	Method Blank
LCS1W	IME021WL	1	NA	05/17/1122:14	05/11/1111:45	98E13134	98E13131	IME021W	Lab Control Sample (LCS)
LCD1W	IME021WC	1	NA	05/17/1122:19	05/11/1111:45	98E13135	98E13131	IME021W	LCS Duplicate
MW004B-41AS	D310-03A	1	NA	05/17/1122:31	05/11/1111:45	98E13138	98E13131	IME021W	Analytical Spike Sample
MW004B-41	D310-03	1	NA	05/17/1122:35	05/11/1111:45	98E13139	98E13131	IME021W	Field Sample
MW004B-41DL	D310-03J	5	NA	05/17/1122:39	05/11/1111:45	98E 13 140	98E13131	1ME021W	Diluted Sample
MW-54-085-177	E064-01	1	NA	05/18/1116:44	05/11/1111:45	98E14062	98E14060	IME021W	Field Sample
MW-54-140-177	E064-02	1	NA	05/18/1116:48	05/11/1111:45	98E14063	98E14060	IME021W	Field Sample
MW-54-195-177	E064-03	1	NA	05/18/1117:07	05/11/1111:45	98E14067	98E14060	IMEO21W	Field Sample
MW-90-195-177	E064-04	1	NA	05/18/1117:11	05/11/1111:45	98E14068	98E 14060	IME021W	Field Sample

FN - Filename

% Moist - Percent Moisture

METHOD 200.8 DISSOLVED METALS BY ICP-MS

Client : CH2M HILL Date Collected: 05/05/11

 Project
 : PG&E'S TOPOCK GAS COMPRESSOR STAT Date
 Received: 05/09/11

 SDG NO.
 : 11E064
 Date
 Extracted: 05/11/11

 Sample
 ID: MW-54-085-177
 Date
 Analyzed: 05/18/11
 Date Extracted: 05/11/11 11:45
Date Analyzed: 05/18/11 16:44

Lab Samp ID: E064-01 Dilution Factor: 1 Lab File ID: 98E14062

Matrix : WATER % Moisture : NA Ext Btch ID: IMEO21W Calib. Ref.: 98E14060 Instrument ID : T-198

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Arsenic	ND	5.00	0.200
Chromium	ND	1.00	0.200
Manganese	838	5.00	0.200

METHOD 200.8 DISSOLVED METALS BY ICP-MS

Client : CH2M HILL Date Collected: 05/05/11
Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Date Received: 05/09/11

SDG NO. : 11E064 Date Extracted: 05/11/11 11:45

Sample ID: MW-54-140-177 Date Analyzed: 05/18/11 16:48

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
		-	
Arsenic	ND	5.00	0.200
Chromium	ND	1.00	0.200
Manganese	217	5.00	0.200

METHOD 200.8 DISSOLVED METALS BY ICP-MS

Client : CH2M HILL Date Collected: 05/05/11 Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Date Received: 05/09/11

SDG NO. : 11E064 Sample ID: MW-54-195-177 Date Extracted: 05/11/11 11:45
Date Analyzed: 05/18/11 17:07 # 05/18/11 16:53

Lab Samp ID: E064-03 #E064-03T Lab File ID: 98E14067 #98E14064 Dilution Factor: 1 # 5 Matrix : WATER % Moisture : NA Ext Btch ID: IME021W Calib. Ref.: 98E14060 Instrument ID : T-198

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
			
Arsenic	ND	5.00	0.200
Chromium	ND	1.00	0.200
# Manganese	614	25.0	1.00

[#] Members of the Associated File

METHOD 200.8 DISSOLVED METALS BY ICP-MS

Client : CH2M HILL Date Collected: 05/05/11 Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Date Received: 05/09/11

Date Extracted: 05/11/11 11:45

SDG NO. : 11E064 Sample ID: MW-90-195-177 Date Analyzed: 05/18/11 17:11 # 05/18/11 16:57

Lab Samp ID: E064-04 #E064-04T Lab File ID: 98E14068 #98E14065 Dilution Factor: 1 # 5 : WATER Matrix Ext Btch ID: IME021W % Moisture .: NA Calib. Ref.: 98E14060 Instrument ID : T-198

	RESULT\$	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Arsenic	ND	5.00	0.200
# Chromium	ND	5.00	1.00
# Manganese	613	25.0	1.00

[#] Members of the Associated File

METHOD 200.8 DISSOLVED METALS BY ICP-MS

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
Arsenic	ND	5.00	0.200
Chromium	ND	1.00	0.200
Manganese	ND	5.00	0.200

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: CH2M HILL
PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG NO.:

11E064

METHOD:

METHOD 200.8 (DISSOLVED)

MATRIX:

WATER

1

% MOISTURE:

NA

DILTN FACTR:

1

SAMPLE ID: MBLK1W CONTROL NO.: IME021WB LAB FILE ID: 98E13133

IME021WL 98E13134 IME021WC

1

98E13135

DATIME EXTRCTD: 05/11/1111:45 05/11/1111:45 05/11/1111:45 DATE COLLECTED: NA

IME021W

DATIME ANALYZD: 05/17/1122:10 05/17/1122:14 05/17/1122:19 DATE RECEIVED: 05/11/11

CALIB. REF:

PREP. BATCH: IME021W

98E13131

98E13131

IME021W

98E13131

PARAMETER	BLNK RSLT ug/L	SPIKE AMT ug/L	BS RSLT ug/L	BS % REC	SPIKE AMT ug/L	BSD R\$LT ug/L	BSD % REC	RPD %	QC LIMIT %	MAX RPD %
Arsenic Chromium	ND ND	25.0 25.0	25.3 24.6	101	25.0 25.0	25.4 24.9	102 100	1	85-115 85-115	20
Manganese	ND	25.0	25.9	103	25.0	25.9	104	Ö	85-115	2 0

EMAX QUALITY CONTROL DATA SERIAL DILUTION ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E064

METHOD:

METHOD 200.8 (DISSOLVED)

MATRIX: DILUTION FACTOR: 1

WATER

% MOISTURE: NA

SAMPLE ID:

MW004B-41

5 MW004B-41DL

EMAX SAMP ID:

D**3**10-03

D310-D3J

LAB FILE ID:

98E13139

98E13140

DATE EXTRACTED: 05/11/1111:45 05/11/1111:45

DATE ANALYZED: 05/17/1122:35 05/17/1122:39

DATE COLLECTED: 04/29/11 DATE RECEIVED: 04/30/11

PREP. BATCH: IME021W

IMEO21W

CALIB. REF:

98E13131

98E13131

	SMPL RSLT	SERIAL DIL RSLT	DIF RSLT	QC LIMIT
PARAMETER	(ug/L)	(ug/L)	%	(%)
Arsenic	ND	ND	0	10
Chromium	3.83	ND	NA	10
Manganese	ND	ND	0	10

EMAX QUALITY CONTROL DATA ANALYTICAL SPIKE ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG NO.:

11E064

METHOD: METHOD 200.8 (DISSOLVED)

MATRIX:

WATER

% MOISTURE:

NA

DILTN FACTR: SAMPLE ID: CONTROL NO.:

LAB FILE ID:

1

MW004B-41

D310-03 98E13139

D310-03A 98E13138

DATIME EXTRCTD: 05/11/1111:45 05/11/1111:45

DATE COLLECTED: 04/29/11 DATE RECEIVED: 04/30/11

IMEO21W

DATIME ANALYZD: 05/17/1122:35 05/17/1122:31

IME021W

1

PREP. BATCH: CALIB. REF: 98E13131 98E13131

	SMPL RSLT	SPIKE AMT	AS RSLT	AS	QC LIMIT
PARAMETER	(ug/L)	(ug/L)	(ug/L)	% REC	(%)
	,		•		
Arsenic	ND	25.0	30.0	120	7 5-125
Chromium	3.83	25.0	28.5	99	7 5 - 125
Manganese	ND	25.0	25.1	100	75- 12 5

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 11E064

METHOD 120.1 SPECIFIC CONDUCTANCE

A total of four (4) water samples were received on 05/09/11 for Specific Conductance analysis, Method 120.1 in accordance with Methods for the Chemical Analysis of Water and Wastes (MCAWW) (EPA/600/4-79/020).

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Calibration was performed as prescribed by the method. All calibration requirements were within acceptance criteria.

Matrix QC Sample

No matrix QC sample was designated for this SDG.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

METHOD 120.1 SPECIFIC CONDUCTANCE

Client : CH2M HILL

Matrix : WATER Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : D4

Batch No. : 11E064

SAMPLE ID	EMAX SAMPLE ID	RESULTS (umhos/cm)	DLF	MOIST	RL (umhos/cm)	MDL (umhos/cm)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MW-54-085-177	E064-01	10100	1	NA	2.00	2.00	05/13/1111:17	=	ECE00302	ECE00301	ECE003W	05/05/1109:06	05/09/11
MW-54-140-177 MW-54-195-177	E064-02 E064-03	13000 20000	1	NA NA	2.00 2.00	2.00 2.00	05/13/1111:19 05/13/1111:23		ECE00303 ECE00304	ECE00301 ECE00301	ECE003W	05/05/1110:00 05/05/1111:04	05/09/11 05/09/11
MW-90-195-177	E064-04	20000	1	NA	2.00	2.00	05/13/1111:30	NA	ECE00305	ECE00301	ECE003W	05/05/1110:25	05/09/11

CASE NARRATIVE

Client : CH2M HILL

Project : PG&E'S TOPOCK GAS COMPRESSOR STAT

SDG : 11E064

METHOD 218.6 HEXAVALENT CHROMIUM

A total of four (4) water samples were received on 05/09/11 for Chromium Hexavalent by IC analysis, Method 218.6 in accordance with Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100).

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source. Continuing calibration verifications were carried out at the frequency specified by the project. All calibration requirements were within acceptance criteria.

Method Blank

Method blank was analyzed at the frequency required by the project. For this SDG, one method blank was analyzed with the samples. Result was compliant to project requirement.

Lab Control Sample

A set of LCS/LCD was analyzed with the samples in this SDG. Percent recoveries for HCE011WL/C were all within QC limits.

Matrix QC Sample

Matrix QC samples were analyzed at the frequency prescribed by the project.

Percent recovery for E064-01M was within project QC limits.

Percent recovery for E064-02M was within project QC limits.

Percent recovery for E064-03U was within project QC limits.

Percent recovery for E064-04U was within project QC limits.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. All project requirements were met otherwise anomalies were discussed within the associated QC parameter.

Samples E064-03 and -04 were reported from DF 5 due to failed spiking in DF 1. Raw data from all runs were submitted for review.

METHOD 218.6 HEXAVALENT CHROMIUM

Client : CH2M HILL

Matrix : WATER Project : PG&E'S TOPOCK GAS COMPRESSOR STAT Instrument ID : 159

Batch No. : 11E064

SAMPLE ID	EMAX SAMPLE ID	RESULTS (ug/L)	DLF I	MOIST	RL (ug/L)	MDL (ug/L)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1W	HCE011WB	ND	1	NA	0.200	0.100	05/19/1115:47	NA	IE20003	IE20001	HCEO11W	NA	NA
LCS1W	HCEO11WL	1.92	1	NA	0.200	0.100	05/19/1115:57	NA	IE20004	IE20001	HCE011W	NA	NA
LCD1W	HCE011WC	1.94	1	NA	0.200	0.100	05/19/1116:08	NA	1E20005	IE20001	HCE011W	NA	NA
MW-54-085-177	E064-01	ИD	1	NA	0.200	0.100	05/19/1118:54	NA.	1E20021	1E20013	HCEO11W	05/05/1109:06	05/09/11
MW-54-085-177MS	E064-01M	1.01	1	NA	0.200	0.100	05/19/1119:05	NA	1E20022	IE20013	HCE011W	05/05/1109:06	05/09/11
MW-54-140-177	E064-02	ND	1	NA	0.200	0.100	05/19/1119:57	NA	1E20027	1E20025	HCE011W	05/05/1110:00	05/09/11
MW-54-140-177MS	E064-02M	0.968	1	NA	0.200	0.100	05/19/1120:07	NA	1E20028	IE20025	HCEO:1W	05/05/1110:00	05/09/11
MW-54-195-177	E064-031	ND	5	NA	1.00	0.500	05/19/1120:59	NA	1E20033	1E20025	HCE011W	05/05/1111:04	05/09/11
MW-54-195-177MS	£064-03⊔	4.78	5	NA	1.00	0.500	05/19/1121:10	NA	IE20034	1E20025	HCEO11W	05/05/1111:04	05/09/11
MW-90-195-177	E064-04T	ND	5	NA	1.00	0.500	05/19/1122:02	NA	1E20039	IE20037	HCE011₩	05/05/1110:25	05/09/11
MW-90-195-177MS	E064-04U	4.73	5	NA	1.00	0.500	05/19/1122:12	NA	IE20040	1E20037	HCE011₩	05/05/1110:25	05/09/11

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

CH2M HILL

CLIENT: CH2M HILL
PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E064

METHOD: METHOD 218.6

MATRIX: WATER DILUTION FACTOR: 1

DATE EXTRACTED: NA

1

% MOISTURE:

SAMPLE ID: MBLK1W

LAB SAMP ID: LAB FILE ID:

HCEO11WB 1E20003

HCE 011WL

HCE011WC

1

IE20004 NA

IE20005 NA

DATE COLLECTED: NA

DATE ANALYZED: 05/19/1115:47 05/19/1115:57 05/19/1116:08 PREP, BATCH:

HCE011W

HCEO11W

DATE RECEIVED: NA

CALIB. REF:

IE20001

1E20001

HCE011W 1E20001

	BLNK RSLT	SPIKE AMT	BS RSLT	BS	SPIKE AMT	BSD RSLT	BSD	RPD	QC LIMIT	MAX RPD
PARAMETER	(ug/L)	(ug/L)	(ug/L)	% REC	(ug/L)	(ug/L)	% REC	(%)	(%)	(%)
*										
Hexavalent Chromium	ND.	2.00	1.92	96	2.00	1.94	97	1	90-110	20

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E064

METHOD: METHOD 218.6

MATRIX:

WATER

% MOISTURE:

NA

DILUTION FACTOR: 1

SAMPLE ID:

MW-54-085-177 E064-01

E064-01M

LAB SAMP ID: LAB FILE ID:

IE20021

1E20022

DATE EXTRACTED: NA

NA

DATE COLLECTED: 05/05/11 09:06

PREP. BATCH:

HCE011W

HCEO11W

DATE ANALYZED: 05/19/1118:54 05/19/1119:05 DATE RECEIVED: 05/09/11

CALIB. REF:

1E20013

IE20013

ACCESSION:

SMPL RSLT SPIKE AMT MS RSLT MS QC LIMIT PARAMETER (ug/L) (ug/L) (ug/L) % REC (%) ND 1.00 1.01 101 90-110 Hexavalent Chromium

EMAX QUALITY CONTROL DATA

PROJECT: CH2M HILL
PROJECT: PG&E'S TOPOCK GAS COMPRESSOR STAT
BATCH NO.: 11E064
METHOD: METHOD 219 4

MATRIX: DILUTION FACTOR: 1

WATER

1

SAMPLE ID: MW-54-140-177 LAB SAMP ID:

E064-02

LAB FILE ID:

IE20027

E064-02M IE20028

DATE EXTRACTED: NA

% MOISTURE:

DATE COLLECTED: 05/05/11 10:00

NA

DATE ANALYZED: 05/19/1119:57 05/19/1120:07 DATE RECEIVED: 05/09/11

PREP. BATCH: CALIB. REF:

HCE011W 1E20025

HCEO11W IE20025

ACCESSION:

Hexavalent Chromium

PARAMETER -----

SMPL RSLT SPIKE AMT MS RSLT MS QC LIMIT (ug/L) (ug/L) % REC (%)

ND 1.00 0.968 97 90-110

MS QC LIMIT

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

CHZM HILL PG&E'S TOPOCK GAS COMPRESSOR STAT

BATCH NO.:

11E064

METHOD: METHOD 218.6

MATRIX: DILUTION FACTOR: 5

WATER

% MOISTURE:

NA

SAMPLE ID: MW-54-195-177

LAB SAMP ID: LAB FILE ID:

1E20033 E064-03T

E064 - 03U 1E20034

DATE EXTRACTED: NA

NA

5

DATE COLLECTED: 05/05/11 11:04

DATE ANALYZED: 05/19/1120:59 05/19/1121:10 DATE RECEIVED: 05/09/11

PREP. BATCH: HCE011W

HCEO11W

CALIB. REF:

IE20025

IE20025

ACCESSION:

MS QC LIMIT SMPL RSLT SPIKE AMT MS RSLT (ug/L) (ug/L) (ug/L) % REC (%) PARAMETER -----ND 5.00 4.78 96 90-110 Hexavalent Chromium

EMAX QUALITY CONTROL DATA MS ANALYSIS

CLIENT:

CH2M HILL

PROJECT:

PG&E'S TOPOCK GAS COMPRESSOR STAT

5

BATCH NO.:

11E064

METHOD: METHOD 218.6

MATRIX: DILUTION FACTOR: 5

WATER

% MOISTURE:

SAMPLE ID: MW-90-195-177

E064-04T

E064-04U

LAB SAMP ID: LAB FILE ID:

1E20039

IE20040

NA

DATE EXTRACTED: NA

DATE ANALYZED: 05/19/1122:02 05/19/1122:12 DATE RECEIVED: 05/09/11

DATE COLLECTED: 05/05/11 10:25

PREP. BATCH:

HCEO11W

HCE011W

CALIB. REF:

IE20037

IE20037

ACCESSION:

PARAMETER -------

SMPL RSLT SPIKE AMT MS RSLT (ug/L) (ug/L) % REC (%)

MS QC LIMIT

Hexavalent Chromium

ND 5.00 4.73 95 90-110

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

May 9, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-EW-181, GROUNDWATER MONITORING PROJECT, TLI NO.: 994444

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-EW-181 groundwater-monitoring project for Total Dissolved and Hexavalent Chromium, Total Dissolved Solids, and Specific Conductivity. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, wet chemistry raw data, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on April 5, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Per Mr. Shawn Duffy's request, the pH analysis was cancelled.

Samples for Total Dissolved Chromium were analyzed by method EPA 200.8 with the approval of Mr. Shawn Duffy of CH2M Hill.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to - Mona Nassimi.

Manager, Analytical Services

FOR K.R.P. Iyer

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Two (2) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 408401.01.DM

Laboratory No.: 994444

Date: May 9, 2011 Collected: April 5, 2011 Received: April 5, 2011

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	lordan Stavrev
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
EPA 200.8	Total Dissolved Chromium	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky
SM 3500-CrB	Hexavalent Chromium	Jenny Tankunakorn

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 [714] 730-6239 · FAX [714] 730-6462 · www.truesdaii.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 408401.01.DM **P.O. No.:** 408401.01.DM

Laboratory No.: 994444 Date Received: April 5, 2011

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Tim	ne Parameter	Result	Units	RL
994444-001 994444-001 994444-001 994444-002 994444-002 994444-002	PE-01-181 PE-01-181 PE-01-181 PE-01-181 TW-03D-181 TW-03D-181 TW-03D-181	E120.1 E200.8 E218.6 SM2540C E120.1 E200.8 SM2540C SM3500-CrB	NONE LABFLT LABFLT NONE NONE LABFLT NONE LABFLT	4/5/2011 4/5/2011 4/5/2011 4/5/2011 4/5/2011 4/5/2011 4/5/2011 4/5/2011	11:40 11:40 11:40 11:40 11:40 11:40 11:40	EC Chromium Chromium, hexavalent Total Dissolved Solids EC Chromium Total Dissolved Solids Chromium, hexavalent	5180 10.0 10.5 2920 8710 1220 5120 1130	umhos/cm ug/L ug/L mg/L umhos/cm ug/L mg/L ug/L	2.00 1.0 0.20 125 2.00 4.0 250 50.0

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

P.O. Number: 408401.01.DM Project Number: 408401.01.DM Laboratory No. 994444

Page 1 of 8

Printed 5/9/2011

Samples Received on 4/5/2011 10:00:00 PM

Field ID					Lab ID	Col	lected	Matrix	
PE-01-181 TW-03D-181					994444-001 994444-002		/2011 11:40 /2011 11:40	Wate Wate	
Specific Conductivity -	EPA 120.1	Batch 04EC11C						4/7/2011	
Parameter		Unit		Analyzed		DF	MDL	RL.	Result
994444-001 Specific Conductivity		umhos/	/cm 0	4/07/2	2011	1.00	0.0380	2.00	5180
994444-002 Specific Condu	ctivity	umhos/	/cm 0	4/07/2	2011	1.00	0.0380	2.00	8710
Method Blank		-							
Parameter Specific Conductivity	Unit umhos	DF 1.00	Resu ND	lt					
Duplicate								Lab ID =	994446-005
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Resu 7860		Expected 7850	RPD 0.127		Accepta 0 - 10	nce Range
Parameter Specific Conductivity Lab Control Sample	Unit umhos Duplicate	DF 1.00	Resu 707	lt	Expected 706	Recovery 100.		y Acceptance 90 - 110	
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Resu 701	lt	Expected 706	F	Recovery 99.3	Accepta 90 - 110	nce Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Resu 704	lt	Expected 706	F	Recovery 99.7	Accepta 90 - 110	ince Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Resu 998	It	Expected 996	F	Recovery 100.	Accepta 90 - 110	nce Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 408401.01.DM

Page 3 of 8 Printed 5/9/2011

Chrome VI by EPA 218.6

Batch 04CrH11C

Parameter		Unit	Anal	lyzed	DF_	MDL	RL	Result
994444-001 Chromium, Hexa	valent	ug/L	04/06	/2011 08:59	1.05	0.0210	0.20	10.5
Method Blank								
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.00	Result ND				Lab ID =	994417-002
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.05	Result 2.02	Expected 2.06		RPD 1.86	Accepta 0 - 20	ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 5.20	Expected 5.00		Recovery 104.	90 ~ 110	ance Range) 994417-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 7.43	Expected/Ad 7.38(5.30)	ded	Recovery 101.	90 - 110	ance Range) 994417-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 7.25	Expected/Ad 7.36(5.30)	lded	Recovery 97.9	90 - 110	ance Range) 994417-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 7.41	Expected/Ad 7.49(5.30)	lded	Recovery 98.4	90 - 110	ance Range) 994417-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 7.56	Expected/Ad 7.69(5.30)	lded	Recovery 97.5	90 - 110	ance Range) 994417-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.57	Expected/Ac 1.60(1.06)	lded	Recovery 96.7	90 - 110	ance Range) 994417-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.57	Expected/Ac 1.65(1.06)	lded	Recovery 92.4	90 - 11	ance Range) 994441-001
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 7.57	Expected/Ac 7.62(5.30)	lded	Recovery 99.1	Accepta 90 - 110	ance Range)

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting En	gineers, Inc		oject Name: oject Number	PG&E Topock Pro :: 408401.01.DM	ject	Page 4 of 8 Printed 5/9/2011
Matrix Spike						Lab ID = 994441-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.79	Expected/Added 1.81(1.06)	Recovery 98.8	Acceptance Range 90 - 110 Lab ID = 994441-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 7.46	Expected/Added 7.64(5.25)	Recovery 96.5	Acceptance Range 90 - 110 Lab ID = 994441-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 9.06	Expected/Added 9.23(5.30)	Recovery 96.7	Acceptance Range 90 - 110 Lab ID = 994441-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 8.65	Expected/Added 8.70(5.30)	Recovery 99.1	Acceptance Range 90 - 110 Lab ID = 994441-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 6.86	Expected/Added 6.95(5.30)	Recovery 98.3	Acceptance Range 90 - 110 Lab ID = 994441-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 7.54	Expected/Added 7.60(5.30)	Recovery 98.8	Acceptance Range 90 - 110 Lab ID = 994441-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 8.44	Expected/Added 8.48(5.30)	Recovery 99.2	Acceptance Range 90 - 110 Lab ID = 994441-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.29	Expected/Added 1.31(1.06)	Recovery 97.8	Acceptance Range 90 - 110 Lab ID = 994444-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 26.2	Expected/Added 26.9(16.4)	Recovery 95.5	Acceptance Range 90 - 110 Lab ID = 994445-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.24	Expected/Added 1.21(1.06)	Recovery 103.	Acceptance Range 90 - 110 Lab ID = 994445-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.52	Expected/Added 5.62(5.25)	Recovery 98.2	Acceptance Range 90 - 110 Lab ID = 994445-002
Parameter Chromium, Hexavalent	Unit ug/L	DF 105	Result 1950	Expected/Added 1960(1050)	Recovery 99.2	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.

Project Name:

PG&E Topock Project

Page 6 of 8

Project Number: 408401.01.DM

Printed 5/9/2011

Chromium, Hexavalent b	y SM 350	0-Cr B	Batch	04CrH11A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
994444-002 Chromium, Hexa	valent	ug/L	04/13	/2011 17:48	5.00	17.5	50.0	1130
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent Duplicate	ug/L	1.00	ND				Lab ID =	994444-002
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium, Hexavalent Lab Control Sample	ug/L	5.00	1140	1130		1.10	0 - 20	
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent Matrix Spike	ug/L	1.00	104.	100.	104.		90 - 110 Lab ID =	994444-002
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium, Hexavalent MRCCS - Secondary	ug/L	5.00	1620	1630(500.)		97.5	85 - 118	5
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent MRCVS - Primary	ug/L	1.00	60.0	60.0		100.	90 - 110)
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	61.2	60.0		102	90 - 110)
Total Dissolved Solids by	y SM 254	0 C	Batch	04TDS11B			4/8/2011	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
994444-001 Total Dissolved S	Solids	mg/L	04/08	3/2011	1.00	0.434	125	2920
994444-002 Total Dissolved S	Solids	mg/L	04/08	3/2011	1.00	0.434	250.	5120
Method Blank								
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	994445-003
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	26700	27600		3.24	0 - 5	
Lab Control Sample								
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 479	Expected 500.		Recovery 95.8	Accepta 90 - 110	ance Range

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 013

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 7 of 8

Project Number: 408401.01.DM

Printed 5/9/2011

Metals by EPA 200.8, Dissolved

Batch 050511A

inotale by El A 20010, Dies	Olvou							
Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result
994444-001 Chromium		ug/L	05/05	/2011 21:23	5.00	0.0950	1.0	10.0
994444-002 Chromium		ug/L	05/05	/2011 22:05	20.0	0.380	4.0	1220
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Duplicate							Lab ID =	994444-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Chromium	ug/L	5.00	9.43	10.0		5.82	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.4	50.0		94.7	90 - 110	0
Matrix Spike							Lab ID =	994444-001
Parameter	Unit	DF	Result	Expected/Add	led f	Recovery	Accepta	ance Range
Chromium	ug/L	5.00	235.	260.(250.)		90.2	75 - 12	5
Matrix Spike Duplicate							Lab ID =	994444-001
Parameter	Unit	DF	Result	Expected/Add	led i	Recovery	Accepta	ance Range
Chromium	ug/L	5.00	225	260.(250.)		86.0	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	ı	Recovery		ance Range
Chromium	ug/L	1.00	47.0	50.0		93.9	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	52.1	50.0		104.	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	1	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.2	50.0		98.5	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	1	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.6	50.0		95.2	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	I	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.8	50.0		95.7	90 - 11	0

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories. 014

Client: E2 Consulting Eng	jineers, Inc		Project Name: Project Number:	PG&E Topock P 408401.01.DM	roject	Page 8 of 8 Printed 5/9/2011
Interference Check Sta	andard A					
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L andard AB	DF 1.00	Result 46.3	Expected 50.0	Recovery 92.6	Acceptance Range 80 - 120
Parameter Chromium Serial Dilution	Unit ug/L	DF 1.00	Result 43.2	Expected 50.0	Recovery 86.4	Acceptance Range 80 - 120 Lab ID = 994617-009
Parameter Chromium	Unit ug/L	DF 50.0	Result 561.	Expected 576	RPD 2.58	Acceptance Range 0 - 10

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

4⊌ - Mona Nassimi

Manager, Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

015

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 04TDS11B Date Calculated: 4/4/11

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	110.3680	110.3690	110.3686	0.0004	No	0.0006	6.0	25.0	ND	1
994418-1	100	112.8375	112.8626	112.8626	0.0000	No	0.0251	251.0	25.0	251.0	1
994466	100	109.3972	109.4375	109.4373	0.0002	No	0.0401	401.0	25.0	401,0	1
994444-1	20	47.6380	47.6968	47.6965	0.0003	No	0.0585	2925.0	125.0	2925.0	1
994444-2	10	50.2154	50.2669	50.2666	0.0003	No	0.0512	5120.0	250.0	5120.0	1
994445-1	10	48,1855	48.2274	48.227	0.0004	No	0.0415	4150.0	250.0	4150.0	1
994445-2	10	49.7197	49.7675	49.7674	0.0001	No	0.0477	4770,0	250.0	4770.0	1
994445-3	5	51.2559	51,3941	51.394	0.0001	No	0.1381	27620.0	500.0	27620.0	1
994446-1	10	49.3275	49.3712	49.3709	0.0003	No	0.0434	4340.0	250.0	4340.0	1
994446-2	10	49.4167	49.4587	49,4586	0.0001	No	0.0419	4190.0	250.0	4190.0	1
994446-3	10	73.0052	73.0455	73.0452	0.0003	No	0.0400	4000.0	250.0	4000.0	1
994445-3D	5	51.1327	51.2663	51.2663	0.0000	No	0.1336	26720.0	500.0	26720.0	1
LCS	100	111,6515	111.6994	111.6994	0.0000	No	0.0479	479.0	25.0	479.0	1
994446-4	10	50.1290	50.182	50.1819	0.0001	No	0.0529	5290.0	250.0	5290.0	1
994446-5	10	49.3600	49.4047	49.4045	0.0002	No	0.0445	4450,0	250.0	4450.0	1
994446-7	10	50.6068	50.6483	50.6479	0.0004	No	0.0411	4110.0	250.0	4110.0	1
994446-8	10	49.4823	49.5245	49.5244	0.0001	No	0.0421	4210.0	250.0	4210.0	1
994446-9	20	76,5377	76.6147	76.6147	0.0000	No	0.0770	3850.0	125.0	3850.0	1
994446-10	20	75.1414	75.1985	75.1984	0.0001	No	0.0570	2850.0	125.0	2850.0	1
994446-11	50	65.6325	65.6803	65.68	0.0003	No	0.0475	950.0	50.0	950.0	1
994446-12	50	65.8011	65.875	65.8749	0.0001	No	0.0738	1476.0	50.0	1476.0	11
994446-14	20	75.7722	75.8469	75.8469	0.0000	No	0.0747	3735.0	125.0	3735.0	11
994446-15	50	69.5790	69.6265	69.6265	0.0000	No	0.0475	950.0	50.0	950.0	1
									·		
LCSD											1

Calculation as follows:

Filterable residue (TDS), mg/L =
$$\left(\frac{A-B}{C}\right) x \cdot 1 \cdot 0^6$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

Analyst Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 04TDS11B Date Calculated: 4/4/11

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
994418-1	423	0.59	274.95	0.91
994466	732	0,55	475.8	0.84
994444-1	5180	0,56	3367	0.87
994444-2	8710	0.59	5661.5	0.90
994445-1	7500	0.55	4875	0.85
994445-2	8080	0.59	5252	0.91
994445-3	41600	0.66	27040	1.02
994446-1	7330	0.59	4764.5	0.91
994446-2	7160	0.59	4654	0.90
994446-3	7070	0.57	4595.5	0.87
994445-3D	41600	0.64	27040	0.99
LCS				
994446-4	8680	0.61	5642	0.94
994446-5	7850	0.57	5102.5	0.87
994446-7	7350	0.56	4777.5	0.86
994446-8	7280	0.58	4732	0.89
994446-9	6630	0.58	4309.5	0.89
994446-10	5190	0,55	3373.5	0.84
994446-11	1710	0.56	1111.5	0.85
994446-12	2570	0.57	1670.5	0.88
994446-14	6630	0.56	4309.5	0.87
994446-15	1720	0.55	1118	0.85

994 444

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

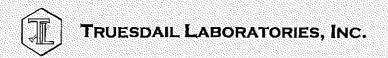
CHAIN OF CUSTODY RECORD [IM3Plant-EW-181]

COC Number

TURNAROUND TIME	10 Days
DATE 04/05/11	PAGE 1 OF 1

COMPANY	CH2N	M HILL /E:	2					7	-/			/	$\overline{}$	7	7	7	/	7	$\overline{}$		7	1	7	сомм	CNTQ
PROJECT NAME	PG&I	E Topock	IM3Plant-EV	٧								1	access fear	The state of the s		aria Julian	m /g	/					/	U U	
PHONE		530-229-3	303	FAX 53	0-339-3303_			/e, e,eo		/	/	STATE OF THE SECONDARY	frik fransissa		1	/ 1			/		/ /	/	n .	_	
ADDRESS		Grand Ave and, CA 9	Ste 1000 4612					//Lab fi		(1.0						West Landing		A Commence				S INER	Rec'a Lab#,	04. ·99	/05/11 4 4 4
P.O. NUMBER SAMPLERS (SIGNA		8401.01.I	c. Knigi)jeec.	M/// (20/	DH (17 00.0.C.F.B.) Lab fillered	100.0) EC (120	# NO.	(278.6)	/	//	//	//	/	/		/		MBER OF CONTAIL	/			
SAMPLE I.D.		· · · · · · · · · · · · · · · · · · ·	04/05/11	TIME	DESCRIPTION			1	1	1	\leftarrow	\leftarrow	\leftarrow	-	\leftarrow	\leftarrow	\leftarrow	f - f			_		7		
PE-01-181			04/05/11	11:40	Ground water	X	<u> </u>	X	X	X	<u> </u>		<u> </u>	<u> </u>			<u> </u>			4			(.	h	
TW-03D-1	81		04/05/11	11:40	Ground water	X	Х	Х	Х								_			4				/// :	= +
								.025			- 1	e e	nr	042	or	S								(20	w.7)
						2021	or	53	M	D	A 50		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l	١.							_			
							C	20	24000	or		JĮ.	ta		3U										
							Winter.																		
							***************************************		-			-								8	то	TAL NU	MBER	OF CONT	AINERS

	CHAIN OF CUS	TODY SIGNATUR	E RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed C.K	Night Company/ Agency	CH2MHL	Date/ 4.5.16:00	RECEIVED COOL MARM WARM WARM
Signature (Received)	Day / Printed Ra	Company/ Agency	7-1-2	Date/ 4 - 5 - 1/ Time / 5 - 0 0	CUSTODY SEALED YES NO
Signature (Relinquished)	Printed P	Company/ Agency	TLIT	Date/ 4 5 - 1/	SPECIAL REQUIREMENTS:
(Received) Lugar	Printed Name Luk	Company/ Agency	727	Date/ Time 4/5/1122:00	2
Signature (Relinquished)	Printed Name	Company/ Agency		Date/ Time	
Signature (Received)	Printed Name	Company/ Agency		Date/ Time	


Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
04/05/11	994416-5	9.5	4/4	7/4	N/A	Es .
4	J -6	<u>ل</u>		, J	4	4
04/05/11	994417-1	9.5	AG.	44	N/A	SB
	1 2	(1	ì	(
	-3					
	-4		·			
	-5					
J	J -6	4	P	J	-	لد
04/05/11	994418-1	9.5	4/60	A/Ca	12/A	zB
Å	J-2	J	J	J	Ţ	Ĺ
04/06/11	999441-1	9.5	N/A	4/4	4/4	82
	-3	1	·		İ	<u> </u>
	_3				·	
	-4			. \		
	-5					
	-6					
	-7					
	-8 -9			·		
1	J -10	1	با	1	747	de
04/06/11	994442-1	9.5	N/A	A/W	2/4	zz
	, -2			\		
	-3		\		·	
	- 4					
	-5					
	-6					
	⊢ .7					
J.	√ -8	√.v	7	Ţ	J.	is de la constant de
04/06/11	994444-1	7.0	5,00	9.5	8:: 30	ã.
	·					

Turbidity/pH Check

		1 (1)	i Didity/pri C	HOOK		A di control de
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
99486 8/1.9/	a /	22	04/29/11	h.h	Ye3	
994869114.68	c1	< 2				
974867112489	e 1	< R				***************************************
9948672/3,6/	<1	<2	1 1	1		
9948643/1345	<i>C</i> 1	c \$		L.		
aguun 1	41	in	5/2(11	ES	NO	
994861		,				
662					1 1	
					1	
994867 (-1)	2	< 2	5/2/4	ntu	Yes	
994867	61		1-2/2/21	1	/ ₁	
994 8 8 91124		= 2				
99489011-5	_ 1		1			
09489111-5		c 2 c 2	 			
99489211-4		T	1 1			
99489311-4	<u> </u>	= 2	 		 	
994903	21	ć ž		1/	 	
99490811-7	=1	23	05/03/11	ММ	1 2	
994909 12-61	,	1-7	1 1 1 1	1	765	
994910 11.41		 	 			
994911 (2)			-		<u> </u>	***************************************
99491211-51		 	 			
994913 [1-6]			 		<u> </u>	
<u> </u>			+ + - (,	—— 	 	
994914 (1-4)	 	72	111111	- V	 	Cys 20 9:00
994697 (1-4)	2 1	 	5 411	1	Ni	Grand Ir Co
994921		22				
922		25	 			
913	ļ					
6124						
918						
924		<u> </u>			<u> </u>	
		1 2	- 		1	(1) (a) (a) (a)
97112	<u> </u>	72			ļ.,	48 00 9:00
948(1-3)	14/2	1/2		,	1 3/4.	<u> </u>
949	72	12	 		1/4 NO	((1) 2) 21 22 2
994906(1;2)	41	72	 		<u> </u>	y 29:00 9.
994907(1-2)		22	 		 	4: 20'60/0
5 994907-2	<u> </u>	72	+ 5/1/-	1	ļ., ļ.	gu au 1.00 4.
994949	<u> </u>	79	5/4/11	pi.M	Yes	<u> </u>
999 863/1,21	>/	+			/yes	Yes
994865	21	72			1-4-	-
99495311-4		≥i	 			
994954/191	<u> </u>	1-1,-	 	1/	 	
994955 13,4	<u>e l</u>	$\perp V$	V		+	
994470 (1-g)	41	42	5 2 11	ES	No.	-
494910 (4-6)	4	42	5/5/11	E>	Νρ	
994172 (1-5)		12	1		1	
994444 (1-2)	4	122	4001 (1)	KK- M4	10	485@ 5:45p
494894 (1-10)	21	4 2	15/6//	MG	No	

Sample Integrity & Analysis Discrepancy Form

Clie	nt: <u>E 2</u>	Lab # _ ^y	9444
Date	e Delivered: <u>0Y≀05</u> ⊺11 Time: <u>&£'.00</u> By: □Mail ØF	ield Service	□Client
1.	Was a Chain of Custody received and signed?	MiYes □No	o □ <i>N/A</i>
2.	Does Customer require an acknowledgement of the COC?	□Yes □No	D ØN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No	» ∮N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No	∍ ¤IN/A
5 .	Were all requested analyses understood and acceptable?	Ø Yes □No) □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>Ч°C</u>	¥Yes □No)
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	d(Yes □No) □N/A
8.	Were sample custody seals intact?	□Yes □No) ¤IN/A
9.	Does the number of samples received agree with COC?	Q(Yes □No) □N/A
10.	Did sample labels correspond with the client ID's?	∮Yes □No) □ <i>N/A</i>
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: Truesdail Client	∐Yes □No	MA ES
12.	Were samples pH checked? pH = $\underline{\mathit{Sll}}\ \mathcal{C}$. \mathcal{C}	□Yes □No) □ <i>N/A</i>
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	¤(Yes □ <i>No</i>	□N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH	Ð(Yes □No	⊃N/A
15.	Sample Matrix: □Liquid □Drinking Water ☐Ground W		
16.	Comments:		
17	Sample Check-In completed by Truesdail Log-In/Receiving:	Luda.	

M:\Discrp.FormBlank.doc

Truesdail Laboratories, Inc.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 9, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

REVISED CASE NARRATIVE PG&E TOPOCK 2011-GMP-177-Q2, GROUNDWATER MONITORING PROJECT, TLI No.: 994894

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2011-GMP-177-Q2 groundwater-monitoring project for Hexavalent and Total Dissolved Chromium. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody April 29, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for the matrix spike for sample MW-42-055-177 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits, the data from the straight run is reported.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Manager, Analytical Services

K.R.P. Iyer

Quality Assurance/Quality Control Officer

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdaii.com

Laboratory No.: 994894
Date Received: April 29, 2011

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 405681.MP.02.GM.04 P.O. No.: 405681.MP.02.GM.04

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Tim	e Parameter	Result	Units	RL
994894-001	MW-27-085-177	E218.6	FLDFLT	4/28/2011	13:05	Chromium, hexavalent	ND	ug/L	1.0
994894-001	MW-27-085-177	SW6020	FLDFLT	4/28/2011	13:05	Chromium	ND	ug/L	1.0
994894-002	MW-34-080-177	E218.6	FLDFLT	4/28/2011	15:58	Chromium, hexavalent	ND	ug/L	1.0
994894-002	MW-34-080-177	SW6020	FLDFLT	4/28/2011	15:58	Chromium	ND	ug/L	1.0
994894-003	MW-34-100-177	E218.6	FLDFLT	4/28/2011	14:22	Chromium, hexavalent	15.9	ug/L	1.0
994894-003	MW-34-100-177	SW6020	FLDFLT	4/28/2011	14:22	Chromium	15.8	ug/L	1.0
994894-004	MW-93-177	E218.6	FLDFLT	4/28/2011	12:30	Chromium, hexavalent	ND	ug/L	1.0
994894-004	MW-93-177	SW6020	FLDFLT	4/28/2011	12:30	Chromium	ND	ug/L	1.0
994894-005	MW-94-177	E218.6	FLDFLT	4/28/2011	14:05	Chromium, hexavalent	16.1	ug/L	1.0
994894-005	MW-94-177	SW6020	FLDFLT	4/28/2011	14:05	Chromium	16.8	ug/L	1.0
994894-006	MW-29-177	E218.6	FLDFLT	4/29/2011	12:44	Chromium, hexavalent	0.24	ug/L	0.20
994894-006	MW-29-177	SW6020	FLDFLT	4/29/2011	12:44	Chromium	ND	ug/L	1.0
994894-007	MW-42-055-177	E218.6	FLDFLT	4/29/2011	8:31	Chromium, hexavalent	ND	ug/L	0.20
994894-007	MW-42-055-177	SW6020	FLDFLT	4/29/2011	8:31	Chromium	ND	ug/L	1.0
994894-008	MW-42-065-177	E218.6	FLDFLT	4/29/2011	9:16	Chromium, hexavalent	ND	ug/L	1.0
994894-008	MW-42-065-177	SW6020	FLDFLT	4/29/2011	9:16	Chromium	ND	ug/L	1,0
994894-009	MW-43-025-177	E218.6	FLDFLT	4/29/2011	10:13	Chromium, hexavalent	ND	ug/L	0.20
994894-009	MW-43-025-177	SW6020	FLDFLT	4/29/2011	10:13	Chromium	ND	ug/L	1.0
994894-010	MW-43-090-177	E218.6	FLDFLT	4/29/2011	11:37	Chromium, hexavalent	ND	ug/L	1.0
994894-010	MW-43-090-177	SW6020	FLDFLT	4/29/2011	11:37	Chromium	ND	ug/L	1.0

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01 ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project P.O. Number: 405681.MP.02.GM.04 Project Number: 405681.MP.02.GM.04 Laboratory No. 994894

Page 1 of 7

Printed 5/16/2011

Samples Received on 4/29/2011 9:30:00 PM

Field ID	Lab ID	Collected	Matrix	
MW-27-085-177	994894-001	04/28/2011 13:05	Water	
MW-34-080-177	994894-002	04/28/2011 15:58	Water	
MW-34-100-177	994894-003	04/28/2011 14:22	Water	
MW-93-177	994894-004	04/28/2011 12:30	Water	
MW-94-177	994894-005	04/28/2011 14:05	Water	
MW-29-177	994894-006	04/29/2011 12:44	Water	
MW-42-055-177	994894-007	04/29/2011 08:31	Water	
MW-42-065-177	994894-008	04/29/2011 09:16	Water	
MW-43-025-177	994894-009	04/29/2011 10:13	Water	
MW-43-090-177	994894-010	04/29/2011 11:37	Water	

Chrome VI by EPA 218.6 Batch 05CrH11E

Circine vi by EPA 210.0		Balcit USCITTIE				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
994894-001 Chromium, Hexavalent	ug/L	05/04/2011 12:04	5.25	0.110	1.0	ND
994894-002 Chromium, Hexavalent	ug/L	05/04/2011 12:25	5.25	0.110	1.0	ND
994894-003 Chromium, Hexavalent	ug/L	05/04/2011 11:02	5.25	0.110	1.0	15.9
994894-004 Chromium, Hexavalent	ug/L	05/04/2011 12:46	5.25	0.110	1.0	ND
994894-005 Chromium, Hexavalent	ug/L	05/04/2011 13:50	5.25	0.110	1.0	16.1
994894-006 Chromium, Hexavalent	ug/L	05/04/2011 13:07	1.05	0.0210	0.20	0.24
994894-007 Chromium, Hexavalent	ug/L	05/04/2011 15:03	1.05	0.0210	0.20	ND
994894-008 Chromium, Hexavalent	ug/L	05/04/2011 17:30	5.25	0.110	1.0	ND
994894-009 Chromium, Hexavalent	ug/L	05/04/2011 15:24	1.05	0.0210	0.20	ND
994894-010 Chromium, Hexavalent	ug/L	05/04/2011 17:50	5.25	0.110	1.0	ND

Method Blank

Parameter	Unit	DF	Result
Chromium, Hexavalent	ug/L	1.00	ND

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Engineers, Inc.			oject Name: oject Numbei	iject 1.04	Page 2 of 7 Printed 5/16/2011	
Duplicate						Lab ID = 994894-003
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 5.25	Result 15.9	Expected 15.9	RPD 0.214	Acceptance Range 0 - 20
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 4.95	Expected 5.00	Recovery 98.9	Acceptance Range 90 - 110 Lab ID = 994894-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 0.903	Expected/Added 1.06(1.06)	Recovery 85.2	Acceptance Range 90 - 110 Lab ID = 994894-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.58	Expected/Added 5.25(5.25)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 994894-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.06	Expected/Added 1.06(1.06)	Recovery 100.	Acceptance Range 90 - 110 Lab ID = 994894-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.56	Expected/Added 5.47(5.25)	Recovery 102.	Acceptance Range 90 - 110 Lab ID = 994894-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 42.0	Expected/Added 42.1(26.2)	Recovery 99.5	Acceptance Range 90 - 110 Lab ID = 994894-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 0.838	Expected/Added 1.06(1.06)	Recovery 79.0	Acceptance Range 90 - 110 Lab ID = 994894-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.59	Expected/Added 5.25(5.25)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 994894-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 42.4	Expected/Added 42.3(26.2)	Recovery 100.	Acceptance Range 90 - 110 Lab ID = 994894-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.24	Expected/Added 1.30(1.06)	Recovery 94.2	Acceptance Range 90 - 110 Lab ID = 994894-007
Parameter Chromium, Hexavalent	Unit ug/L	DF 5.25	Result 5.75	Expected/Added 5.68(5.25)	Recovery 101.	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: E2 Consulting Eng		oject Name: oject Number	ject 1.04	Page 3 of 7 Printed 5/16/2011		
Matrix Spike						Lab ID = 994894-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.08	Expected/Added 1.06(1.06)	Recovery 102.	Acceptance Range 90 - 110 Lab ID = 994894-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.58	Expected/Added 5.25(5.25)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 994894-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 0.939	Expected/Added 1.06(1.06)	Recovery 88.6	Acceptance Range 90 - 110 Lab ID = 994894-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.19	Expected/Added 1.21(1.06)	Recovery 98.8	Acceptance Range 90 - 110 Lab ID = 994894-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.32	Expected/Added 5.25(5.25)	Recovery 101.	Acceptance Range 90 - 110 Lab ID = 994894-010
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result ND	Expected/Added 1.11(1.06)	Recovery	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.97	Expected 5.00	Recovery 99.4	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1,00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

O10

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

Project Number: 405681.MP.02.GM.04

Page 4 of 7 Printed 5/16/2011

Metals by FPA 6020A Dissolved Batch 050911B

Metals by EPA 6020A, Dis	solved		Batch	050911B				
Parameter	•	Unit	Ana	lyzed	DF	MDL	RL	Result
994894-001 Chromium		ug/L	05/10	/2011 03:49	5.00	0.0950	1.0	ND
994894-002 Chromium		ug/L	05/10	/2011 03:56	5.00	0.0950	1.0	ND
994894-003 Chromium		ug/L	05/10	/2011 04:03	5.00	0.0950	1.0	15.8
994894-004 Chromium		ug/L	05/10	/2011 04:09	5.00	0.0950	1.0	ND
994894-005 Chromium		ug/L	05/10	/2011 04:16	5.00	0.0950	1.0	16.8
994894-006 Chromium		ug/L	05/10	/2011 04:23	5.00	0.0950	1.0	ND
994894-007 Chromium		ug/L	05/10	/2011 04:30	5.00	0.0950	1.0	ND
994894-008 Chromium		ug/L	05/10	/2011 04:37	5.00	0.0950	1.0	ND
Method Blank								
Parameter Chromium	Unit ug/L	DF 1.00	Result ND					
Duplicate	ug/L	1.00	ND				Lab ID =	994906-001
Parameter Chromium	Unit ug/L	DF 5.00	Result 11.6	Expected 10.7		RPD 8.07	Accepta 0 - 20	ance Range
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Acceptance Range	
Chromium Matrix Spike	ug/L	1.00	45.2	50.0		90.4	85 - 11: Lab ID =	994906-001
Parameter Chromium Matrix Spike Duplicate	Unit ug/L	DF 5.00	Result 282.	Expected/ <i>A</i> 261.(250.)	Added	Recovery 109.	75 - 12	ance Range 5 994906-001
Parameter Chromium MRCCS - Secondary	Unit ug/L	DF 5.00	Result 266.	Expected/ <i>A</i> 261.(250.)	Added	Recovery 102.	Accept 75 - 12	ance Range 5
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.6	Expected 50.0		Recovery 95.2	Accept 90 - 11	ance Range 0
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 50.1	Expected 50.0		Recovery 100.	Accept 90 - 11	ance Range 0
Parameter Chromium	Unit ug/L	DF 1.00	Result 47.2	Expected 50.0		Recovery 94.5	Accept 90 - 11	ance Range 0

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

011

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.GM.04

Page 6 of 7 Printed 5/16/2011

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
994894-009 Chromium		ug/L			5.00	0.0950	1.0	ND
994894-010 Chromium		ug/L ug/L			5.00	0.0950	1.0	ND
Method Blank	······································	ugit	03/11	7201104.02	0.00	0.0000	1.0	
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Duplicate	ug/L	1.00	112				Lab ID ≃	994906-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Chromium	ug/L	5.00	10.2	10.5	•	2.70	0 - 20	ingo mango
Lab Control Sample	•							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.4	50.0		98.8	85 - 118	5
Matrix Spike							Lab ID =	994906-001
Parameter	Unit	DF	Result Expected/Added Recovery		Recovery	Accepta	ance Range	
Chromium	ug/L	5.00	262.	260.(250.)		100.	75 - 12	ō
Matrix Spike Duplicate							Lab ID =	994906-001
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accepta	ance Range
Chromium	ug/L	5.00	257.	260.(250.)		98.8	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.4	50.0		98.8	90 - 110	ס
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.8	50.0		95.6	90 - 110	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.2	50.0		98.3	90 - 110	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	50.1	50.0		100.	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	I	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.7	50.0		95.3	90 - 11)

Client: E2 Consulting Engineers, Inc.		•	Project Name: Project Number:	PG&E Topock 405681.MP.02	•	Page 7 of 7 Printed 5/16/2011					
Interference Check Standard A											
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1.00	Result N D	Expected 0.00	Recovery	Acceptance Range					
Parameter Chromium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range					
Parameter Chromium Interference Check St	Unit ug/L tandard AB	DF 1.00	Result 47.2	Expected 50.0	Recovery 94.3	Acceptance Range 80 - 120					
Parameter Chromium	Unit ug/L	DF 1.00	Result 45.3	Expected 50.0	Recovery 90.7	Acceptance Range 80 - 120					

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

(Mona Nassimi

Manager, Analytical Services

994894

CH2MHILL

CHAIN OF CUSTODY RECORD

4/29/2011 2:34:21 PM

Project Name PG&E Topock		C	Container:	250 mi Poly	2x250 ml Poly	500 ml Poly			
·		Prese	ervatives:			HNO3, 4°C			[
· ·	2,GM.04			4°C	4°C		VIII maided w/ 1 Cab		
		Hold					of where provides w/ & cr		
							bottles. Please analyze 1		
				Cg Cg	Cr6 (/letal Fie			
				(E21	E218	s (S)	4 bold 1.	L L	
•					SR)	V601 Itered	•		
COC Number: 1				Field	Field	OB/S			, i f
				Filte	1	romiu		onta	gHtz-,
				red	ře d	20A)		iner	/ 1860 ص ا 10 ت د ن
	DATE	TIME	Matrix					Ų,	COMMENTS
MW-27-085-177	4/28/2011	13:05	Water		×	x	er transportungen og kompanyer i state fra state f An en	3	m=z
MW-27-086-177-EB	4/28/2011	11:50	Water	х				1	1401)
	4/28/2011	15:58	Water		×	Х	The second secon	3	1.
MW-34-100-177	4/28/2011	14:22	Water	Х		Ж		2	JIM=L
MW-70-177	4/28/2011	16:30	Water	x			A SAME	1	100
MW-93-177	4/28/2011	12:30	Water		х	Ж		3	7
MW-94-177	4/28/2011	14:05	Water	x		X		2	J m1=2
WW-29-177	4/29/2011	12:44	Water		х	х	For Sample Conditions	3	J
MW-29-177-EB	4/29/2011	12:00	Water	х			COA CARRA ALL	1	Hold
MW-42-055-177	4/29/2011	8:31	Water		х	х	oc i om Attached	3	114=2
MW-42-055-177-EB	4/29/2011	7:50	Water	Х				1	Hold
MW-42-065-177	4/29/2011	9:16	Water		×	×		3	M=2
MW-42-065-177-EB	4/29/2011	8:50	Water	×				1	14010
MW-43-025-177	4/29/2011	10:13	Water		Ж	x		3	M=2
WW-43-025-177-EB	4/29/2011	9:40	Water	X				1	Hold
	Project Manager Jay Piper	Project Number 405681,MP.02,GM.04 Project Manager Jay Piper Sample Manager Shawn Duffy Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 4/29/2011 GOC Number: 1 DATE MW-27-085-177 4/28/2011 MW-34-080-177 4/28/2011 MW-34-100-177 4/28/2011 MW-93-177 4/28/2011 MW-93-177 4/28/2011 MW-94-177 4/28/2011 MW-94-177 4/29/2011 MW-29-177-EB 4/29/2011 MW-42-055-177-EB 4/29/2011 MW-43-025-177-EB 4/29/2011	Project Number 405681.MP.02.GM.04 Project Manager Jay Piper Sample Manager Shawn Duffy Hold Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 4/29/2011 COC Number: 1 DATE TIME MW-27-085-177 4/28/2011 11:50 MW-34-080-177 4/28/2011 15:58 MW-34-100-177 4/28/2011 15:30 MW-93-177 4/28/2011 12:30 MW-93-177 4/28/2011 12:30 MW-93-177 4/29/2011 12:44 MW-29-177-EB 4/29/2011 12:00 MW-42-055-177-EB 4/29/2011 8:31 MW-42-055-177-EB 4/29/2011 9:16 MW-42-055-177-EB 4/29/2011 9:16 MW-42-055-177-EB 4/29/2011 9:16 MW-42-055-177-EB 4/29/2011 8:50 MW-42-055-177-EB 4/29/2011 8:50 MW-42-055-177-EB 4/29/2011 8:50 MW-43-025-177-EB 4/29/2011 8:50	Project Number	Cocation Topock Project Number 405881.MP.02.GM.04 Project Manager Jay Piper Filtered: Field 28	Cocation Topock	Project Number 405681.MP.02.GM.04 Project Number 405681.MP.02.GM.04 Project Manager Jay Piper Filtered: Field	Location Topock	Location Topock Project Manager 405881-MP.02.G6B.04 Preservatives Miles Field Field

compled by

Received by

Relinquished by

Received by

Method of Shipment: FedEx

On ice: yes / no

4-24-11 15:45 Airbill No: 4-29-11 21:30 Lab Name: Truesdail Laboratories, Inc. 4/34/11 21:30 Lab Phone: (714) 730-6239

April 26 - May 13, 2011

Sample Custody

Report Copy to

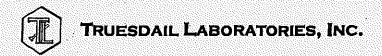
Shawn Duffy (530) 229-3303

CH2MHILL							CHAIN OF CUSTODY RECORD 4/29/2011 2:34:22 PM	Page	2 OF 2
Project Name PG&E Topock Location Topock Project Number 405681.MP.0 Project Manager Jay Piper Sample Manager Shawn Duffy Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 4/29/2011 COC Number: 1		Preser		4/NH4OH, 4°C Field	2x250 ml Poly (NH4)2SO 4/NH40H, 4°C Field 28 Cr6 (E218,6R) Field Filtered	4°C Field 180	& where provided w/2 Cr6 bottles, please analyze 1 + hold 1.	Number of Container	M for - 601081 COMMENTS
	DATE		Matrix						COMMENTS
7WW-43-090-177	4/29/2011	11:37	Water		Ж	,X		3	M=2
MW-43-090-177-EB	4/29/2011	10:30	Water	Ж				1	1/0/0
MW-71-177	4/29/2011	13:05	Water	Х				1	Hold
							TOTAL NUMBER OF CONTAINERS	36	

*Sj*ignatures Date/Time **Shipping Details** Special Instructions: Approved by ATTN: April 28 - May 13, 2011 Method of Shipment: FedEx Sampled by (Balinquished by On Ice: yes / no Sample Custody 4-29-11 18.45 Airbill No: 4-29-11 2436 Lab Name: Truesdail Laboratories, Inc. Received by Report Copy to Relinquished by Shawn Duffy Received by Lab Phone: (714) 730-6239 (530) 229-3303

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
OS/OR/U	994889-1	9.5	N/A	:>/A	A	SB.
	۲ , ۲		ĺ			
	-3					
	~ ^y		·			
ط	\$ -5	4	7	7	طد	<u> .k</u>
05/02/11	994890-1	9.5	A/A	AM	N/A	E18
	1 -2					<u> </u>
	-3					
	4					
4	V -5		4	<u> </u>		4
05/03/11	994891-1	9.5	N/A	2/4	N/A	27.73
<u> </u>	ーノ					
	-3					
	-4					
	-5					
	4-6	夕	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	No.	سليد
05/02/11	994892-1	9.5	N/A	N/A	N/A	SB
	<u>– 2</u>			1		
	-3					
	- <u>y</u>					
	dr5	<u>A</u>	<u> </u>	<u> </u>	<u> </u>	طد_
es 102/11	994893-1	9.5	A/4	12/A	A/4	SB
	-3					1
	, J					
	7					
	20 -5	<u> </u>	<u> </u>	- ()	- 2 b	
05/03/11	994894-1	9-5	<i>∾</i> / A -	AVA	4/9	<u>SB_</u>
-	-2 -3 -4					
- 1						
4	もつ	4	4	Ą	<u> </u>	4


Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
05/02/10	974894-6	95	NA	12/4	N/A	SB
	7		1	Í		
	-8		_			
	-9					
	· → -10	4	J	J	V	محاشد
05/03/11	994906-1	7.0	5.00	9.5	9150	82
05/03/u	994907-1	7.0	5,60	9.5	9:55	Bl
1	し - ユ	Ĵ	7	المد	(6:90	7
05/03/4	994908	9.5	N/A	P/A	N/A	SB_
	١ ٦			<u> </u>		
	-3					
	4					
	-5					
	~ _					
	-7					
- b	1/2 -8	4	4	4	<u> </u>	*
05/03/u	994909-2	9.5	N/A	AA	N/A	SB
	-3		(<u> </u>	<u>'</u>	i
	4					
	-5					
Üb	1 -6	de	<u></u>	<u> </u>	<u></u>	J
05/03/u	994910-1	9.5	A/4	N/B	N/A	ß
<u> </u>	1 -4	<u> </u>	1	<u> </u>	· 4	
05/03/4	994911-1	9.5	N/A	A/01	10/16	<u>ZB</u>
<u>.</u>	1-2	<u> </u>	•	<u></u>	<u> </u>	1
05/03/11	999912 -1	9.5	N/A	NA	N/A	टार
	ا ج		1			
	-3					
	Ψ	_				
4	J -6	ملز	7	1	J	J

Turbidity/pH Check

		1 44	Didity/pri G	HOOK		Adjusted to
Sample Number	Turbidity	pH	Date	Analyst	Need Digest	pH<2 (Y/N)
39786 8/1.9/	a	٧ ٧ :	04/29/11	h.h	Ye3	No
9948691141678	c1	< 2				
994884/124,89	e 1	c &				
9948672/3,6/	<1	<2				
9948843/1345	c 1	c \$	W		d	
994861	61	12	5/211	E5	NO	
994861	1	1	1		4	
442				<u> </u>		
994867(-1)			<u> </u>		u u	
	2	< 2 < 2	5/2/11	mlar	Yes	
994867	<i>~</i> /	C 2			<u> </u>	
9948891124	1/ < 1	<u> </u>				
99489011-5		c 2 c 2				
09489111-5	<u> </u>					
99489211-4	1 = 1	22	1			
994893(1-4	<i>z</i> 1	= 2			ļ	<u> </u>
994903	21	c &	W	V	U U	
994908(1-7	41	-2	05/03/11	MM	YES	
994909 (2-6/						
994910 (1,4)		 	<u> </u>			
994911 (2)		 			ļ	
994912 (1-51	ļl	 	 			
994913 [1-6]		 	 	<u> </u>	h	
994914 (1-4)	- V	V	V	<u>V</u>	V	<u> </u>
99467 (16,23)	1 21	72	5/4/11	<u>- t} </u>	Ni	ys 20 9: W
	1 1 1	<u> </u>		<u>}</u>		L_V
922	-	22	 			N
913	 	 				
924	 	 				
928	<u> </u>		-			<u> </u>
924		 	-			
	<u> </u>	72				44 2 9:00
933 (1-2)		72			+	7.9 00 7.00
948(1-3)	7.2	12	 		Tes	
994906 (1:2)	21	72			NO	(ULA)Q:man
994907(1-2)	21	22			170	130000
08 994907-2	21	72			 	yu 29:00 9.10 yu 29:00 9.10
994949	21		5/4/11	pi.M	Yes	70.00
994 86 3/1,21	2/	79	1 2/1/1/	7	yes	40
994865	21	72	<u> </u>		1 7 3	
99495311-4	21	Zi.			 	
094954191	= 1	-				
994955 13.41	c 1	 		1		<u> </u>
994470 (1-9)	41	22	C/2/11	ĒS	No	
GALIAID (A-1)	41		515111	B	No	
994172 (1-5)	41	42	 	1.	1 7	
99444 (1-2)	<u> </u>	12	4002 [1]	KK	10	4860 5:45 m
494894 (1-10)	Z	2 2	3/6/11	KK- MG	No	The state of the
7,15,11,1,5	<u>. —</u>		-1-7	<u> </u>	.	

Sample Integrity & Analysis Discrepancy Form

Clie	ont: <u>E</u> L	_ Lab #
Date	e Delivered: <u>04/29</u> / 11 Time: <u>2/30</u> By: □Mail &	ÎField Service □Client
1.	Was a Chain of Custody received and signed?	⊠Yes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ໝ(N/A
3.	Are there any special requirements or notes on the COC?	□Yes □No 反N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No 凤N/A
5.	Were all requested analyses understood and acceptable?	⊠(Yes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>4 ° C</u>	Kayes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)? Were sample custody seals intact?	ØYes □No □N/A
8.	Were sample custody seals intact?	Yes □No ⊠NA
9.	Does the number of samples received agree with COC?	√ vÔYes □No □N/A
10.	Did sample labels correspond with the client ID's?	/ AYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: ♥Truesdall □Client	∯Yes □No □N/A
12.	Were samples pH checked? pH = $\frac{\int eC}{C}$	ØYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	A Yes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH	⊈Yes □No □N/A
15.	Sample Matrix:	
16.	Comments:	
17.	Sample Check-In completed by Truesdail Log-In/Receiving:	Maberine

May 16, 2011

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-EW-182, GROUNDWATER MONITORING PROJECT, TLI No.: 994906

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-EW-182 groundwater-monitoring project for Total Dissolved and Hexavalent Chromium, Total Dissolved Solids, and Specific Conductivity. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, wet chemistry raw data, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on May 2, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Per Mr. Shawn Duffy's request, the pH analysis was cancelled.

Samples for Total Dissolved Chromium were analyzed by method EPA 200.8 with the approval of Mr. Shawn Duffy of CH2M Hill.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

to- Mona Nassimi

Manager, Analytical Services

K. R. P. gyer

K.R.P. Iyer

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Two (2) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 408401.01.DM

Laboratory No.: 994906

Date: May 16, 2011 Collected: May 2, 2011

Received: May 2, 2011

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
EPA 200.8	Total Dissolved Chromium	Katia Kiarashpoor
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky
SM 3500-CrB	Hexavalent Chromium	Jenny Tankunakorn

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 408401.01.DM **P.O. No.:** 408401.01.DM

Laboratory No.: 994906
Date Received: May 2, 2011

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	e Parameter	Result	Units	RL
994906-001	PE-01-182	E120.1	NONE	5/2/2011	14:45	EC	5240	umhos/cm	2.00
994906-001	PE-01-182	E200.8	LABFLT	5/2/2011	14:45	Chromium	10.5	ug/L	1.0
994906-001	PE-01-182	E218.6	LABFLT	5/2/2011	14:45	Chromium, hexavalent	9.9	ug/L	0.20
994906-001	PE-01-182	SM2540C	NONE	5/2/2011	14:45	Total Dissolved Solids	3100	mg/L	125
994906-002	TW-03D-182	E120.1	NONE	5/2/2011	14:45	EC	8620	umhos/cm	2.00
994906-002	TW-03D-182	E200.8	LABFLT	5/2/2011	14:45	Chromium	1070	ug/L	2.0
994906-002	TW-03D-182	SM2540C	NONE	5/2/2011	14:45	Total Dissolved Solids	5080	mg/L	125
994906-002	TW-03D-182	SM3500-CrB	LABFLT	5/2/2011	14:45	Chromium, hexavalent	1100	ug/L	50.0

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures.

Result above or equal to 0.01 will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

P.O. Number: 408401.01.DM Project Number: 408401.01.DM Laboratory No. 994906

Page 1 of 8

Printed 5/17/2011

Samples Received on 5/2/2011 11:45:00 PM

Field ID		Lab ID		Col	lected	Mati	ix	
PE-01-182 TW-03D-182			994906-001 994906-002		05/02/2011 14:45 05/02/2011 14:45		Wat Wat	
Specific Conductivity -	EPA 120.1	es persona	Batch 05EC11F					
Parameter		Unit	Ana	alyzed	DF	MDL	RL	Result
994906-001 Specific Conductivity		umhos/	/cm 05/1	1/2011	1.00	0.0380	2.00	5240
994906-002 Specific Conduc	ctivity	umhos/	/cm 05/1	1/2011	1.00	0.0380	2.00	8620
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	995065-008
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 1900	Expected 1890	F	RPD 0.264	Accepta 0 - 10	ance Range
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 704	Expected 706	F	Recovery 99.7	Accepta 90 - 110	ance Range O
Lab Control Sample I	Duplicate							
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 705	Expected 706	F	Recovery 99.8	Accepta 90 - 11	ance Range 0
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 702	Expected 706	F	Recovery 99.4	Accepta 90 - 11	ance Range 0
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 972	Expected 996	F	Recovery 97.6	Accepta 90 - 11	ance Range 0

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 3 of 8

Project Number: 408401.01.DM Printed 5/17/2011

Chrome VI by EPA 218.6

Batch 05CrH11C

Ollionic It by El A 21010				•				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
994906-001 Chromium, Hexa	valent	ug/L	05/03	/2011 12:16	1.05	0.0210	0.20	9.9
Method Blank	· · · · · · · · · · · · · · · · · · ·							
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.00	Result ND				Lab ID =	994871-002
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 1.05	Result 4.19	Expected 4.15		RPD 0.935	Accepta 0 - 20	ance Range
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 4.97	Expected 5.00		Recovery 99.4	90 - 110	ance Range 0 994871-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 8.84	Expected/Ac 8.54(5.30)	lded	Recovery 106.	90 - 11	ance Range 0 994871-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1,06	Result 9.72	Expected/Ac 9.45(5.30)	lded	Recovery 105.	90 - 11	ance Range 0 994871-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 8.40	Expected/Ac 8.24(5.30)	lded	Recovery 103	90 - 11	ance Range 0 994871-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 16.5	Expected/Ac 17.0(10.6)	lded	Recovery 95.5	90 - 11	ance Range 0 994892-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 6.46	Expected/Ad 6.51(5.30)	ded	Recovery 99.1	90 - 11	ance Range 0 : 994892-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1,06	Result 2.02	Expected/Ac 2.02(1.06)	ided	Recovery 100.	90 - 11	ance Range 0 : 994892-003
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 6.96	Expected/Ac 7.02(5.30)	dded	Recovery 98.9	Accept 90 - 11	ance Range 0

Client: E2 Consulting Eng	ineers, Inc.		oject Name: oject Number	PG&E Topock Pro :: 408401.01.DM	ject	Page 4 of 8 Printed 5/17/2011
Matrix Spike						Lab ID = 994892-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.69	Expected/Added 1.73(1.06)	Recovery 95.8	Acceptance Range 90 - 110 Lab ID = 994906-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 20.5	Expected/Added 20.5(10.6)	Recovery 100.	Acceptance Range 90 - 110 Lab ID = 994907-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.71	Expected/Added 5.55(5.25)	Recovery 103.	Acceptance Range 90 - 110 Lab ID = 994907-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.25	Expected/Added 1.16(1.06)	Recovery 108.	Acceptance Range 90 - 110 Lab ID = 994907-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 105	Result 1960	Expected/Added 1880(1050)	Recovery 108.	Acceptance Range 90 - 110 Lab ID = 994910-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.62	Expected/Added 1.61(1.06)	Recovery 101.	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.95	Expected 5.00	Recovery 99.0	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 5 of 8 Printed 5/17/2011

Project Number: 408401.01.DM

Chromium, Hexavalent by SM 3500-Cr B

Batch 05CrH11A

Cimolitiani, nexavatetit i	Simulificant, Hexavalent by Sivi 3300-Ci			030111117		
Parameter		Unit	Ana	lyzed [OF MDL	RL Result
994906-002 Chromium, Hexa	avalent	ug/L	05/09	/2011 16:03 5	.0021.8	50.0 1100
Method Blank						
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND			
Duplicate						Lab ID = 995048-019
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 25.0	Result 3630	Expected 3570	RPD 1.79	Acceptance Range 0 - 20
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 98.9	Expected 100.	Recovery 98.9	Acceptance Range 90 - 110 Lab ID = 995048-019
Parameter Chromium, Hexavalent Matrix Spike Duplicat	Unit ug/L e	DF 25.0	Result 6080	Expected/Adde 6070(2500)	d Recovery 100.	Acceptance Range 85 - 115 Lab ID = 995048-019
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 25,0	Result 6330	Expected/Adde 6070(2500)	d Recovery 110.	Acceptance Range 85 - 115
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 56.3	Expected 60.0	Recovery 93.8	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 61.3	Expected 60.0	Recovery 102.	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 55.0	Expected 60.0	Recovery 91.7	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 6 of 8

Project Number: 408401.01.DM

Printed 5/17/2011

Total Dissolved Solids	by SM 254	0 C	Batch	05TDS11C		5/5/2011			
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result	
994906-001 Total Dissolved	94906-001 Total Dissolved Solids			5/2011	1.00	0.434	125	3100	
994906-002 Total Dissolved	Solids	mg/L	05/05	5/2011	1.00	0.434	125	5080	
Method Blank									
Parameter Total Dissolved Solids Duplicate	Unit mg/L	DF 1.00	Result ND				Lab ID =	994909-006	
Parameter Total Dissolved Solids Lab Control Sample	Unit mg/L	DF 1.00	Result 1020	Expected 1020	F	RPD 0.196	Accepta 0 - 5	ance Range	
Parameter Total Dissolved Solids	Unit mg/L	DF 1.00	Result 518	Expected 500.	F	Recovery 104.	Accepta 90 - 110	ance Range	

Client: E2 Consulting Engineers, Inc.

Project Name:

PG&E Topock Project

Page 7 of 8

Project Number: 408401.01.DM

Printed 5/17/2011

Metals by EPA 200.8, Diss	olved		Batch	0510 11 B	, 4H		. 44
Parameter		Unit	Ana	lyzed D	F MDL	- RL	Result
994906-001 Chromium		ug/L	05/11	/2011 03:08 5.	00 0.0950	1.0	10.5
994906-002 Chromium		ug/L	05/11	/2011 03:43 10	0.0 0.190	2.0	1070
Method Blank					, , , , , , , , , , , , , , , , , , , ,		
Parameter	Unit	DF	Result				
Chromium	ug/L	1.00	ND				
Duplicate						Lab ID =	994906-001
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ince Range
Chromium	ug/L	5.00	10.2	10.5	2.70	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.4	50.0	98.8	85 - 115	5
Matrix Spike						Lab ID =	994906-001
Parameter	Unit	DF	Result	Expected/Added	d Recovery	Accepta	ance Range
Chromium	ug/L	5.00	262.	260.(250.)	100.	75 - 12	
Matrix Spike Duplicate						Lab ID =	994906-001
Parameter	Unit	DF	Result	Expected/Added	d Recovery	Accepta	ance Range
Chromium	ug/L	5.00	257.	260.(250.)	98.8	75 - 12	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.4	50.0	98.8	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.7	50.0	95.3	90 - 110	כ
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.8	50.0	95.6	90 - 110	כ
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.2	50.0	98.3	90 - 11	כ
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	•	ance Range
Chromium	ug/L	1.00	50.1	50.0	100.	90 - 11	כ

Client: E2 Consulting En	gineers, Inc		roject Name: roject Number:	PG&E Topock F 408401.01.DM	Project	Page 8 of 8 Printed 5/17/2011
Interference Check St	andard A					
Parameter Chromium Interference Check SI	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check Si	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L andard AB	DF 1.00	Result 45.3	Expected 50.0	Recovery 90.7	Acceptance Range 80 - 120
Parameter Chromium Serial Dilution	Unit ug/L	DF 1.00	Result 47.2	Expected 50.0	Recovery 94.3	Acceptance Range 80 - 120 Lab ID = 994906-002
Parameter Chromium	Unit ug/L	DF 50.0	Result 1020	Expected 1070	RPD 4.30	Acceptance Range 0 - 10

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 05TDS11C Date Calculated: 5/9/11

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, g	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	111.6504	111.6504	111.6504	0.0000	No	0.0000	0.0	25.0	ND	1
994906-1	20	49.4804	49.5428	49.5424	0.0004	No	0,0620	3100.0	125.0	3100.0	1
994906-2	20	51.1740	51.2759	51.2757	0.0002	No	0.1017	5085.0	125.0	5085.0	1
994907-1	20	51.1335	51.2175	51.2171	0.0004	No	0.0836	4180.0	125.0	4180.0	1
994907-2	20	47.6226	47.7175	47,7171	0.0004	No	0.0945	4725.0	125.0	4725.0	11
994909-1	50	50.1299	50.1693	50.1689	0.0004	No	0.0390	780.0	50.0	780.0	1
994909-2	50	50.2380	50.288	50.288	0.0000	No	0.0500	1000.0	50.0	1000.0	1
994909-3	50	48.1847	48.2427	48.2423	0.0004	No	0.0576	1152.0	50.0	1152.0	1
994909-4	50	49.8371	49.8985	49.8982	0.0003	No	0.0611	1222.0	50.0	1222.0	1
994909-5	50	49.7193	49.7756	49.7755	0.0001	No	0.0562	1124.0	50.0	1124.0	1
994909-6	50	49.2815	49.3331	49.3327	0.0004	Nο	0.0512	1024.0	50.0	1024.0	1
994909-6D	50	50,3882	50.4393	50.4391	0.0002	No	0.0509	1018.0	50.0	1018.0	1
LCS	100	112,3579	112.4097	112.4097	0.0000	No	0.0518	518.0	25,0	518.0	1
994910-1	100	68.9806	69.0345	69,0341	0.0004	No	0,0535	535.0	25.0	535.0	1
994910-2	50	47.9715	48,006	48,006	0.0000	No	0.0345	690.0	50.0	690.0	1
994910-3	50	65.6336	65.6842	65.6839	0.0003	No	0.0503	1006.0	50.0	1006.0	1
994910-4	100	68.6369	68.6644	68.6643	0.0001	No	0.0274	274.0	25.0	274.0	1
994910-5	50	51.5131	51.5733	51.5733	0.0000	No	0.0602	1204.0	50.0	1204.0	1
994910-6	50	50.5302	50.5923	50.5923	0.0000	Nο	0.0621	1242.0	50.0	1242.0	1
994955-1	50	47.0717	47.1293	47.1291	0.0002	No	0.0574	1148.0	50.0	1148.0	1
994955-2	50	48.1872	48,2709	48,2709	0.0000	Nο	0.0837	1674.0	50.0	1674.0	1
994955-3	50	65.9794	66.0354	66.035	0.0004	No	0.0556	1112.0	50.0	1112.0	1
994955-4	50	49.4193	49.4742	49.474	0.0002	No	0.0547	1094.0	50.0	1094.0	1
LCSD				1					; ;		1

Calculation as follows:

Filterable residue (TDS), mg/L = $\left(\frac{A-B}{C}\right) \times 10^6$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 05TDS11C Date Calculated: 5/9/11

Laboratory Number	EC	TDS/EC Ratio: 0,559	Calculated TDS (EC*0.65)	Measured TDS / Caic TDS <1,3
			4	
994906-1	5230	0,59	3399.5	0.91
994906-2	8610	0,59	5596.5	0.91
994907-1	7420	0.56	4823	0.87
994907-2	7960	0.59	5174	0.91
994909-1	1276	0.61	829.4	0.94
994909-2	1576	0.63	1024.4	0.98
994909-3	1753	0.66	1139.45	1.01
994909-4	1800	0.68	1170	1.04
994909-5	1709	0.66	1110.85	1.01
994909-6	1582	0.65	1028.3	1.00
994909-6D ,	1582	0.64	1028,3	0.99
LCS	and and the second second of the second seco			
994910-1	937	0.57	609.05	0.88
994910-2	1188	0.58	772.2	0,89
994910-3	1550	: 0.65	1007.5	1.00
994910-4	440	0.62	286	0,96
994910-5	1960	0.61	1274	0.95
994910-6	1980	0,63	1287	0.97
994955-1	1750	0.66	1137.5	1.01
994955-2	2540	0.66	1651	1,01
994955-3	1680	0.66	1092	1.02
994955-4	1610	0.68	1046.5	1.05
	. <u>.</u> .			; ;

994 906

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-EW-182]

COC Number

TURNAF	ROUND TIME	10 Day	s		
DATE	05/02/11	PAGE	1	OF	1

100	30						-														
COMPANY	CH2M HILL /E2	2								/		, ,		,	,	•	7			' / [7	COMMENTS
PROJECT NAME	PG&E Topock	IM3Plant-EV	٧									/I	Rec'e	d	05/0.	2/11		,		////	COMMENTS
PHONE	530-229-3	303	FAX 53	0-339-3303			(ered	/ .	/ ,	Ι,	/ ,	/ 4	10c	99	45	n,	6.		/	////	
ADDRESS	155 Grand Ave		,				1 th	' /	/				/	' /	/				/		
	Oakland, CA 9					/ k	3/														
P.O. NUMBER	408401.01.[DM //				800	$\frac{1}{B}$	$\langle \mathcal{E} \rangle$	/		/	/	/	/	/	/ ,		/	/		
SAMPLERS (SIGN.	10	n Chr	·			Cr(M)	PH (4.2 000-C'B)	10S (120.)	Cr(1/1)	(<78.6)	$^{\prime}$ $/$		/ /	$^{\prime}$ $/$	' /					SER OF CONTAINERS	
SAMPLE I.D.		DATE	πме	DESCRIPTION	\Q		Ha				/				/	/	/		NOW!		
PE-01-182		05/02/11	14:45	Ground water	Х		Х	ł	х										4	7	in Com
TW-03D-1	82	05/02/11	14:45	Ground water	Х	Х	Х	Х											4	٤,	DH= ECZOO
	<i>[************************************</i>																				
		tiones established to the second seco	POSITION AND ADMINISTRATION AND																		
	The second secon			Production of the control of the con																	
			3.7			R ₂	M	nle) (Ol	nd	ti(m	5							
	and the second		4			_			Î	44	30	hô	A								
(FEEE)		And the second second	The same of the same of the same of	The same of the sa	W	96	3935 Z	2 2 3	3	Sec. 18.1		- BES	A COLUMN TO A COLU	decertancial inte			-		***************************************	1	

	/c	HAIN OF CUSTODY SI	GNATURE RECORD		SAMPLE CONDITIONS
	Signature (Relinquished)	Printed CHAIS LEME	Company/ -Agency OHI	Date/ 5-2-// Time /8:50	RECEIVED COOL WARM 3. 8°C°F
	Signature (Received) Kafeul Duv.	Printed Ka form	Company/ Agency	Date/ 5 - 2 - / / Time / 0 / 5 .	CUSTODY SEALED YES NO
	Signature (Relinquished)	Printed Rate	Company/	Date/ 5 - 2 3 0 Time	SPECIAL REQUIREMENTS:
	Signature (Received) Shabuarug	Printed Fildle	Company/ Agency / / L/	Date/ 5/2/1/ 23/43	
~≀	Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
- 1	Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
05/02/11	994894-6	9.5	N/A	NA.	N/A	SB.
(1 -7		1	1	(l
	-8					
	-9					
de	J -10	J	J	J	1	4
05/03/11	994906-1	7.0	5.00	9.5	9150	3 2
05/03/4	994907-1	7.0	57,60	9.5	9:55	SB
Ĵ	し 一ス	J	4	لجيد	(0½ 0 0	7
05/03/u	994908-1	9.5	N/A	N/A	12/A	$\mathcal{E}i$
	1 -2	\		(,
	-3					
	4		·			
	-5				,	
	2 - ر					
	<u></u> ←4					
	4-8	4	4	. <u>J</u>	1	4
05/03/u	994909-2	3.5	N/A	AH	2/4	\mathcal{SB}
1	-3			Ì		ĺ
	4					
	-5					
·	1-6	4	4	→	Ż	w l
05/03/u	994910-1	9.5	A/4	N/A	2/A	SB
<u> </u>	1 -4	<u> </u>	V	-	<u> </u>	
05/03/4	994911-1	9.5	NA	N/A	N/A	$\mathcal{B}^{\mathcal{Z}}$
<u> </u>	1-2	<u> </u>	.J.	7	Ĵ.	<u> </u>
05/03/0	994912 -1	9.5	N/A	NA	N/A	E12
	1 -2	\				j
	-3					
	4					
4	<u> </u>	مطز	L		J	J.

Turbidity/pH Check

,	Sample Number	Turbidity	рН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
62	19486 8 1.91	4 [٧ ٠	04/29/11	je. p	Yes	No
C	19486 9 11-4: 68.8	c1	< 2				1
9	948671124.89	~ 1	c Q				
9	948672/3.6/	<1	< 2				
9	948843/1345	£	c \$			d	
Ü	194887	61	12	5/2/11	ES	NO	
Г	૧૧૫૪૬ ''' '' ૧૧૫૪૯ '	1	1		•		
	662	,					
	994867 (-1)	1				V	
	994867 (-1)	21	< 2	5/2/11	mlan	Yes	
6	194867 1948391114 19489011-5	41		Ì	4	/f	
C	794 8 8 91124	1 = 1	c 2				
C	19489011-5	1 = 1	c 2				
cr	194891 11-5	21	<u> </u>				
	19489211-4	1 = 1	z 2				
	194893(1-9	c 1	= 2				
	94903	21	£ &	<u> </u>	V	V	
C	194908 (1-7	=1	-2	05/03/11	MM	YES	
	194909 (2-6/		<u> </u>	ļ	<u> </u>		
*****	94910 11,4)	<u> </u>				<u> </u>	
	194911 (2)		<u> </u>	<u> </u>			
9	194912 [1-5]		<u> </u>	<u> </u>		ļ	
9	94913 [1-6]		<u> </u>	1	_		<u> </u>
	949/4(1-4)	<u> </u>	V	JV	V	V	<u>V</u>
	194 89t (16,23)	21	72	5/4/11	t3	Ni	Chr 2 2 3: 0
	994897 (1-4))	<u> </u>	 	<u> </u>		V
<u> </u>	994921		22	 		 	Ns
	922		<u> </u>	<u> </u>			<u> </u>
-	923	<u> </u>		 		1	ļ
-			<u> </u>	 	<u> </u>		
-	928	ļ		 		ļ <u> </u>	1
-	920	 	1		 		((11 (1) (1) (1)
\vdash	771(-2)		22			 	49 8 9:00
-	948(1-3)	72	72	-	ļ ļ	1 1/4	
-	994906 (1:2)	12	12	<u> </u>	<u> </u>	Yes NO	1111 2 20 20 20 20
		21	72	 	 	+ 70	yu 29:00 9.79
_ }_	994907(1-2)	1		 	<u> </u>	<u> </u>	10101010
	994907-2		72	5/4/4	u.M	1/25	ywaq:wan
		<u> </u>	79	5/4/11	M.P.	Yes	. / +2 -
	994 863/1,2/	>/_			 	yes	Jes
-	999863	21	72	 	 		
-	204954191		<u> </u>	 		+	
1	3049551141		+++	+	 	+ +	
F	GGILLING	41	42	5/2/11	ĒS	No	
F	CAUGID (4-1)	41	42	51511	1	NO	
-	994472(1-5)	121	12	1 2 1/2 111		i i	
-	994444 (1-2)	41	12	UNALO	W	10	4.50 5:45m
-	494894 (1-10)	121	12	15/2)//	M4	No	785@ 5:45 pm
1	711017(110)	<u> </u>	1	10/11	1	<u> </u>	

Sample Integrity & Analysis Discrepancy Form

Clie	int: <u>E</u> L	Lab# <u>994906</u>
Dat	e Delivered:应灯座/11 Time: <u>迟兴</u> By: □Mail 潋i	Field Service
1.	Was a Chain of Custody received and signed?	ØÝes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÞÓN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ¤N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	⊠Yes □No □N/A
6 .	Were samples received in a chilled condition? Temperature (if yes)?⊰ <u>ৣঔ°C</u>	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Ø(Yes □No □N/A
8.	Were sample custody seals intact?	□Yes □No ☆N/A
9.	Does the number of samples received agree with COC?	∰Yes □No □N/A
10.	Did sample labels correspond with the client ID's?	AYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdall □Client	□Yes □No ÆN/A
12.	Were samples pH checked? pH = See C/O.S.	daYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	Yes □No □N/A
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ☑ Std	AYes ONO ON/A
15.	Sample Matrix:	Water
	□Sludge □Soil □Wipe □Paint □Solid □	Other
в.	Comments:	
7.	Sample Check-In completed by Truesdail Log-In/Receiving:	Habina

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 6, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

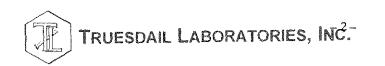
Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK 2011-GMP-177-Q2, GROUNDWATER MONITORING

PROJECT, TLI NO.: 994988

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2011-GMP-177-Q2 groundwater-monitoring project for Hexavalent and Total Dissolved Chromium. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.


The samples were received and delivered with the chain of custody May 4, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

The straight run for the matrix spike for sample MW-44-125-177 for Hexavalent Chromium analysis by EPA 218.6 was just outside the retention time window. Because the matrix spike recovery was within acceptable limits, the data from the straight run is reported.

Due to the discrepancy between the Total Dissolved Chromium (10.8 ug/L) and Hexavalent Chromium (ND<0.20 ug/L) results for sample MW-44-125-177, Mr. Shawn Duffy of CH2M Hill was notified. Sample from both the Total Dissolved Chromium and Hexavalent Chromium sample containers were digested and analyzed for Total Dissolved Chromium. The results were 12.0 ug/L and 10.3 ug/L, respectively. After discussing the results with Mr. Duffy, the original results are reported.

Due to the discrepancy between the Total Dissolved Chromium (ND<1 ug/L) and Hexavalent Chromium (6.6 ug/L) results for sample MW-53D-177, Mr. Shawn Duffy of CH2M Hill was notified. Sample from both the Total Dissolved Chromium and Hexavalent Chromium sample containers were digested and analyzed for Total Dissolved Chromium. The results were both ND<1.0 ug/L. After discussing the results with Mr. Duffy, the original results are reported.

Due to the discrepancy between the Total Dissolved Chromium (14.7 ug/L) and Hexavalent Chromium (1.0 ug/L) results for sample MW-95-177, Mr. Shawn Duffy of CH2M Hill was notified. Sample from both the Total Dissolved Chromium and Hexavalent Chromium sample containers were digested and analyzed for Total Dissolved Chromium. The results were 15.9 ug/L and 11.9 ug/L, respectively. After discussing the results with Mr. Duffy, the original results are reported.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,
TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

K.R.P. Iyer

Quality Assurance/Quality Control Officer

Ali Khanaf

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Laboratory No.: 994988 Date Received: May 4, 2011

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 405681.MP.02.GM.04 P.O. No.: 405681.MP.02.GM.04

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Tin	ne Parameter	Result	Units	RL
994988-001	MW-16-177	E218.6	FLDFLT	5/2/2011	14:59	Chromium, hexavalent	10.0	ug/L	0.20
994988-001	MW-16-177	SW6020	FLDFLT	5/2/2011	14:59	Chromium	10.6	ug/L	1.0
994988-002	MW-28-025-177	E218.6	FLDFLT	5/2/2011	11:32	Chromium, hexavalent	ND	ug/L	0.20
994988-002	MW-28-025-177	SW6020	FLDFLT	5/2/2011	11:32	Chromium	1.2	ug/L	1.0
994988-003	MW-28-090-177	E218.6	FLDFLT	5/2/2011	12:26	Chromium, hexavalent	ND	ug/L	0.20
994988-003	MW-28-090-177	SW6020	FLDFLT	5/2/2011	12:26	Chromium	ND	ug/L	1.0
994988-004	MW-32-035-177	E218.6	FLDFLT	5/2/2011	13:51	Chromium, hexavalent	ND	ug/L	1.0
994988-004	MW-32-035-177	SW6020	FLDFLT	5/2/2011	13:51	Chromium	ND	ug/L	1.0
994988-005	MW-33-040-177	E218.6	FLDFLT	5/2/2011	15:06	Chromium, hexavalent	ND	ug/L	0.20
994988-005	MW-33-040-177	SW6020	FLDFLT	5/2/2011	15:06	Chromium	ND	ug/L	1.0
994988-006	MW-36-090-177	E218.6	FLDFLT	5/2/2011	15:05	Chromium, hexavalent	ND	ug/L	0.20
994988-006	MW-36-090-177	SW6020	FLD FL T	5/2/2011	15:05	Chromium	ND	ug/L	1.0
994988-007	MW-41D-177	E218.6	FLDFLT	5/2/2011	12:43	Chromium, hexavalent	1.9	ug/L	1.0
994988-007	MW-41D-177	SW6020	FLDFLT	5/2/2011	12:43	Chromium	2.4	ug/L	1.0
994988-008	MW-17-177	E218.6	FLDFLT	5/3/2011	13:16	Chromium, hexavalent	15.0	ug/L	0.20
994988-008	MW-17-177	SW6020	FLDFLT	5/3/2011	13:16	Chromium	15.9	ug/L	1.0
994988-009	MW-21-177	E218.6	FLDFLT	5/3/2011	17:17	Chromium, hexavalent	2.0	ug/L	1.0
994988-009	MW-21-177	SW6020	FLDFLT	5/3/2011	17:17	Chromium	2.3	ug/L	1.0
994988-010	MW-22-177	E218.6	FLDFLT	5/3/2011	15:55	Chromium, hexavalent	ND	ug/L	1.0
994988-010	MW-22-177	SW6020	FLDFLT	5/3/2011	15:55	Chromium	ND	ug/L	1.0
994988-011	MW-30-030-177	E218.6	FLDFLT	5/3/2011	13:22	Chromium, hexavalent	ND	ug/L	1.0
994988-011	MW-30-030-177	SW6020	FLDFLT	5/3/2011	13:22	Chromium	ND	ug/L	1.0
994988-012	MW-36-100-177	E218.6	FLDFLT	5/3/2011	14:12	Chromium, hexavalent	56.4	ug/L	1.0
994988-012	MW-36-100-177	SW6020	FLDFLT	5/3/2011	14:12	Chromium	62.5	ug/L	1.0

)05

Revision 1; June 14, 2011

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
994988-013	MW-44-070-177	E218.6	FLDFLT	5/3/2011	9:25	Chromium, hexavalent	ND	ug/L	0.20
994988-013	MW-44-070-177	SW6020	FLDFLT	5/3/2011	9:25	Chromium	ND	ug/L ug/L	1.0
994988-014	MW-44-115-177	E218.6	FLDFLT	5/3/2011	10:01	Chromium, hexavalent	184	ug/L	5.2
994988-014	MW-44-115-177	SW6020	FLDFLT	5/3/2011	10:01	Chromium	201	ug/L ug/L	1.0
994988-015	MW-44-125-177	E218.6	FLDFLT	5/3/2011	12:18	Chromium, hexavalent	ND	ug/L ug/L	0.20
994988-015	MW-44-125-177	SW6020	FLDFLT	5/3/2011	12:18	Chromium	10.8	ug/L ug/L	1.0
994988-016	MW-46-175-177	E218.6	FLDFLT	5/3/2011	16:06	Chromium, hexavalent	53.4	_	2.1
994988-016	MW-46-175-177	SW6020	FLDFLT	5/3/2011	16:06	Chromium	55. 4 55.9	ug/L	1.0
994988-017	MW-47-055-177	E218.6	FLDFLT	5/3/2011	16:52			ug/L	
994988-017	MW-47-055-177	SW6020	FLDFLT			Chromium, hexavalent	19.3	ug/L	1.0
994988-018		E218.6		5/3/2011	16:52	Chromium	19.4	ug/L	1.0
	MW-47-115-177		FLDFLT	5/3/2011	16:03	Chromium, hexavalent	22.5	ug/L	1.0
994988-018	MW-47-115-177	SW6020	FLDFLT	5/3/2011	16:03	Chromium	24.4	ug/L	1.0
994988-019	MW-50-095-177	E218.6	FLDFLT	5/3/2011	14:21	Chromium, hexavalent	18.3	ug/L	1.0
994988-019	MW-50-095-177	SW6020	FLDFLT	5/3/2011	14:21	Chromium	18.9	ug/L	1.0
994988-020	MW-52D-177	E218.6	FLDFLT	5/3/2011	11:35	Chromium, hexavalent	ND	ug/L	1.0
994988-020	MW-52D-177	SW6020	FLDFLT	5/3/2011	11:35	Chromium	ND	ug/L	1.0
994988-021	MW-52M-177	E218.6	FLDFLT	5/3/2011	10:45	Chromium, hexavalent	ND	ug/L	2.1
994988-021	MW-52M-177	SW6020	FLDFLT	5/3/2011	10:45	Chromium	ND	ug/L	1.0
994988-022	MW-52S-177	E218.6	FLDFLT	5/3/2011	9:40	Chromium, hexavalent	ND	ug/L	2.1
994988-022	MW-52S-177	SW6020	FLDFLT	5/3/2011	9:40	Chromium	ND	ug/L	1.0
994988-023	MW-53D-177	E218.6	FLDFLT	5/3/2011	13:15	Chromium, hexavalent	6.6	ug/L	5.2
994988-023	MW-53D-177	SW6020	FLDFLT	5/3/2011	13:15	Chromium	ND	ug/L	1.0
994988-024	MW-53M-177	E218.6	FLDFLT	5/3/2011	14:35	Chromium, hexavalent	ND	ug/L	1.0
994988-024	MW-53M-177	SW6020	FLDFLT	5/3/2011	14:35	Chromium	ND	ug/L	1.0
994988-025	MW-57-185-177	E218.6	FLDFLT	5/3/2011	11:46	Chromium, hexavalent	6.3	ug/L	1.0
994988-025	MW-57-185-177	SW6020	FLDFLT	5/3/2011	11:46	Chromium	7.2	ug/L	1.0
994988-026	MW-63-065-177	E218.6	FLDFLT	5/3/2011	9:12	Chromium, hexavalent	1.0	ug/L	0.20
994988-026	MW-63-065-177	SW6020	FLDFLT	5/3/2011	9:12	Chromium	1.7	ug/L	1.0
994988-027	MW-95-177	E218.6	FLDFLT	5/3/2011	11:52	Chromium, hexavalent	1.0	ug/L	1.0
994988-027	MW-95-177	SW6020	FLDFLT	5/3/2011	11:52	Chromium	14.7	ug/L	1.0
994988-028	MW-96-177	E218.6	FLDFLT	5/3/2011	15;53	Chromium, hexavalent	53.2	ug/L	2.1
994988-028	MW-96-177	SW6020	FLDFLT	5/3/2011	15:53	Chromium	56.8	ug/∟ ug/L	1.0
994988-029	MW-23-060-177	E218.6	FLDFLT	5/4/2011	10:06	Chromium, hexavalent	30.2	ug/L ug/L	1.0
994988-029	MW-23-060-177	SW6020	FLDFLT	5/4/2011	10:06	Chromium, nexavalent	31.3	ug/L ug/L	1.0
					•=			-3	1.0

90

Revision 1: June 8, 2011

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Tim	ne Parameter	Result	Units	RL
994988-030	MW-23-080-177	E218.6	FLDFLT	5/4/2011	11:33	Chromium, hexavalent	14.1	ug/L	1.0
994988-030	MW-23-080-177	SW6020	FLDFLT	5/4/2011	11:33	Chromium	13.3	ug/L	1.0
994988-031	MW-33-090-177	E218.6	FLDFLT	5/4/2011	14:08	Chromium, hexavalent	20.7	ug/L	1.0
994988-031	MW-33-090-177	SW6020	FLDFLT	5/4/2011	14:08	Chromium	21.3	ug/L	1.0
994988-032	MW-33-150-177	E218.6	FLDFLT	5/4/2011	10:45	Chromium, hexavalent	11.2	ug/L	1.0
994988-032	MW-33-150-177	SW6020	FLDFLT	5/4/2011	10:45	Chromium	11.4	ug/L	1.0
994988-033	MW-33-210-177	E218.6	FLDFLT	5/4/2011	12:03	Chromium, hexavalent	10.7	ug/L	1.0
994988-033	MW-33-210-177	SW6020	FLDFLT	5/4/2011	12:03	Chromium	11.0	ug/L	1.0
994988-034	MW-35-060-177	E218.6	FLDFLT	5/4/2011	12:39	Chromium, hexavalent	26.1	ug/L	1.0
994988-034	MW-35-060-177	SW6020	FLDFLT	5/4/2011	12:39	Chromium	26.4	ug/L	1.0
994988-035	MW-35-135-177	E218.6	FLDFLT	5/4/2011	13:35	Chromium, hexavalent	29.4	ug/L	1.0
994988-035	MW-35-135-177	SW6020	FLDFLT	5/4/2011	13:35	Chromium	31.0	ug/L	1.0
994988-036	MW-46-205-177	E218.6	FLDFLT	5/4/2011	9:23	Chromium, hexavalent	5.8	ug/L	1.0
994988-036	MW-46-205-177	SW6020	FLDFLT	5/4/2011	9:23	Chromium	6.6	ug/L	1.0
994988-037	MW-92-177	E218,6	FLDFLT	5/4/2011	11:32	Chromium, hexavalent	14.4	ug/L	1.0
994988-037	MW-92-177	SW6020	FLDFLT	5/4/2011	11:32	Chromium	12.5	ug/L	1.0

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 ppm will have two (2) significant figures. Result above or equal to 0.01 ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project P.O. Number: 405681.MP.02.GM.04 Project Number: 405681.MP.02.GM.04 Laboratory No. 994988

Page 1 of 18

Printed 6/6/2011

Samples Received on 5/4/2011 9:30:00 PM

MW-16-177 MW-28-025-177 MW-28-025-177 MW-28-025-177 MW-28-090-177 MW-32-035-177 MW-32-035-177 MW-33-040-177 MW-33-040-177 MW-33-040-177 MW-34-070-177 MW-35-090-177 MW-35-090-177 MW-35-090-177 MW-36-090-177 MW-36-090-177 MW-36-090-177 MW-36-090-177 MW-310-177 Mater MW-310-171 Mater MW-310-171 Mater MW-310-171 Mater MW-310-171 Mat	Field ID	Lab ID	Collected	Matrix
MW-28-025-177 994988-002 05/02/2011 11:32 Water MW-28-090-177 994988-003 05/02/2011 12:26 Water MW-32-035-177 994988-004 05/02/2011 13:51 Water MW-33-040-177 994988-005 05/02/2011 15:05 Water MW-36-090-177 994988-006 05/02/2011 15:05 Water MW-41D-177 994988-007 05/02/2011 15:05 Water MW-17-177 994988-007 05/02/2011 12:43 Water MW-21-177 994988-008 05/03/2011 17:17 Water MW-21-177 994988-009 05/03/2011 17:17 Water MW-30-030-177 994988-010 05/03/2011 15:55 Water MW-36-100-177 994988-011 05/03/2011 12:22 Water MW-44-070-177 994988-013 05/03/2011 10:01 Water MW-44-125-177 994988-014 05/03/2011 10:01 Water MW-42-15-177 994988-016 05/0	MW-16-177	994988-001	05/02/2011 14:59	Water
MW-28-090-177 994988-003 05/02/2011 12:26 Water MW-32-035-177 994988-004 05/02/2011 13:51 Water MW-33-040-177 994988-005 05/02/2011 15:05 Water MW-36-090-177 994988-006 05/02/2011 15:05 Water MW-41D-177 994988-007 05/02/2011 12:43 Water MW-21-177 994988-008 05/03/2011 13:16 Water MW-21-177 994988-009 05/03/2011 17:17 Water MW-22-177 994988-010 05/03/2011 15:55 Water MW-30-030-177 994988-010 05/03/2011 15:25 Water MW-36-100-177 994988-011 05/03/2011 13:22 Water MW-44-070-177 994988-012 05/03/2011 13:22 Water MW-44-115-177 994988-014 05/03/2011 10:10 Water MW-46-175-177 994988-015 05/03/2011 10:06 Water MW-50-177 994988-016 05/03/2	MW-28-025-177	994988-002	05/02/2011 11:32	
MW-32-035-177 MW-33-040-177 MW-33-040-177 MW-36-090-177 MW-36-090-177 MW-41D-177 Mater MW-44-070-177 MW-44-070-177 MW-44-070-177 MW-44-115-177 MW-44-115-177 MW-44-115-177 MW-44-115-177 MW-44-125-177 MW-44-15-177 MW-47-055-177 MW-47-055-177 MW-47-115-177 MW-47-115-177 MW-47-115-177 MW-47-115-177 MW-48-010 MW-47-115-177 MW-48-010 MW-47-115-177 MW-48-010 MW-47-115-177 MW-48-010 MW-47-115-177 MW-48-010 MW-47-115-177 MW-52D-177 MW-53M-177 MW-52D-177 MW-53M-177 MW-50-005-177 MW-94988-022 MW-57-185-177 MW-59-177 MW-50-177 Mater MW-20-177 MW-50-177 MW-50-170 M	MW-28-090-177	994988-003	05/02/2011 12:26	
MW-33-040-177 994988-005 05/02/2011 15:06 Water MW-36-090-177 994988-006 05/02/2011 15:05 Water MW-41D-177 994988-007 05/02/2011 12:43 Water MW-17-177 994988-008 05/03/2011 13:16 Water MW-21-177 994988-009 05/03/2011 17:17 Water MW-22-177 994988-010 05/03/2011 17:17 Water MW-30-030-177 994988-011 05/03/2011 13:22 Water MW-36-100-177 994988-012 05/03/2011 13:22 Water MW-44-070-177 994988-013 05/03/2011 10:01 Water MW-44-15-177 994988-013 05/03/2011 10:01 Water MW-45-175-177 994988-015 05/03/2011 10:01 Water MW-47-055-177 994988-016 05/03/2011 16:02 Water MW-47-115-177 994988-017 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 10:045 Water MW-52S-177 994988-021 05/03/2011 10:045 Water MW-	MW-32-035-177	994988-004	05/02/2011 13:51	
MW-36-090-177 994988-006 05/02/2011 15:05 Water MW-41D-177 994988-007 05/02/2011 12:43 Water MW-17-177 994988-008 05/03/2011 13:16 Water MW-21-177 994988-009 05/03/2011 15:55 Water MW-30-030-177 994988-011 05/03/2011 15:55 Water MW-36-100-177 994988-012 05/03/2011 13:22 Water MW-44-070-177 994988-013 05/03/2011 10:01 Water MW-44-070-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 10:01 Water MW-46-175-177 994988-016 05/03/2011 16:02 Water MW-47-115-177 994988-017 05/03/2011 16:52 Water MW-47-115-177 994988-018 05/03/2011 16:52 Water MW-52D-177 994988-019 05/03/2011 11:21 Water MW-52D-177 994988-020 05/03	MW-33-040-177	994988-005	05/02/2011 15:06	
MW-41D-177 994988-007 05/02/2011 12:43 Water MW-17-1777 994988-008 05/03/2011 13:16 Water MW-21-177 994988-009 05/03/2011 17:17 Water MW-22-177 994988-010 05/03/2011 15:55 Water MW-30-030-177 994988-011 05/03/2011 13:22 Water MW-36-100-177 994988-012 05/03/2011 13:22 Water MW-44-070-177 994988-013 05/03/2011 19:25 Water MW-44-15-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 10:01 Water MW-47-055-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 10:45 Water MW-53D-177 994988-021 05/03/2011 10:45 Water MW-53M-177 994988-022	MW-36-090-177	994988-006	05/02/2011 15:05	
MW-17-177 994988-008 05/03/2011 13:16 Water MW-21-177 994988-009 05/03/2011 17:17 Water MW-22-177 994988-010 05/03/2011 15:55 Water MW-30-030-177 994988-011 05/03/2011 13:22 Water MW-36-100-177 994988-012 05/03/2011 13:22 Water MW-44-070-177 994988-013 05/03/2011 19:25 Water MW-44-115-177 994988-013 05/03/2011 10:01 Water MW-46-175-177 994988-015 05/03/2011 16:06 Water MW-47-055-177 994988-016 05/03/2011 16:52 Water MW-47-055-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 10:42 Water MW-52D-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 10:45 Water MW-53D-177 994988-023	MW-41D-177	994988-007	05/02/2011 12:43	
MW-21-177 994988-009 05/03/2011 17:17 Water MW-22-177 994988-010 05/03/2011 15:55 Water MW-30-030-177 994988-011 05/03/2011 13:22 Water MW-36-100-177 994988-012 05/03/2011 14:12 Water MW-44-070-177 994988-013 05/03/2011 05/03/2011 09:25 Water MW-44-115-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 10:01 Water MW-46-175-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 10:05 Water MW-52S-177 994988-021 05/03/2011 10:45 Water MW-53M-177 994988-022 05/03/2011 10:45 Water MW-53M-177 994988-023 05/03/2011 11:35 Water MW-53-065-177	MW-17-177		05/03/2011 13:16	
MW-22-177 994988-010 05/03/2011 15:55 Water MW-30-030-177 994988-011 05/03/2011 13:22 Water MW-36-100-177 994988-012 05/03/2011 14:12 Water MW-44-070-177 994988-013 05/03/2011 09:25 Water MW-44-175-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 10:01 Water MW-46-175-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-016 05/03/2011 16:03 Water MW-47-115-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52N-177 994988-020 05/03/2011 11:35 Water MW-53D-177 994988-022 05/03/2011 10:45 Water MW-53M-177 994988-025 05/03/2011 13:15 Water MW-53-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 11:52 Water <td< td=""><td>MW-21-177</td><td>994988-009</td><td></td><td></td></td<>	MW-21-177	994988-009		
MW-30-030-177 994988-011 05/03/2011 13:22 Water MW-36-100-177 994988-012 05/03/2011 14:12 Water MW-44-070-177 994988-013 05/03/2011 09:25 Water MW-44-115-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 12:18 Water MW-46-175-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-017 05/03/2011 16:03 Water MW-47-115-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 10:45 Water MW-53D-177 994988-022 05/03/2011 14:35 Water MW-53-177 994988-024 05/03/2011 14:35 Water MW-63-065-177 994988-025 <td>MW-22-177</td> <td>994988-010</td> <td></td> <td></td>	MW-22-177	994988-010		
MW-36-100-177 994988-012 05/03/2011 14:12 Water MW-44-070-177 994988-013 05/03/2011 09:25 Water MW-44-115-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 12:18 Water MW-46-175-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-017 05/03/2011 16:52 Water MW-47-115-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 10:45 Water MW-53D-177 994988-022 05/03/2011 13:15 Water MW-53-177 994988-024 05/03/2011 13:15 Water MW-63-065-177 994988-025 05/03/2011 11:46 Water MW-96-177 994988-020	MW-30-030-177	994988-011		
MW-44-070-177 994988-013 05/03/2011 09:25 Water MW-44-115-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 12:18 Water MW-46-175-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-017 05/03/2011 16:52 Water MW-47-115-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 16:03 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-020 05/03/2011 10:45 Water MW-52S-177 994988-021 05/03/2011 10:45 Water MW-53D-177 994988-023 05/03/2011 09:40 Water MW-53M-177 994988-023 05/03/2011 13:15 Water MW-57-185-177 994988-024 05/03/2011 11:46 Water MW-95-177 994988-026 05/03/2011 11:52 Water MW-95-177 994988-028 05/03/2011 11:52 Water MW-95-177 994988-028 05/03/2011 15:53 Water MW-95-177<	MW-36-100-177			
MW-44-115-177 994988-014 05/03/2011 10:01 Water MW-44-125-177 994988-015 05/03/2011 12:18 Water MW-46-175-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-017 05/03/2011 16:52 Water MW-50-095-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 14:21 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 11:46 Water MW-63-065-177 994988-025 05/03/2011 11:46 Water MW-95-177 994988-026 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-080-177 994988-029	MW-44-070-177	994988-013	05/03/2011 09:25	
MW-46-175-177 994988-016 05/03/2011 16:06 Water MW-47-055-177 994988-017 05/03/2011 16:52 Water MW-47-115-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 14:21 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-44-115-177	994988-014	05/03/2011 10:01	
MW-47-055-177 994988-017 05/03/2011 16:52 Water MW-47-115-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 14:21 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 11:52 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-44-125-177	994988-015	05/03/2011 12:18	Water
MW-47-115-177 994988-018 05/03/2011 16:03 Water MW-50-095-177 994988-019 05/03/2011 14:21 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 11:46 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-080-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-46-175-177	994988-016	05/03/2011 16:06	Water
MW-50-095-177 994988-019 05/03/2011 14:21 Water MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-47-055-177	994988-017	05/03/2011 16:52	Water
MW-52D-177 994988-020 05/03/2011 11:35 Water MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-47-115-177	994988-018	05/03/2011 16:03	Water
MW-52M-177 994988-021 05/03/2011 10:45 Water MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-50-095-177	994988-019	05/03/2011 14:21	Water
MW-52S-177 994988-022 05/03/2011 09:40 Water MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-52D-177	994988-020	05/03/2011 11:35	Water
MW-53D-177 994988-023 05/03/2011 13:15 Water MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-52M-177	994988-021	05/03/2011 10:45	Water
MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-52S-177	994988-022	05/03/2011 09:40	Water
MW-53M-177 994988-024 05/03/2011 14:35 Water MW-57-185-177 994988-025 05/03/2011 11:46 Water MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-53D-177	994988-023	05/03/2011 13:15	Water
MW-63-065-177 994988-026 05/03/2011 09:12 Water MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-53M-177	994988-024	05/03/2011 14:35	
MW-95-177 994988-027 05/03/2011 11:52 Water MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-57-185-177	994988-025	05/03/2011 11:46	Water
MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-63-065-177	994988-026	05/03/2011 09:12	
MW-96-177 994988-028 05/03/2011 15:53 Water MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-95-177	994988-027	05/03/2011 11:52	Water
MW-23-060-177 994988-029 05/04/2011 10:06 Water MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-96-177	994988-028	05/03/2011 15:53	
MW-23-080-177 994988-030 05/04/2011 11:33 Water	MW-23-060-177	994988-029		
MA(00 000 477	MW-23-080-177	994988-030		
	MW-33-090-177	994988-031	05/04/2011 14:08	

MW-33-150-177	994988-032	05/04/2011 10:45	Water
MW-33-210-177	994988-033	05/04/2011 12:03	Water
MW-35-060-177	994988-034	05/04/2011 12:39	Water
MW-35-135-177	994988-035	05/04/2011 13:35	Water
MW-46-205-177	994988-036	05/04/2011 09:23	Water
MW-92-177	994988-037	05/04/2011 11:32	Water

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 2 of 18

Project Number: 405681.MP.02.GM.04

Printed 6/6/2011

Chrome VI by EPA 218.6			Batch	05CrH11I				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
994988-001 Chromium, Hex	avalent	ug/L	05/06	/2011 09:22	1.05	0.0210	0.20	10.0
994988-002 Chromium, Hex	avalent	ug/L	05/06	/2011 09:32	1.05	0.0210	0.20	ND
994988-003 Chromium, Hex	avalent	ug/L	05/06	/2011 09:42	1.05	0.0210	0.20	ND
994988-004 Chromium, Hex	avalent	ug/L	05/06	/2011 11:58	5.25	0.110	1.0	ND
994988-005 Chromium, Hex	avalent	ug/L	05/06	/2011 11:16	1.05	0.0210	0.20	ND
994988-006 Chromium, Hex	avalent	ug/L	05/06	/2011 11:26	1.05	0.0210	0.20	ND
994988-007 Chromium, Hex	avalent	ug/L	05/06	/2011 13:32	5.25	0.110	1.0	1.9
994988-008 Chromium, Hex	avalent	ug/L	05/06	/2011 11:47	1.05	0.0210	0.20	15.0
994988-009 Chromium, Hexavalent		ug/L	05/06	/2011 14:55	5.25	0.110	1.0	2.0
994988-010 Chromium, Hexavalent		ug/L	05/06	/2011 15:47	5.25	0.110	1.0	ND
994988-011 Chromium, Hexavalent		ug/L	05/06/2011 16:08		5.25	0.110	1.0	ND
994988-012 Chromium, Hexavalent		ug/L	05/06	/2011 15:27	5.25	0.110	1.0	56.4
994988-013 Chromium, Hexavalent		ug/L	05/06	/2011 16:39	1.05	0.0210	0.20	ND
994988-014 Chromium, Hexavalent		ug/L	05/06	/2011 16:50	26.25	0.551	5.2	184.
994988-015 Chromium, Hex	avalent	ug/L	05/06	/2011 18:14	1.05	0.0210	0.20	ND
994988-016 Chromium, Hex	avalent	ug/L	05/06/2011 17:43		10.5	0.220	2.1	53.4
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	994988-001
Parameter	Unit	DF	Result	Expected	Į	RPD	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.05	9.78	9.95		1.74	0 - 20	
Lab Control Sample		* 4						
Parameter	Unit	DF	Result	Expected	Į	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	4.98	5.00		99.6	90 - 110)
Matrix Spike							Lab ID =	994988-001
Parameter	Unit	DF	Result	Expected/A	dded I	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.06	20,3	20.6(10.6)		97.8	90 - 110	_

Client: E2 Consulting Eng	ineers, Inc		oject Name: oject Number	PG&E Topock Pro : 405681.MP.02.GM	-	Page 3 of 18 Printed 6/6/2011
Matrix Spike						Lab ID = 994988-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.14	Expected/Added 1.14(1.06)	Recovery 100.	Acceptance Range 90 - 110 Lab ID = 994988-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.05	Expected/Added 1.06(1.06)	Recovery 99.0	Acceptance Range 90 - 110 Lab ID = 994988-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.57	Expected/Added 5.25(5.25)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 994988-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result ND	Expected/Added 1.06(1.06)	Recovery	Acceptance Range 90 - 110 Lab ID = 994988-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.13	Expected/Added 1.10(1.06)	Recovery 102.	Acceptance Range 90 - 110 Lab ID = 994988-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.18	Expected/Added 1.16(1.06)	Recovery 102.	Acceptance Range 90 - 110 Lab ID = 994988-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 7.03	Expected/Added 7.14(5.25)	Recovery 97.9	Acceptance Range 90 - 110 Lab ID = 994988-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result ND	Expected/Added 1.06(1.06)	Recovery	Acceptance Range 90 - 110 Lab ID = 994988-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.08	Result 36.4	Expected/Added 36.6(21.6)	Recovery 98.9	Acceptance Range 90 - 110 Lab ID = 994988-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 7.05	Expected/Added 7.23(5.25)	Recovery 96.5	Acceptance Range 90 - 110 Lab ID = 994988-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.46	Expected/Added 5.25(5.25)	Recovery 104.	Acceptance Range 90 - 110 Lab ID = 994988-010
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 0.634	Expected/Added 1.06(1.06)	Recovery 59.8	Acceptance Range 90 - 110

Client: E2 Consulting Eng	ineers, Ind		oject Name: oject Number	PG&E Topock Pro :: 405681.MP.02.GM	-	Page 4 of 18 Printed 6/6/2011
Matrix Spike						Lab ID = 994988-011
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.59	Expected/Added 5.25(5.25)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 994988-011
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result ND	Expected/Added 1.06(1.06)	Recovery	Acceptance Range 90 - 110 Lab ID = 994988-012
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 135.	Expected/Added 135.(78.8)	Recovery 99.9	Acceptance Range 90 - 110 Lab ID = 994988-013
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.12	Expected/Added 1.12(1.06)	Recovery 101.	Acceptance Range 90 - 110 Lab ID = 994988-014
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 26.25	Result 455.	Expected/Added 446(262.)	Recovery 103.	Acceptance Range 90 - 110 Lab ID = 994988-015
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.74	Expected/Added 5.44(5.25)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 994988-015
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.09	Expected/Added 1.06(1.06)	Recovery 103.	Acceptance Range 90 - 110 Lab ID = 994988-016
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 10.5	Result 151.	Expected/Added 158.(105)	Recovery 93.4	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.99	Expected 5.00	Recovery 99.8	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 6 of 18

Project Number: 405681.MP.02.GM.04

Printed 6/6/2011

Chrome VI by EPA 218.6			Batch	05CrH11K				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
994988-017 Chromium, Hexa	avalent	ug/L	05/08	/2011 14:14	5.25	0.110	1.0	19.3
994988-018 Chromium, Hexa	avalent	ug/L	05/08	/2011 14:35	5.25	0.110	1.0	22.5
994988-019 Chromium, Hexa	avalent	ug/L	05/08	/2011 14:46	5.25	0.110	1.0	18.3
994988-020 Chromium, Hexa	avalent	ug/L	05/08	/2011 15:58	5.25	0.110	1.0	ND
994988-021 Chromium, Hexa	avalent	ug/L	05/08	/2011 18:03	10.5	0.220	2.1	ND
994988-022 Chromium, Hexa	avalent	ug/L	05/08	/2011 18:14	10.5	0.220	2.1	ND
994988-023 Chromium, Hexa	avalent	ug/L	05/08	/2011 19:06	26.2	0.550	5.2	6.6
994988-024 Chromium, Hexa	avalent	ug/L	05/08	/2011 17:32	5.25	0.110	1.0	ND
994988-025 Chromium, Hexa	avalent	ug/L	05/08	/2011 20:30	5.25	0.110	1.0	6.3
994988-026 Chromium, Hexa	avalent	ug/L	05/08	/2011 19:26	1.05	0.0210	0.20	1.0
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	994988-017
Parameter	Unit	DF	Result	Expected	ı	RPD	Accepta	ince Range
Chromium, Hexavalent	ug/L	5.25	19.6	19.3		1.75	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	ļ	Recovery	Accepta	ince Range
Chromium, Hexavalent	ug/L	1.00	4.95	5.00		99.0	90 - 110)
Matrix Spike							Lab ID =	994988-017
Parameter	Unit	DF	Result	Expected/A	dded I	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	45.9	45.5(26.2)		101.	90 - 110	
Matrix Spike							Lab ID =	994988-018
Parameter	Unit	DF	Result	Expected/A	dded I	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	49.5	48.7(26.2)		103.	90 - 110)
Matrix Spike							Lab ID =	994988-019
Parameter	Unit	DF	Result	Expected/A	dded I	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	43.0	44.5(26.2)		94.2	90 - 110	כ
Matrix Spike							Lab ID =	994988-020
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	5.18	5.25(5.25)		98.6	90 - 110)

Client: E2 Consulting Eng	ineers, Inc		oject Name: oject Numbe	ject 1.04	Page 7 of 18 Printed 6/6/2011		
Matrix Spike						Lab ID = 994988-021	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 10.5	Result 10.7	Expected/Added 10.5(10.5)	Recovery 102.	Acceptance Range 90 - 110 Lab ID = 994988-022	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 10.5	Result 10.8	Expected/Added 10.5(10.5)	Recovery 103.	Acceptance Range 90 - 110 Lab ID = 994988-023	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 26.2	Result 30.3	Expected/Added 32.8(26.2)	Recovery 90.2	Acceptance Range 90 - 110 Lab ID = 994988-024	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.07	Expected/Added 5.25(5.25)	Recovery 96.5	Acceptance Range 90 - 110 Lab ID = 994988-025	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 31.5	Expected/Added 32.5(26.2)	Recovery 96,2	Acceptance Range 90 - 110 Lab ID = 994988-026	
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 6.17	Expected/Added 6.31(5.30)	Recovery 97.4	Acceptance Range 90 - 110	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.94	Expected 5.00	Recovery 98.7	Acceptance Range 90 - 110	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102.	Acceptance Range 95 - 105	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102.	Acceptance Range 95 - 105	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.97	Expected 10.0	Recovery 99.7	Acceptance Range 95 - 105	
Parameter Chromium, Hexavalent	Unit ug/L	DF 1,00	Result 9.86	Expected 10.0	Recovery 98.6	Acceptance Range 95 - 105	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 8 of 18


Project Number: 405681.MP.02.GM.04

Printed 6/6/2011

Chrome VI by EPA 218.6			Batch	05CrH11M					
Parameter	piekā pilki ie vils ās biekā viejs:	Unit	Апа	lyzed	DF	MDL	RL	Result	
994988-027 Chromium, Hex	avalent	ug/L	05/09	/2011 15:01	5.25	0.110	1.0	1.0	
994988-028 Chromium, Hexa	avalent	ug/L	05/09	/2011 14:30	10.5	0.220	2.1	53.2	
994988-029 Chromium, Hexa	avalent	ug/L	05/09	/2011 14:41	5.25	0.110	1.0	30.2	
994988-030 Chromium, Hexa	avalent	ug/L	05/09	/2011 14:51	5.25	0.110	1.0	14.1	
994988-031 Chromium, Hexa	avalent	ug/L	05/09	/2011 16:04	5.25	0.110	1.0	20.7	
994988-032 Chromium, Hexa	994988-032 Chromium, Hexavalent ug/L		05/09	/2011 17:48	5.25	0.110	1.0	11.2	
994988-033 Chromium, Hex	988-033 Chromium, Hexavalent ug/L		05/09	/2011 17:58	5.25	0.110	1.0	10.7	
994988-034 Chromium, Hexavalent ug/L		05/09	/2011 16:35	5.25	0.110	1.0	26.1		
994988-035 Chromium, Hexavalent		ug/L	05/09	/2011 16:46	5.25	0.110	1.0	29.4	
994988-036 Chromium, Hexavalent		ug/L	05/09	/2011 18:09	5.25	0.110	1.0	5.8	
Method Blank									
Parameter	Unit	DF	Result						
Chromium, Hexavalent	ug/L	1.00	ND						
Duplicate							Lab ID =	995018-001	
Parameter	Unit	DF	Result Expected RPD		RPD	Accepta	ance Range		
Chromium, Hexavalent	ug/L	1.05	2.31	2.29		1.04	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range	
Chromium, Hexavalent	ug/L	1.00	5.06	5.00		101.	90 - 11	0	
Matrix Spike							Lab ID =	994988-027	
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range	
Chromium, Hexavalent	ug/L	5.25	5.91	6.28(5.25)		93.0	90 - 11	0	
Matrix Spike							Lab iD =	994988-028	
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	•	ance Range	
Chromium, Hexavalent	ug/L	10.5	151.	158.(105)		93.1	90 - 11		
Matrix Spike							Lab ID =	994988-029	
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	-	ance Range	
Chromium, Hexavalent	ug/L	5.25	77.7	82.7(52.5)		90.4	90 - 11		
Matrix Spike							Lab ID =	994988-030	
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	•	ance Range	
Chromium, Hexavalent	ug/L	5.25	39.8	40.3(26.2)		98.0	90 - 11	0	

Client: E2 Consulting Eng	ineers, Inc		oject Name: oject Number	PG&E Topock Pro : 405681.MP.02.GM	-	Page 9 of 18 Printed 6/6/2011
Matrix Spike						Lab ID = 994988-031
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 46.7	Expected/Added 46.9(26.2)	Recovery 99.3	Acceptance Range 90 - 110 Lab ID = 994988-032
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 37.0	Expected/Added 37.4(26.2)	Recovery 98.6	Acceptance Range 90 - 110 Lab ID = 994988-033
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 36.5	Expected/Added 36.9(26.2)	Recovery 98.5	Acceptance Range 90 - 110 Lab ID = 994988-034
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 50.6	Expected/Added 52.3(26.2)	Recovery 93.6	Acceptance Range 90 - 110 Lab ID = 994988-035
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 81.5	Expected/Added 81.9(52.5)	Recovery 99.3	Acceptance Range 90 - 110 Lab ID = 994988-036
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 30.8	Expected/Added 32.0(26.2)	Recovery 95.3	Acceptance Range 90 - 110 Lab ID = 995018-001
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 7.47	Expected/Added 7.59(5.30)	Recovery 97.8	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.00	Expected 5.00	Recovery 100.	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.2	Expected 10.0	Recovery 102.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.96	Expected 10.0	Recovery 99.6	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.0	Expected 10.0	Recovery 100.	Acceptance Range 95 - 105

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.GM.04

Page 11 of 18

Printed 6/6/2011

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
994988-037 Chromium, Hexa	valent	ug/L	05/10	/2011 12:07 5	5.25	0.110	1.0	14.4
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	995048-007
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Chromium, Hexavalent	ug/L	10.5	176.	178		1.32	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	4.98	5.00		99.5	90 - 11	0
Matrix Spike							Lab ID =	994988-037
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	39.5	40.6(26.2)		95.7	90 - 11	0
Matrix Spike			- 10 - 1				Lab ID =	995048-003
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	5.25	5.29	5.25(5.25)		101.	90 - 11	0
Matrix Spike							Lab ID =	995048-003
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	1.06	ND	1.06(1.06)			90 - 11	0
Matrix Spike							Lab ID =	995048-00
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	5.25	5,18	5.25(5.25)		98.6	90 - 11	0
Matrix Spike							Lab ID ≃	995048-00
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	1.06	ND	1.06(1.06)			90 - 11	0
Matrix Spike							Lab ID =	995048-00
Parameter	Unit	DF	Result	Expected/Addd	ed F	Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	10.5	376.	388(210.)		94.1	90 - 11	0
Matrix Spike							Lab ID =	995048-009
Parameter	Unit	DF	Result	Expected/Add	ed F	Recovery	Accept	ance Range
Chromium, Hexavalent	ug/L	52.5	992.	1010(525)		96.3	90 - 11	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681,MP.02.GM.04

Page 13 of 18 Printed 6/6/2011

Parameter		Unit	Anal	yzed	DF	MDL	RL	Result	
994988-001 Chromium		ug/L	05/12	/2011 01:44	5.00	0.110	1.0	10.6	
994988-003 Chromium		ug/L	05/12	/2011 02:19	5.00	0.110	1.0	ND	
994988-004 Chromium		ug/L	05/12	/2011 02:26	5.00	0.110	1.0	ND	
994988-005 Chromium		ug/L	05/12	/2011 02:33	5.00	0.110	1.0	ND	
994988-006 Chromium		ug/L	05/12	/2011 02:39	5.00	0.110	1.0	ND	
994988-007 Chromium		ug/L	05/12	/2011 02:46	5.00	0.110	1.0	2.4	
994988-008 Chromium		ug/L	05/12	/2011 03:28	5.00	0.110	1.0	15.9	
994988-009 Chromium		ug/L	05/12	/2011 03:35	5.00	0.110	1.0	2.3	
994988-010 Chromium		ug/L	05/12	/2011 03:42	5.00	0.110	1.0	ND	
994988-011 Chromium		ug/L	05/12	/2011 03:49	5.00	0.110	1.0	ND	
994988-012 Chromium		ug/L	05/12	/2011 03:56	5.00	0.110	1.0	62.5	
994988-013 Chromium		ug/L	05/12	/2011 04:09	5.00	0.110	1.0	ND	
994988-014 Chromium		ug/L	05/12	/2011 04:16	5.00	0.110	1.0 201		
994988-015 Chromium		ug/L	05/12	/2011 04:30	5.00	0.110	1.0 10.8		
994988-016 Chromium		ug/L	05/12	/2011 04:58	5.00	0.110	1.0	55.9	
994988-017 Chromium		ug/L	05/12/2011 05:12 5.00 0		0.110	1.0	19.4		
Method Blank									
Parameter	Unit	DF	Result						
Chromium	ug/L	1.00	ND						
Duplicate							Lab ID =	995059-001	
Parameter	Unit	DF	Result	Expected		RPD	Accept	ance Range	
Chromium	ug/L	1.00	ND	0.00		0	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range	
Chromium	ug/L	1.00	48.0	50.0		96.0	85 - 11	5	
Matrix Spike							Lab ID = 9950		
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Acceptance Ra		
Chromium	ug/L	1.00	48.2	50.0(50.0)		96.5	96.5 75 - 125		
Matrix Spike Duplicate							Lab ID = 9950		
Parameter	Unit	DF	Result	Expected/A	\dded	Recovery	•	ance Range	
Chromium	ug/L	1.00	47.2	50.0(50.0)		94.3	75 - 12	5	

Client: E2 Consulting En	gineers, Inc.		roject Name: roject Number	PG&E Topock :: 405681.MP.02	•	Page 14 of 18 Printed 6/6/2011
MRCCS - Secondary						
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.9	Expected 50.0	Recovery 93.9	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.8	Expected 50.0	Recovery 99.6	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 50.5	Expected 50.0	Recovery 101.	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 51.6	Expected 50.0	Recovery 103.	Acceptance Range 90 - 110
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1,00	Result 49.8	Expected 50.0	Recovery 99.7	Acceptance Range 90 - 110
Parameter Chromium Interference Check St	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L	DF 1.00	Result 46.7	Expected 50.0	Recovery 93.3	Acceptance Range 80 - 120
Parameter Chromium Serial Dilution	Unit ug/L	DF 1.00	Result 47.7	Expected 50.0	Recovery 95.4	Acceptance Range 80 - 120 Lab ID = 994988-012
Parameter Chromium	Unit ug/L	DF 25.0	Result 58.7	Expected 62.5	RPD 6.32	Acceptance Range 0 - 10

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681,MP.02.GM.04

Page 15 of 18 Printed 6/6/2011

Metals by EPA 6020A, Dissolved			Batch	051111C						
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result		
994988-018 Chromium		ug/L	05/12	/2011 06:35	5.00	0.110	1.0	24.4		
994988-019 Chromium		ug/L	05/12	/2011 07:09	5.00	0.110	1.0	18.9		
994988-020 Chromium		ug/L	05/12	/2011 07:44	5.00	0.110	1.0	ND		
994988-021 Chromium		ug/L	05/12	/2011 07:51	5.00	0.110	1.0	ND		
994988-022 Chromium		ug/L	05/12	/2011 07:58	5.00	0.110	1.0	ND		
994988-023 Chromium		ug/L	05/12	/2011 08:05	5.00	0.110	1.0	ND		
994988-024 Chromium		ug/L	05/12	/2011 08:12	5.00	0.110	1.0	ND		
994988-025 Chromium		ug/L	05/12	/2011 08:19	5.00	0.110	1.0	7.2		
994988-026 Chromium		ug/L	05/12	/2011 08:26	5.00	0.110	1.0	1.7		
994988-027 Chromium		ug/L	05/12	/2011 08:32	5.00	0.110	1.0	14.7		
994988-028 Chromium		ug/L	05/12	/2011 08:39	5.00	0.110	1.0	56.8		
994988-029 Chromium		ug/L	05/12	/2011 09:21	5.00	0.110	1.0	31.3		
994988-030 Chromium		ug/L	05/12	/2011 09:35	5.00	0.110	1.0	13.3		
994988-031 Chromium		ug/L	05/12	/2011 09:42	5.00	0.110	1.0	21.3		
994988-032 Chromium		ug/L	05/12	/2011 09:49	5.00	0.110	1.0	11.4		
994988-033 Chromium		ug/L	05/12	/2011 09:55	5.00	0.110	1.0	11.0		
994988-034 Chromium		ug/L	05/12	/2011 10:02	5.00	0.110	1.0	26.4		
994988-035 Chromium		ug/L	05/12	/2011 10:09	5.00	0.110	1.0	31.0		
994988-036 Chromium		ug/L	05/12	/2011 10:37	5.00	0.110	1.0	6.6		
994988-037 Chromium	·····	ug/L	05/12	/2011 10:44	5.00	0.110	1.0	12.5		
Method Blank										
Parameter	Unit	DF	Result							
Chromium	ug/L	1.00	ND							
Duplicate							Lab ID =	994988-018		
Parameter	Unit	DF	Result	Expected		RPD	Accept	ance Range		
Chromium	ug/L	5.00	24.3	24.4		0.246	0 - 20			
Lab Control Sample										
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range		
Chromium	ug/L	1.00	49.7	50.0		99.5				
Matrix Spike				• •			Lab ID =	994988-018		
Parameter	Unit	DF	Result	Expected/A	\dded	Recovery	Accepta	ance Range		
Chromium	ug/L	5.00	280.	274.(250.)		102.	75 - 12	5		

Client: E2 Consulting En	gineers, Inc		roject Name: roject Number	PG&E Topock Pro: 405681.MP.02.GM	=	Page 16 of 18 Printed 6/6/2011
Matrix Spike Duplicate	•					Lab ID = 994988-018
Parameter Chromium MRCCS - Secondary	Unit ug/L	DF 5.00	Result 276.	Expected/Added 274.(250.)	Recovery 101.	Acceptance Range 75 - 125
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.2	Expected 50.0	Recovery 98.5	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.6	Expected 50.0	Recovery 99.3	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.5	Expected 50.0	Recovery 96.9	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 49.7	Expected 50.0	Recovery 99.4	Acceptance Range 90 - 110
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1.00	Result 49.3	Expected 50.0	Recovery 98.6	Acceptance Range 90 - 110
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check Si	Unit ug/L andard AB	DF 1.00	Result 47,6	Expected 50.0	Recovery 95.2	Acceptance Range 80 - 120
Parameter Chromium Serial Dilution	Unit ug/L	DF 1.00	Result 46.3	Expected 50.0	Recovery 92.6	Acceptance Range 80 - 120 Lab ID = 994988-029
Parameter Chromium	Unit ug/L	DF 25.0	Result 31.7	Expected 31.3	RPD 1.36	Acceptance Range 0 - 10

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 17 of 18

Project Number: 405681.MP.02.GM.04

Printed 6/6/2011

Parameter		Unit	Ana	iyzed	DF	MDL	RL	Result
94988-002 Chromium		ug/L	05/13/2011 00:32		.00	0,110	1.0	1.2
Method Blank			, , , , , , , , , , , , , , , , , , , ,				,	,
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Duplicate							Lab ID =	994988-00
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Rang
Chromium	ug/L	5.00	9.77	10.5		7.19	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang
Chromium	ug/L	1.00	49.9	50.0		99.8	85 - 11	5
Matrix Spike							Lab ID =	994988-00
Parameter	Unit	DF	Result	Expected/Adde	ed l	Recovery	Acceptance Ran	
Chromium	ug/L	5.00	249.	260.(250.)		95.5	75 - 12	5
Matrix Spike Duplicate							Lab ID =	994988-00
Parameter	Unit	DF	Result	Expected/Adde	ed F	Recovery	Accepta	ance Rang
Chromium	ug/L	5.00	248.	260.(250.)		95.2	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accept	ance Rang
Chromium	ug/L	1.00	46.5	50.0		93.0	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accept	ance Rang
Chromium	ug/L	1.00	48.3	50.0		96.6	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	I	Recovery	Accept	ance Rang
Chromium	ug/L	1.00	49.8	50.0		99.5	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accept	ance Rang
Chromium	ug/L	1.00	47.9	50.0		95.8	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	ı	Recovery	Accept	ance Rang
Chromium	ug/L	1.00	47.7	50.0		95.5	90 - 11	0

Client: E2 Consulting En	gineers, Inc		oject Name: oject Numbel	Page 18 of 18 Printed 6/6/2011		
Interference Check St	andard A					
Parameter Chromium Interference Check St	Unit ug/L andard A	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Chromium Interference Check St	Unit ug/L andard AB	DF 1.00	Result 46.7	Expected 50.0	Recovery 93.4	Acceptance Range 80 - 120
Parameter Chromium	Unit ug/L	DF 1.00	Result 46.6	Expected 50.0	Recovery 93.3	Acceptance Range 80 - 120

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

√Mona Nassimi

Manager, Analytical Services

994988 CHAIN OF CUSTODY RECORD CH2MHILL 5/4/2011 2:59:47 PM Page 1 OF 4 500 ml 500 ml Project Name PG&E Topock ml Poly Poly Poly Rec'd 05/04/11 Location Topock NH4)2SO (NH4)2SO HNO3, HNO3, Preservatives: 4/NH40H 4/NH4OH, 4°C 4°C Lab#: **994988** Project Number 405681.MP.02.GM.04 * Where provided w/2 Cr6
bottles, analyze 1 + hold 1 Project Manager Jay Piper Filtered: Field Field NA Field Holding Time: 28 28 180 180 Sample Manager Shawn Duffy Metals (SW6010B/SW6020A) Chromium Task Order Cr6 (E218.6) Field Filtered Project 2011-GMP-177-Q2 Number of Containers Turnaround Time 10 Days Shipping Date: 5/4/2011 COC Number: 4 DATE TIME COMMENTS Matrix 174-2 . \ MW-16-177 5/2/2011 14.59 Water St. X X MW-21-177-EB 13:24 1 5/2/2011 Water Ä. MW-28-025-177 11:32 Water X 3 5/2/2011 X m:2For Sample Conditions
See Form Attached MW-28-025-177-EB 11:01 5/2/2011 Water X 100 3 MW-28-090-177 12:26 Water X M=2 5/2/2011 X MW-28-090-177-EB 5/2/2011 11:52 Water. ж 4 ₩W-32-035-177 m1=2 5/2/2011 13:51 Water × X Jol d MW-32-035-177-EB 12:55 · Š 5/2/2011 Water X -S MW-33-040-177 3 M =2 5/2/2011 15:06 Water Ľ X Idel MW-33-040-177-EB 5/2/2011 香醇:清語 Water 1 X 2 MW-36-090-177 15:05 Water 5/2/2011 ð. X 73 5/2/2011 12:43 Water * X 1 MW-72-177 5/2/2011 15:45 Water 2 MW-73-177 5/2/2011 15:30 Water X er e MW-17-177 5/3/2014 13:16 Water M=2

Approved by Sampled by inquished by

Received by

Reflectived by Relinquished by Relinquished by

5-4-11 5-15-10

//Signatures

5-4-11 15:10 5-4-11 Shipping Details

Method of Shipment: co

On Ice: yes / no

Airbill No:

Lab Name: Truesdall Laboratories, Inc.

Lab Phone: (714) 730-6239

ATTN:

Special Instructions: April 28 - May 13, 2011

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303

994988 CHAIN OF CUSTODY RECORD CH2MHILL 5/4/2011 2:59:47 PM Page 2 OF 4 500 ml Project Name PG&E Topock Container ml Poly Poly Poly Location Topock NH4)2SO (NH4)2SO HNO3. HNO3. Preservatives: 4/NH4OH, 4/NH4OH 4°C 4°C Project Number 405681,MP.02,GM.04 Project Manager Jay Piper * Where provided w/2 (16 bottles, analyze 1 + hold 1 Filtered: Field Field NΑ Field Sample Manager Shawn Duffy **Holding Time:** 28 28 180 180 Metals (SW6010B/SW6020A) Chromium Task Order Cr6 (E218.6) Field Filtered Project 2011-GMP-177-Q2 (E218.6R) Field Filtered Number of Containers Turnaround Time 10 Days Shipping Date: 5/4/2011 COC Number: 4 DATE TIME Matrix COMMENTS -9 MW-21-177 Water 5/3/2011 17:17 Х X 3 -10 MW-22-177 5/3/2011 15:55 Water X 2 X -/(MW-30-030-177 2 M=2 5/3/2011 13:22 Water X X -12 MW-36-100-177 5/3/2011 14:12 Water W. X MW-44-070-177 6/3/2011 0:28 Water X 2 MW-44-070-177-EB 5/3/2011 8:15 Water X -/V MW-44-115-177 3 5/3/2011 10:01 Water X X -45 MW-44-125-177 5/3/2011 12:18 Water X И e de MW-46-175-177 2 5/3/2011 16:05 Water X)r Ž MW-47-055-177 5/3/2011 16:52 Water X. X M =2 MW-47-115-177 2 5/3/2011 16:03 Water X X MW-50-095-177 5/3/2011 14:21 Water X 9 X -2d MW-52D-177 5/3/2011 11:35 Water 1 M X .- Zi MWV-52M-177 10:45 3 5/3/2011 Water X M -27 MW-528-177 5/3/2011 9.40 Water X 3

Approved by Sampled by inquished by Ceived by Relinquished by

Received by

		5-4
Rafael I Kafael D	Davila	5-4-
Luda	5/4/11	21:30

✓ Signatures

Date/Time 5-4-11 -1570

Shipping Details

Method of Shipment: courier

On ice: yes / no

5-4-1/ Airbill No: 5/4/1/ 21:30 Name: Truesdail Laboratories, Inc.

Lab Phone: (714) 730-6239

Special Instructions: April 28 - May 13, 2011

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303 994985

					7 1	00					
(CH2MHILL				.		,		OF CUSTODY RECORD 5/4/2011 2:59:48 PM	Page	3 OF 4
	Project Name PG&E Topock Location Topock Project Number 405681.MP.02 Project Manager Jay Piper Sample Manager Shawn Duffy	2.GM.04	Prese	Container ervatives: Filtered: ing Time:	Poly (NH4)2SO 4/NH4OH, 4°C Field	2x250 ml Poly (NH4)2SO 4/NH4OH, 4°C Field	Poly HNO3, 4°C NA	500 ml Poly HNO3, 4°C Field	& where provided w/2 Cr6 bothles, analyze 1+ hold 1		
	Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/4/2011 COC Number: 4				Cr6 (E218.6) Field Filtered	Cr6 (E218.6R) Field Filtered	Metals (SW6010B/SW6020A) Chromium		bottles, analyze (+ hold)	Number of Containers	рН fs- sw сок богы
2.	E \$2.37 \$2.54% \$5.50%	DATE	7	Matrix							COMMENTS
1	WW-500-177	5/3/2011	13:15	Water		X		Х		å	<u> </u>
┝	WW-53W-577	5/3/2011	14:35	Water		Ж		Ж		3	/
-	MW-57-185-177	6/3/2011	11:46	Water	X			X		2	(N.1 = 2
H	MW-63-065-177	5/3/2011	9:42	Water	х			Х,		2	
L	MW-7A-577	5/3/2011	16:24	Water	X					4	Hold
Ļ	WW-75-177	5/3/2011	17:00	Water	X					⁴	Hold
L	MW-95-177	5/3/2011	11:52	Water	X			х		2	_
-	MW-96-177	5/3/2011	15:53	Water	Х			Ж.		2	
L	MW-23-060-177	5/4/2011	10:06	Water	X			X		2	<u> </u>
-	MW-23-080-177	5/4/2011	11:33	Water	Х			X		2	[m 2)
L	MW-33-090-177	5/4/2011	14:08	Water	×			X		2	V
1	MW-33-150-177	5/4/2011	10:45	Water	X.			х		2	
1	WW-33-210-177	5/4/2011	12:03	Water	Х			X		2	
_	WW-35-060-177	5/4/2011	12:39	Water	X			х		2	
	WW-35-136-177	5/4/2011	13:35	Water	×			х		2	/
\	Approved by Sampled by Ginquished by Rebeived by Relinquished by	Davila Davila		Date/ 5-4- 157 5-4	4 0 - 4	On loc	od of Sh e: yes l No:	ipment: / no	Courier Sample Custody Report Copy to		
	Received by Kafach J	buila 2 1/9	5-4	21:	21: 21:	Z LÃb P	hone: (119911011 (714) 730	Shawn Duffy (530) 229-3303		

CH2MHILL	\mathcal{G}	9491	58		CHAIN	OF CUSTODY RECORD	5/4/2011 2:59:48 PM	Page	_4_ OF _4_
Project Name PG&E Topock Location Topock	Conta	Poly	лі Poly		500 mi Poly				
Project Number 405681.MP.02.G	Preservat M.04	ves: 4/NH40i 4°C	O (NH4)2SC 1, 4/NH4OH 4°C	HNO3, 4°C	HNO3, 4°C				
Project Manager Jay Piper	Fift	red: Field	Field	NA	Field				
Sample Manager Shawn Duffy	Holding T	ime: 28	28	180	180				
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/4/2011 COC Number: 4		rio (E718-0) Lieid Lineid			Metals (SW6010B/SW6020A) Field Filtered Chromium		Velli QC	Number of Containers	H for المالاي مدو المحدود 60
	DATE TIME Ma	trix							COMMENTS
MW-46-205-177 5	/4/2011 9:23 Wa	itor X			Х			2	M=2
MW-77-177 5	/4/2011 14:40 W a	iter x						4	Hold

X

M=2

TOTAL NUMBER OF CONTAINERS

3.7 MW-92-177

11:32 Water

Х

5/4/2011

Date/Time **S**ignatures Shipping Details Special Instructions: Approved by ATTN: April 28 - May 13, 2011 Method of Shipment: Sampled by Hinquished by Received by courier On Ice: yes / no Sample Custody Airbill No: Lab Name: Truesdall Laboratories, Inc.
Lab Phone: (714) 730-6239 Report Copy to Relinquished by Shawn Duffy Received by (530) 229-3303

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lat	Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials	
ळ व्हि।	994	983-9	9,5	N/A	A/G	WA	SB.	
V		-10	4	1	J	J	1	
05/05/11	991	1984	9.5	N/A	N/A	NA	\mathcal{Z} 2	
05/05/01	99	4985-1	9.5	2/4	P/A	NA	ZZ.	
V		<u> </u>	J.	7	1	J	j.	
osposlu	99	4986	9,5	A/A	NA	N/A	SB	
05/05/11			9.5	A/G	N/A	4/4	<i>5</i> 2	
05/05/11	994988-1		9.5	12/A	N/A	N/A	<i>E</i> 2	
		2	<u> </u>			<u> </u>		
		- 4		·				
<u> </u>		-5		·				
		-6				·		
		-7 -8		·				
		-8						
		~9						
		-10						
		<u>~ 4</u>						
		-12						
		-13						
		-14			·			
		-15						
		-16				·		
		_17						
		-18						
		-19				·		
		-2 0						
		-21						
		-12						
		-23						
4	1	-24	<u> </u>	بول	ملاد	J	W	

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
05/05/11	994988-25	9,5	A/A	4/C	N/A	SB
١	1 -26	î				
	~27					
	-28					
	-29					
-	-30					
	-31					
	-32					
	- 33					
	-34		·			
	-35					
	-3b					
7	1 −37	<u> </u>	*		争	4
05/06/11	995017-4	9.5	12/14	14/4	r\/A	Έ Β
05/06/11	995018	9.5	n/A	N/A	NA	SB
05/06/11	995019-1	9.5	A\\\\	N/A	N/A	SB
1	4 -2	7	J.	Ù	ン	j
05/06/11	995020-1	9.5	N/A	AIN	N/A	SB
L	1 -2	J	<u> </u>	J	J	J
05/06/11	995021 -1	9.5	4/4	A/u	N/A	SB
<u> </u>	1 -2					
	-3					
1	J -4	4	+	<i>y</i>	· b	¥
105/06/11	995022-1	9.5	4/4	NA	12/A	SB
	-2 -3					<u> </u>
	-4	J	7	J	حل	4
05/06/ic	995023 - i	9.5	4\4	4/4	AU	2B
	1-2		<u> </u>		<u> </u>	İ
	-3					
4	1 -4	4			<u> </u>	?

Turbidity/pH Check

			bidity/pn C			
Sample Number	Turbidity	рН	Date	Anaiyst	Need Digest	Adjusted to pH<2 (Y/N)
994 988/1-37)	< l	<u> </u>	5/6/11	MG	No	<u> </u>
994987 (1-25	71	22	5/5/11	ĒŚ	4-65	
994987(4-7)	41	L2	1	J	No	
995016	41	42	5611	ES	No	
995817(1-9)	<u></u>	1	21911		$\tilde{\mathcal{V}}$	
095026-4	41	11	5/6/11	Ε̈́S	Nu	
995043(1-3)	21	12 12	5 40 n	ES	40	
CHICALL O			- 1901	<u> </u>	70	
995044-2		 				DISSOLUED
995064 (1-7)					<u> </u>	TOTAL
095064(1-3)			ļ ļ		No	10171
795065(1-10)				-	No.	
Total 995023(1-6)	<u> </u>	<u></u>			<u> </u>	
995 059(1-3)		72	5/9/11	<u> </u>	No	ys 22:00 pm
994871(1-a)	41	12	5/3/11	<u> </u>	No	
15\$ 994913 (1-6)	41	22	5911	ES	NO	
-994907						
995 101 (1-72)	71	<u> </u>	11112	ĖŞ	74	
995101(3-4)	41				No	
995102(1-13)	21	12			Yes (3,5,7,12)	
Total 995 103 (1-4-4)	41	42			No	
195 995 103 (1-8)	41_	12			Yes	
995 130 (25)		SOIL	5/12/11	ES	Yes	TYLC
995130-1	Li	42		1	Yu	3010A
995093(1-3)	41	ワス		7	Yu No	ys 209200
495 108	71	L2		. Y	Yes	-
995095	41	42		l l	~8	
995100	4	72				yesagino
995 125 (1-9)	41	42			No	
0155 995128(1-2)	21	22			74	30/8 A
70 al 995-124 (1-2)		12			NO	
0155 995 129(1-1)				1./		30 184
T+ 09 (120 (122)	41	12 12		1/	110	
19498eki)	41	42	5/9	KIR	To yes	No
995018(1)		12	-1/	4	To VS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
995/68	21		5113	M.U	Yes	 `\
995150 (173	1 41	≥ 2 → 2	5/10	KK.	NO	Ves @ 5:50
(05) 5((1)	121	>2	10/10		1/20	1000000
995151(1-6)	- <u>-</u>		 			
ca 5 53 -9	121	22	 		 	
	<u> </u>	22	<u> </u>	- V	 \	V
	4!	7-6	š/n	ES	No.	
178		 	 	 	 	
995204	ļ	<u> </u>	 	 		
205	<u> </u>		 -	<u> </u>		
201	 	 			1-1	
202						
207		<u> </u>		<u></u>	<u> </u>	
995 183 (12,U)	<u> </u>	72	<u> </u>	ļ /	<u> </u>	UN 24: 70 P.M
995192-5	1 1/2	+ L		i #	T	Jy 14 30 p.
945211(1-8)	72	+ *2		 	420	

Sample Integrity & Analysis Discrepancy Form

Clie	ont: EZ	_ Lab# <u>9</u> ;	2418
Dat	e Delivered: 5/4/11 Time: 2/30 By: □Mail □	AField Service	□ <i>Client</i>
1.	Was a Chain of Custody received and signed?	⊠Ýes □No	□N/A
2 .	Does Customer require an acknowledgement of the COC?	□Yes □No	⊡ N⁄A
3.	Are there any special requirements or notes on the COC?	□Yes □No	DNA
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No	DNA
5 .	Were all requested analyses understood and acceptable?	ØYes □No	□ <i>N/A</i>
6.	Were samples received in a chilled condition? Temperature (if yes)? 4°C	ØYes □No	□ <i>N/A</i>
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	□Yes □No	□N/A
8.	Were sample custody seals intact?	□Yes □No	□N/A
9.	Does the number of samples received agree with COC?	⊠Yes □No	□N/A
10.	Did sample labels correspond with the client ID's?	☑Yes □No	□N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: ☑ Truesdali ☐ Client	ØYes □No	□N/A
12.	Were samples pH checked? pH = <u>See</u> Ço, C	ØYes □No	□N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ØYes □No	
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH ☑ Std	⊡Yes □No	□N⁄A
15.	Sample Matrix:	d Water	
16.	Comments:	//	
17.	Sample Check-In completed by Truesdall Log-In/Receiving:	Hipo/110	

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

June 6, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:


CASE NARRATIVE PG&E TOPOCK 2011-GMP-177-Q2, GROUNDWATER MONITORING PROJECT, TLI No.: 995048

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2011-GMP-177-Q2 groundwater-monitoring project for Hexavalent and Total Dissolved Chromium. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody May 6, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the discrepancy between the Total Dissolved Chromium (346 ug/L) and Hexavalent Chromium (486 ug/L) results for sample MW-57-070-177, Mr. Shawn Duffy of CH2M Hill was notified. Sample from both the Total Dissolved Chromium and Hexavalent Chromium sample containers were analyzed for Total Dissolved Chromium. After discussing the results with Mr. Duffy, the Total Dissolved Chromium result from the Hexavalent Chromium sample container is reported.

Due to the discrepancy between the Total Dissolved Chromium (421 ug/L) and Hexavalent Chromium (594 ug/L) results for sample MW-97-177, Mr. Shawn Duffy of CH2M Hill was notified. Sample from both the Total Dissolved Chromium and Hexavalent Chromium sample containers were analyzed for Total Dissolved Chromium. The results were 435 ug/L and 471 ug/L, respectively. The Hexavalent Chromium sample was also re-analyzed and yielded a result of 500 ug/L. After discussing the results with Mr. Duffy, the original Total Dissolved Chromium result and the re-analysis result for the Hexavalent Chromium are reported. The discrepancy between the original Hexavalent Chromium result and the re-analysis may have been due to a dilution error during the original analysis.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Fo - Mona Nassimi

Manager, Analytical Services

K.R.P. Iyer

Quality Assurance/Quality Control Officer

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (7) 4) 730-6239 - FAX (7) 4) 730-6462 - www.truesdail.com

Laboratory No.: 995048
Date Received: May 6, 2011

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 405681.MP.02.GM.04 P.O. No.: 405681.MP.02.GM.04

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Tim	e Parameter	Result	Units	RL
995048-001	MW-19-177	SM3500-CrB	FLDFLT	5/4/2011	14:45	Chromium, hexavalent	497	ug/L	20.0
995048-001	MW-19-177	SW6020	FLDFLT	5/4/2011	14:45	Chromium	494	ug/L	1.0
995048-002	MW-31-060-177	SM3500-CrB	FLDFLT	5/4/2011	16:06	Chromium, hexavalent	331	ug/L	20.0
995048-002	MW-31-060-177	SW6020	FLDFLT	5/4/2011	16:06	Chromium	324	ug/L	1.0
995048-003	MW-48-177	E218.6	FLDFLT	5/4/2011	15:49	Chromium, hexavalent	ND	ug/L	1.0
995048-003	MW-48-177	SW6020	FLDFLT	5/4/2011	15:49	Chromium	ND	ug/L	1.0
995048-004	MW-10-177	SM3500-CrB	FLDFLT	5/5/2011	15:24	Chromium, hexavalent	411	ug/L	20.0
995048-004	MW-10-177	SW6020	FLDFLT	5/5/2011	15:24	Chromium	384	ug/L	1.0
995048-005	MW-24BR-177	E218.6	FLDFLT	5/5/2011	13:58	Chromium, hexavalent	ND	ug/L	1.0
995048-005	MW-24BR-177	SW6020	FLDFLT	5/5/2011	13:58	Chromium	ND	ug/L	1.0
995048-006	MW-26-177	SM3500-CrB	FLDFLT	5/5/2011	16:28	Chromium, hexavalent	2010	ug/L	50.0
995048-006	MW-26-177	SW6020	FLDFLT	5/5/2011	16:28	Chromium	1890	ug/L	1.0
995048-007	MW-37D-177	E218.6	FLDFLT	5/5/2011	9:06	Chromium, hexavalent	178	ug/L	2,1
995048-007	MW-37D-177	SW6020	FLDFLT	5/5/2011	9:06	Chromium	172	ug/L	1.0
995048-008	MW-40D-177	E218.6	FLDFLT	5/5/2011	10:12	Chromium, hexavalent	140	ug/L	2.1
995048-008	MW-40D-177	SW6020	FLDFLT	5/5/2011	10:12	Chromium	124	ug/L	1.0
995048-009	MW-57-070-177	E218.6	FLDFLT	5/5/2011	12:39	Chromium, hexavalent	486	ug/L	10.5
995048-009	MW-57-070-177	SW6020	FLDFLT	5/5/2011	12:39	Chromium	475	ug/L	2.0
995048-010	MW-60-125-177	E218.6	FLDFLT	5/5/2011	15:29	Chromium, hexavalent	1040	ug/L	21,0
995048-010	MW-60-125-177	SW6020	FLDFLT	5/5/2011	15:29	Chromium	959	ug/L	2.0
995048-011	MW-61-110-177	E218.6	FLDFLT	5/5/2011	14:02	Chromium, hexavalent	522	ug/L	10.5
995048-011	MW-61-110-177	SW6020	FLDFLT	5/5/2011	14:02	Chromium	531	ug/L	2.0

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Tim	ne Parameter	Result	Units	RL
995048-012	MW-62-065-177	E218.6	FLDFLT	5/5/2011	11:23	Chromium, hexavalent	488	ug/L	10.5
995048-012	MW-62-065-177	SW6020	FLDFLT	5/5/2011	11:23	Chromium	472	ug/L	1.0
995048-013	MW-62-110-177	E218.6	FLDFLT	5/5/2011	13:16	Chromium, hexavalent	569	ug/L	10.5
995048-013	MW-62-110-177	SW6020	FLDFLT	5/5/2011	13:16	Chromium	531	ug/L	2.0
995048-014	MW-62-190-177	E218.6	FLDFLT	5/5/2011	13:25	Chromium, hexavalent	ND	ug/L	1.0
995048-014	MW-62-190-177	SW6020	FLDFLT	5/5/2011	13:25	Chromium	ND	ug/L	1.0
995048-015	MW-91-177	SM3500-CrB	FLDFLT	5/5/2011	14:52	Chromium, hexavalent	391	ug/L	20.0
995048-015	MW-91-177	SW6020	FLDFLT	5/5/2011	14:52	Chromium	401	ug/L	1.0
995048-016	MW-97-177	E218.6	FLDFLT	5/5/2011	12:41	Chromium, hexavalent	500	ug/L	10.5
995048-016	MW-97-177	SW6020	FLDFLT	5/5/2011	12:41	Chromium	421	ug/L	2.0
995048-017	TW-01-177	SM3500-CrB	FLDFLT	5/5/2011	17:02	Chromium, hexavalent	3700	ug/L	250
995048-017	TW-01-177	SW6020	FLDFLT	5/5/2011	17:02	Chromium	3520	ug/L	20.0
995048-018	MW-12-177	SM3500-CrB	FLDFLT	5/6/2011	8:26	Chromium, hexavalent	2910	ug/L	250
995048-018	MW-12-177	SW6020	FLDFLT	5/6/2011	8:26	Chromium	2870	ug/L	20.0
995048-019	MW-20-070-177	SM3500-CrB	FLDFLT	5/6/2011	9:20	Chromium, hexavalent	3570	ug/L	250
995048-019	MW-20-070-177	SW6020	FLDFLT	5/6/2011	9:20	Chromium	3510	ug/L	20.0
995048-020	MW-20-100-177	SM3500-CrB	FLDFLT	5/6/2011	10:10	Chromium, hexavalent	5640	ug/L	250
995048-020	MW-20-100-177	SW6020	FLDFLT	5/6/2011	10:10	Chromium	560 <u>0</u>	ug/L	20.0
995048-021	MW-20-130-177	SM3500-CrB	FLDFLT	5/6/2011	11:25	Chromium, hexavalent	12100	ug/L	500
995048-021	MW-20-130-177	SW6020	FLDFLT	5/6/2011	11:25	Chromium	11500	ug/L	40.0
995048-022	MW-50-200-177	SM3500-CrB	FLDFLT	5/6/2011	11:40	Chromium, hexavalent	9720	ug/L	500
995048-022	MW-50-200-177	SW6020	FLDFLT	5/6/2011	11:40	Chromium	9080	ug/L	20.0
995048-023	MW-51-177	SM3500-CrB	FLDFLT	5/6/2011	9:36	Chromium, hexavalent	4730	ug/L	250
995048-023	MW-51-177	SW6020	FLDFLT	5/6/2011	9:36	Chromium	4690	ug/L	20.0
995048-024	MW-59-100-177	E218.6	FLDFLT	5/6/2011	10:36	Chromium, hexavalent	5240	ug/L	105
995048-024	MW-59-100-177	SW6020	FLDFLT	5/6/2011	10:36	Chromium	4520	ug/L	20.0

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project P.O. Number: 405681.MP.02.GM.04 Project Number: 405681.MP.02.GM.04

Laboratory No. 995048

Page 1 of 15

Printed 6/24/2011

Samples Received on 5/9/2011 9:30:00 PM

Field ID		Lab ID	Colle	cted	Matrix	<
MW-19-177		995048-001	05/04/2	011 14:45	Wate	r
MW-31-060-177		995048-002	05/04/2	011 16:06	Wate	r
MW-48-177		995048-003	05/04/2	011 15:49	Wate	r
MW-10-177		995048-004	05/05/2	011 15:24	Wate	r
MW-24BR-177		995048-005	05/05/2	011 13:58	Wate	r
MW-26-177		995048-006	05/05/2	011 16:28	Wate	r
MW-37D-177		995048-007	05/05/2	011 09:06	Wate	r
MW-40D-177		995048-008	05/05/2	011 10:12	Wate	r
MW-57-070-177		995048-009	05/05/2	011 12:39	Wate	r
MW-60-125-177		995048-010	05/05/2	011 15:29	Wate	r
MW-61-110-177		995048-011	05/05/2	011 14:02	Wate	r
MW-62-065-177		995048-012	05/05/2	011 11:23	Wate	r
MW-62-110-177		995048-013	05/05/2	011 13:16	Wate	r
MW-62-190-177		995048-014	05/05/2	011 13:25	Wate	r
MW-91-177		995048-015	05/05/2	011 14:52	Wate	r
MW-97-177		995048-016	05/05/2	011 12:41	Wate	r
TW-01-177		995048-017	05/05/2	011 17:02	Wate	r
MW-12-177		995048-018	05/06/2	011 08:26	Wate	r
MW-20-070-177		995048-019	05/06/2	011 09:20	Wate	r
MW-20-100-177		995048-020	05/06/2	011 10:10	Wate	r
MW-20-130-177		995048-021	05/06/2	011 11:25	Wate	r
MW-50-200-177		995048-022	05/06/2	011 11:40	Wate	r
MW-51-177		995048-023	05/06/20	011 09:36	Wate	r
MW-59-100-177		995048-024	05/06/2	011 10:36	Wate	r
Chrome VI by EPA 218.6		Batch 05CrH11O				
- Parameter	Unit	Analyzed	DF	MDL	RL	Result

Parameter	Unit	Analyzed	DF	MDL	RL	Result
995048-003 Chromium, Hexavalent	ug/L	05/10/2011 15:43	5.25	0.110	1.0	ND
995048-005 Chromium, Hexavalent	ug/L	05/10/2011 15:53	5.25	0.110	1.0	ND
995048-007 Chromium, Hexavalent	ug/L	05/10/2011 14:16	10.5	0.220	2.1	178.

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 2 of 15

Project Number: 405681.MP.02.GM.04 Printed 6/6/2011

95048-009 Chromium, Hexav	/alent	ug/L	05/10	/2011 13:10 52.	5 1.10	10.5 486.
Method Blank						
Parameter	Unit	DF	Result			
Chromium, Hexavalent	ug/L	1.00	ND			
Duplicate						Lab ID = 995048-00
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Rang
Chromium, Hexavalent	ug/L	10.5	176.	178	1.32	0 - 20
Lab Control Sample						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	1.00	4.98	5.00	99.5	90 - 110
Matrix Spike						Lab ID = 994988-03
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	5.25	39.5	40.6(26.2)	95.7	90 - 110
Matrix Spike						Lab ID = 995048-00
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	5.25	5.29	5.25(5.25)	101.	90 - 110
Matrix Spike						Lab ID = 995048-00
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	1.06	ND	1.06(1.06)		90 - 110
Matrix Spike						Lab ID = 995048-00
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	5.25	5.18	5.25(5.25)	98.6	90 - 110
Matrix Spike						Lab ID = 995048-00
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	1.06	ND	1.06(1.06)		90 - 110
Matrix Spike						Lab ID = 995048-00
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	10.5	376.	388(210.)	94.1	90 - 110
Matrix Spike						Lab ID = 995048-00
Parameter	Unit	DF	Result	Expected/Added	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	52.5	992.	1010(525)	96.3	90 - 110
MRCCS - Secondary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Rang
Chromium, Hexavalent	ug/L	1.00	5.01	5.00	100.	90 - 110

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 4 of 15

Project Number: 405681.MP.02.GM.04 Printed 6/6/2011

Chrome VI by EPA 218.6			Batch	05CrH11P				
Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result
995048-008 Chromium, Hexa	valent	ug/L	05/11	/2011 14:19	10.5	0.220	2.1	140.
995048-010 Chromium, Hexa	valent	ug/L	05/11	/2011 07:58	105	2.20	21.0	1040
995048-011 Chromium, Hexa	valent	ug/L	05/11	/2011 08:19	52.5	1.10	10.5	522.
995048-012 Chromium, Hexa	valent	ug/L	05/11	/2011 08:29	52.5	1.10	10.5	488.
995048-013 Chromium, Hexa	valent	ug/L	05/11	/2011 08:40	52.5	1,10	10.5	569.
995048-014 Chromium, Hexa	valent	ug/L	05/11	/2011 14:29	5.25	0.110	1.0	ND
995048-024 Chromium, Hexa	valent	ug/L	05/11	/2011 09:11	525	11.0	105	5240
Method Blank								· · · · · · · · · · · · · · · · · · ·
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	995048-010
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium, Hexavalent	ug/L	105	1060	1040		2.34	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.00	5.22	5.00		104.	90 - 110	
Matrix Spike							Lab ID =	995048-008
Parameter	Unit	DF	Result	Expected/A	dded	Recovery		ance Range
Chromium, Hexavalent	ug/L	10.5	293.	298(158.)		96.6	90 - 110	
Matrix Spike							Lab ID =	995048-010
Parameter	Unit	DF	Result	Expected/A		Recovery		ance Range
Chromium, Hexavalent	ug/L	105	2180	2090(1050))	109.	90 - 110	
Matrix Spike							Lab ID =	995048-011
Parameter	Unìt	DF	Result	Expected/A	dded	Recovery	· · · · · · · · · · · · · · · · · · ·	ance Range
Chromium, Hexavalent	ug/L	52.5	1080	1050(525)		106.	90 - 110	
Matrix Spike							Lab ID =	995048-012
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	52.5	1010	1010(525)		100.	90 - 110	
Matrix Spike								995048-013
Parameter	Unit	DF	Result	Expected/A		Recovery		ance Range
Chromium, Hexavalent	ug/L	52.5	1360	1360(788.)		99.9	90 - 110	J

Client: E2 Consulting Eng	ineers, Inc		oject Name: oject Number	ject 1.04	Page 5 of 15 Printed 6/6/2011		
Matrix Spike						Lab (D = 995048-014	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.56	Expected/Added 5.25(5.25)	Recovery 106	Acceptance Range 90 - 110 Lab ID = 995048-014	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result ND	Expected/Added 1.06(1.06)	Recovery	Acceptance Range 90 - 110 Lab ID = 995048-016	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 52.5	Result 1330	Expected/Added 1380(788.)	Recovery 93.0	Acceptance Range 90 - 110 Lab ID = 995048-024	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 525	Result 10500	Expected/Added 10500(5250)	Recovery 101.	Acceptance Range 90 - 110 Lab ID = 995100-001	
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.67	Expected/Added 5.71(5.25)	Recovery 99.2	Acceptance Range 90 - 110 Lab ID = 995100-001	
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.24	Expected/Added 1.22(1.06)	Recovery 102.	Acceptance Range 90 - 110	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.06	Expected 5.00	Recovery 101.	Acceptance Range 90 - 110	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.88	Expected 10.0	Recovery 98.8	Acceptance Range 95 - 105	
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 10.1	Expected 10.0	Recovery 101.	Acceptance Range 95 - 105	
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.88	Expected 10.0	Recovery 98.8	Acceptance Range 95 - 105	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.GM.04

Page 6 of 15 Printed 6/6/2011

Chrome VI by EPA 218.6			Batch	06CrH11A				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995048-016 Chromium, Hexa	valent	ug/L	06/02	/2011 14:43	52.5	1.10	10.5	500.
Method Blank								
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	995388-00
Parameter	Unit	DF	Result	Expected		RPD	•	ince Rang
Chromium, Hexavalent Lab Control Sample	ug/L	1.05	1.54	1.53		0.391	0 - 20	
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ince Rang
Chromium, Hexavalent	ug/L	1.00	4.84	5.00		96.8	90 - 110)
Matrix Spike							Lab ID =	995048-01
Parameter	Unit	ÐΕ	Result	Expected/Add	ed	Recovery	•	nce Rang
Chromium, Hexavalent	ug/L	52.5	1060	1020(525)		107.	90 - 110	
Matrix Spike							Lab ID =	995371-00
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	•	ince Rang
Chromium, Hexavalent	ug/L	5.25	5.10	5.54(5.25)		91.6	90 - 110	
Matrix Spike								995371-00
Parameter	Unit	DF 1.00	Result	Expected/Add	ed	Recovery		ince Rang
Chromium, Hexavalent	ug/L	1.06	1.18	1.18(1.06)		99.8	90 - 110	, 995388-00
Matrix Spike	11.3	D.E.	D #	F 4 1/4 1 4		5		
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.06	Result 6.65	Expected/Add 6.83(5.30)	ea	Recovery 96.6	90 - 110	ance Rang n
Matrix Spike	ug/L	1.00	0,00	0.00(0.00)		50.0		, 995388-00
Parameter	Unit	DF	Result	Expected/Add	od	Recovery		ance Rang
Chromium, Hexavalent	ug/L	1.06	9.00	8.73(5.30)	Çu	105.	90 - 110	-
MRCCS - Secondary	O.			` ,				
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Rang
Chromium, Hexavalent MRCVS - Primary	ug/L	1.00	4,90	5.00		98.0	90 - 110	_
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	10.1	10.0		101.	95 - 10	_

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project Page 8 of 15

Project Number: 405681.MP.02.GM.04 Printed 6/6/2011

995048-001 Chromium	Metals by EPA 6020A, Dis	solved		Batch	051611B				
995048-002 Chromium	Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result
995048-003 Chromium ug/L 05/17/2011 01:38 5.00 0.110 1.0 ND 995048-004 Chromium ug/L 05/17/2011 02:05 5.00 0.110 1.0 384. 995048-005 Chromium ug/L 05/17/2011 02:12 5.00 0.110 1.0 ND 995048-007 Chromium ug/L 05/17/2011 02:39 5.00 0.110 1.0 1890 995048-008 Chromium ug/L 05/17/2011 02:52 5.00 0.110 1.0 172. 995048-010 Chromium ug/L 05/17/2011 03:53 10.0 0.220 2.0 959. 995048-011 Chromium ug/L 05/17/2011 03:53 10.0 0.220 2.0 959. 995048-012 Chromium ug/L 05/17/2011 03:05 10.0 0.220 2.0 959. 995048-012 Chromium ug/L 1.00 ND 0.110 1.0 472. Method Blank Parameter Unit DF Result Expected RPD Acceptance Ra Chromium<	995048-001 Chromium		ug/L	05/17	/2011 01:04	5.00	0.110	1.0	494.
995048-004 Chromium ug/L 05/17/2011 02:05 5.00 0.110 1.0 384. 995048-005 Chromium ug/L 05/17/2011 02:12 5.00 0.110 1.0 ND 995048-006 Chromium ug/L 05/17/2011 02:39 5.00 0.110 1.0 1890 995048-007 Chromium ug/L 05/17/2011 02:45 5.00 0.110 1.0 172. 995048-008 Chromium ug/L 05/17/2011 02:45 5.00 0.110 1.0 172. 995048-010 Chromium ug/L 05/17/2011 02:52 5.00 0.110 1.0 1.24. 995048-010 Chromium ug/L 05/17/2011 03:66 10.0 0.220 2.0 959. 995048-011 Chromium ug/L 05/17/2011 03:53 10.0 0.220 2.0 531. 995048-012 Chromium ug/L 05/17/2011 04:07 5.00 0.110 1.0 472. Method Blank Parameter Unit DF Result Chromium ug/L 1.00 ND Duplicate Parameter Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85-115 Lab ID = 995048- Chromium ug/L Chromium ug/L 1.00 47.3 50.0 94.6 85-115 Matrix Spike Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75-125 Lab ID = 995048- Rameter Chromium ug/L 5.00 754. 744(250.) 104. 75-125 MRCCS - Secondary Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Acceptance Ra Acceptance Ra Chromium ug/L 5.00 754. 744(250.) 104. 75-125 Lab ID = 995048- Recovery Acceptance Ra Ac	995048-002 Chromium		ug/L	05/17	/2011 01:31	5.00	0.110	1.0	324.
995048-005 Chromium	995048-003 Chromium		ug/L	05/17	/2011 01:38	5.00	0.110	1.0	ND
995048-006 Chromium ug/L 05/17/2011 02:39 5.00 0.110 1.0 1890 995048-007 Chromium ug/L 05/17/2011 02:45 5.00 0.110 1.0 172. 995048-008 Chromium ug/L 05/17/2011 02:52 5.00 0.110 1.0 124. 995048-010 Chromium ug/L 05/17/2011 03:06 10.0 0.220 2.0 959. 995048-012 Chromium ug/L 05/17/2011 04:07 5.00 0.110 1.0 472. Method Blank Parameter Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 Lab Control Sample Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF	995048-004 Chromium		ug/L	05/17	/2011 02:05	5.00	0.110	1.0	384.
995048-007 Chromium ug/L 05/17/2011 02:45 5.00 0.110 1.0 172. 995048-008 Chromium ug/L 05/17/2011 02:52 5.00 0.110 1.0 124. 995048-010 Chromium ug/L 05/17/2011 03:06 10.0 0.220 2.0 959. 995048-012 Chromium ug/L 05/17/2011 04:07 5.00 0.110 1.0 472. Method Blank Parameter Unit DF Result Result Chromium Lab ID = 995048. Parameter Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Result Expected/Added Recovery Acceptance Ra	995048-005 Chromium		ug/L	05/17	/2011 02:12	5.00	0.110	1.0	ND
995048-008 Chromium ug/L 05/17/2011 02:52 5.00 0.110 1.0 124. 995048-010 Chromium ug/L 05/17/2011 03:06 10.0 0.220 2.0 959. 995048-011 Chromium ug/L 05/17/2011 04:07 5.00 0.110 1.0 472. Method Blank Parameter Unit DF Result Chromium Lab ID = 995048- Chromium ug/L 1.00 ND ND Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 <td>995048-006 Chromium</td> <td></td> <td>ug/L</td> <td>05/17</td> <td>/2011 02:39</td> <td>5.00</td> <td>0.110</td> <td>1.0</td> <td>1890</td>	995048-006 Chromium		ug/L	05/17	/2011 02:39	5.00	0.110	1.0	1890
995048-010 Chromium ug/L 05/17/2011 03:06 10.0 0.220 2.0 959. 995048-011 Chromium ug/L 05/17/2011 03:53 10.0 0.220 2.0 531. 995048-012 Chromium ug/L 05/17/2011 04:07 5.00 0.110 1.0 472. Method Blank Parameter Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Lab ID = 995048- Lab ID = 995048- Lab ID = 995048- Lab ID = 995048- Lab ID = 9950	995048-007 Chromium		ug/L	05/17	/2011 02:45	5.00	0.110	1.0	172.
995048-011 Chromium ug/L 05/17/2011 03:53 10.0 0.220 2.0 531. 995048-012 Chromium ug/L 05/17/2011 04:07 5.00 0.110 1.0 472. Method Blank Parameter Unit DF Result Chromium Lab ID = 995048- Chromium Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Matrix Spike Lab ID = 995048- Lab ID = 995048- Lab ID = 995048- Lab ID = 995048-	995048-008 Chromium		ug/L	05/17	/2011 02:52	5.00	0.110	1.0	124.
995048-012 Chromium ug/L 05/17/2011 04:07 5.00 0.110 1.0 472. Method Blank Parameter Unit DF Result Result Chromium Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 0 - 20 Lab Control Sample Lab Control Sample Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Matrix Spike Duplicate Expected/Added Recovery Acceptance Ra Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 754.	995048-010 Chromium		ug/L	05/17	/2011 03:06	10.0	0.220	2.0	959.
Method Blank Parameter Unit DF Result Chromium ug/L 1.00 ND Duplicate Lab ID = 995048- Parameter Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Matrix Spike Duplicate Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondar	995048-011 Chromium		ug/L	05/17	/2011 03:53	10.0	0.220	2.0	531.
Parameter Unit ug/L DF total Result total Lab ID = 995048-1.00 Lab Control Sample Result total Expected total Recovery total Acceptance Rate total Result total Expected total Recovery total Acceptance Rate total Result total Expected/Added total Recovery total Acceptance Rate total Result total Expected/Added total Recovery total Acceptance Rate total Result total Expected/Added total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recovery total Acceptance Rate total Recov	995048-012 Chromium		ug/L	05/17	/2011 04:07	5.00	0.110	1.0	472.
Chromium ug/L 1.00 ND Duplicate Lab ID = 995048- Parameter Unit DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Expected/Added Recovery Acceptance Ra Parameter Unit DF Result	Method Blank								_
Duplicate Duplicate DF Result Expected RPD Acceptance Ra Chromium ug/L 5.00 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 2.13 0 - 20 484. 494 494 2.13 0 - 20 484. 494 494 2.13 0 - 20 484. 494 494 2.13 494 4	Parameter	Unit	DF	Result					
Parameter Unit DF Result Expected RPD Acceptance RacChromium ug/L 5.00 484 . 494 2.13 $0-20$ Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance RacChromium ug/L 1.00 47.3 50.0 94.6 $85-115$ Lab ID = 995048 - Parameter Unit DF Result Expected/Added Recovery Acceptance RacChromium ug/L 5.00 709 . $744(250.)$ 85.9 $75-125$ Lab ID = 995048 - Parameter Unit DF Result Expected/Added Recovery Acceptance RacChromium ug/L 5.00 709 . $744(250.)$ 85.9 $75-125$ Lab ID = 995048 - Parameter Unit DF Result Expected/Added Recovery Acceptance RacChromium ug/L 5.00 754 . $744(250.)$ 104 . $75-125$ Lab ID = 995048 - MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance RacChromium ug/L 5.00 754 . $744(250.)$ 104 . $75-125$ 104 .	Chromium	ug/L	1.00	ND					
Chromium ug/L 5.00 484. 494 2.13 0 - 20 Lab Control Sample Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Matrix Spike Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Duplicate							Lab ID =	995048-001
Parameter	Parameter	Unit	DF	Result	Expected		RPD	Accepta	ince Range
Parameter Unit DF Result Expected Recovery Acceptance Rate Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Rate Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Rate Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected/Added Recovery Acceptance Rate Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Rate Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Chromium	ug/L	5.00	484.	494		2.13	0 - 20	
Chromium ug/L 1.00 47.3 50.0 94.6 85 - 115 Matrix Spike Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Lab Control Sample								
Matrix Spike Lab ID = 995048- Parameter Chromium Unit ug/L DF S.00 Result 709. Expected/Added 744(250.) Recovery 85.9 Acceptance Rate 75 - 125 Matrix Spike Duplicate Unit DF Result Expected/Added Recovery Acceptance Rate 744(250.) Acceptance Rate 75 - 125 Parameter Chromium Unit Up/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit Up/L DF Result Expected Recovery Acceptance Rate 74.0 Recovery Acceptance Rate 75.0 Acceptance Rate 75.0 Acceptance Rate 75.0 Chromium Ug/L 1.00 46.0 50.0 92.1 90 - 110	Parameter	Unit	DF	Result	Expected		Recovery	Accepta	nce Range
Parameter Unit DF Result Expected/Added Recovery Acceptance Rate Chromium ug/L 5.00 709 . $744(250.)$ 85.9 $75 - 125$ Lab ID = 995048 -Parameter Unit DF Result Expected/Added Recovery Acceptance Rate Chromium ug/L 5.00 754 . $744(250.)$ 104 . $75 - 125$ MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Rate Chromium ug/L 1.00 46.0 50.0 92.1 $90 - 110$	Chromium	ug/L	1.00	47.3	50.0		94.6	85 - 115	5
Chromium ug/L 5.00 709. 744(250.) 85.9 75 - 125 Matrix Spike Duplicate Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Matrix Spike							Lab ID =	995048-001
Matrix Spike Duplicate Lab ID = 995048- Parameter Unit DF Result Expected/Added Recovery Acceptance Radical Recovery Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Radical Recovery Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Parameter	Unit	DF	Result	Expected/A	\dded	Recovery	Accepta	ince Range
Parameter Unit DF Result Expected/Added Recovery Acceptance Ra Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Chromium	ug/L	5.00	709.	744(250.)		85.9	75 - 125	5
Chromium ug/L 5.00 754. 744(250.) 104. 75 - 125 MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Matrix Spike Duplicate							Lab ID =	995048-001
MRCCS - Secondary Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Parameter	Unit	DF	Result	Expected/A	\dded	Recovery	Accepta	ince Range
Parameter Unit DF Result Expected Recovery Acceptance Ra Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	Chromium	ug/L	5.00	754.	744(250.)		104.	75 - 125	5
Chromium ug/L 1.00 46.0 50.0 92.1 90 - 110	MRCCS - Secondary								
3	Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
	Chromium	ug/L	1.00	46.0	50.0		92.1	90 - 110)
MRCVS - Primary	MRCVS - Primary								
Parameter Unit DF Result Expected Recovery Acceptance Ra	Parameter	Unit	DF	Result	Expected		Recovery		-
Chromium ug/L 1.00 45.8 50.0 91.6 90 - 110	Chromium	ug/L	1.00	45.8	50.0		91.6	90 - 110)

Client: E2 Consulting Engineers, Inc.				PG&E Topock Project : 405681.MP.02.GM.04		Page 9 of 15 Printed 6/6/2011	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Chromium	ug/L	1.00	46.3	50.0	92.6	90 - 110	
Interference Check Sta	ındard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Chromium	ug/L	1.00	ND	0.00			
Interference Check Sta	indard A						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Chromium	ug/L	1.00	ND	0.00			
Interference Check Sta	andard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Chromium	ug/L	1.00	44.4	50.0	88.8	80 - 120	
Interference Check Sta	andard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range	
Chromium	ug/L	1.00	45.2	50.0	90.3	80 - 120	
Serial Dilution						Lab ID = 995048-011	
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range	
Chromium	ug/L	50.0	540.	531	1.66	0 - 10	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.GM.04

Page 10 of 15 Printed 6/6/2011

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995048-013 Chromium		ug/L	05/17	/2011 16:14	10.0	0.220	2.0	531.
995048-014 Chromium		ug/L	05/17	/2011 16:21	5.00	0.110	1.0	ND
995048-015 Chromium		ug/L	05/17	/2011 16:28	5.00	0.110	1.0	401.
995048-016 Chromium		ug/L	05/17	/2011 16:35	10.0	0.220	2.0	421.
995048-017 Chromium		ug/L	05/17	/2011 17:08	100	2.20	20.0	3520
995048-018 Chromium		ug/L	05/17	/2011 17:15	100	2.20	20.0	2870
995048-019 Chromium		ug/L	05/17	/2011 17:22	100	2.20	20.0	3510
995048-020 Chromium		ug/L	05/17	/2011 17:29	100	2.20	20.0	5600
995048-021 Chromium		ug/L	05/17	/2011 17:36	200	4.40	40.0	11500
995048-022 Chromium		ug/L	05/17	/2011 17:43	100	2.20	20.0	9080
995048-023 Chromium		ug/L	05/17	/2011 17:50	100	2.20	20.0	4690
995048-024 Chromium		ug/L	05/17	/2011 17:57	100	2.20	20.0	4520
Method Blank								
Parameter	Unit	DF	Result					
Chromium	ug/L	1.00	ND					
Duplicate							Lab ID =	995048-009
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium	ug/L	100	343.	346		0.958	0 - 20	•
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.5	50.0		95.0	85 - 11	5
Matrix Spike							Lab ID =	995048-009
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Range
Chromium	ug/L	100	5020	5350(5000)	93.4	75 - 12	5
Matrix Spike Duplicate							Lab ID =	995048-009
Parameter	Unit	DF	Result	Expected/A	\dded	Recovery	Accepta	ance Range
Chromium	ug/L	100	5060	5350(5000)	94.2	75 - 12	5
MRCCS - Secondary								
Parameter	Unit	DF	Resuit	Expected		Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.2	50.0		94.4	90 - 110	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Chromium	ug/L	1.00	48.0	50.0		95.9	90 - 110	_

Client: E2 Consulting Engineers, Inc.		•		PG&E Topock Project 405681.MP.02.GM.04		Page 11 of 15 Printed 6/6/2011	
MRCVS - Primary							
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.3	Expected 50.0	Recovery 94.5	Acceptance Range 90 - 110	
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.2	Expected 50.0	Recovery 96.5	Acceptance Range 90 - 110	
Parameter Chromium Interference Check Sta	Unit ug/L andard A	DF 1,00	Result 48.3	Expected 50.0	Recovery 96.5	Acceptance Range 90 - 110	
Parameter Chromium Interference Check Sta	Unit ug/L andard A	DF 1.00	Result ND	Expected 0,00	Recovery	Acceptance Range	
Parameter Chromium Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range	
Parameter Chromium Interference Check Sta	Unit ug/L andard AB	DF 1.00	Result 45.7	Expected 50.0	Recovery 91.4	Acceptance Range 80 - 120	
Parameter Chromium Serial Dilution	Unit ug/L	DF 1.00	Result 45.3	Expected 50.0	Recovery 90.6	Acceptance Range 80 - 120 Lab ID = 995048-009	
Parameter Chromium	Unit ug/L	DF 500	Result 338.	Expected 346	RPD 2.43	Acceptance Range 0 - 10	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 12 of 15

Project Number: 405681.MP.02.GM.04

Printed 6/6/2011

Metals by EPA 6020A, Dis Parameter		Unit	Ana	lyzed D	F MDL	RL	Result
995048-009 Chromium		ug/L	05/26	/2011 16:21 10	0.0 0.220	2.0	475.
Method Blank							
Parameter Chromium Duplicate	Unit ug/L	DF 1.00	Result ND			l ab ID =	995048-009
Parameter Chromium Lab Control Sample	Unit ug/L	DF 10.0	Result 364.	Expected 365	RPD 0.329		ince Range
Parameter Chromium Matrix Spike	Unit ug/L	DF 1.00	Result 49.0	Expected 50.0	Recovery 97.9	Acceptance Ran 85 - 115 Lab ID = 995048-0	
Parameter Chromium Matrix Spike Duplicate	Unit ug/L	DF 10.0	Result 830.	Expected/Added 865(500.)	i Recovery 93.1	75 - 125	ance Range 5 995048-009
Parameter Chromium MRCCS - Secondary	Unit ug/L	DF 10.0	Result 825.	Expected/Added 865(500.)	d Recovery 91.9	Accepta 75 - 125	ance Range 5
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 52.6	Expected 50.0	Recovery 105.	Accepta 90 - 110	ance Range)
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.1	Expected 50.0	Recovery 96.2	Accepta 90 - 110	ance Range)
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.0	Expected 50.0	Recovery 95.9	Accepta 90 - 110	ance Range)
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.0	Expected 50.0	Recovery 95.9	Accepta 90 - 110	ance Range)
Parameter Chromium	Unit ug/L	DF 1.00	Result 47.7	Expected 50.0	Recovery 95.4	Accepta 90 - 110	ance Range)

Client: E2 Consulting Engineers, Inc.			oject Name: oject Number:	PG&E Topock Project 405681.MP.02.GM.04		Page 13 of 15 Printed 6/6/2011	
MRCVS - Primary							
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.1	Expected 50.0	Recovery 96.2	Acceptance Range 90 - 110	
Parameter Chromium Interference Check Sta	Unit ug/L indard A	DF 1.00	Result 47.8	Expected 50.0	Recovery 95.6	Acceptance Range 90 - 110	
Parameter Chromium Interference Check Sta	Unit ug/L ndard A	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range	
Parameter Chromium Interference Check Sta	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range	
Parameter Chromium Interference Check Sta	Unit ug/L	DF 1.00	Result 50.0	Expected 50.0	Recovery 100.	Acceptance Range 80 - 120	
Parameter Chromium Serial Dilution	Unit ug/L	DF 1.00	Result 46.0	Expected 50.0	Recovery 91.9	Acceptance Range 80 - 120 Lab ID = 995048-009	
Parameter Chromium Serial Dilution	Unit ug/L	DF 50.0	Result 442	Expected 475	RPD 7.20	Acceptance Range 0 - 10 Lab ID = 995048-009	
Parameter Chromium	Unit ug/L	DF 50.0	Result 351.	Expected 365	RPD 3.80	Acceptance Range 0 - 10	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.GM.04

Page 14 of 15 Printed 6/6/2011

Parameter	** 11 * 2 212 2 17**	Unit	Ana	lyzed	DF	MDL	RL	Result
995048-001 Chromium, Hexa	valent	ug/L	05/09	/2011 16:05	2.00	8.70	20.0	497.
995048-002 Chromium, Hexa	valent	ug/L	05/09	/2011 16:06	2.00	8.70	20.0	331.
995048-004 Chromium, Hexavalent		ug/L	05/09	/2011 16:07	2.00	8.70	20.0	411.
995048-006 Chromium, Hexa	valent	ug/L	05/09	/2011 16:08	5.00	21.8	50.0	2010
995048-015 Chromium, Hexa	valent	ug/L	05/09	/2011 16:09	2.00	8,70	20.0	391.
995048-017 Chromium, Hexa	valent	ug/L	05/09	/2011 16:15	25.0	109.	250.	3700
995048-018 Chromium, Hexa	valent	ug/L	05/09	/2011 16:16	25.0	109.	250.	2910
995048-019 Chromium, Hexa	valent	ug/L	05/09	/2011 16:17	25.0	109.	250.	3570
995048-020 Chromium, Hexa	valent	ug/L	05/09	/2011 16:18	25.0	109.	250.	5640
995048-021 Chromium, Hexa	valent	ug/L	05/09	/2011 16:19	50.0	218.	500.	12100
995048-022 Chromium, Hexa	valent	ug/L	05/09	/2011 16:20	50,0	218.	500.	9720
995048-023 Chromium, Hexa	valent	ug/L	05/09	/2011 16:21	25.0	109.	250.	4730
Method Blank								
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result ND					
Duplicate							Lab ID = 995048	
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Chromium, Hexavalent	ug/L	25.0	3630	3570		1.79	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	98.9	100.		98.9	90 - 110	כ
Matrix Spike							Lab ID =	995048-019
Parameter	Unit	DF	Result	Expected/A		Recovery	•	ance Range
Chromium, Hexavalent	ug/L	25.0	6080	6070(2500))	100.	85 - 11:	
Matrix Spike Duplicate	9						Lab ID =	995048-019
Parameter	Unit	DF	Result	Expected/A				ance Range
Chromium, Hexavalent MRCCS - Secondary	ug/L	25.0	6330	6070(2500))	110.	85 - 11:	5
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent MRCVS - Primary	ug/L	1,00	56.3	60.0		93.8	90 - 11	0
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	61.3	60.0		102.	90 - 11	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 15 of 15

Project Number: 405681.MP.02.GM.04

Printed 6/6/2011

MRCVS - Primary

Chromium, Hexavalent

Parameter

Unit ug/L

DF 1.00 Result 55.0

Expected 60.0

Recovery 91.7

Acceptance Range

90 - 110

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

Project Name PG&E Topock			Container	250 ml	250 ml	500 ml			T
Location Topock			ortanici.	Poly	Poly (NH4)2SO	Poly HNO3,	Rec'd 05/06/11		
Project Number 405681.MP	.02.GM,04	Prese	ervatives:	4/NH4OH, 4°C	4/NH4OH, 4°C	4°C			
Project Manager Jay Piper			Filtered:	Field	Field	Field	Lab# 995048		
Sample Manager Shawn Dut	fy	Hold	ing Time:	28	28	180	* For Sample		
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: \$/6/2011 COC Number: 11	DATE	TIME	Matrix	Cr6 (E218.6) Field Filtered	Сг6 (SM3500B) Field Filtered	Metals (SW6010B/SW6020A) Field Filtered Chromium	For Sample Conditions See Form Attached ALERT!! Level III QC	Number of Containers	p H fo- succios / succios / succios comment
MW-19-177	5/4/2011	14:45	Water		×	Х	4.	2	/
MW-31-050-177	5/4/2011	16:06	Water		Ж	Ж		2	(11=)
MW-48-177	5/4/2011	15:49	Water	×		Х		2	
MW-76-177	5/4/2011	14:21	Water	Ж					Held
MW-10-177	5/5/2011	15:24	Water		×	×		2)
MW-24BR-177	5/5/2011	13:58	Water	Х		X		2	7
MW-26-177	5/5/2011	16:28	Water		ĸ	Ж		2	
MW-37D-177	5/5/2011	9:06	Water	Х		Х		2	1 1, - 2
WW-40D-177	5/5/2011	10:12	Water	x		Х		2	1/11=2
MW-57-070-177	5/5/2011	12:39	Water	×		×		2	
WW-50-125-177	5/5/2011	15:29	Water	х		Х		2	
MW-61-110-177	5/5/2011	14:02	Water	Ж		Ж		. 2	
MW-62-065-177	5/5/2011	11:23	Water	Ж		Х		2	
MW-62-110-177	5/5/2011	13:16	Water	Х		ж		2	
WW-62-190-177	5/5/2011	13:25	Water	Х		A		2	V

Sampled by Reinquished by Received by Relinquished by Received by

Method of Shipment: Fodfix On ice: yes / no 5-6-11 2/ 20 Name: Truesdall Laboratories, Inc.

5-6-11 2/ 20 Phone: (714) 730-6239

April 28 - May 13, 2011

Sample Custody

Report Copy to

Shawn Duffy (530) 229-3303 TLI

995048

CHAIN OF CUSTODY RECORD CH2MHILL 5/6/2011 12:19:50 PM Page 2 OF 2 500 ml 250 ml 250 ml Project Name PG&E Topock Container Poly Poly Poly Location Topock (NH4)2SO (NH4)2SO HNO3. Preservatives: 4/NH4OH, 4/NH4OH Project Number 405681,MP.02,GM.04 4°C Project Manager Jay Piper Filtered: Field Field Field 180 Sample Manager Shawn Duffy Holding Time: 28 28 Metals (SW6010B/SW6020A) Field Filtered Chromium Task Order Cr6 (E218.6) Field Filtered (SM3500B) Field Filtered Project 2011-GMP-177-Q2 Number of Containers ALERT!! Level III QC Turnaround Time 10 Days Shipping Date: 5/6/2011 COC Number: 11 - H for COMMENTS DATE TIME Matrix WW-78-177 5/5/2011 14:29 Water MW-79-177 5/5/2011 17:20 Water X MW-91-177 14:52 5/5/2011 Water 2 W. У, Water MW-97-177 5/5/2011 12:41 Х 2 -17 TW-01-177 5/5/2011 17:02 Water X X die. WW-12-177 5/6/2011 8:26 Water 10 X 7 MW-20-070-177 2 5/6/2011 9:20 Water X Х -2s MW-20-100-177 5/6/2011 10:10 Water X X The same MW-20-130-177 5/6/2011 11:25 Water X 2 Х MW-50-200-177 5/6/2011 11:40 Water e y X K MW-51-177 5/5/2011 9:36 2 Water 123 X MW-59-100-177 5/6/2011 10:36 Water Х, 19 X MW-80-177 5/6/2011 11:55 Water. Ja. Holo MW-81-177 5/6/2011 11:58 Water 3 1 TOTAL NUMBER OF CONTAINERS

Approved by Selinquished by Received by

Received by Rafael Davila
Received by Rafael Davila
Received by

Signatures

Date/Time 5 6 11

ime Shipping Details

Method of Shipment: FedEx

On Ice: yes / no

Airbill No:

Lab Name: Truesdall Laboratories, Inc.

Lab Phone: (714) 730-8239

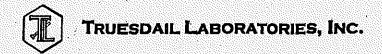
ATTN:

Special Instructions: April 28 - May 13, 2011

Sample Custody

Report Copy to

Shawn Duffy (536) 229-3303


Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
05/06/11	495046	9.5	N/A	NA	N/A	SB
05/09/11	995048-3	9.5	11/4	2/4	N/A	$z\mathcal{B}$
l	-5	Ì			Ì	
	-7					
	-8		·			
	-9		·			
	~10					
	11					į
	-12		-			
	13					
	14					
	-16					
4	W-24	J.	4	<u>.</u>		
05/10/11	995064-1	9.5	4/4	NA	NA	2B
	-3					
	-4					
	-5					
	-6					
4	<u> </u>	4	5 ml	*	<u> </u>	ali
05/11/11	995100	7.0 9.5	5 ml	9.5	8:30 a.m.	
05/11/11	995103-1	9,5	r>/A	A(4)	NA	5B
	- 2				·	
	-3					
	- 4					
	S					
	-6					
<u> </u>	→ -8	4	<u> </u>	<u> </u>	4	4

Turbidity/pH Check

,			Didityipii			Adjusted to
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	pH<2 (Y/N)
995020(1-2)	7	22	5611	ES	yes	3010 A
195025(1-5)	41	42	5 7111	ES	Yes (-3,45)	
995048 (1-24)	<1	<2	5/16/11	MI	ho	
99 5×16 (1-2)	41	22	5/18/11	KK	VRS	K4K
995247(1-2)	41	12	5/19/11	ES	Y yes	
995239(1-7	2		5/22	FE	No	yes @ 5 32m
915240(1-7)	21	<u> </u>	5/22	10/10		10 6 3 PM
995241(1-8)	4	2	6/22	F	No	yes @ 539
495022 (2-4)	2	12 12	5/5	1.44		A @ 03-4
	_ <u>_ </u>	42	1	W	Ass	
995019 (-2)	 	<u> </u>	-		 	
995012 (-4)	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u></u>	14,	
995224	41	フス	5 24 11	ES	NO	yu 20:00
095284(12,4)	1	1				
995024(1-5)	21	ر ک	5/7/11	FS	Ye)	301017
995023 (1-11)	4	۲ ک	 	 	 	
995026 (1-5)	()	22		1.10	<u> </u>	<u>-</u> -
494983 (1-9)	41	22	5/4	K.	V82	
995311	21	72	5/24/11	ES	100	ys 2:00 p.z
995324 (1)	41	42	5/25/11	KK	Nez	<u> </u>
79536 (1-2)	4	>2	5/4/11	KK	NO .	VEREID: 30 cm
99527	41	> 2	5-27-11		No	yesell30 am
995355	41	>2	5.27.11	KK	<u> </u>	12 @ 3pm
995050	11	72	6/10	ES	Ně	
351						40 00 11:00
349				-	1	
995 363 (12,4)						
995371					1	1
495359	c1	62	6/2/11	MM	yes -	3000
995 388/1-21	1		l l	ĺ	. /]	
995384 1,35 7.9 11						
9953911368101	10	1 1				
995390 (13,6,8,10,0	r		ik			
445747	21	22	6/2/11	色多	No.	
99 5 399 (12)	.1.	1	×1-1.	- -		
00(4/5/11	2/	< 2	6/3/11	MM	ye.s	30/0
065711 111	<u> </u>	 	/ J/ "		1/1	
99541 7 11,3,57	di I	1,			 	
995 32211-651	4 /	<u> </u>	6/3/11	MM	Yes	TTLC
24	Solid	77	11.1.	TEX.	1 Nu	
9954291-97	1	 	4/4/11	 []	1 Pu	yo a 2:00
4.20 11-71	 	 	1	1	 	
(13) (1-10)		 		 	 	
432 (1-4)	<u> </u>	<u> </u>	<u> </u>	1	1	<u> </u>
<u> </u>						<u> </u>
						<u></u>
	w					

Sample Integrity & Analysis Discrepancy Form

Clier	nt: <u>F2</u>	Lab # <u>995048</u>
Date	Delivered: OS / Ob / 11 Time: <u>2/-3</u> 0 By: □Mail 45	Field Service
1.	Was a Chain of Custody received and signed?	∭Yes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ÞÓN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No □(N/A
ļ.,	If a letter was sent with the COC, does it match the COC?	□Yes □No ¤N/A
•	Were all requested analyses understood and acceptable?	ØYes □No □N/A
•	Were samples received in a chilled condition? Temperature (if yes)? \(\frac{1}{\cdot \cdot ¢Yes □No □N/A	
	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	∮Yes □No □N/A
	Were sample custody seals intact?	□Yes □No ¤N/A
	Does the number of samples received agree with COC?	∯Yes □No. □N/A
)	Did sample labels correspond with the client ID's?	QYes \(\text{INO} \(\text{INA} \)
•	Did sample labels indicate proper preservation? Preserved (if yes) by: A Truesdall	ÁYes □No □N/A
•	Were samples pH checked? pH =	ÁYes □No □N/A
	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	d(Yes □No □N/A
	Have Project due dates been checked and accepted? Turn Around Time (TAT): ☐ RUSH 🗡 Std	daYes □No □N/A
	Sample Matrix:	
	Comments:	
	Sample Check-In completed by Truesdall Log-In/Receiving:	Ticola Strabun

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 07, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-EW-183, GROUNDWATER MONITORING

PROJECT, TLI No.: 995497

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3Plant-EW-183 groundwater-monitoring project for Total Dissolved and Hexavalent Chromium, Total Dissolved Solids, and pH. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, wet chemistry raw data, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on June 7, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Per Mr. Shawn Duffy's request, the pH analysis was cancelled.

Samples for Total Dissolved Chromium were analyzed by method EPA 200.8 with the approval of Mr. Shawn Duffy of CH2M Hill.

Total Dissolved Chromium, for sample PE-01-183, was re-analyzed by EPA 200.7 due to the discrepancy between the Total Dissolved Chromium and Hexavalent Chromium results. The result from the re-analysis is reported.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi سرصا

Manager, Analytical Services

K. R. P. gyer

K.R.P. Iver

Quality Assurance/Quality Control Officer

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: Two (2) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 408401.01.DM

Laboratory No.: 995497

Date: July 7, 2011 Collected: June 7, 2011 Received: June 7, 2011

ANALYST LIST

METHOD	PARAMETER	ANALYST
EPA 120.1	Specific Conductivity	Gautam Savani
SM 2540C	Total Dissolved Solids	Jenny Tankunakorn
EPA 200.8	Total Dissolved Chromium	Katia Kiarashpoor
EPA 200.7	Total Chromium	Ethel Suico
EPA 218.6	Hexavalent Chromium	Sonya Bersudsky
SM 3500-CrB	Hexavalent Chromium	Jenny Tankunakorn

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: E2 Consulting Engineers, Inc.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 408401.01.DM **P.O. No.:** 408401.01.DM

Laboratory No.: 995497

Date Received: June 7, 2011

Revision 1; July 8, 2011

Analytical Results Summary

Lab Sample II) Field ID	Analysis Method	Extraction Method	Sample Date	Sample Tim	ne Parameter	Result	Units	RL
995497-001	PE-01-183	E120.1	NONE	6/7/2011	10:30	EC	5180	umhos/cm	2.00
995497-001	PE-01-183	E200.7	LABFLT	6/7/2011	10:30	Chromium	11.0	ug/L	1.0
995497-001	PE-01-183	E218.6	LABFLT	6/7/2011	10:30	Chromium, hexavalent	9.5	ug/L	0.20
995497-001	PE-01-183	SM2540C	NONE	6/7/2011	10:30	Total Dissolved Solids	3190	mg/L	125
995497-002	TW-03D-183	E120.1	NONE	6/7/2011	10:30	EC	8530	umhos/cm	2.00
995497-002	TW-03D-183	E200.8	LABFLT	6/7/2011	10:30	Chromium	1090	ug/L	2.0
995497-002	TW-03D-183	SM2540C	NONE	6/7/2011	10:30	Total Dissolved Solids	5120	mg/L	125
995497-002	TW-03D-183	SM3500-CrB	LABFLT	6/7/2011	10:30	Chromium, hexavalent	1030	ug/L	100

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2MHill

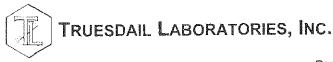
155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

P.O. Number: 408401.01.DM Project Number: 408401.01.DM Laboratory No. 995497


Page 1 of 10

Printed 7/7/2011

Samples Received on 6/7/2011 10:00:00 PM

Field ID				Lab ID	Col	llected	Matr	ix
PE-01-183				995497-001		/2011 10:30	Wat	
TW-03D-183				995497-002	06/07	/2011 10:30	Wat	er
Specific Conductivity -	EPA 120.1		Batch	06EC11D			6/10/2011	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995497-001 Specific Condu	uctivity	umhos/	cm 06/10)/2011	1.00	0.0380	2.00	5180
995497-002 Specific Condu	uctivity	umhos/	cm 06/10)/2011	1.00	0.0380	2.00	8530
Method Blank								
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	995499-002
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Specific Conductivity	umhos	1.00	954	953		0.105	0 - 10	
Duplicate							Lab ID =	995499-012
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Specific Conductivity	umhos	1.00	950.	952		0.210	0 ~ 10	
Lab Control Sample)							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Specific Conductivity	umhos	1.00	703	706		99.6	90 - 110	כ
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Specific Conductivity	umhos	1,00	704	706		99.7	90 - 110	כ
MRCCS - Secondar	У							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Specific Conductivity	umhos	1.00	706	706		100.	90 - 110	כ

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: CH2MHill

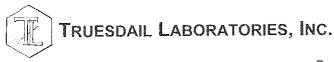
Project Name: PG&E Topock Project

Page 3 of 10

Project Number: 408401.01.DM

Printed 7/7/2011

Chrome VI by EPA 218.6			Batch	06CrH11D				
Parameter	i in in de este du envirude de la le	Unit	Ana	iyzed	DF	MDL	RL	Result
995497-001 Chromium, Hexa	avalent	ug/L	06/08	/2011 09:46	1.05	0.0210	0.20	9.5
Method Blank				,				
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	995497-001
Parameter	Unit	DF	Result	Expected		RPD		ance Range
Chromium, Hexavalent Lab Control Sample	ug/L	1.05	9.43	9.47		0.455	0 - 20	
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.00	4.89	5.00		97.7	90 - 110	כ
Matrix Spike							Lab ID =	995451-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
Chromium, Hexavalent	ug/L	1.06	8.06	8.26(5.30)		96.3	90 - 110	ס
Matrix Spike							Lab ID =	995451-002
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.06	16.4	16.4(10.6)		99.7	90 - 110	
Matrix Spike							Lab ID =	995451-003
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.06	7.62	7.89(5.30)		94.8	90 - 11	
Matrix Spike							Lab ID =	995451-006
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	-	ance Range
Chromium, Hexavalent	ug/L	1.06	9.23	9.76(5.30)		90.0	90 - 11	995451-007
Matrix Spike						_		
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.06	9.75	9.66(5.30)		102.	90 - 11	995451-008
Matrix Spike								
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	•	ance Range
Chromium, Hexavalent	ug/L	1.06	9.76	9.76(5.30)		99,9	90 - 11	
Matrix Spike						_		995451-009
Parameter	Unit	DF	Result	Expected/Add	ed	Recovery	· ·	ance Range
Chromium, Hexavalent	ug/L	1.06	9.87	9.94(5.30)		98.7	90 - 11	U


Client: CH2MHill			oject Name: oject Number	PG&E Topock Pro : 408401.01.DM	ject	Page 4 of 10 Printed 7/7/2011
Matrix Spike						Lab ID = 995452-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.11	Expected/Added 1.13(1.06)	Recovery 97.8	Acceptance Range 90 - 110 Lab ID = 995452-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.06	Expected/Added 1.11(1.06)	Recovery 95.8	Acceptance Range 90 - 110 Lab ID = 995494-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 6.71	Expected/Added 7.00(5.30)	Recovery 94.5	Acceptance Range 90 - 110 Lab ID = 995494-002
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 6.88	Expected/Added 6.91(5.30)	Recovery 99.3	Acceptance Range 90 - 110 Lab ID = 995494-003
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 6.49	Expected/Added 6.85(5.30)	Recovery 93.1	Acceptance Range 90 - 110 Lab ID = 995494-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 7.15	Expected/Added 7.29(5.30)	Recovery 97.4	Acceptance Range 90 - 110 Lab ID = 995497-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 19.4	Expected/Added 20.1(10.6)	Recovery 93.7	Acceptance Range 90 - 110 Lab ID = 995498-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 5.25	Result 5.46	Expected/Added 5.45(5.25)	Recovery 100.	Acceptance Range 90 - 110 Lab ID = 995498-001
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.16	Expected/Added 1.12(1.06)	Recovery 104.	Acceptance Range 90 - 110 Lab ID = 995498-002
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 105	Result 1900	Expected/Added 1930(1050)	Recovery 97.1	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 4.91	Expected 5.00	Recovery 98.1	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.62	Expected 10.0	Recovery 96.2	Acceptance Range 95 - 105

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: CH2MHill			oject Name: oject Number	PG&E Topock Pr :: 408401.01.DM	roject	Page 5 of 10 Printed 7/7/2011
MRCVS - Primary						
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.81	Expected 10.0	Recovery 98.1	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.78	Expected 10.0	Recovery 97.8	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.58	Expected 10.0	Recovery 95.8	Acceptance Range 95 - 105
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 9.65	Expected 10.0	Recovery 96.5	Acceptance Range 95 - 105
Chromium, Hexavalent by	y SM 350	0-Cr B Unit		06CrH11A yzed D	F MDL	RL Result
995497-002 Chromium, Hexay	/alent	ug/L	06/16	/2011 16:03 10	0.0 35.0	100. 1030
Method Blank						
Parameter Chromium, Hexavalent Duplicate	Unit ug/L	DF 1.00	Result ND			Lab ID = 995497-002
Parameter Chromium, Hexavalent Lab Control Sample	Unit ug/L	DF 10.0	Result 1040	Expected 1030	RPD 0.860	Acceptance Range 0 - 20
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.00	Result 104.	Expected 100.	Recovery 104.	Acceptance Range 90 - 110 Lab ID = 995497-002
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 10.0	Result 2120	Expected/Added 2030(1000)	d Recovery 109.	Acceptance Range 85 - 115
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 65.4	Expected 60.0	Recovery 109	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 64.1	Expected 60.0	Recovery 107.	Acceptance Range 90 - 110

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: CH2MHill Project Name: PG&E Topock Project Page 6 of 10

Project Number: 408401.01.DM Printed 7/7/2011

Parameter	the electrical figure president the electric	Unit	Ana	lyzed	DF	MDL	RL	Result
995497-001 Total Dissolved Solids		mg/L	06/08	06/08/2011		0.434	125	3190
995497-002 Total Dissolved	Solids	mg/L	ng/L 06/08/2011 1.00		0.434	125	5120	
Method Blank	, , ,				,			
Parameter	Unit	DF	Result					
Total Dissolved Solids	mg/L	1.00	ND					
Duplicate							Lab ID ≂	995498-002
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptance Range	
Total Dissolved Solids	mg/L	1.00	4750	4680		1.48	0 - 5	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Dissolved Solids	mg/L	1.00	469	500.		93.8	90 - 110	0

Client: CH2MHill

Project Name: PG&E Topock Project

Project Number: 408401.01.DM

Page 7 of 10

Printed 7/8/2011 Revised

Parameter		Unit	Ana	lyzed D	F MDL	RL	Result
995497-002 Chromium		ug/L	06/16	/2011 11:56 10	.0 0.220	2.0	1090
Method Blank							
Parameter	Unit	DF	Result				
Chromium	ug/L	1.00	ND				
Duplicate						Lab ID =	995497-002
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ance Range
Chromium	ug/L	10.0	1080	1090	0.829	0 - 20	
Lab Control Sample							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	50.7	50.0	101.	85 - 11	5
Matrix Spike						Lab ID =	995497-002
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	ance Range
Chromium	ug/L	10.0	1610	1590(500.)	103.	75 - 12	5
Matrix Spike Duplicate						Lab ID =	995497-002
Parameter	Unit	DF	Result	Expected/Added	Recovery	Accepta	ance Range
Chromium	ug/L	10.0	1590	1590(500.)	101.	75 - 128	5
MRCCS - Secondary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Chromium	ug/L	1.00	50.9	50.0	102.	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	nce Range
Chromium	ug/L	1.00	49.8	50.0	99.6	90 - 110	
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Chromium	ug/L	1.00	49.2	50.0	98.4	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Chromium	ug/L	1.00	49.9	50.0	99.8	90 - 110)
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ince Range
Chromium	ug/L	1.00	51.7	50.0	103.	90 - 110	_

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

017

Client: CH2MHill			roject Name: roject Number:	PG&E Topock F 408401.01.DM	Project	Page 8 of 10 Printed 7/8/2011 Revised
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	50.8	50.0	102.	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	47.8	50.0	95.6	90 - 110
Interference Check St	andard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	0.0310	0.00		
Interference Check St	andard A					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	0.0163	0.00		
Interference Check St	andard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	51.0	50.0	102.	80 - 120
Interference Check St	andard AB					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	48.9	50.0	97.9	80 - 120
Serial Dilution						Lab ID = 995497-002
Parameter	Unit	DF	Result	Expected	RPD	Acceptance Range
Chromium	ug/L	50.0	1070	1090	1.57	0 - 10

Client: CH2MHill

Project Name: PG&E Topock Project

Project Number: 408401.01.DM

Page 9 of 10

Printed 7/7/2011

Parameter		Unit	Ana	lyzed [OF MDL	RL	Result
995497-001 Chromium		ug/L	07/07	/2011 14:55 1	.00 0.325	1.0	11.0
Method Blank							
Parameter	Unit	DF	Result				
Chromium	ug/L	1.00	ND				
Duplicate						Lab ID ≈	995497-001
Parameter	Unit	DF	Result	Expected	RPD	Accepta	ance Range
Chromium	ug/L	1.00	10.9	11.0	1.10	0 - 20	
Lab Control Sample	ı						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.8	50.0	99.7	85 - 11	5
Matrix Spike						Lab ID =	995497-001
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accepta	ance Range
Chromium	ug/L	1.00	57.7	61.0(50.0)	93.3	75 - 12	_
MRCCS - Secondar	у						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	49.8	50.0	99.7	95 - 10	5
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	47.6	50.0	95.3	90 - 11	ס
Interference Check	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	ND	0.00			
Interference Check	Standard A						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	ND	0.00	-	·	_
Interference Check	Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	48.1	50.0	96.3	80 - 12	0
Interference Check	Standard AB						
Parameter	Unit	DF	Result	Expected	Recovery	Accepta	ance Range
Chromium	ug/L	1.00	48.0	50.0	96.1	80 - 12	•

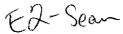
This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Client: CH2MHill

Project Name: PG&E Topock Project

Page 10 of 10

Project Number: 408401.01.DM


Printed 7/7/2011

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

to ∼Mona Nassimi

Manager, Analytical Services

Total Dissolved Solids by SM 2540 C

Calculations

Batch: 06TDS11C Date Calculated: 6/13/11

Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference, 9	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
BLANK	100	76.8834	76.8837	76.8834	0.0003	No	0.0000	0.0	25.0	ND	1
995496-1	100	75.1386	75,1692	75.1691	0.0001	No	0.0305	305.0	25.0	305.0	1
995496-2	100	65.6318	65.6832	65.683	0.0002	No	0.0512	512.0	25.0	512.0	1
995496-3	100	74.7149	74.7412	74.741	0.0002	No	0.0261	261.0	25.0	261.0	1
995496-4	100	74.7171	74.7432	74,7431	0.0001	No	0.0260	260.0	25.0	260.0	1
995496-5	100	73.8315	73.8686	73.8682	0.0004	No	0.0367	367.0	25.0	367.0	1
995497-1	20	48.1869	48.2508	48.2507	0.0001	No	0.0638	3190.0	125.0	3190.0	1
995497-2	20	73,0038	73.1063	73.1061	0.0002	No	0.1023	5115.0	125.0	5115.0	1
995498-1	20	49.7185	49.8047	49.8044	0.0003	No	0.0859	4295.0	125.0	4295.0	1
995498-2	20	49.8364	49.9304	49.93	0.0004	No	0.0936	4680.0	125.0	4680.0	1
995498-2D	20	47.0707	47.1661	47,1657	0.0004	No	0.0950	4750.0	125.0	4750.0	1
LCS	100	111,7311	111.7782	111.778	0.0002	No	0.0469	469.0	25.0	469.0	1
	1										

Calculation as follows:

Filterable residue (TDS), mg/L =
$$\left(\frac{A-B}{C}\right) x \cdot 1 \cdot 0^6$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

Reviewer Signature

Total Dissolved Solids by SM 2540 C

TDS/EC CHECK

Batch: 06TDS11C Date Calculated: 6/13/11

Laboratory Number	EC	TDS/EC Ratio: 0.559	Calculated TDS (EC*0.65)	Measured TDS / Calc TDS <1.3
			-	
995496-1	472	0.65	306.8	0.99
995496-2	862	0,59	560.3	0.91
995496-3	431	0.61	280.15	0.93
995496-4	431	0.60	280.15	0.93
995496-5	596	0.62	387.4	0.95
995497-1	5170	0.62	3360.5	0.95
995497-2	8530	0.60	5544.5	0.92
995498-1	7320	0.59	4758	0.90
995498-2	7840	0.60	5096	0.92
995498-2D	7840	0.61	5096	0.93
LCS				
		THE RESIDENCE OF THE PARTY OF T		
			1	
1				

Ly

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-EW-183] ISS VIJ

COC Number

TURNA	ROUND TIME	10 Da	ys		
DATE	06/07/11	PAGE	1	OF	-
***			Marine Court		

~												_		€ €	y 6	7								
COMPANY	CH2M HILL /E2	2					$\overline{}$	7	7	7	/		$\overline{}$	/	7	7					Π	/ .	OMMENTS	
PROJECT NAME	PG&E Topock	M3Plant-EV	٧				/_													//	' /			
PHONE	530-229-33	303	FAX _53	0-339-3303_		,		/ ,	/ ,	/ ,	/	′	1	1	1	/	1	1	/	/ /				
ADDRESS	155 Grand Ave	Ste 1000	_				<i>a</i> ₽ /				1		Rec'		06/0			_ :/	/	E SE				
	Oakland, CA 94	1612					<u>:</u> /	/ 5				-	Lab‡	‡: 9	9	54	9	7		्रिहें	•			
P.O. NUMBER	408401.01.	OM				/କ୍ଷ୍ମ	$\left\langle \frac{Q}{g}\right\rangle$) (ŝ	/		/	/	/	/	/	/	/	/	/	<i> §</i>				
SAMPLERS (SIGNA	ATURE C.L.			***************************************	$\perp \mid /$	ري / و	DH (12 OC.C.B.) Lab fillered	10s (120) EC (120)	Cr(V) (160.1)	(218.6)	′ /	/ /	' /		/	' /	′ /	/ /		TIMER OF CONTRINEERS				
SAMPLERS (SIGNA	ATORE C-E-A				/ ž		છેં / કું કે / ફે	છેં/ ડું	§/{{	$\frac{2}{5}$														
SAMPLE I,D.		DATE	TIME	DESCRIPTION	/ å	\z	/ F	Ž	<u> </u>		_	_				/_	\angle		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
PE-01-183		06/07/11	10:30	Ground water	Х		Х	Х	Х										4			D	H = 2	200
TW-03D-1	83	06/07/11	/0:30	Ground water	Х	х	х	х											4			1	M=2	
e section	Marine Control of the																							

	I AMAIN		2			F	Oi	5	an	10	10	6	m	ĴП	İO	ns								
			and the second second							or	*****************************			***************************************			L		8	TOTAL	NUMB	ER OF (CONTAINERS	
	Secretary						Medical) SE	y H	U)									<u> </u>	L		***************************************		

	CHAIN OF CUST	ODY SIGNATURE	RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Printed C-Leu	Company/ Agency	CHZMHLL	Date/ 6-7-1/ Time 15:33	RECEIVED COOL WARM 1 400 °F
Signature (Received)	Printed Ro	€ Company/ Agency	1 - 2 -	Date/6-7-// Time / 2 3 3	CUSTODY SEALED YES NO
(Relinquished) Rafact	Davida Name Ray	Company/ Agency	T.L.Z	Date/6	SPECIAL REQUIREMENTS:
Signature (Received) LLOCIE	Printed (2)	Company/ Company/	772	Date/ Time 6/7/1122: CX	
Signature (Relinquished)	Printed Name	Company/ Agency		Date/ Time	
Signature (Received)	Printed Name	Company/ Agency		Date/ Time	

054

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
06/08/11	995494-3	9.5	N/A	N/A	N/A	SB
1	1-4	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
06/08/4	995495-1	95	<i>P</i> /₩	N/A	NA	SB
	√ -3	<u> </u>	1	<u> </u>	<u> </u>	<u> 1</u>
06/02/II	995496-1	9.5	NA	NA	W/A	SB .
1	1		1	(
	-ス -3					
	-4					
4	5 -5	F	<u> </u>	<u> </u>	4	
06/08/11	995497-1	7.0	<u>2-00</u>	9.5	9:10	শ্রহ
06 98 11	195498-1	7-0	5.00	9.5	9:15	SB_
	1 -2	1		<u> </u>	9:20	ا
					·	

		I WI	Didity/pri C	HUCK		
Sample Number	Turbidity	рН	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
995481	71	12	06/03/11	NN	Yes	3010
995 480	Solid		1			L · · · ·
4974-2	21	22			'NO	Name of the last o
49811-21					i	
491					<i>\bar{\bar{\bar{\bar{\bar{\bar{\bar{</i>	_
995499/144	<1	22	4		Yes	3010
995226 (1)	4	<u>~2</u>	0/03/11	KK	NO	No
9955194-11	21	22 72	6/09/11	M.M ES	yes	No
995497(i-2)	41		alipli	ES	NO	US 20 10:00 a.m
995498(1-2)	41	72				
NKS 995494-2	71	72			1	<u> </u>
995537	Solid		6/10/11	MU	yes	27CC
995586	7/	73	6/13/11	MM	1/3	yes @ 13.00,
99567111-2	<u> </u>	22	0/16/11	ingle	140	<u> </u>
612(1)			 			
6+3(1-51	<u> </u>	1/2-	 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
995667	71	< 2	$ V_{ij} $	<u> </u>	703	yes 0/100
495632	 	72	ce / /4/11	_E	No	yes a 1:00 pm
995691	2/	72	6120/11	Mim	Yes	
995 692		2 2				
995720		 	-			
995-694	<u> </u>			 		
995695		1	+-b-		 	
995696/1-4/	<u> </u>	* 2	V		- Migranian	- iw
200593 (55-72)		-<2	6/20/11 6/20/11	14	No	
195754	č/	72			Jes	7 7 7
995 727(124		72	6/21/4	И-И. FS	NO	010:00 am
995 749	21	22	4/00/11	E3	100	10.0000
750		1	 	1	<u> </u>	
73/	· - 1					R#13
752		 				
753						
495763	41	フス	6/20/11	ES	No	a 10:00 am
995772(789)	1	1	1		1	1
995 761 (1-3)					9-	
99580511-2	121	22	6/2/11	Mill	Yes	
095-80611-71			T * 1''			
995 807/1-31		1/				
005 810	71	< 2		. V		
95820 (1-15	3/4/	42	11/24/11	Ch	22/	
995821 (1-4	V	1				
995812(1-2	Y		V	Ψ	V	
495830 (13)	' 4	22	U/27/11	PK.	No	Ver @ 310pm
998381,-4	<i>L</i>	22	6/28/11	Kt.		yer@ 82°an
1415840(1-9	5) 4	<u> </u>	(1/28/11	WE_		1000 92 m
915853 (1)	41		4/29/11	KK-	<u> </u>	
995263(1-3	3) 41	12	<u> </u>	4		Yes @ 8 30 am
995864	4	>2	V	↓	1	400830am
1 (0-4)						-

Sample Integrity & Analysis Discrepancy Form

Cli	ient: E2	Lab# <u>99549</u>
Da	te Delivered: 06 / 07 / 11 Time: <u>22 ′ 00</u> By: □Mail 🕏	ÍField Service □Client
1.	Was a Chain of Custody received and signed?	Yes ONO ONA
2.	Does Customer require an acknowledgement of the COC?	□Yes □No ĎNA
3.	Are there any special requirements or notes on the COC?	□Yes □No ¤(N/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ¤N/A
5.	Were all requested analyses understood and acceptable?	XiYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? $\frac{\sqrt{-\circ C}}{}$	Ø(Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	ØYes □No □N/A
8.	Were sample custody seals intact?	Tyes DNo DWA
9	Does the number of samples received agree with cold	TYPE DNO DN/A
10.	Did sample labels correspond with the client ID's?	The ONO ONA
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: DTruesdall	ØYes □No □N/A
12.	Were samples pH checked? pH = \underline{SU} C , O , C	∭Yes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	AYes ONO ONA
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH DE Std	QYes □No □N/A
5.	Sample Matrix:	
6.	Comments:	,
7.	Sample Check-In completed by Truesdall Log-In/Receiving:	Leida

April 21, 2011

Shawn P. Duffy

CH2M HILL

155 Grand Avenue, Suite 1000

Oakland, CA 94612

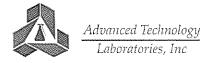
TEL: (530) 229-3303

FAX: (530) 339-3303

RE: PG&E Topock

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on April 04, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.


Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

CA-ELAP No.: 2676

NV Cert. No.: NV-009222007A

Workorder No.: N005596

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project: Lab Order: PG&E Topock N005596

CASE NARRATIVE

Date: 21-Apr-11

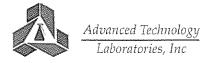
SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.


Analytical Comments for SM 5310C:

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) were not performed due to limited sample. Duplicate was used instead to measure precision.

Analytical Comments for EPA 8260B:

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for some analytes on QC samples N005596-001EMS and N005596-001EMSD possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

RPD for Matrix Spike (MS)/Matrix Spike Duplicate (MSD) is outside criteria for 1,2,4-Trimethylbenzene and Styrene; however, the analytical batch was validated by the Laboratory Control Sample (LCS).

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project:

PG&E Topock

Lab Order:

N005596

Contract No:

Lab Sample ID Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005596-001A MW-58BR-LWR-160-176	Water	4/4/2011 1:50:00 PM	4/4/2011	
N005596-001B MW-58BR-LWR-160-176	Water	4/4/2011 1:50:00 PM	4/4/2011	
N005596-001C MW-58BR-LWR-160-176	Water	4/4/2011 1:50:00 PM	4/4/2011	
N005596-001D MW-58BR-LWR-160-176	Water	4/4/2011 1:50:00 PM	4/4/2011	
N005596-001E MW-58BR-LWR-160-176	Water	4/4/2011 1:50:00 PM	4/4/2011	
N005596-002A TB-Packer-176-02	Water	4/4/2011 1:00:00 PM	4/4/2011	

Date: 21-Apr-11

Work Order Sample Summary

Page 1 of 1

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

CLIENT:

CH2M HILL

Client Sample ID: MW-58BR-LWR-160-176

Lab Order:

N005596

Collection Date: 4/4/2011 1:50:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

Analyses

N005596-001

Result MDL PQL Qual Units DF Date Analyzed

TOTAL FILTERABLE RESIDUE

SM2540C

100

RunID: WETCHEM_110407C

QC Batch: 36628 5600

100

PrepDate: mg/L

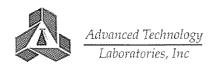
4/7/2011 Analyst: CEI

4/7/2011

Total Dissolved Solids (Residue, Filterable)

Qualifiers: Analyte detected in the associated Method Blank В

> H Holding times for preparation or analysis exceeded


Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Work Order: N005596

PG&E Topock Project:

Date: 21-Apr-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 160.1_2540C_W

Sample ID: MB-36628	SampType: MBLK	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/7/2011	RunNo: 79662
Client ID: PBW	Batch ID: 36628	TestNo: SM2540C	Analysis Date: 4/7/2011	SeqNo: 1256555
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residue	, Filtera ND	10		
Sample ID: LCS-36628	SampType: LCS	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/7/2011	RunNo: 79662
Client ID: LCSW	Batch ID: 36628	TestNo: SM2540C	Analysis Date: 4/7/2011	SeqNo: 1256556
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residue	, Filtera 933.000	10 1000 0	93.3 80 120	
Sample ID: N005596-001C-DU	P SampType: DUP	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/7/2011	RunNo: 79662
Client ID: ZZZZZZ	Batch ID: 36628	TestNo: SM2540C	Analysis Date: 4/7/2011	SeqNo: 1256558
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residue	, Filtera 5 560.000	100	5620	1.07 5

Qualifiers:

B Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

RPD outside accepted recovery limits Calculations are based on raw values

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

CLIENT:

CH2M HILL

Client Sample ID: MW-58BR-LWR-160-176

Lab Order:

N005596

Collection Date: 4/4/2011 1:50:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

Analyses

N005596-001

Result MDL PQL Qual Units DF Date Analyzed

HEXAVALENT CHROMIUM BY IC

EPA 218.6

RunID: IC1_110405A

QC Batch: R79591

PrepDate:

Analyst: QBM

Hexavalent Chromium

100 0.28 2.0

ug/L

10

4/5/2011 01:45 PM

Qualifiers:

Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

CLIENT:

Project:

Work Order:

Qualifiers:

Advanced Technology Laboratories, Inc.

CH2M HILL

N005596

PG&E Topock

Date: 21-Apr-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WPGE

Sample ID: MB-R79591	SampType: MBLK	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79591
Client ID: PBW	Batch ID: R79591	TestNo: EPA 218.6	Analysis Date: 4/5/2011	SeqNo: 1254413
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	ND	0.20		
Sample ID: LCS-R79591	SampType: LCS	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79591
Client ID: LCSW	Batch ID: R79591	TestNo: EPA 218.6	Analysis Date: 4/5/2011	SeqNo: 1254414
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	4.942	0.20 5.000 0	98.8 90 110	
Sample ID: N005594-001AMS	SampType: MS	TestCode: 218,6_WPGE Units: ug/L	Prep Date:	RunNo: 79591
Client ID: ZZZZZZ	Batch ID: R79591	TestNo: EPA 218.6	Analysis Date: 4/5/2011	SeqNa: 1 254417
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	8.081	0.20 5.000 3.017	101 90 110	
Sample ID: N005596-001ADUP	SampType: DUP	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79591
Client ID: ZZZZZZ	Batch ID: R79591	TestNo: EPA 218.6	Analysis Date: 4/5/2011	SeqNo: 1254418
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	100.193	2.0	101.5	1.28 20
Sample ID: N005596-001AMS	SатрТуре: МS	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79591
Client ID: ZZZZZZ	Batch ID: R79591	TestNo: EPA 218.6	Analysis Date: 4/5/2011	SeqNo: 1254419
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	149.682	2.0 50.00 101.5	96.4 90 110	

Analyte detected in the associated Method Blank 13

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

RPD outside accepted recovery limits Calculations are based on raw values

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Advanced Technology

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WPGE

Sample ID: N005596-001AMSD	SampType: MSD	TestCo	de: 218.6_W P	GE Units: ug/L		Prep Da	te:		RunNo: 79 :	591	
Client ID: ZZZZZZ	Batch ID: R79591	Test	No: EPA 218.6	i		Analysis Da	te: 4/5/201	1	SeqNo: 12 !	54420	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexavalent Chromium	150.877	2.0	50.00	101.5	98.8	90	110	149.7	0.795	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

CLIENT:

CH2M HILL

Client Sample ID: MW-58BR-LWR-160-176

Lab Order:

N005596

Collection Date: 4/4/2011 1:50:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

N005596-001

Analyses	Result MDL 1	PQL Qual U	Jnits	DF	Date Analyzed
ANIONS BY ION CHROMAT	OGRAPHY				
		EPA :	300.0		
RunID: IC2_110405A	QC Batch: R79675		PrepDate:		Analyst: QBM
Chloride	2900 32	250	mg/L	500	4/5/2011 11:30 AM
ANIONS BY ION CHROMAT	OGRAPHY				
	•	EPA :	300.0		
RunID: IC2_110405A	QC Batch: R79675		PrepDate:		Analyst: QBM
Nitrate as N	1.1 0.022	1.0	mg/L	2	4/5/2011 12:15 PM

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_CLPGE

Date: 21-Apr-11

Sample ID: MB	2 P70675 CI	SampType: MBLK	TestCode; 300 W CLP Units: mg/L	Prep Date:	RunNo: 79675
Client ID: PB	-	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257157
Cheffe ID: PB	AA	Batchio, K/96/3	restivo. EPA 300.0	Analysis Date: 4/3/2011	Sequo. 125/15/
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride		ND	0.50		
Sample ID: LCS	S-R79675_CL	SampType: LCS	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79675
Client ID: LCS	sw	Batch ID: R79675	TestNo: EPA 300.0	Anatysis Date: 4/5/2011	SeqNo: 1257158
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride		2.343	0.50 2.500 0	93.7 90 110	
Sample ID: N00	05596-001CDUP	SampType: DUP	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79675
Client ID: ZZZ	ZZZZ	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257160
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride		2960.000	250	2935	0.848 20
Sample ID: N00	05596-001CMS	SampType: MS	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79675
Client ID: zzz	zzzz	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257161
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride		4242.500	250 1250 2935	105 80 120	
Sample ID: N00	05596-001CMSD	SampType: MSD	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79675
Client ID: ZZZ	ZZZZ	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257162
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride		4232.500	250 1250 2935	104 80 120 4242	0.236 20

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL

Work Order: N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 300W_NO3PGE

	······································			
Sample ID: MB-R79675_NO3	SampType: MB L K	TestCode: 300W_NO3P Units: mg/L	RunNo: 79675	
Client ID: PBW	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257169
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	ND	0.50		
Sample ID: LCS-R79675_NO3	SampType: LCS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79675
Client ID: LCSW	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257170
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimît Qual
Nitrate as N	2.401	0.50 2.500 0	96.0 90 110	
Sample ID: N005596-001CDUP	SampType: DUP	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79675
Client ID: ZZZZZZ	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 125717 2
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	1.066	1.0	1.072	0.561 20
Sample ID: N005596-001CMS	SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79675
Client ID: ZZZZZZ	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257173
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	5.878	1.0 5.000 1.072	96.1 80 120	
Sample ID: N005596-001CMSD	SampType: MSD	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79675
Client ID: ZZZZZZ	Batch ID: R79675	TestNo: EPA 300.0	Analysis Date: 4/5/2011	SeqNo: 1257174
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	5.806	1.0 5.000 1.072	94.7 80 120 5.878	1.23 20

Qualifiers:

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

 CLIENT:
 CH2M HILL
 Client Sample ID:
 MW-58BR-LWR-160-176

 Lab Order:
 N005596
 Collection Date:
 4/4/2011 1:50:00 PM

Project: PG&E Topock Matrix: WATER

Lab ID: N005596-001

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED METALS BY ICP

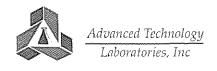
EPA 3010A EPA 6010B

RunlD: ICP1_110405B QC Batch: 36608 PrepDate: 4/5/2011 Analyst: KAB

Chromium 110 0.44 2.0 ug/L 2 4/5/2011 05:26 PM

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded


S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

CLIENT:

Project:

Work Order:

Qualifiers:

Advanced Technology Laboratories, Inc.

CH2M HILL

N005596

PG&E Topock

Date: 21-Apr-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Cample ID, ME 36600	Company MPLK	TaniCada, 2040, MIDBO	D D 4/5/0044	DN 70004
Sample ID: MB-36608	SampType: MBLK	TestCode: 6010_WDPG Units: ug/L	Prep Date: 4/5/2011	RunNo: 79601
Client ID: PBW	Batch ID: 36608	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254711
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	ND	1.0		
Sample ID: LCS3-36608	SampType: LCS	TestCode: 6010_WDPG Units: ug/L	Prep Date: 4/5/2011	RunNo: 79601
Client ID: LCSW	Batch ID: 36608	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254712
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	48.628	1.0 50.00 0	97.3 85 115	
Sample ID: N005596-001B-MS3	SampType: MS	TestCode: 6010_WDPG Units: ug/L	Prep Date: 4/5/2011	RunNo: 79601
Sample ID: N005596-001B-MS3 Client ID: ZZZZZZ	SampType: MS Batch ID: 36608	TestCode: 6010_WDPG Units: ug/L TestNo: EPA 6010B EPA 3010A	Prep Date: 4/5/2011 Analysis Date: 4/5/2011	RunNo: 79601 SeqNo: 1254718
	. ,,	5	,	
Client ID: ZZZZZZ	Batch ID: 36608	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254718
Client ID: ZZZZZZ	Batch ID: 36608 Result 155.914	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 4/5/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1254718
Client ID: ZZZZZZ Analyte Chromium	Batch ID: 36608 Result 155.914	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 2.0 50.00 106.6	Analysis Date: 4/5/2011 %REC LowLimit HighLimit RPD Ref Val 98.7 75 125	SeqNo: 1254718 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Chromium Sample ID: N005596-001B-MSD	Batch ID: 36608 Result 155.914 SampType: MSD	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 2.0 50.00 106.6 TestCode: 6010_WDPG Units: ug/L	Analysis Date: 4/5/2011 %REC LowLimit HighLimit RPD Ref Val 98.7 75 125 Prep Date: 4/5/2011	SeqNo: 1254718 %RPD RPDLimit Qual RunNo: 79601

Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

RPD outside accepted recovery limits Calculations are based on raw values

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

CLIENT:

CH2M HILL

Client Sample ID: MW-58BR-LWR-160-176

Lab Order:

N005596

Collection Date: 4/4/2011 1:50:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

Analyses

N005596-001

Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RuniD: ICP7_110405A

QC Batch: 36604

PrepDate:

4/5/2011 Analyst: JT

Arsenic

1.6 0.0025

0.10

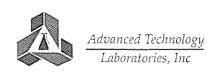
ug/L

1 4/5/2011 03:13 PM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded


Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E. Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

CLIENT:

Project:

Work Order:

Qualifiers:

Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

CH2M HILL N005596

Advanced Technology Laboratories, Inc.

PG&E Topock

Date: 21-Apr-11

TestCode: 6020_WD_AsPGE

ANALYTICAL QC SUMMARY REPORT

Comple ID: MR 20004	CompTyre: MDLV	ToolCode: 6000 MD & Unite: well	Drag Date: 4/5/2044	DuaNet 70504
Sample ID: MB-36604	SampType: MBLK	TestCode: 6020_WD_As Units: ug/L	Prep Date: 4/5/2011	RunNo: 79594
Client ID: PBW	Batch ID: 36604	TestNo: EPA 6020 EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254551
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	0.015	0.10		
Sample ID: LCS-36604	SampType: LCS	TestCode: 6020_WD_As Units: ug/L	Prep Date: 4/5/2011	RunNo: 79594
Client ID: LCSW	Batch ID: 36604	TestNo: EPA 6020 EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254552
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	9.962	0.10 10.00 0	99.6 8 5 115	
Sample ID: N005594-001B-MS	SampType: MS	TestCode: 6020_WD_As Units: ug/L	Prep Date: 4/5/2011	RunNo: 79594
Sample ID: N005594-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36604	TestCode: 6020_WD_As Units: ug/L TestNo: EPA 6020 EPA 3010A	Prep Date: 4/5/2011 Analysis Date: 4/5/2011	RunNo: 79594 SeqNo: 1254556
,				
Client ID: ZZZZZZ	Batch ID: 36604	TestNo: EPA 6020 EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254556
Client ID: ZZZZZZ	Batch ID: 36604 Result	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 4/5/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1254556
Client ID: ZZZZZZ Analyte Arsenic	Batch ID: 36604 Result 23.421	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.10 10.00 13.09	Analysis Date: 4/5/2011 %REC LowLimit HighLimit RPD Ref Val 103 75 125	SeqNo: 1254556 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Arsenic Sample ID: N005594-001B-MSD	Batch ID: 36604 Result 23.421 SampType: MSD	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.10 10.00 13.09 TestCode: 6020_WD_As Units: ug/L	Analysis Date: 4/5/2011 %REC LowLimit HighLimit RPD Ref Val 103 75 125 Prep Date: 4/5/2011	SeqNo: 1254556 %RPD RPDLimit Qual RunNo: 79594

В

E Value above quantitation range

RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL N005596 Client Sample ID: MW-58BR-LWR-160-176 Collection Date: 4/4/2011 1:50:00 PM

Print Date: 21-Apr-11

Project:

PG&E Topock

Matrix: WATER

Lab ID:

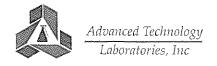
N005596-001

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS					
			EP	A 8260B		
RunID: MS1_110405A	QC Batch: D	11 VW 048		PrepDate:		Analyst: QBM
1,1,1,2-Tetrachloroethane	ND	0.061	1.0	ug/L	1	4/5/2011 01:19 PM
1,1,1-Trichioroethane	ND	0.068	1.0	ug/L	1	4/5/2011 01:19 PM
1,1,2,2-Tetrachloroethane	ND	0.054	1.0	ug/L	1	4/5/2011 01:19 PM
1,1,2-Trichloroethane	ND	0.083	1.0	ug/L	1	4/5/2011 01:19 PM
1,1-Dichloroethane	ND	0.099	1.0	ug/L	1	4/5/2011 01:19 PM
1,1-Dichloroethene	ND	0.094	1.0	ug/L	1	4/5/2011 01:19 PM
1,1-Dichloropropene	ND	0.082	1.0	ug/L	1	4/5/2011 01:19 PN
1,2,3-Trichlorobenzene	ND	0.10	1.0	ug/L	1	4/5/2011 01:19 PN
1,2,3-Trichloropropane	ND	0.12	1.0	ug/L	1	4/5/2011 01:19 PN
1,2,4-Trichlorobenzene	ND	0.12	1.0	ug/L	1	4/5/2011 01:19 PM
1,2,4-Trimethylbenzene	ND	0.095	1.0	ug/L	1	4/5/2011 01:19 PM
1,2-Dibromo-3-chloropropane	ND	0.15	2.0	ug/L	1	4/5/2011 01:19 PM
1,2-Dibromoethane	ND	0.14	1.0	ug/L	1	4/5/2011 01:19 PI
1,2-Dichlorobenzene	ND	0.070	1.0	ug/L	1	4/5/2011 01:19 PI
1,2-Dichloroethane	ND	0.17	1.0	ug/L	1	4/5/2011 01:19 PI
1,2-Dichloropropane	ND	0.085	1.0	ug/L	1	4/5/2011 01:19 PI
1,3,5-Trimethylbenzene	ND	0.087	1.0	ug/L	1	4/5/2011 01:19 PI
1,3-Dichlorobenzene	ND	0.090	1.0	ug/L	1	4/5/2011 01:19 PI
1,3-Dichloropropane	ND	0.074	1.0	ug/L	1	4/5/2011 01:19 P
1,4-Dichlorobenzene	ND	0.092	1.0	ug/L	1	4/5/2011 01:19 P
2,2-Dichloropropane	ND	0.061	1.0	ug/L	1	4/5/2011 01:19 P
2-Butanone	ND	1.0	10	ug/L	1	4/5/2011 01:19 P
2-Chlorotoluene	ND	0.080	1.0	ug/L	1	4/5/2011 01:19 P
4-Chlorotoluene	ND	0.10	1.0	ug/L	1	4/5/2011 01:19 P
4-Isopropyltoluene	ND	0.080	1.0	ug/L	1	4/5/2011 01:19 PI
4-Methyl-2-pentanone	ND	0.76	10	ug/L	1	4/5/2011 01:19 P
Acetone	ND	1.6	10	ug/L	1	4/5/2011 01:19 P
Acrolein	ND	4.3	20	ug/L	1	4/5/2011 01:19 P
Acrylonitrile	ND	0.61	20	ug/L	1	4/5/2011 01:19 P
Benzene	ND	0.075	1.0	ug/L	1	4/5/2011 01:19 P
Bromobenzene	ND	0.082	1.0	ug/L	1	4/5/2011 01:19 P
Bromochloromethane	ND	0.15	1.0	ug/L	1	4/5/2011 01:19 P
Bromodichloromethane	ND	0.063	1.0	ug/L	1	4/5/2011 01:19 P
Bromoform	ND	0.086	1.0	ug/L	1	4/5/2011 01:19 P
Bromomethane	ND	0.13	1.0	ug/L	1	4/5/2011 01:19 Pf
Carbon disulfide	ND	0.054	1.0	ug/L	1	4/5/2011 01:19 Pf

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded


Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-58BR-LWR-160-176

 Lab Order:
 N005596
 Collection Date: 4/4/2011 1:50:00 PM

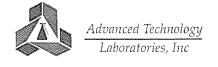
Project: PG&E Topock Matrix: WATER

Lab ID: N005596-001

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed		
VOLATILE ORGANIC COMPOUN	NDS BY GC/MS							
			EP	A 8260B				
RunID: MS1_110405A	QC Batch: D1	11VW048		PrepDate:		Analyst: QBM		
Carbon tetrachloride	ND	0.10	1.0	ug/L	1	4/5/2011 01:19 PM		
Chlorobenzene	ND	0.092	1.0	ug/L	1	4/5/2011 01:19 PM		
Chloroethane	ND	0.14	1.0	ug/L	1	4/5/2011 01:19 PM		
Chloroform	ND	0.058	1.0	ug/L	1	4/5/2011 01:19 PM		
Chloromethane	ND	0.054	1.0	ug/L	1	4/5/2011 01:19 PM		
cis-1,2-Dichloroethene	ND	0.11	1.0	ug/L	1	4/5/2011 01:19 PM		
cis-1,3-Dichloropropene	ND	0.10	1.0	ug/L	1	4/5/2011 01:19 PM		
Dibromochloromethane	ND	0.061	1.0	ug/L	1	4/5/2011 01:19 PM		
Díbromomethane	ND	0.15	1.0	ug/L	1	4/5/2011 01:19 PM		
Dichlorodifluoromethane	ND	0.12	1.0	ug/L	1	4/5/2011 01:19 PM		
Ethylbenzene	ND	0.051	1.0	ug/L	1	4/5/2011 01:19 PM		
Freon-113	ND	0.080	1.0	ug/L	1	4/5/2011 01:19 PM		
Hexachlorobutadiene	ND	0.17	1.0	ug/L	1	4/5/2011 01:19 PM		
Isopropylbenzene	ND	0.057	1.0	ug/L	1	4/5/2011 01:19 PM		
m,p-Xylene	ND	0.17	1.0	ug/L	1	4/5/2011 01:19 PM		
Methylene chloride	ND	0.10	5.0	ug/L	1	4/5/2011 01:19 PM		
мтве	ND	0.089	1.0	ug/L	1	4/5/2011 01:19 PM		
n-Butylbenzene	ND	0.082	1.0	ug/L	1	4/5/2011 01:19 PM		
n-Propylbenzene	ND	0.087	1.0	ug/L	1	4/5/2011 01:19 PM		
Naphthalene	ND	0,056	1.0	ug/L	1	4/5/2011 01:19 PM		
o-Xylene	ND	0.077	1.0	ug/L	1	4/5/2011 01:19 PM		
sec-Butylbenzene	ND	0.098	1.0	ug/L	1	4/5/2011 01:19 PM		
Styrene	ND	0.072	1.0	ug/L	1	4/5/2011 01:19 PM		
tert-Butylbenzene	ND	0.062	1.0	ug/L	1	4/5/2011 01:19 PM		
Tetrachloroethene	ND	0.13	1,0	ug/L	1	4/5/2011 01:19 PM		
Toluene	ND	0.12	2.5	ug/L	1	4/5/2011 01:19 PM		
trans-1,2-Dichloroethene	ND	0.094	1.0	ug/L	1	4/5/2011 01:19 PM		
trans-1,3-Dichloropropene	ND	0.10	1.0	ug/L	1	4/5/2011 01:19 PM		
Trichloroethene	ND	0.060	1.0	ug/L	1	4/5/2011 01:19 PM		
Trichlorofluoromethane	ND	0.097	1.0	ug/L	1	4/5/2011 01:19 PM		
Vinyl chloride	ND	0.12	1.0	ug/L	1	4/5/2011 01:19 PM		
Xylenes, Total	ND	1.5	2.0	ug/L	1	4/5/2011 01:19 PM		
Surr: 1,2-Dichloroethane-d4	84.0	0	72-119	%REC	1	4/5/2011 01:19 PM		
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	1	4 /5/2011 01:19 PM		
Surr: Dibromofluoromethane	91.6	0	85-115	%REC	1	4/5/2011 01:19 PM		
Surr: Toluene-d8	107	0	81-120	%REC	1	4/5/2011 01:19 PM		

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded


S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

Client Sample ID: TB-Packer-176-02

Collection Date: 4/4/2011 1:00:00 PM

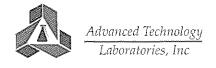
CLIENT: CH2M HILL

Project:

Lab Order: N005596

PG&E Topock Matrix: WATER

Lab ID: N005596-002


Analyses	Result	MDL	PQL Qua	ıl Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS					
			EF	PA 8260B		
RunID: MS1_110405A	QC Batch: D1	1VW048		PrepDate:		Analyst: QBM
1,1,1,2-Tetrachloroethane	ND	0.061	1.0	ug/L	1	4/5/2011 01:42 PM
1,1,1-Trichloroethane	ND	0.068	1.0	ug/L	1	4/5/2011 01:42 PM
1,1,2,2-Tetrachloroethane	ND	0.054	1.0	ug/L	1	4/5/2011 01:42 PM
1,1,2-Trichloroethane	ND	0.083	1.0	ug/L	1	4/5/2011 01:42 PM
1,1-Dichloroethane	ND	0.099	1.0	ug/L	1	4/5/2011 01:42 PM
1,1-Dichloroethene	ND	0.094	1.0	ug/L	1	4/5/2011 01:42 PM
1,1-Dichloropropene	ND	0.082	1.0	ug/L	1	4/5/2011 01:42 PM
1,2,3-Trichlorobenzene	ND	0.10	1.0	ug/L	1	4/5/2011 01:42 PM
1,2,3-Trichloropropane	ND	0.12	1.0	ug/L	1	4/5/2011 01:42 PM
1,2,4-Trichlorobenzene	ND	0.12	1.0	ug/L	1	4/5/2011 01:42 PM
1,2,4-Trimethylbenzene	ND	0.095	1.0	ug/L	1	4/5/2011 01:42 PM
1,2-Dibromo-3-chloropropane	ND	0.15	2.0	ug/L	1	4/5/2011 01: 4 2 PM
1,2-Dibromoethane	ND	0.14	1.0	ug/L	1	4/5/2011 01:42 PM
1,2-Dichlorobenzene	ND	0.070	1.0	ug/L	1	4/5/2011 01:42 PM
1,2-Dichloroethane	ND	0.17	1.0	ug/L	1	4/5/2011 01:42 PM
1,2-Dichloropropane	ND	0.085	1.0	ug/L	1	4/5/2011 01:42 PM
1,3,5-Trimethylbenzene	ND	0.087	1.0	ug/L	1	4/5/2011 01:42 PM
1,3-Dichlorobenzene	ND	0.090	1.0	ug/L	1	4/5/2011 01:42 PM
1,3-Dichloropropane	ND	0.074	1.0	ug/L	1	4/5/2011 01:42 PM
1,4-Dichlorobenzene	ND	0.092	1.0	ug/L	1	4/5/2011 01:42 PM
2,2-Dichloropropane	ND	0.061	1.0	ug/L	1	4/5/2011 01:42 PM
2-Butanone	ND	1.0	10	ug/L	1	4/5/2011 01:42 PM
2-Chlorotoluene	ND	0.080	1.0	ug/L	1	4/5/2011 01:42 PM
4-Chlorotoluene	ND	0.10	1.0	ug/L	1	4/5/2011 01:42 PM
4-Isopropyltoluene	ND	0.080	1.0	ug/L	1	4/5/2011 01:42 PM
4-Methyl-2-pentanone	ND	0.76	10	ug/L	1	4/5/2011 01:42 PM
Acetone	ND	1.6	10	ug/L	1	4/5/2011 01:42 PM
Acrolein	ND	4.3	20	ug/L	1	4/5/2011 01:42 PM
Acrylonitrile	ND	0.61	20	ug/L	1	4/5/2011 01:42 PM
Benzene	ND	0.075	1.0	ug/L	1	4/5/2011 01:42 PM
Bromobenzene	ND	0.082	1.0	ug/L	1	4/5/2011 01:42 PM
Bromochloromethane	ND	0.15	1.0	ug/L	1	4/5/2011 01:42 PM
Bromodichloromethane	ND	0.063	1.0	ug/L	1	4/5/2011 01:42 PM
Bromoform	ND	0.086	1.0	ug/L	1	4/5/2011 01:42 PM
Bromomethane	ND	0.13	1.0	ug/L	1	4/5/2011 01:42 PM
Carbon disulfide	ND	0.054	1.0	ug/L	1	4/5/2011 01:42 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 21-Apr-11

CLIENT:

CH2M HILL

Client Sample ID: TB-Packer-176-02

Lab Order:

N005596

Collection Date: 4/4/2011 1:00:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

N005596-002

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed		
VOLATILE ORGANIC COMPOU	NDS BY GC/MS							
			EP	A 8260B				
RunID: MS1_110405A	QC Batch: D	11VW048		PrepDate:		Analyst: QBM		
Carbon tetrachloride	ND	0.10	1.0	ug/L	1	4/5/2011 01:42 PM		
Chlorobenzene	ND	0.092	1.0	ug/L	1	4/5/2011 01:42 PM		
Chloroethane	ND	0.14	1,0	ug/L	1	4/5/2011 01:42 PM		
Chloroform	ND	0.058	1.0	ug/L	1	4/5/2011 01:42 PM		
Chloromethane	ND	0.054	1.0	ug/L	1	4/5/2011 01:42 PM		
cis-1,2-Dichloroethene	ND	0.11	1.0	ug/L	1	4/5/2011 01:42 PM		
cis-1,3-Díchloropropene	ND	0.10	1.0	ug/L	1	4/5/2011 01:42 PM		
Dibromochloromethane	ND	0.061	1.0	ug/L	1	4/5/2011 01:42 PM		
Dibromomethane	ND	0.15	1.0	ug/∟	1	4/5/2011 01:42 PM		
Dichlorodifluoromethane	ND	0.12	1.0	ug/L	1	4/5/2011 01:42 PM		
Ethylbenzene	ND	0.051	1.0	ug/L	1	4/5/2011 01:42 PM		
Freon-113	ND	0.080	1.0	ug/L	1	4/5/2011 01:42 PM		
Hexachlorobutadiene	ND	0.17	1.0	ug/L	1	4/5/2011 01:42 PM		
Isopropylbenzene	ND	0.057	1,0	ug/L	1	4/5/2011 01:42 PN		
m,p-Xylene	ND	0.17	1.0	ug/L	1	4/5/2011 01:42 PN		
Methylene chloride	ND	0.10	5.0	ug/L	1	4/5/2011 01:42 PM		
MTBE	ND	0.089	1.0	ug/L	1	4/5/2011 01:42 PN		
n-Butylbenzene	ND	0.082	1.0	ug/L	1	4/5/2011 01:42 PN		
n-Propylbenzene	ND	0.087	1.0	ug/L	1	4/5/2011 01:42 PM		
Naphthalene	ND	0.056	1.0	ug/L	1	4/5/2011 01:42 PM		
o-Xylene	ND	0.077	1.0	ug/L	1	4/5/2011 01:42 PN		
sec-Butylbenzene	ND	0.098	1.0	ug/L	1	4/5/2011 01:42 PM		
Styrene	ND	0.072	1.0	ug/L	1	4/5/2011 01:42 PN		
terl-Butylbenzene	ND	0.062	1.0	ug/L	1	4/5/2011 01:42 PN		
Tetrachloroethene	ND	0.13	1.0	ug/L	1	4/5/2011 01:42 PN		
Toluene	ND	0.12	2.5	ug/L	1	4/5/2011 01:42 PM		
trans-1,2-Dichloroethene	ND	0.094	1.0	ug/L	1	4/5/2011 01:42 PM		
trans-1,3-Dichloropropene	ND	0.10	1.0	ug/L	1	4/5/2011 01:42 PN		
Trichloroethene	ND	0.060	1.0	ug/L	1	4/5/2011 01:42 PN		
Trichlorofluoromethane	ND	0.097	1.0	ug/L	1	4/5/2011 01:42 PN		
Vinyl chloride	ND	0.12	1.0	ug/L	1	4/5/2011 01:42 PM		
Xylenes, Total	ND	1.5	2.0	ug/L	1	4/5/2011 01:42 PM		
Surr: 1,2-Dichloroethane-d4	89.8	0	72-119	%REC	1	4/5/2011 01:42 PM		
Surr: 4-Bromofluorobenzene	110	0	76-119	%REC	1	4/5/2011 01:42 PM		
Surr: Dibromofluoromethane	95.9	0	85-115	%REC	1	4/5/2011 01:42 PN		
Surr: Toluene-d8	109	0	81-120	%REC	1	4/5/2011 01:42 PN		

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Date: 21-Apr-11

Sample iD: D110405LCS	SampType: LCS	TestCode: 8260_WP_LL Units: ug/L Prep Date:				RunNo; 79	5 89				
Client ID: LCSW	Batch ID: D11VW048	TestN	No: EPA 8260	В		Analysis Da	te: 4/ 5/2 0 1	11	SeqNo: 12	54368	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	25.550	1.0	25.00	0	102	81	129				
1,1,1-Trichloroethane	19.560	1.0	25.00	0	78.2	67	132				
1,1,2,2-Tetrachloroethane	25.090	1.0	25.00	0	100	63	128				
1,1,2-Trichloroethane	25.330	1.0	25,00	0	101	75	125				
1,1-Dichloroethane	23.720	1.0	25.00	0	94.9	69	133				
1,1-Dìchloroethene	25.240	1.0	25.00	0	101	68	130				
1,1-Dichloropropene	22.620	1.0	25.00	0	90.5	73	132				
1,2,3-Trichlorobenzene	29.370	1.0	25.00	0	117	67	137				
1,2,3-Trichloropropane	24.260	1.0	25.00	0	97.0	73	124				
1,2,4-Trichlorobenzene	29.420	1.0	25,00	0	118	66	134				
1,2,4-Trimethylbenzene	27.160	1.0	25.00	0	109	74	132				
,2-Dibromo-3-chloropropane	25.010	2.0	25.00	0	100	50	132				
1,2-Dibromoethane	26.190	1.0	25.00	0	105	80	121				
1,2-Dichlorobenzene	26.710	1.0	25.00	0	107	71	122				
1,2-Dichloroethane	24.700	1.0	25.00	0	98.8	69	132				
1,2-Dichloropropane	23.000	1.0	25.00	0	92.0	7 5	125				
1,3,5-Trimethylbenzene	26.500	1.0	25.00	0	106	74	131				
1,3-Dichlorobenzene	27.000	1.0	25.00	0	108	75	12 4				
1,3-Dichloropropane	25.380	1.0	25.00	0	102	73	126				
1,4-Dichlorobenzene	26.840	1.0	25.00	0	107	74	123				
2,2-Dichloropropane	18. 3 40	1.0	25.00	0	73.4	69	137				
2-Butanone	276.6 3 0	10	250.0	0	111	49	136				
2-Chlorotoluene	24.140	1,0	25.00	0	96.6	73	126				
1-Chlorotoluene	25,700	1.0	25.00	0	103	74	128				
I-Isopropyltoluene	26.850	1,0	25.00	0	107	73	130				
I-Methyl-2-pentanone	259.680	10	250.0	0	104	58	134				
Acetone	315.590	10	250.0	0	126	40	135				
Acrolein	240.630	20	250.0	0	96,3	75	125				
Acrylonitrile	253,020	20	250.0	0	101	75	125				

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D110405LCS	SampType: LCS	TestCode: 8260_WP_LL Units: ug/L				Prep Da	te:		RunNo: 79589		
Client ID: LCSW	Batch ID: D11VW048	Test	No: EPA 8260	В		Analysis Da	te: 4/5/20 1	1	SeqNo: 12	54368	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	24.310	1.0	25.00	0	97.2	81	122				
Bromobenzene	26.440	1.0	25.00	0	106	76	124				
Bromochloromethane	26.030	1.0	25.00	0	104	65	129				
Bromodichloromethane	21.350	1.0	25.00	0	85.4	76	121				
Bromoform	22.610	1.0	25.00	0	90.4	69	128				
Bromomethane	24.180	1.0	25.00	0	96.7	53	141				
Carbon disulfide	21.610	1.0	25.00	0	86.4	75	125				
Carbon tetrachloride	19.120	1.0	25.00	0	76.5	66	138				
Chlorobenzene	26.140	1.0	25.00	0	105	81	122				
Chloroethane	19.000	1.0	25.00	0	76.0	58	133				
Chloroform	24.730	1.0	25.00	0	98.9	69	128				
Chloromethane	21.900	1.0	25.00	0	87.6	56	131				
cis-1,2-Dichloroethene	25.400	1.0	25.00	0	102	72	126				
cis-1,3-Dichloropropene	23.160	1.0	25.00	0	92.6	69	131				
Dibromochloromethane	23.360	1.0	25.00	0	93.4	66	133				
Dibromomethane	26.060	1.0	25.00	0	104	76	125				
Dichlorodifluoromethane	22,630	1.0	25.00	0	90.5	53	153				
Ethylbenzene	25.810	1.0	25.00	0	103	73	127				
Freon-113	21.870	1.0	25.00	0	87.5	75	125				
Hexachlorobutadiene	28.470	1.0	25.00	0	114	67	131				
Isopropylbenzene	25.860	1.0	25.00	0	103	75	127				
m,p-Xylene	52.340	1.0	50.00	0	105	76	128				
Methylene chloride	23.500	5.0	25.00	0	94.0	63	137				
MTBE	23,070	1.0	25.00	0	92.3	65	123				
n-Butylbenzene	27.690	1.0	25.00	0	111	69	137				
n-Propylbenzene	26.030	1.0	25.00	0	104	72	129				
Naphthalene	28.390	1.0	25.00	0	114	54	138				
o-Xylene	25.330	1.0	25.00	0	101	80	121				
sec-Butylbenzene	26.150	1.0	25.00	0	105	72	127				
Styrene	25.930	1.0	25.00	0	104	65	134				

- B Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 WP_LLPGE

Spike/Surrogate outside of limits due to matrix interference

Sample ID: D110405LCS	SampType: LCS	TestCo	de: 8260_WP	_LL Units: ug/L		Prep Da	ite:		RuпNo: 79	5 89	
Client ID: LCSW	Batch ID: D11VW048	Testl	No: EPA 8260	В		Analysis Da	ite: 4/5/20	11	SeqNo: 12	54368	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
tert-Butylbenzene	25.540	1.0	25.00	0	102	70	129				
Tetrachloroethene	26.540	1.0	25.00	0	106	66	128				
Toluene	24.730	2.5	25.00	0	98.9	77	122				
trans-1,2-Dichloroethene	25.460	1.0	25.00	0	102	63	137				
trans-1,3-Dichloropropene	22.460	1.0	25.00	0	89.8	59	135				
Trichloroethene	24.470	1.0	25,00	0	97.9	70	127				
Trichlorofluoromethane	23.440	1.0	25.00	0	93.8	57	129				
Vinyl chloride	20.260	1.0	25.00	0	81.0	50	134				
Xylenes, Total	77.670	2.0	75.00	0	104	75	125				
Surr: 1,2-Dichloroethane-d4	23.590		25.00		94.4	72	119				
Surr: 4-Bromofluorobenzene	25.150		25.00		101	76	119				
Surr: Dibromofluoromethane	25.400		25.00		102	85	115				
Surr: Toluene-d8	24.940		25.00		99.8	81	120				
Sample ID: N005596-001EMS	SampType: MS	TestCo	de: 8260_WP _	LL Units: ug/L		Prep Da	te:		RunNo: 79 :	589	****
Client ID: ZZZZZZ	Batch ID: D11VW048	Test	No: EPA 8260 1	3		Analysis Da	te: 4/5/ 201	1	SeqNo: 12	54369	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	25.490	1.0	25.00	0	102	81	129				
1,1,1-Trichloroethane	18.800	1.0	25.00	0	75.2	67	132				
1,1,2,2-Tetrachloroethane	20.830	1.0	25.00	0	83.3	63	128				
1,1,2-Trichloroethane	22.660	1.0	25.00	0	90.6	75	125				
1,1-Dichloroethane	22.710	1.0	25.00	0	90.8	69	133				
1,1-Dichloroethene	24,100	1.0	25.00	0	96.4	68	130				
1,1-Dichloropropene	21.960	1.0	25.00	0	87.8	73	132				
1,2,3-Trichlorobenzene	26.700	1.0	25,00	0	107	67	137				
1,2,3-Trichloropropane	20.000	1.0	25.00	0	80.0	73	124				
1,2,4-Trichlorobenzene	28.160	1.0	25.00	0	113	66	134				
1,2,4-Trimethylbenzene	24.050	1.0	25.00	0	96.2	74	132				
1,2-Dibromo-3-chloropropane	19.990	2.0	25.00	0	80.0	50	132				
Qualifiers:											
Quantiers:											

RPD outside accepted recovery limits

Calculations are based on raw values

CLIENT: Work Order: CH2M HILL

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005596-001EMS	SampType: MS	TestCo	de: 8260_WP	_LL Units: ug/L		Prep Da	te:		RunNo: 79	5 89	
Client ID: ZZZZZZ	Batch ID: D11VW048	Testi	No: EPA 8260	В		Analysis Da	te: 4/5/201	11	SeqNo: 12	54369	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HìghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane	21.890	1.0	25.00	0	87.6	80	121				
1,2-Dichlorobenzene	25.400	1.0	25.00	0	102	71	122				
1,2-Dichloroethane	22.120	1.0	25.00	0	88.5	69	132				
1,2-Dichloropropane	22.450	1.0	25.00	0	89.8	75	125				
1,3,5-Trimethylbenzene	25.220	1.0	25.00	0	101	74	131				
1,3-Dichlorobenzene	26.280	1.0	25.00	0	105	75	124				
1,3-Dichloropropane	23.930	1.0	25.00	0	95.7	73	126				
1,4-Dichlorobenzene	25.740	1.0	25.00	0	103	74	123				
2,2-Dichloropropane	17.310	1.0	25.00	0	69.2	69	137				
2-Butanone	90.890	10	250.0	0	36.4	49	136				S
2-Chlorotoluene	26.070	1.0	25.00	0	104	73	126				
4-Chlorotoluene	25.510	1.0	25.00	0	102	74	128				
4-Isopropyitoluene	26.760	1.0	25.00	0	107	73	130				
4-Methyl-2-pentanone	193,010	10	250.0	0	77.2	58	134				
Acetone	70.620	10	250.0	0	28.2	40	135				S
Acrolein	177.700	20	250.0	0	71.1	75	125				S
Acrylonitrile	205,470	20	250.0	0	82.2	7 5	125				
Benzene	23.890	1.0	25.00	0	95.6	81	122				
Bromobenzene	25.260	1.0	25.00	0	101	76	124				
Bromochioromethane	24.100	1.0	25.00	0	96.4	65	129				
Bromodichloromethane	20.810	1.0	25.00	0	83.2	76	121				
Bromoform	19.910	1.0	25.00	0	79.6	69	128				
Bromomethane	23.700	1,0	25.00	0	94.8	53	141				
Carbon disulfide	21.020	1.0	25.00	0	84.1	7 5	125				
Carbon tetrachloride	18.880	1.0	25.00	0	75.5	66	138				
Chlorobenzene	25.870	1.0	25.00	0	103	81	122				
Chloroethane	19.010	1.0	25.00	0	76.0	58	133				
Chloroform	23.640	1.0	25.00	0	94.6	69	128				
Chloromethane	21.630	1.0	25.00	0	86.5	56	131				
cis-1,2-Dichloroethene	24.560	1.0	25.00	0	98.2	72	126				
Oualifiers:		÷									

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CLIENT: Work Order:

CH2M HILL

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005596-001EMS	SampType: MS	TestCo	de: 8260_WP	_LL Units: ug/L		Prep Da	te:		RunNo: 79589			
Client ID: ZZZZZZ	Batch ID: D11VW048	Testi	No: E PA 8 260	В	Analysis Date: 4/5/2011			1	SeqNo: 12	54369		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
cis-1,3-Dichloropropene	21.970	1.0	25.00	0	87.9	69	131		***************************************			
Dibromochloromethane	22.410	1.0	25.00	0	89.6	66	133					
Dibromomethane	22.790	1.0	25.00	0	91.2	76	125					
Dichlorodifluoromethane	22.380	1.0	25.00	0	89.5	53	153					
Ethylbenzene	25.680	1.0	25.00	0	103	73	127					
Freon-113	20.490	1.0	25.00	0	82.0	75	125					
Hexachlorobutadiene	28.830	1.0	25.00	0	115	67	131					
Isopropylbenzene	26.480	1.0	25.00	0	106	75	127					
m,p-Xylene	51.410	1.0	50.00	0	103	76	128					
Methylene chloride	21.430	5.0	25.00	0	85.7	63	137					
MTBE	21.580	1.0	25.00	0	86.3	65	123					
n-Butylbenzene	27.930	1.0	25.00	0	112	69	137					
n-Propylbenzene	25.960	1.0	25.00	0	104	72	129					
Naphthalene	22.250	1.0	25.00	0	89.0	54	138					
o-Xylene	24.830	1.0	25.00	0	99.3	80	121					
sec-Butylbenzene	26.410	1.0	25.00	0	106	72	127					
Styrene	19.280	1.0	25.00	0	77.1	65	134					
tert-Butylbenzene	25.950	1.0	25.00	0	104	70	129					
Tetrachioroethene	26.980	1.0	25.00	0	108	66	1 2 8					
Toluene	23.740	2.5	25.00	0	95.0	77	122					
trans-1,2-Dichloroethene	23.810	1.0	25.00	0	95.2	63	137					
trans-1,3-Dichloropropene	20.670	1.0	25.00	0	82.7	59	135					
Trichloroethene	23.820	1.0	25.00	0	95.3	70	127					
Trichlorofluoromethane	22.750	1.0	25.00	0	91.0	57	129					
Vinyl chloride	19.840	1.0	25.00	0	79.4	50	134					
Xylenes, Total	76.240	2.0	75.00	0	102	75	125					
Surr: 1,2-Dichloroethane-d4	21.370		25.00		85.5	72	119					
Surr: 4-Bromofluorobenzene	25.150		25.00		101	76	119					
Surr: Dibromofluoromethane	24.650		25.00		98.6	85	115					
Surr: Toluene-d8	24.500		25.00		98.0	81	120					

- B Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CH2M HILL Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Advanced Technology Laboratories, Inc

Sample ID: N005596-001EMSD	SampType: MSD	TestCode: 8260_WP_LL Units: ug/L				Prep Da	te:		RunNo: 79589		
Client ID: ZZZZZZ	Batch ID: D11VW048	Testi	No: EPA 8260E	3	Analysis Date: 4/5/ 2011			1	SeqNo: 12 5	54370	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	25.840	1.0	25.00	0	103	81	129	25.49	1.36	20	_
1,1,1-Trichloroethane	19.300	1.0	25.00	0	77.2	67	132	18.80	2.62	20	
1,1,2,2-Tetrachloroethane	21.130	1.0	25.00	0	84.5	63	128	20.83	1.43	20	
1,1,2-Trichloroethane	22,210	1.0	25.00	0	88.8	75	125	22.66	2.01	20	
1,1-Dichloroethane	22.890	1.0	25.00	0	91.6	69	133	22.71	0.789	20	
1,1-Dichloroethene	24.260	1.0	25,00	0	97.0	68	130	24.10	0.662	20	
1,1-Dichloropropene	22.670	1.0	25.00	0	90.7	73	132	21.96	3.18	20	
1,2,3-Trichlorobenzene	27.310	1.0	25.00	0	109	67	137	26.70	2.26	20	
1,2,3-⊤rìchloropropane	19.760	1.0	25.00	0	79.0	73	124	20.00	1.21	20	
1,2,4-Trichlorobenzene	28,830	1.0	25.00	0	115	66	134	28.16	2.35	20	
1,2,4-Trimethylbenzene	19.660	1.0	25.00	0	78.6	74	132	24.05	20.1	20	R
1,2-Dibromo-3-chloropropane	19,560	2.0	25.00	0	78.2	50	132	19.99	2.17	20	
1,2-Dibromoethane	21,810	1.0	25.00	0	87.2	80	121	21,89	0.366	20	
1,2-Dichlorobenzene	25.670	1.0	25.00	0	103	71	122	25.40	1.06	20	
1,2-Dichloroethane	21.710	1.0	25.00	0	86.8	69	132	22,12	1.87	20	
1,2-Dichloropropane	22.230	1.0	25.00	0	88.9	75	125	22,45	0.985	20	
1,3,5-Trimethylbenzene	24.080	1.0	25.00	0	96,3	74	131	25,22	4.62	20	
1,3-Dichlorobenzene	26.660	1.0	25.00	0	107	75	124	26,28	1.44	20	
1,3-Dichloropropane	23.220	1.0	25.00	0	92.9	73	126	23.93	3.01	20	
1,4-Dichlorobenzene	26.410	1.0	25.00	0	106	74	123	25.74	2.57	20	
2,2-Dichloropropane	17.240	1.0	25.00	0	69.0	69	137	17.31	0.405	20	S
2-Butanone	85.810	10	250.0	0	34.3	49	136	90.89	5.75	20	S
2-Chlorotoluene	26.340	1.0	25.00	0	105	73	126	26.07	1.03	20	
4-Chlorotoluene	25.750	1.0	25.00	0	103	74	128	25,51	0.936	20	
4-Isopropyltoluene	26.580	1.0	25.00	0	106	73	130	26,76	0.675	20	
4-Methyl-2-pentanone	183.630	10	250.0	0	73.5	58	134	193.0	4,98	20	
Acetone	60.380	10	250.0	0	24.2	40	135	70,62	15.6	20	S
Acrolein	158.260	20	250.0	0	63.3	75	125	177.7	11.6	20	S
Acrylonitrile	190,140	20	250.0	0	76.1	75	125	205.5	7.75	20	
Benzene	24.080	1.0	25.00	0	96.3	81	122	23.89	0.792	20	

Qualifiers:

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

3151 W. Post Road Las Vegas, NV 89118 Tel: 702 307-2659 Fax: 702 307-2691

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005596-001EMSD	SampType: MSD	TestCode: 8260_WP_LL Units: ug/L			<u> </u>	Prep Da	te;		RunNo: 79589		
Client ID: ZZZZZZ	Batch ID: D11VW048	TestN	lo: EPA 8260	В		Analysis Da	te: 4/5/201	1	SeqNo: 12 8	54370	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	25.5 70	1.0	25.00	0	102	76	124	25.26	1.22	20	
Bromochloromethane	23.680	1.0	25.00	0	94.7	65	129	24.10	1,76	20	
Bromodichloromethane	20.490	1.0	25.00	0	82.0	76	121	20.81	1,55	20	
Bromoform	20.270	1.0	25.00	0	81.1	69	128	19.91	1.79	20	
Bromomethane	24.000	1.0	25.00	0	96.0	53	141	23.70	1.26	20	
Carbon disulfide	21.460	1.0	25.00	0	85.8	75	125	21.02	2.07	20	
Carbon tetrachloride	19.560	1.0	25.00	0	78.2	66	138	18,88	3,54	20	
Chlorobenzene	26.150	1.0	25.00	0	105	81	122	25.87	1.08	20	
Chloroethane	18.780	1.0	25.00	0	75.1	58	133	19.01	1,22	20	
Chloroform	23.670	1.0	25.00	0	94.7	69	128	23.64	0.127	20	
Chloromethane	22.280	1.0	25.00	0	89.1	56	131	21.63	2.96	20	
cis-1,2-Dichloroethene	25.010	1.0	25.00	0	100	72	126	24.56	1.82	20	
cis-1,3-Dichloropropene	21.760	1.0	25.00	0	87.0	69	131	21.97	0.960	20	
Dibromochloromethane	22,060	1.0	25.00	0	88.2	66	133	22.41	1.57	20	
Dibromomethane	21.980	1.0	25.00	0	87.9	76	125	22.79	3.62	20	
Dichlorodifluoromethane	23,180	1.0	25.00	0	92.7	53	153	22,38	3,51	20	
Ethylbenzene	25.780	1.0	25.00	0	103	73	127	25.68	0.389	20	
Freon-113	21.060	1.0	25.00	0	84.2	75	125	20.49	2,74	20	
Hexachlorobutadiene	29.580	1.0	25.00	0	118	67	131	28.83	2.57	20	
Isopropylbenzene	26.360	1.0	25.00	0	105	75	127	26.48	0.454	20	
m,p-Xylene	51.060	1.0	50.00	0	102	76	128	51.41	0.683	20	
Methylene chloride	21.760	5.0	25.00	0	87.0	63	137	21.43	1.53	20	
MTBE	20.600	1.0	25.00	0	82.4	65	123	21.58	4.65	20	
n-Butylbenzene	28.200	1.0	25.00	0	113	69	137	27.93	0.962	20	
n-Propylbenzene	26.360	1.0	25.00	0	105	72	129	25.96	1.53	20	
Naphthalene	21.170	1.0	25.00	0	84.7	54	138	22.25	4.97	20	
o-Xylene	24.840	1.0	25.00	0	99.4	80	121	24.83	0.0403	20	
sec-Butylbenzene	26.880	1.0	25.00	0	108	72	127	26.41	1.76	20	
Styrene	13.010	1.0	25.00	0	52.0	65	134	19.28	38.8	20	SR
tert-Butylbenzene	26.260	1.0	25.00	0	105	70	129	25.95	1.19	20	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order: N005596

Project:

PG&E Topock

DO Surrogate Diluted Out

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005596-001EMSD	SampType: MSD	TestCo	de: 8260_WP	_LL Units: ug/L		Prep Da	te:		RunNo: 79	589	
Client ID: ZZZZZZ	Batch ID: D11VW048	Testi	No: E PA 8260	В		Analysis Da	te: 4/5/20 1	11	SeqNo: 12:	54370	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachloroethene	27.570	1.0	25.00	0	110	66	128	26,98	2.16	20	
Toluene	23,980	2.5	25.00	0	95.9	77	122	23.74	1.01	20	
trans-1,2-Dichloroethene	24.680	1.0	25.00	0	98.7	63	137	23.81	3.59	20	
trans-1,3-Dichloropropene	19.990	1.0	25.00	0	80.0	59	135	20.67	3.34	20	
Trichloroethene	24.360	1.0	25.00	0	97.4	70	127	23.82	2.24	20	
Trichlorofluoromethane	22.650	1.0	25.00	0	90.6	57	129	22.75	0.441	20	
Vinyl chloride	20.340	1.0	25.00	0	81.4	50	134	19.84	2.49	20	
Xylenes, Total	75.900	2.0	75.00	0	101	75	125	76.24	0.447	20	
Surr: 1,2-Dichloroethane-d4	21.000		25.00		84.0	72	119		0		
Surr: 4-Bromofluorobenzene	25.240		25.00		101	76	119		0		
Surr: Dibromofluoromethane	24.870		2 5 .00		99.5	85	115		0		
Surr: Toluene-d8	24.850		25.00	_	99.4	81	120		0		
Sample ID: D110405MB2	SampType: MBLK	TestCod	de: 8260_WP	_LL Units: ug/L		Prep Dat	te:		RunNo: 79 5	 i89	
Client ID: PBW	Batch ID: D11VW048	TestN	No: EPA 8260	В		Analysis Da	te: 4/5/201	1	SeqNo: 125	54371	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	1.0									
1,1,1-Trichloroethane	ND	1.0									
1,1,2,2-Tetrachloroethane	ND	1.0									
1,1,2-Trichloroethane	ND	1.0									
1,1-Dichloroethane	ND	1.0									
1,1-Dichloroethene	ND	1.0									
1,1-Dichloropropene	ND	1.0									
1,2,3-Trichlorobenzene	ND	1.0									
1,2,3-Trichloropropane	ND	1.0									
1.2,4-Trichlorobenzene	ND	1.0									
1,2,4-Trimethylbenzene	ND	1.0									
1,2-Dibromo-3-chloropropane	ND	2.0									
1,2-Dibromoethane	ND	1.0									
Qualifiers:		•	•								
B Analyte detected in the	associated Method Blank	E	Value above	quantitation range			H Hole	ling times for prep	paration or analy	sis exceeded	
ND Not Detected at the Re	porting Limit	R	RPD outside	accepted recovery limi	ts		S Spik	e/Surrogate outsid	de of limits due	to matrix inter	ference

Calculations are based on raw values

3151 W. Post Road Las Vegas, NV 89118 Tel: 702 307-2659 Fax: 702 307-2691

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260 WP_LLPGE

Spike/Surrogate outside of limits due to matrix interference

Sample ID: D110405MB2	SampType: MBLK	TestCode: 8260_WP_LL Units: ug/L				Prep Da	ate:		RunNo: 795	589	
Client ID: PBW	Batch ID: D11VW048	Testl	No: EPA 8260	В		Analysis Da	ite: 4/5/20	11	SeqNo: 125	54371	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	ND	1.0						· · · · · · · · · · · · · · · · · · ·			
1,2-Dichloroethane	ND	1.0									
1,2-Dichloropropane	ND	1.0									
1,3,5-Trimethylbenzene	ND	1.0									
1,3-Dichlorobenzene	ND	1.0									
1,3-Dichloropropane	ND	1.0									
1,4-Dichlorobenzene	ND	1.0									
2,2-Dichloropropane	ND	1.0									
2-Butanone	ND	10									
2-Chlorotoluene	ND	1.0									
4-Chlorotoluene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	1.100	10									
Acetone	ND	10									
Acrolein	ND	20									
Acrylonitrile	ND	20									
Benzene	ND	1.0									
Bromobenzene	ND	1.0									
Bromochloromethane	ND	1.0									
Bromodichloromethane	ND	1.0									
Bromoform	ND	1.0									
Bromomethane	ND	1.0									
Carbon disulfide	ND	1.0									
Carbon tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroethane	ND	1.0									
Chloroform	ND	1.0									
Chloromethane	ND	1.0									
cis-1,2-Dichloroethene	ND	1.0									
cis-1,3-Dichloropropene	ND	1.0									
Qualifiers:			** *								
•	the associated Method Blank	Е	Value above	quantitation range			н на	ding times for prep	naration or analy	sis exceeded	
B Printyte detected in		1.	mue above	quantitation range					paration or analy		

RPD outside accepted recovery limits

Calculations are based on raw values

CLIENT: Work Order: CH2M HILL

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D110405MB2	SampType: MBLK	TestCo	de: 8260_WP _	_LL Units: ug/L	L Prep Date:				RunNo: 79	589	
Client ID: PBW	Batch ID: D11VW048	Testi	No: EPA 826 0	В		Analysis Da	ite: 4/5/	2011	SeqNo: 12	54371	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLir	nit RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	ND	1.0									
Dibromomethane	ND	1.0									
Dichlorodifluoromethane	ND	1.0									
Ethylbenzene	ND	1.0									
Freon-113	ND	1.0									
Hexachlorobutadiene	ND	1.0									
Isopropylbenzene	ND	1.0									
m,p-Xylene	ND	1.0									
Methylene chloride	0.370	5.0									
MTBE	ND	1.0									
n-Butylbenzene	ND	1.0									
n-Propylbenzene	ND	1.0									
Naphthalene	ND	1.0									
o-Xylene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1,0									
tert-Butylbenzene	ND	1.0									
Tetrachloroethene	ND	1.0									
Toluene	ND	2.5									
trans-1,2-Dichloroethene	ND	1.0									
trans-1,3-Dichloropropene	ND	1.0									
Trichloroethene	ND	1.0									
Trichlorofluoromethane	ND	1.0									
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	2.0									
Surr: 1,2-Dichloroethane-d4	21.780		25.00		87.1	72	11	9			
Surr: 4-Bromofluorobenzene	27.05 0		25.00		108	76	11				
Surr: Dibromofluoromethane	23.440		25.00		93.8	85	11				
Surr: Toluene-d8	27.250		25.00		109	81	12				
Qualifiers:											
•	-	E R	RPD outside	quantitation range accepted recovery lim we based on raw valu-				lolding times for prep pike/Surrogate outsic			ference

CHAIN OF CUSTODY RECORD

COC Number

TURNARQUND, TIME COMPANY COMMENTS PROJECT NAME PG&E Topock PHONE (530) 229-3303 FAX (530) 339-3303 **ADDRESS** 155 Grand Ave Ste 1000 Oakland, CA 94612 40568). MP. 02. GM P.O. NUMBER TEAM 1 SAMPLERS (SIGNATURE SAMPLE LO. DATE THME DESCRIPTION MW-58BR-LWR-160-176 4-4-11 1350 Water TB-packer-176-47 trio blank 1300 CHAIN OF CUSTODY SIGNATURE RECORD SAMPLE CONDITIONS Signature Company CHOW Hill Date/ WARM [] (Relinquisted) RECEIVED Time Signature Printed Company Date (Received) Nama/1/3 Agency CUSTODY SEALED YES 🗌 Time Signalure (Reli)quished) Printed Date/ Company SPECIAL REQUIREMENTS: Name Agency Time Signature Printed Company/ Date/ (Received) Nama Agency Time Signature Printed Company/ Date (Relinquished) Name Agency Time Signature Printed Date Company/ (Received) Name Agency Time

CHAIN OF CUSTODY RECORD

COC Number

									,			_					TUR DA1	NARO	DUND	TIME	F	AGE) OF
COMPANY	CHam	口:山			T		7-		sn/	, 7	7	7			7		7	$\frac{-\prime}{7}$	7	1/	7	7	(/
PROJECT NAME	PG&E Topock							2/7	Ÿ.	$\frac{1}{2}$											/ /	/	COMMENTS
	***						£	*/ ('	11	7	/ 5	,	/	/			<i>[</i>			/ /	/ /		
PHONE	(530) 229-3303	<u> </u>	FAX (530	0) 339-3303		9	44	'!\/	\ \ 	\\$\	m	(20)	/	/ /	/ /	/ /	/ /	/ /	/ /	/ L	ς /		
ADDRESS	155 Grand Ave		 -			_/、	ئے/ق	<u> </u>	Q,	\$\$/_	53	<u>ූ</u>									<i>[5]</i>		
	Oakland, CA 94	4612				2/18		5/ <u>{</u>	27 % Sylva	5/4/5/10	1. S	0/	/							1/2/	/		
P.O. NUMBER	405681. Mf	02 GN) TEAN	л 1	/	12	/)) V)	/ /		1	(/	/ /	Ι,	/ ,	/ /	/	/ /	SER OF CONTAINES			
SAMPLERS (SIGN.		1	•	*******	/	૭ /-	3	N N	<u>ූ</u>	\mathcal{Q}_{i}	V									ر م			
		the second	CENTRAL PROPERTY OF THE PROPER		16	1/3	1/4	ZE	9,	ے/ <u>`</u>	\mathcal{Z}									<i>y</i>			
SAMPLE I.D.		DATE	TIME	DESCRIPTION		Z				7,	/ .	/ /	Ι.		/	/		/	\\\\ \bigs_{\infty}	/			
MW-58BR-	LWR-160-176	4-4-11	/350	Witer	X	X	X	X	X	X													W
	ker-176-42		/300	1			_	~	<u> </u>	X		- j -r	7.	L	Cin	,				11	old		1
	- C- C- C- C- C- C- C- C- C- C- C- C- C-	/	1/200										4	U	AV						210		
																					······································		-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
					-						·												***************************************
															<u></u>								
		,					·			_													
																<u> </u>							
																							
. //		HAIN OF	CUSTO	DY SIGNATUR	E PI		EU					ancenel	لحس			****				CONI	DITIONS	O CONTRACTOR	
Signature		Printed /	}	Company				/	Dat	e/ Z	1-4	<u> </u>		_	-05	V.C.D.	0.0		, and				·2°C7
(Relinquished) Signature		Name A	rry Co	Agency Company	110		4111	<i>-</i>	Tim Dat		16	45		K	ECEI	VED	C	OOL .		VVA	ARM [/
(Received) Signature	mallag	- Name/Mℓ	24511	// Agency	1+1	TC_			Tim	e 7	1 1/2	164	<u></u>	С	USTO	DY S	EALE	D	YES	5 🗆	NO) /	
(Relinquished)		Printed Name		Company/ Agency					Dat Tlm					SPE	CIAL F	REQUI	REMEN	ITS:				•	
Signature (Received)		Printed Name		Company/ Agency					Dat Tim														
Signature (Relinquished)		Printed		Company/					Dat	e/		·											•
Signature		Name Printed		Agency Company/	·		······	,, 	Tim Dat			"\\		-									
(Received)		iVame		Agency				1	Tlm	е				<u> </u>									

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Cooler Received/Opened On:	4/4/2011			W	orkorder:	N005596		
Rep sample Temp (Deg C):	2.2			IF	R Gun ID:	1		
Temp Blank:	Yes	✓ No						
Carrier name:	ATL							
Last 4 digits of Tracking No.:	па			Packing Mater	rial Used:	Bubble Wrap		
Cooling process:	✓ ice	Ice Pack	Dry Ice	Other	None			
1. Shipping container/cooler in	good condition	1?		Yes	✓	Nο	Not Present	
Custody seals intact, signed	, dated on ship	pping container/co	ooler?	Yes		No	Not Present	~
Custody seals intact on sam	ple bottles?			Yes	** *	No	Not Present	~
4. Chain of custody present?				Yes	Y	No : .		
5. Sampler's name present in (COC?			Yes	✓	No		
6. Chain of custody signed whe	en relinquished	and received?		Yes	V	No		
7. Chain of custody agrees with	h sample labels	s?		Yes	✓	No		
8. Samples in proper container	/bottle?			Yes	✓	No		
9. Sample containers intact?				Yes	✓	No :		
10. Sufficient sample volume f	or indicated tes	st?		Yes	V	No .		
11. All samples received within	n holding time?			Yes	×	No .		
12. Temperature of rep sample	e or Temp Blan	k within acceptable	e limit?	Yes	, ~	No	NA	
13. Water - VOA vials have ze	ro headspace?	,		Yes	✓	No	NA	
14. Water - pH acceptable upo Example: pH > 12 for (C		Metals		Yes	✓	No	NA	L
15. Did the bottle labels indicate	te correct presi	ervatives used?		Yes	✓	No	NA	
16. Were there Non-Conforma		<u> </u>		Yes		No	NA	~
W	as Client notifie	ed?		Yes		No	NA	~

Comments:

Checklist Completed By

MBC 4 5 1

Reviewed By:

w Who

SAMPLE CALCULATION

METHOD: SM 2540C

TEST NAME: Total Filterable Residue

MATRIX: Water

FORMULA:

Calculate TDS concentration in mg/L, in the original sample as follows:

TDS, mg/L =
$$(A-B)*1000000$$

Where:

A = weight in g of dish + residue after drying

B = weight of dish in g

C = volume of sample used in mL

For N005596-001C, TDS concentration in mg/L is calculated as follows:

TDS, mg/L =
$$(15.7022-15.6460)*1000000$$

10
= 5620 mg/L

Reporting result in two significant figures,

$$TDS = 5600 \text{ mg/L}$$

Sample Calculation

METHOD: EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in $\mu g/L$, in the original sample as follows:

$$Cr^{+6}$$
, $\mu g/L = A * DF$

where:

A = ug/L, IC Cr⁺⁶ calculated concentration DF = dilution factor

For N005596-001A, concentration in μ g/L is calculated as follows:

$$Cr^{+6}$$
, $\mu g/L = 10.148645 * 10$
= 101.48645 $\mu g/L$

Reporting results in two significant figures,

$$Cr^{+6}$$
, $\mu g/L = 100$

Moln

Sample Calculation

METHOD: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Chloride concentration, in mg/L, in the original sample as follows:

where:

A = mg/L, IC calculated concentration DF = dilution factor

For N005596-001C, concentration in mg/L are calculated as follows:

Chloride, mg/L = 5.870*500

= 2935 mg/L

Reporting N005596-001C, results in two significant figures,

Chloride, mg/L = 2900 mg/L

Mish

SAMPLE CALCULATION

METHOD: EPA 6010B

TEST NAME: METALS BY ICP

MATRIX: WATER

FORMULA:

Calculate the individual metal concentration, in mg/L, in the original sample as follows:

M, ug/L = A*C*DF*1000

В

where:

M= concentration of the metal in ug/L A= mg/L, ICP calculated concentration

B= volume of sample, Liter

C= final volume of digestate, Liter

DF= dilution factor

For N005596-001B, concentration in ug/L are calculated as follows:

Cr, ug/L = 0.05329 $\underline{\text{mg/L}} * 0.025 \underline{\text{L}} * 2 * 1000$ 0.025 L

Reporting result in two significant figures,

Cr = 106.58 ug/L

Cr = 110 ug/L

4- 4/7/2011

DILUTION TEST

Matrix: Water

Units: ug/L

Amount of Sample: 25 mL

Analytical Method:

EPA 6010B / 200.7

Digestion Method: Date of Analysis:

EPA 3010A 4/5/2011

Digestion Date: Instrument Name: 4/5/2011 4/5/2011 ICP1

Instrument Analysts:

KB

Work Order #:

N005596-001B

36608

Batch #:

Analyte	A	В	Difference	% D
Chromium	106.6	101.476	5.12400	4.8

FORMULA:

%D = (A-B)*100A

where:

% D = % Difference

A= ug/L, ICP calculated concentration @2x dilution B= ug/L, ICP calculated concentration @10x dilution

Date: 06-Apr-11

CLIENT:

Project:

CH2M HILL

Work Order: N005596

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005596-001B DT	SampType: DT	TestCode: 6010_Wt	OPG Units: ug/L		Prep Da	ıte;		RunNo: 796	501	
Client ID: ZZZZZZ	Batch ID: 36608	TestNo: EPA 601	0B EPA 3010A		Analysis Da	ite: 4/5/201	1	SeqNo: 125	54725	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	101.476	10			***************************************	***************************************	106.6	4.90	10	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R PD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Date: 06-Apr-11

Sample ID: N005596-001BPS	SampType: PS	RunNo: 79601		
Client ID: ZZZZZZ	Batch ID: 36608	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254722
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	1073.103	2.0 1000 105.6	96.7 75 125	
Sample ID: N005596-001BPS	SampType: PS	TestCode: 6010_WDPG Units: ug/L	Prep Date:	RunNo: 79601
Client ID: ZZZZZZ	Batch ID: 36608	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/5/2011	SeqNo: 1254723
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic,
$$ug/L = A * DF * PF$$

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005596-001B, the concentration in ug/L is calculated as follows:

Arsenic,
$$ug/L$$
 = 1.615 * 1 * (1)

Reporting results in two significant figures,

Arsenic,
$$ug/L = 1.6$$

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

N005596

Test Method: Analysis Date: EPA 6020 04/05/11

Matrix:

Aqueous

Batch No.:

36604

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Analyzed By:

Jojo Tenorio

Comments:

%DIFF Sample ID Analyte &Units Calc Val OQual SAMPrefval %DIFFlimit N005527-001B-DT 5X 13.33476585 13.08932824 1.88% 10 Arsenic ug/L

CLIENT:

CH2M HILL

Work Order:

N005596

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

Date: 05-Apr-11

TestCode: 6020_WD_AsPGE

Sample ID: N005594-001B-PS 2	SampType: PS	TestCod	TestCode: 6020_WD_As Units: ug.			Prep Da	te:		RunNo: 79594		
Client ID: ZZZZZZ	Batch ID: 36604	TestN	No: EPA 6020	EPA 3010A	010A Analysis Date: 4/5/2011			1	SeqNo: 12 5		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	32.864	0.20	20.00	13.09	98.9	75	125				

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits
Calculations are based on raw values

Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

SAMPLE CALCULATION

METHOD: EPA 8260B

TEST NAME: VOLATILE ORGANIC COMPOUNDS BY GC/MS

MATRIX: WATER

CALCULATION OF TARGET PARAMETERS

Calculate the target analyte concentrations using internal standard quantitation

$$C_X$$
,ug/L= $A_X * C_{IS}$
Ave RF * A_{IS}

where:

 $A_{x=}$ Area of the TOTAL ion for the compound being measured

 C_{IS} = Concentration of the specific internal standard in ug/L

A_{IS} = Area of the characteristic ion of the specific internal standard

Cx = Concentration of the compound being measured in ug/L

N005596-001E

For Dibromofluoromethane the corresponding Internal Standard is Pentafluorobenzene

Ave RF 0.391

Area of Dibromofluoromethane 180075

Area of Internal Standard 502536

Conc of Internal Standard (ug/L) 25.00

Conc of Dibromofluoromethane (ug/L)= 180075 * 25.00ug/L 0.391 *502536

Conc of Dibromofluoromethane (ug/L)= 22.91128756

Reporting result in three significant figures,

Concentration of Dibromofluoromethane = 22.9 ug/L

Mish

May 03, 2011

Shawn P. Duffy

CH2M HILL

155 Grand Avenue, Suite 1000

Oakland, CA 94612

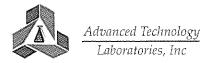
TEL: (530) 229-3303

FAX: (530) 339-3303

RE: PG&E Topock

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on April 13, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.


Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

CA-ELAP No.: 2676

NV Cert. No.: NV-009222007A

Workorder No.: N005635

CLIENT:

CH2M HILL

Project:

PG&E Topock

Lab Order:

N005635

CASE NARRATIVE

Date: *03-May-11*

SAMPLE RECEIVING/GENERAL COMMENTS:

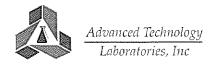
Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for SM 5310C:


Matrix Spike(MS) and Matrix Spike Duplicate(MSD) were not performed due to limited sample. LCS/LCSD was used instead to measure precision.

Analytical Comments for EPA 8260B:

Acetone recovery biased high on Laboratory Control Sample (LCS). Sample results were non-detect (ND) for this analyte therefore reanalysis of the sample was not necessary.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for some analytes on QC samples N005635-001EMS, N005635-001EMSD and N005636-009AMS possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

RPD for Matrix Spike (MS)/Matrix Spike Duplicate (MSD) is outside criteria for 2-Butanone, Acetone, Acrolein, Acrylonitrile and Styrene; however, the analytical batch was validated by the Laboratory Control Sample (LCS).

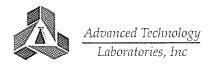
CLIENT:

CH2M HILL

Project:

PG&E Topock

Lab Order:


N005635

Contract No:

Lab Sample ID Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005635-001A MW-64BR-UPR-150-176	Water	4/12/2011 2:47:00 PM	4/13/2011	
N005635-001B MW-64BR-UPR-150-176	Water	4/12/2011 2:47:00 PM	4/13/2011	
N005635-001C MW-64BR-UPR-150-176	Water	4/12/2011 2:47:00 PM	4/13/2011	
N005635-001D MW-64BR-UPR-150-176	Water	4/12/2011 2:47:00 PM	4/13/2011	
N005635-001E MW-64BR-UPR-150-176	Water	4/12/2011 2:47:00 PM	4/13/2011	
N005635-002A TB-Packer-176-03	Water	4/12/2011 1:00:00 PM	4/13/2011	

Date: 03-May-11

Work Order Sample Summary

Advanced Technology Laboratories, Inc.

Print Date: 03-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-64BR-UPR-150-176

Lab Order:

N005635

Collection Date: 4/12/2011 2:47:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

N005635-001

DF Date Analyzed Analyses Result MDL PQL Qual Units

TOTAL FILTERABLE RESIDUE

SM2540C

RuniD: WETCHEM_110414D

QC Batch: 36676

100

PrepDate:

4/14/2011

Analyst: CEI

Total Dissolved Solids (Residue, Filterable)

7800

100

mg/L

4/14/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded


S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

CLIENT: CH2M HILL Work Order: N005635

PG&E Topock Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 160.1_2540C_W

Date: 03-May-11

Sample ID: MB-36676	SampType: MBLK	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/14/2011	RunNo: 79708
Client ID: PBW	Batch ID: 36676	TestNo: SM2540C	Analysis Date: 4/14/2011	SeqNo: 1257792
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Resid	ue, Filtera ND	10		
Sample ID: LCS-36676	SampType: LCS	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/14/2011	RunNo: 79708
Client ID: LCSW	Batch ID: 36676	TestNo: SM2540C	Analysis Date: 4/14/2011	SeqNo: 1257793
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Reside	ue, Filtera 934.000	10 1000 0	93.4 80 120	
Sample ID: N005635-001C-D	UP SampType: DUP	TestCode: 160.1_2540C Units: mg/L	Prep Date: 4/14/2011	RunNo: 79708
Client ID: ZZZZZZ	Batch ID: 36676	TestNo: SM2540C	Analysis Date: 4/14/2011	SeqNo: 1257796
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residu	ue, Filtera 7590.000	100	7830	3.11 5

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 03-May-11

CLIENT:

CH2M HILL N005635

Client Sample ID: MW-64BR-UPR-150-176

Lab Order:

Collection Date: 4/12/2011 2:47:00 PM

Project: Lab ID: PG&E Topock N005635-001

Matrix: WATER

Analyses **HEXAVALENT CHROMIUM BY IC**

EPA 218.6

RunID: IC1_110418A

QC Batch: R79728

0.28

Result MDL

2.0

PQL Qual Units

PrepDate:

DF

Analyst: QBM

Date Analyzed

Hexavalent Chromium

130

ug/L

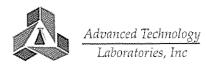
10

4/18/2011 11:53 AM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded


S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

В

ČLIENT:

CH2M HILL

Work Order:

N005635

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WPGE

Date: 03-May-11

Sample ID: MB-R79728 Client ID: PBW	SampType: MBLK Batch ID: R79728	TestCode: 218.6_WPGE Units: ug/L TestNo: EPA 218.6	Prep Date: Analysis Date: 4/18/2011	RunNo: 79728 SeqNo: 1258232
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	ND	0.20		
Sample ID: LCS-R79728	SampType: LCS	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79728
Client ID: LCSW	Batch ID: R79728	TestNo: EPA 218.6	Analysis Date: 4/18/2011	SeqNo: 1258233
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	5.028	0.20 5,000 0	101 90 110	
Sample ID: N005651-001ADUP	SampType: DUP	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79728
Client ID: ZZZZZZ	Batch ID: R79728	TestNo: EPA 218.6	Analysis Date: 4/18/2011	SeqNo: 125823 5
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	7140.850	200	6955	2 .63 20
Sample ID: N005651-001AMS	SampType: MS	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79728
Client ID: ZZZZZZ	Batch ID: R79728	TestNo: EPA 218.6	Analysis Date: 4/18/2011	SeqNo: 1258236
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	11955.094	200 5000 6955	100 90 110	
Sample ID: N005651-001AMSD	SampType: MSD	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79728
Client ID: ZZZZZZ	Batch ID: R79728	TestNo: EPA 218.6	Analysis Date: 4/18/2011	SeqNo: 1258237
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	1190 2 .023	200 5000 6955	98.9 90 110 11960	0.445 20

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology

CLIENT: Vork Order: CH2M HILL

N005635

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WPGE

Sample ID: N005635-001AMS	SampType: MS	TestCod	de: 218.6_WP	GE Units: ug/L		Prep Da	te:		RunNo: 79 7	728	
Client ID: ZZZZZZ	Batch ID: R79728	TestN	lo: EPA 218.6	i		Analysis Da	te: 4/18/201	11	SeqNo: 12	58314	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexavalent Chromium	183.381	2.0	5 0.00	134.0	98.8	90	110				

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 03-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-64BR-UPR-150-176

Lab Order:

N005635

Collection Date: 4/12/2011 2:47:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

Analyses

N005635-001

PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RuniD: IC2_110414A

QC Batch: R79801

PrepDate:

Analyst: QBM

Chloride

3500

Result MDL

63

mg/L

1000

4/14/2011 09:59 AM

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2_110414A

QC Batch: R79801

500

PrepDate:

Analyst: QBM

Nitrate as N

3.4 0.022 1.0

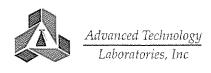
mg/L

4/14/2011 10:44 AM

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded


S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

CLIENT: CH2M HILL Work Order: N005635

Project: PG&E Topock ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_CLPGE

Date: 03-May-11

Sample ID: MB-R79801_CL	SampType: MBLK	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79801		
Client ID: PBW	Batch ID: R79801	TestNo: EPA 300.0	Analysis Date: 4/14/2011	SeqNo: 1260380		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Chloride	ND	0.50				
Sample ID: LCS-R79801_CL	SampType: LCS	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79801		
Client ID: LCSW	Batch ID: R79801	TestNo: EPA 300.0	Analysis Date: 4/14/2011	SeqNo: 1260381		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Chloride	2.366	0.50 2.500 0	94.6 90 110			
Sample ID: N005635-001CDUP	SampType: DUP	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79801		
Client ID: ZZZZZZ	Batch ID: R79801	TestNo: EPA 300.0	Analysis Date: 4/14/2011	SeqNo: 1260383		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Chloride	3583.000	500	3536	1.32 20		
Sample ID: N005635-001CMS	SampType: MS	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79801		
Client ID: ZZZZZZ	Batch ID: R79801	TestNo: EPA 300.0	Analysis Date: 4/14/2011	SeqNo: 1260384		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Chloride	6045.000	500 2 500 3 536	100 80 120			
Sample ID: N005635-001CMSD	SampType: MSD	TestCode: 300_W_CLP Units: mg/L	Prep Date:	RunNo: 79801		
Client ID: ZZZZZZ	Batch ID: R79801	TestNo: EPA 300.0	Analysis Date: 4/14/2011	SeqNo: 1260385		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Chloride	6062,000	500 2500 3 536	101 80 120 6045	0.281 20		

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CH2M HILL Vork Order: N005635

PG&E Topock

TestCode: 300W NO3PGE

ANALYTICAL QC SUMMARY REPORT

Sample	ID:	MB-F

CLIENT:

Project:

R79801 NO3 SampType: MBLK

TestCode: 300W NO3P Units: mg/L TestNo: EPA 300.0

Prep Date:

RunNo: 79801

Client ID: PBW

Batch ID: R79801

SPK value SPK Ref Val

SPK value SPK Ref Val

Analysis Date: 4/14/2011

SeqNo: 1260390

Analyte Nitrate as N

ND 0.50

PQL

0.50

PQL

1.0

PQL

1.0

PQL

1.0

%RPD RPDLimit Qual

Sample ID: LCS-R79801 NO3 Client ID: LCSW

SampType: LCS Batch ID: R79801 TestCode: 300W NO3P Units: mg/L TestNo: EPA 300.0

Prep Date: Analysis Date: 4/14/2011

%REC

LowLimit HighLimit RPD Ref Val

LowLimit HighLimit RPD Ref Val

RunNo: 79801 SeqNo: 1260391

%RPD

Analyte Nitrate as N

2.399

2.500

0 96.0 90

110

RPDLimit Qual

Qual

Qual

Sample ID: N005635-001CDUP Client ID: ZZZZZZ

SampType: DUP Batch ID: R79801 TestCode: 300W_NO3P Units: mg/L

Prep Date: Analysis Date: 4/14/2011

RunNo: 79801

SeqNo: 1260393

Analyte

Result

3.538

Result

Result

TestNo: EPA 300.0

SPK value SPK Ref Val

LowLimit HighLimit RPD Ref Val

3.430

8.552

%RPD

3.10

RPDLimit

Nitrate as N

Sample ID: N005635-001CMS SampType: MS Client ID: ZZZZZZ Batch ID: R79801

TestCode: 300W_NO3P Units: mg/L TestNo: EPA 300,0

Prep Date: Analysis Date: 4/14/2011

120

LowLimit HighLimit RPD Ref Val

120

RunNo: 79801

SeqNo: 1260394

20

Analyte

Result

SPK value SPK Ref Val 5.000

%REC 3.430 102

LowLimit HighLimit RPD Ref Val 80

80

%RPD

RPDLimit Qual

Nitrate as N

8.552 SampType: MSD

Batch ID: R79801

Result

TestCode: 300W NO3P Units: mg/L

TestNo: EPA 300.0

3.430

%REC

103

Prep Date: Analysis Date: 4/14/2011 RunNo: 79801

%RPD

0.304

SeaNo: 1260395

RPDLimit

20

Analyte

8.578 Nitrate as N

Qualifiers:

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- Surrogate Diluted Out

Sample ID: N005635-001CMSD

Client ID: ZZZZZZ

Value above quantitation range

SPK value SPK Ref Val

5.000

RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Print Date: 03-May-11

CLIENT:

CH2M HILL

Advanced Technology Laboratories, Inc.

Client Sample ID: MW-64BR-UPR-150-176

Lab Order:

N005635

Project:

Collection Date: 4/12/2011 2:47:00 PM

Lab ID:

PG&E Topock N005635-001

Matrix: WATER

Analyses

Result MDL

PQL Qual Units

DF Date Analyzed

DISSOLVED METALS BY ICP

EPA 3010A

EPA 6010B

RunID: ICP1_110419A

QC Batch: 36699

4/15/2011 Analyst: KAB

Chromium

140 0.22

1.0

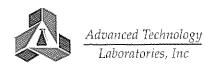
ug/L

PrepDate:

4/19/2011 11:4**2** AM

Qualifiers:

Analyte detected in the associated Method Blank


Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CH2M HILL

N005635

CLIENT:

Project:

Work Order:

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL QC SUMMARY REPORT

Date: 03-May-11

PG&E Topock TestCode: 6010_WDPGEPPB

Sample 1D: MB-36699	SampType: MBLK	TestCode: 6010 WDPG Units: ug/L	Prep Date: 4/15/2011	RunNo: 79743
Client ID: PBW	Batch ID: 36699	TestNo: EPA 6010B	Analysis Date: 4/19/2011	SeqNo: 1258660
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	ND	1.0		
Sample ID: LCS-36699	SampType: LCS	TestCode: 6010_WDPG Units: ug/L	Prep Date: 4/15/2011	RunNo: 79743
Client ID: LCSW	Batch ID: 36699	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/19/2011	SeqNo: 1258661
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	459.957	1.0 500.0 0	92.0 85 115	
Sample ID: N005635-001B-MS	SampType: MS	TestCode: 6010_WDPG Units: ug/L	Prep Date: 4/15/2011	RunNo: 79743
Sample ID: N005635-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36699	TestCode: 6010_WDPG Units: ug/L TestNo: EPA 6010B EPA 3010A	Prep Date: 4/15/2011 Analysis Date: 4/19/2011	RunNo: 79743 SeqNo: 1258664
Client ID: ZZZZZZ	Batch ID: 36699	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/19/2011	SeqNo: 1258664
Client ID: ZZZZZZ Analyte	Batch ID: 36699 Result 604.616	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 4/19/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1258664
Client ID: ZZZZZZ Analyte Chromium	Batch ID: 36699 Result 604.616	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 1.0 500.0 138.6	Analysis Date: 4/19/2011 %REC LowLimit HighLimit RPD Ref Val 93.2 75 125	SeqNo: 1258664 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Chromium Sample ID: N005635-001B-MS	Batch ID: 36699 Result 604.616 D SampType: MSD	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 1.0 500.0 138.6 TestCode: 6010_WDPG Units: ug/L	Analysis Date: 4/19/2011 %REC LowLimit HighLimit RPD Ref Val 93.2 75 125 Prep Date: 4/15/2011	SeqNo: 1258664 %RPD RPDLimit Qual RunNo: 79743

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 03-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-64BR-UPR-150-176

Lab Order:

N005635

Collection Date: 4/12/2011 2:47:00 PM

Project:

PG&E Topock

Matrix: WATER

Lab ID:

Analyses

N005635-001

PQL Qual Units DF Date Analyzed

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RuniD: ICP7_110418B

QC Batch: 36710

PrepDate:

4/18/2011 Analyst: JT

Arsenic

3.1 0.0025

Result MDL

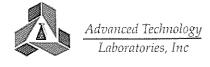
0.10

ug/L

4/19/2011 12:53 AM

Qualifiers:

Analyte detected in the associated Method Blank


Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

CLIENT: CH2M HILL

Work Order:

N005635

PG&E Topock Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WD_AsPGE

Date: 03-May-11

				
Sample ID: MB-36710	SampType: MBLK	TestCode: 6020_WD_As Units: ug/L	Prep Date: 4/18/2011	RunNo: 79740
Client ID: PBW	Batch ID: 36710	TestNo: EPA 6020 EPA 3010A	Analysis Date: 4/18/2011	SeqNo: 1260559
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	0.029	0.10		
Sample ID: LCS-36710	SampType: LCS	TestCode: 6020_WD_As Units: ug/L	Prep Date: 4/18/2011	RunNo: 79740
Client ID: LCSW	Batch ID: 36710	TestNo: EPA 6020 EPA 3010A	Analysis Date: 4/18/2011	SeqNo: 1260560
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	10.288	0.10 10.00 0.02900	103 85 115	
Sample ID: N005651-001B-M	S SampType: MS	TestCode: 6020_WD_As Units: ug/L	Prep Date: 4/18/2011	RunNo: 79740
Client ID: ZZZZZZ	Batch ID: 36710	TestNo: EPA 6020 EPA 3010A	Analysis Date: 4/19/2011	SeqNo: 1260571
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	15.357	0. 10 10.00 5. 660	97.0 75 125	-
Sample ID: N005651-001B-M3	SD SampType: MSD	TestCode: 6020_WD_As Units: ug/L	Prep Date: 4/18/2011	RunNo: 79740
·	SD SampType: MSD Batch ID: 36710	TestCode: 6020_WD_As Units: ug/L TestNo: EPA 6020 EPA 3010A	Prep Date: 4/18/2011 Analysis Date: 4/19/2011	RunNo: 79740 SeqNo: 1260572
Sample ID: N005651-001B-MS Client ID: ZZZZZZ Analyte	,		•	

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 03-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-64BR-UPR-150-176

Matrix: WATER

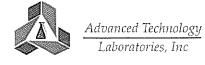
Lab Order:

N005635

Collection Date: 4/12/2011 2:47:00 PM

Project:

PG&E Topock


Lab ID:

N005635-001

Analyses	Result	MDL	PQL Q	ual Units	DF	Date Analyzed
No. No.						
				EPA 8260B		
RunID: MS1_110415B	QC Batch: D1	11VW051		PrepDate	e:	Analyst: QBM
1,1,1,2-Tetrachloroethane	ND	0.061	1.0	ug/L	1	4/15/2011 03:40 PM
1,1,1-Trichloroethane	ND	0.068	1.0	-	1	4/15/2011 03:40 PM
	ND	0.054			1	4/15/2011 03:40 PM
1,1,2-Trichloroethane	ND	0.083	1.0		1	4/15/2011 03:40 PM
1,1-Dichloroethane	ND	0.099	1.0		1	4/15/2011 03:40 PM
1,1-Dichloroethene	ND	0.094	1.0	ug/L	1	4/15/2011 03:40 PM
1,1-Dichloropropene	ND	0.082	1.0		1	4/15/2011 03:40 PM
1,2,3-Trichlorobenzene	ND	0.10	1.0		1	4/15/2011 03:40 PN
1,2,3-Trichloropropane	ND	0.12	1.0		1	4/15/2011 03:40 PN
1,2,4-Trichlorobenzene	ND	0.12	1.0	ug/L	1	4/15/2011 03:40 PN
1,2,4-Trimethylbenzene	ND	0.095	1.0	-	1	4/15/2011 03:40 PN
1,2-Dibromo-3-chloropropane	ND	0.15			1	4/15/2011 03:40 PM
1,2-Dibromoethane	ND	0.14	1.0	ug/L	1	4/15/2011 03:40 PM
1,2-Dichlorobenzene	ND	0.070	1.0		1	4/15/2011 03:40 PM
1,2-Dichloroethane	ND	0.17	1.0		1	4/15/2011 03:40 PN
1,2-Dichloropropane	ND	0.085	1.0	ug/L	1	4/15/2011 03:40 PM
1,3,5-Trimethylbenzene	ND	0.087	1.0	ug/L	1	4/15/2011 03:40 PM
1,3-Dichlorobenzene	ND	0.090	1.0	ug/L	1	4/15/2011 03:40 PM
1,3-Dichloropropane	ND	0.074	1.0	ug/L	1	4/15/2011 03:40 PM
1,4-Dichlorobenzene	ND	0.092	1.0	ug/L	1	4/15/2011 03:40 PI
2,2-Dichloropropane	ND	0.061	1.0	ug/L	1	4/15/2011 03:40 PM
2-Butanone	ND	1.0	10	ug/L	1	4/15/2011 03:40 PM
2-Chlorotoluene	ND	0.080	1.0	ug/L	1	4/15/2011 03:40 PM
4-Chlorotoluene	ND	0.10	1.0	ug/L	1	4/15/2011 03:40 PM
4-Isopropyltoluene	ND	0.080	1.0	ug/L	1	4/15/2011 03:40 PM
4-Methyl-2-pentanone	ND	0.76	10	ug/L	1	4/15/2011 03:40 PM
Acetone	ND	1.6	10	ug/L	1	4/15/2011 03:40 PM
Acrolein	ND	4.3	20	ug/L	1	4/15/2011 03:40 PM
Acrylonitrile	ND	0.61	20	ug/L	1	4/15/2011 03:40 PM
Benzene	ND	0.075	1.0		1	4/15/2011 03:40 PM
Bromobenzene	ND	0.082	1.0		1	4/15/2011 03:40 PI
Bromochloromethane	ND	0.15	1.0	ug/L	1	4/15/2011 03:40 Pf
Bromodichloromethane	ND	0.063	1.0	ug/L	1	4/15/2011 03:40 PI
Bromoform	ND	0.086	1.0	ug/L	1	4/15/2011 03:40 PM
Bromomethane	ND	0.13	1.0	ug/L	1	4/15/2011 03:40 PI
Carbon disulfide	1.1	0.054	1.0	ug/L	1	4/15/2011 03:40 PM

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 03-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-64BR-UPR-150-176

Lab Order:

N005635

Collection Date: 4/12/2011 2:47:00 PM

PG&E Topock

Project:

Matrix: WATER

N005635-001 Lab ID:

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
Chlorobenzene ND 0.05 Chloroethane ND 0.1 Chloroform ND 0.05 Chloromethane ND 0.05 cis-1,2-Dichloropropene ND 0.1 cis-1,3-Dichloropropene ND 0.1 Dibromochloromethane ND 0.0 Dibromomethane ND 0.1 Dichlorodifluoromethane ND 0.1 Ethylbenzene ND 0.0 Freon-113 ND 0.08 Hexachlorobutadiene ND 0.1 Isopropylbenzene ND 0.0 m,p-Xylene ND 0.1 Methylene chloride ND 0.0 MTBE ND 0.0 n-Propylbenzene ND 0.0 n-Propylbenzene ND 0.0 Naphthalene ND 0.0 o-Xylene ND 0.0 sec-Butylbenzene ND 0.0 tert-Butylbenzene ND 0.0						
			EP/	4 8260B		
RunID: M\$1_110415B	QC Batch: D1	1 VW 051		PrepDate:		Analyst: QBM
Carbon tetrachloride	ND	0.10	1.0	ug/L	1	4/15/2011 03:40 PM
Chłorobenzene	ND	0.092	1.0	ug/L	1	4/15/2011 03:40 PM
Chloroethane	ND	0.14	1.0	ug/L	1	4/15/2011 03: 40 PM
Chloroform	ND	0.058	1.0	ug/L	1	4/15/2011 03:40 PM
Chloromethane	ND	0.054	1.0	ug/L	1	4/15/2011 03:40 PM
cis-1,2-Dichloroethene	ND	0.11	1.0	ug/L	1	4/15/2011 03:40 PM
cis-1,3-Dichloropropene	ND	0.10	1.0	ug/L	1	4/15/2011 03:40 PM
Dibromochloromethane	ND	0.061	1.0	ug/L	1	4/15/2011 03:40 PM
Dibromomethane	ND	0.15	1.0	ug/L	1	4/15/2011 03:40 PM
Dichlorodifluoromethane	ND	0.12	1.0	ug/L	1	4/15/2011 03:40 PM
Ethylbenzene	ND	0.051	1.0	ug/L	1	4/15/2011 03:40 PM
Freon-113	ND	0.080	1,0	ug/L	1	4/15/2011 03:40 PN
Hexachlorobutadiene	ND	0.17	1.0	ug/L	1	4/15/2011 03:40 PN
Isopropylbenzene	ND	0.057	1.0	ug/L	1	4/15/2011 03:40 PN
m,p-Xylene	ND	0.17	1.0	ug/L	1	4/15/2011 03:40 PN
Methylene chloride	ND	0.10	5.0	ug/L	1	4/15/2011 03:40 PN
MTBE	ND	0.089	1.0	ug/L	1	4/15/2011 03:40 PN
n-Butylbenzene	ND	0.082	1.0	ug/L	1	4/15/2011 03:40 PM
n-Propylbenzene	ND	0.087	1.0	ug/L	1	4/15/2011 03:40 PM
Naphthalene	ND	0.056	1.0	ug/L	1	4/15/2011 03:40 PM
o-Xylene	ND	0.077	1.0	ug/L	1	4/15/2011 03:40 PM
sec-Butylbenzene	ND	0.098	1.0	ug/L	1	4/15/2011 03:40 PM
Styrene	ND	0.072	1.0	ug/L	1	4/15/2011 03:40 PM
tert-Butylbenzene	ND	0.062	1.0	ug/L	1	4/15/2011 03:40 PM
Tetrachloroethene	ND	0.13	1.0	ug/L	1	4/15/2011 03:40 PN
Toluene	58	0.12	2.5	ug/L	1	4/15/2011 03:40 PM
trans-1,2-Dichloroethene	ND	0.094	1.0	ug/L	1	4/15/2011 03:40 PM
trans-1,3-Dichloropropene	ND	0,10	1.0	ug/L	1	4/15/2011 03:40 PN
Trichloroethene	ND	0.060	1.0	ug/L	1	4/15/2011 03:40 PM
Trichlorofluoromethane	ND	0.097	1.0	ug/L	1	4/15/2011 03:40 PM
Vinyl chloride	ND	0.12	1.0	ug/L	1	4/15/2011 03:40 PM
Xylenes, Total	ND	1.5	2.0	ug/L	1	4/15/2011 03:40 PN
Surr: 1,2-Dichloroethane-d4	83.8	0	72-119	%REC	1	4/15/2011 03:40 PN
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	1	4/15/2011 03:40 PM
Surr: Dibromofluoromethane	90.3	0	85-115	%REC	1	4/15/2011 03:40 PM
Surr: Toluene-d8	111	0	81-120	%REC	1	4/15/2011 03:40 PM

- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

3151 W. Post Road

CLIENT:

CH2M HILL

Work Order:

N005635

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Date: 03-May-11

Sample ID: D110415LCS	SampType: LCS	TestCode: 8260_WP_LL Units: ug/L				Prep Da	te:	RunNo: 79750			
Client ID: LCSW	Batch ID: D11VW051	Test	No: EPA 8260	В		Analysis Da	te: 4/15/20	SeqNo: 12	5 874 5		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1,1,2-Tetrachloroethane	24,690	1.0	25.00	0	98.8	81	129				
1,1,1-Trichloroethane	20.130	1.0	25.00	0	80.5	67	132				
1,1,2,2-Tetrachloroethane	26.320	1.0	25.00	0	105	63	128				
1,1,2-Trichloroethane	25.630	1.0	25.00	0	103	75	125				
1,1-Dichloroethane	25.810	1.0	25.00	0	103	69	133				
1,1-Dichloroethene	26.090	1.0	25.00	0	104	68	130				
1,1-Dichloropropene	23.640	1.0	25.00	0	94.6	73	132				
1,2,3-Trichlorobenzene	28.310	1.0	25.00	0	113	67	137				
1,2,3-Trichtoropropane	25.480	1.0	25.00	0	102	73	124				
1,2,4-Trichlorobenzene	28.390	1.0	25.00	0	114	66	134				
1,2,4-Trimethylbenzene	27.540	1.0	25.00	0	110	74	132				
,2-Dibromo-3-chloropropane	23,750	2.0	25.00	0	95.0	50	132				
,2-Dibromoethane	25.810	1.0	25.00	0	103	80	121				
,2-Dichlorobenzene	26.530	1.0	25.00	0	106	71	122				
,2-Dichloroethane	24.710	1.0	25.00	0	98.8	69	132				
,2-Dichloropropane	24.390	1.0	25.00	0	97.6	75	125				
1,3,5-Trimethylbenzene	26.690	1.0	25.00	0	107	74	131				
,3-Dichlorobenzene	26.710	1.0	25.00	0	107	75	124				
,3-Dichloropropane	25.670	1.0	25.00	0	103	73	126				
,4-Dichlorobenzene	26.310	1.0	25.00	0	105	74	123				
,2-Dichloropropane	17.880	1.0	25.00	0	71.5	69	137				
-Butanone	315,440	10	250.0	0	126	49	136				
?-Chlorotoluene	27.070	1.0	25.00	0	108	73	126				
1-Chlorotoluene	26.460	1.0	25.00	0	106	74	128				
1-Isopropyltoluene	27.260	1.0	25.00	0	109	73	130				
-Methyl-2-pentanone	272.110	10	250.0	0	109	58	134				
Acetone	361.220	10	250.0	0	144	40	135				S
Acrolein	252.210	20	250.0	0	101	75	125				
Acrylonitrile	299,470	20	250.0	0	120	75	125				

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project:

Analyte

Benzene

CH2M HILL

N005635

Sample ID: D110415LCS

Client ID: LCSW

PG&E Topock

SampType: LCS

Batch ID: D11VW051

Result

25,370

ANALYTICAL QC SUMMARY REPORT

Prep Date:

81

%REC

101

0

Analysis Date: 4/15/2011

LowLimit HighLimit RPD Ref Val

122

TestCode: 8260_WP_LLPGE

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

RunNo: 79750

SegNo: 1258745

%RPD RPDLimit

Qual

Laboratories, Inc	Advanced Technology
	ΨŞ

G
1
Z,
₹.
G
ost
ശ്
4
Z
0
₹oaď
\mathcal{D}°

Fax: 702 307-2691

Qualifiers:

Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

Bromobenzene	25.880	1.0	25.00	0	104	76	124
Bromochloromethane	26,200	1.0	25.00	0	105	65	129
Bromodichloromethane	21.920	1.0	25.00	0	87.7	76	121
Bromoform	23.490	1.0	25.00	0	94.0	69	128
Bromomethane	34.770	1.0	25.00	0	139	53	141
Carbon disulfide	22.980	1.0	25.00	0	91.9	75	125
Carbon tetrachloride	18.880	1.0	25.00	0	75.5	66	138
Chiorobenzene	26.080	1.0	25.00	0	104	81	122
Chloroethane	25,910	1.0	25.00	0	104	58	133
Chloroform	26.370	1.0	25.00	0	105	69	128
Chloromethane	27.300	1.0	25.00	0	109	56	131
cis-1,2-Dichloroethene	26.560	1.0	25.00	0	106	72	126
cis-1,3-Dichloropropene	22,940	1.0	25.00	0	91.8	69	131
Dibromochloromethane	23.750	1.0	25.00	0	95.0	66	133
Dibromomethane	25.670	1.0	25.00	0	103	76	125
Dichlorodifluoromethane	23,190	1.0	25.00	0	92.8	53	153
Ethylbenzene	26.190	1.0	25.00	0	105	73	127
Freon-113	23.080	1.0	25.00	0	92.3	75	125
Hexachlorobutadiene	26.890	1.0	25.00	0	108	67	131
Isopropylbenzene	26.520	1.0	25.00	0	106	75	127
m,p-Xylene	52.990	1.0	50.00	0	106	76	128
Methylene chloride	25.930	5.0	25.00	0	104	63	137
MTBE	23,940	1.0	25.00	0	95.8	65	123
n-Butylbenzene	28,970	1.0	25.00	0	116	69	137
n-Propylbenzene	26.760	1.0	25.00	0	107	72	129
Naphthalene	28.930	1.0	25.00	0	116	54	138
o-Xylene	25.660	1.0	25.00	0	103	80	121
sec-Butylbenzene	26.710	1.0	25.00	0	107	72	127
Styrene	26.590	1.0	25.00	0	106	65	134

Value above quantitation range

RPD outside accepted recovery limits

Calculations are based on raw values

TestCode: 8260_WP_LL Units: ug/L

25.00

SPK value SPK Ref Val

TestNo: EPA 8260B

PQL

1,0

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

Spike/Surrogate outside of limits due to matrix interference

Sample ID: D110415LCS	SampType: L CS	TestCo	de: 8 260_WP	_LL Units: ug/L		Prep Da	ite:	RunNo: 79750			
Client ID: LCSW	Batch ID: D11VW051	Test	No: EPA 8260	В	Analysis Date: 4/15/2011				SeqNo: 1258745		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
tert-Butylbenzene	25,810	1.0	25.00	0	103	70	129				
Tetrachloroethene	25.670	1.0	25.00	0	103	66	128				
Toluene	24.990	2.5	25.00	0	100	77	122				
trans-1,2-Dichloroethene	26.820	1.0	25.00	0	107	63	137				
trans-1,3-Dichloropropene	22.080	1.0	25.00	0	88.3	59	135				
Trichloroethene	24.030	1.0	25.00	0	96.1	70	127				
Trichlorofluoromethane	26.090	1.0	25.00	0	104	57	129				
Vinyl chloride	26.600	1.0	25.00	0	106	50	134				
Xylenes, Total	78.650	2.0	75.00	0	105	75	125				
Surr: 1,2-Dichloroethane-d4	25.410		25.00		102	72	119				
Surr: 4-Bromofluorobenzene	25.350		25.00		101	76	119				
Surr: Dibromofluoromethane	26.840		25.00		107	85	115				
Surr: Toluene-d8	25.430		25.00		102	81	120				
Sample ID: N005635-001EM S	SampType: MS	TestCo	de: 8260_WP	_LL Units: ug/L		Prep Da	te:		RunNo: 79	750	
Client ID: ZZZZZZ	Batch ID: D11VW051	Testi	No: EPA 8260	В		Analysis Da	te: 4/15/20	D11	SeqNo: 12	58746	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1,1,2-Tetrachloroethane	23.710	1.0	25.00	0	94.8	81	129				
1,1,1-Trichloroethane	18.770	1.0	25.00	0	75,1	67	132				
1,1,2,2-Tetrachloroethane	21.880	1.0	25.00	0	87.5	63	128				
1,1,2-Trichloroethane	20,960	1.0	25.00	0	83.8	75	125				
1,1-Dichloroethane	24.270	1.0	25.00	0	97.1	69	133				
1,1-Dichloroethene	24.470	1.0	25.00	0	97.9	68	130				
1.1-Dichloropropene	2 2 .610	1.0	25.00	0	90.4	73	132				
1,2,3-Trichlorobenzene	25.760	1.0	25.00	0	103	67	137				
1,2,3-Trichloropropane	20,990	1.0	25.00	0	84.0	73	124				
1,2,4-Trichlorobenzene	27,440	1.0	25.00	0	110	66	134				
1,2,4-Trìmethylbenzene	24,950	1.0	25.00	0	99.8	74	132				
1,2-Dibromo-3-chloropropane	17.890	2.0	25.00	0	71.6	50	132				
Qualifiers:				•							
•	•										
 B Analyte detected in the 	associated Method Blank	E	 Value above 	quantitation range			H Hol	ding times for pre-	paration or anal-	zsis exceeded	

RPD outside accepted recovery limits

Calculations are based on raw values

CLIENT: Work Order:

CH2M HILL N005635

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005635-001EMS	SampType: MS	TestCode: 8260_WP_LL Units: ug/L			Prep Date:				RunNo: 79750		
Client ID: ZZZZZZ	Batch ID: D11VW051	Testl	No: EPA 8260	В		Analysis Da	te: 4/15/20)11	SeqNo: 12	58746	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane	20.280	1.0	25.00	0	81.1	80	121				
1,2-Dichlorobenzene	25.400	1.0	25.00	0	102	71	122				
1,2-Dichloroethane	19.970	1.0	25.00	0	79.9	69	132				
1,2-Dichloropropane	22.240	1.0	25.00	0	89.0	75	125				
1,3,5-Trimethylbenzene	26.300	1.0	25.00	0	105	74	131				
1.3-Dichlorobenzene	26.590	1.0	25.00	0	106	75	124				
1,3-Dichloropropane	22.210	1.0	25.00	0	88.8	73	126				
1,4-Dichlorobenzene	26.070	1.0	25.00	0	104	74	123				
2,2-Dichloropropane	16.380	1.0	25.00	0	65.5	69	137				S
2-Butanone	84.550	10	250.0	0	33.8	49	136				S
2-Chłorotoluene	27.210	1.0	25.00	0	109	73	126				
4-Chlorotoluene	26.380	1.0	25.00	0	106	74	128				
4-Isopropyltoluene	27,360	1.0	25.00	0	109	73	130				
4-Methyl-2-pentanone	171.890	10	250.0	0	68.8	58	134				
Acetone	55.050	10	250.0	0	22.0	40	135				S
Acrolein	149.050	20	250.0	0	59.6	75	125				S
Acrylonitrile	181.830	20	250.0	0	72.7	75	125				S
Benzene	24.290	1.0	25.00	0	97.2	81	122				
Bromobenzene	25,210	1.0	25:00	0	101	76	124				
Bromochloromethane	2 2 ,200	1.0	25.00	0	88.8	65	129				
Bromodichloromethane	19,750	1.0	25.00	0	79.0	76	121				
Bromoform	19.760	1.0	25.00	0	79.0	69	128				
Bromomethane	32.810	1.0	25.00	0	131	53	141				
Carbon disulfide	23.560	1.0	25.00	1.110	89.8	75	125				
Carbon tetrachloride	17.850	1.0	25.00	0	71.4	66	138				
Chlorobenzene	25.570	1.0	25.00	0	102	81	122				
Chloroethane	24.820	1.0	25.00	0	99.3	58	133				
Chloroform	24.040	1.0	25.00	0	96.2	69	128				
Chloromethane	26.220	1.0	25.00	0	105	56	131				
cis-1,2-Dichloroethene	24.500	1.0	25.00	0	98.0	72	126				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: Work Order:

CH2M HILL N005635

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005635-001EMS	SampType: MS	TestCo	de: 8 260_WP .	_LL Units: ug/L		Prep Da	te:		RunNo: 79	750	
Client ID: ZZZZZZ	Batch ID: D11VW051	Testi	No: EPA 8 260	В		Analysis Da	te: 4/15/20	011	SeqNo: 12	58746	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	20.260	1.0	25.00	0	81.0	69	131				
Dibromochloromethane	21.090	1.0	25.00	0	84.4	66	133				
Dibromomethane	20.560	1.0	25.00	0	82.2	76	125				
Dichlorodifluoromethane	22.040	1.0	25.00	0	88.2	53	153				
Ethylbenzene	26.070	1.0	25.00	0	104	73	127				
Freon-113	20.900	1.0	25.00	0	83.6	75	125				
Hexachlorobutadiene	27.400	1.0	25.00	0	110	67	131				
Isopropylbenzene	28.440	1.0	25.00	0	114	75	127				
m,p-Xylene	52.170	1.0	50.00	0	104	76	128				
Methylene chloride	23.230	5.0	25.00	0	92.9	63	137				
MTBE	19.090	1.0	25.00	0	76.4	65	123				
n-Butylbenzene	29.340	1.0	25.00	0	117	69	137				
n-Propylbenzene	27.140	1.0	25.00	0	109	72	129				
Naphthalene	22.600	1.0	25,00	0	90.4	54	138				
o-Xylene	25.130	1.0	25.00	0	101	80	121				
sec-Butylbenzene	27.080	1.0	25.00	0	108	72	127				
Styrene	20,830	1.0	25.00	0	83.3	65	134				
tert-Butylbenzene	26.410	1.0	25.00	0	106	70	129				
Tetrachloroethene	25.920	1.0	25.00	0	104	66	128				
Toluene	88.590	2.5	25.00	57.78	123	77	122				s
trans-1,2-Dichloroethene	24.400	1.0	25.00	0	97.6	63	137				
trans-1,3-Dichloropropene	18.580	1.0	25.00	0	74.3	59	135				
Trichloroethene	23.320	1.0	25.00	0	93.3	70	127				
Trìchlorofluoromethane	24.850	1.0	25.00	0	99.4	57	129				
Vinyl chloride	24.950	1.0	25.00	0	99.8	50	134				
Xylenes, Total	77,300	2.0	75.00	0	103	75	125				
Surr: 1,2-Dichloroethane-d4	21,090		25.00		84.4	72	119				
Surr: 4-Bromofluorobenzene	24.800		25.00		99.2	76	119				
Surr: Dibromofluoromethane	24.660		25,00		98.6	85	115				
Surr: Toluene-d8	25.690		25.00		103	81	120				

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Qualifiers:

В	Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

Ε		
	bove quar	

RPD outside accepted recovery limits Calculations are based on raw values

	H	Holding t	imes for	preparation c	ır analysi	is exceed	ed
--	---	-----------	----------	---------------	------------	-----------	----

Spike/Surrogate outside of limits due to matrix interference

Sample ID: N005635-001EMSD	SampType: MSD	TestCo	de: 8260_WP	_LL Units: ug/L		Prep Da	te:		RunNo: 79 7	750	
Client ID: ZZZZZZ	Batch ID: D11VW051	Test	No: EPA 8260	В		Analysis Da	te: 4/15/20	111	SeqNo: 125	58747	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
.1,1,2-Tetrachloroethane	23.800	1.0	25.00	0	95.2	81	129	23,71	0,379	20	
,1,1-Trichloroethane	19.250	1.0	25.00	0	77.0	67	132	18,77	2.5 2	20	
,1,2,2-Tetrachloroethane	21.650	1.0	25.00	0	86.6	63	128	21,88	1.06	20	
.1,2-Trichloroethane	22.240	1.0	25.00	0	89.0	75	125	20,96	5,93	20	
,1-Dichloroethane	24.510	1.0	25.00	0	98.0	69	133	24.27	0.984	20	
,1-Dìchloroethene	24,970	1.0	25,00	0	99.9	68	130	24. 4 7	2.02	20	
,1-Dichloropropene	23.240	1.0	25.00	0	93.0	73	132	22.61	2.75	20	
,2,3-Trichlorobenzene	25.6 40	1,0	25.00	0	103	67	137	25.76	0.467	20	
,2,3-Trichloropropane	20.920	1.0	25.00	0	83.7	73	124	20.99	0.334	20	
.2,4-Trichlorobenzene	27.040	1.0	25.00	0	108	66	134	2 7 .44	1.47	20	
,2,4-Trimethylbenzene	20.640	1.0	25.00	0	82.6	74	132	24.95	18.9	20	
2-Dîbromo-3-chloropropane	17.290	2.0	25,00	0	69.2	50	132	17.89	3.41	20	
2-Dibromoethane	20.700	1.0	25.00	0	82.8	80	121	20.28	2.05	20	
2-Dichlorobenzene	25.240	1.0	25,00	0	101	71	122	25.40	0.632	20	
2-Dichloroethane	21,140	1.0	25.00	0	84.6	69	132	19.97	5,69	20	
,2-Dichtoropropane	22.920	1.0	25.00	0	91.7	75	125	22.24	3.01	20	
.3,5-Trimethylbenzene	25.020	1.0	25.00	0	100	74	131	26.30	4.99	20	
3-Dichlorobenzene	26.680	1.0	25,00	0	107	75	124	26.59	0.338	20	
.3-Dichloropropane	22.860	1.0	25.00	0	91.4	73	126	22,21	2.88	20	
4-Dichlorobenzene	26.180	1.0	25.00	0	105	74	123	26.07	0.421	20	
,2-Dichloropropane	16.620	1.0	25.00	0	66.5	69	137	16.38	1.45	20	S
-Butanone	104.290	10	250.0	0	41.7	49	136	84.55	20.9	20	SR
-Chlorotoluene	27.220	1.0	25,00	0	109	73	126	27.21	0.0367	20	
-Chlorotoluene	26.630	1.0	25.00	0	107	74	128	26.38	0.943	20	
Isopropyltoluene	27.120	1.0	25.00	0	108	73	130	27.36	0.881	20	
Methyl-2-pentanone	191.580	10	250.0	0	76.6	58	134	171.9	10.8	20	
cetone	76.570	10	250.0	0	30.6	40	135	55.05	32.7	20	SR
crolein	201.610	20	250.0	0	80.6	75	125	149.0	30.0	20	R
Crylonitrile	243.040	20	250.0	0	97.2	75	125	181.8	28.8	20	R
enzene	24.710	1.0	25.00	0	98.8	81	122	24,29	1.71	20	

CLIENT:

CH2M HILL

Vork Order:

N005635

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005635-001EMSD	SampType: MSD			_LL Units: ug/L		Prep Da			RunNo: 79 1		
Client ID: ZZZZZZ	Batch ID: D11VW051	Test	No: EPA 82 60	В		Analysis Da	te: 4/15/20	111	SeqNo: 12:	58747	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	25.190	1.0	25.00	0	101	76	124	25.21	0.0794	20	
Bromochloromethane	23.040	1.0	25.00	0	92.2	65	129	22.20	3.71	20	
Bromodichloromethane	20.340	1.0	25.00	0	81.4	76	121	19.75	2.94	20	
Bromoform	19.610	1.0	25.00	0	78.4	69	128	19.76	0.762	20	
Bromomethane	32.450	1.0	25.00	0	130	53	141	32.81	1,10	20	
Carbon disulfide	23.780	1.0	25.00	1.110	90.7	75	125	23,56	0.929	20	
Carbon tetrachloride	18.490	1.0	25.00	0	74.0	66	138	17.85	3.52	20	
Chlorobenzene	25,690	1.0	25.00	0	103	81	122	25.57	0.468	20	
Chloroethane	24.350	1.0	25.00	0	97.4	58	133	24.82	1.91	20	
Chloroform	24.210	1.0	25.00	0	96.8	69	128	24.04	0.705	20	
Chloromethane	26.110	1.0	25.00	0	104	56	131	26.22	0.420	20	
cis-1,2-Dichloroethene	25.390	1.0	25.00	0	102	72	126	24.50	3.57	20	
cis-1,3-Dichloropropene	21.010	1.0	25,00	0	84.0	69	131	20.26	3.63	20	
Dibromochloromethane	21.420	1.0	25.00	0	85.7	66	133	21.09	1.55	20	
Dibromomethane	21.430	1.0	25.00	0	85.7	76	125	20.56	4.14	20	
Dichlorodifluoromethane	22.050	1.0	25.00	0	88.2	53	153	22.04	0.0454	20	
Ethylbenzene	26.190	1.0	25.00	0	105	73	127	26.07	0.459	20	
Freon-113	21.500	1.0	25.00	0	86.0	75	125	20.90	2.83	20	
Hexachlorobutadiene	27.260	1.0	25.00	0	109	67	131	27.40	0.512	20	
Isopropylbenzene	28.750	1.0	25.00	0	115	75	127	28.44	1.08	20	
m,p-Xylene	51,260	1.0	50.00	0	103	76	128	52,17	1,76	20	
Methylene chloride	23.310	5.0	25.00	0	93.2	63	137	23.23	0.344	20	
MTBE	20.540	1.0	25.00	0	82.2	65	123	19.09	7.32	20	
n-Butylbenzene	29.400	1.0	25.00	0	118	69	137	29.34	0.204	20	
n-Propylbenzene	27.510	1.0	25.00	0	110	72	129	27.14	1.35	20	
Naphthalene	20.490	1.0	25.00	0	82.0	54	138	22.60	9.79	20	
o-Xylene	24.640	1.0	25.00	0	98.6	80	121	25.13	1.97	20	
sec-Butylbenzene	27.610	1.0	25.00	0	110	72	127	27.08	1.94	20	
Styrene	14.390	1.0	25.00	0	57.6	65	134	20.83	36.6	20	SR
tert-Butylbenzene	26.860	1.0	25,00	0	107	70	129	26.41	1.69	20	

- Analyte detected in the associated Method Blank
- Not Detected at the Reporting Limit
- Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

N005635

"Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005635-001EMSD	SampType: MSD	TestCo	de: 8260_WP	_LL Units: ug/L	······	Prep Da	te:		RunNo: 797	750	
Client ID: ZZZZZZ	Batch ID: D11VW051	Testi	No: EPA 8260	В		Analysis Da	ite: 4/15/20	011	SeqNo: 12	58747	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HìghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachloroethene	26.220	1.0	25.00	0	105	66	12 8	25.92	1.15	20	
Toluene	85.880	2,5	25.00	57.78	112	77	122	88.59	3.11	20	
trans-1,2-Dichloroethene	24,740	1.0	25.00	0	99,0	63	137	24.40	1,38	20	
trans-1,3-Dichloropropene	18.810	1.0	25.00	0	75.2	59	135	18.58	1.23	20	
Trichloroethene	23.540	1.0	25.00	0	94.2	70	127	23.32	0.939	20	
Trichlorofluoromethane	24.260	1.0	25.00	0	97.0	57	129	24.85	2.40	20	
Vinyl chloride	25 .090	1.0	25.00	0	100	50	134	24.95	0.560	20	
Xylenes, Total	75.900	2.0	75.00	0	101	75	125	77.30	1.83	20	
Surr: 1,2-Dichloroethane-d4	22.100		25.00		88.4	72	119		0		
Surr: 4-Bromofluorobenzene	24.700		25.00		98.8	76	119		0		
Surr: Dibromofluoromethane	25.320		25.00		101	85	115		0		
Surr: Toluene-d8	25.280		25.00		101	81	120		0		
Sample ID: N005636-009AMS	SampType: MS	TestCo	de: 8260_WP _	_LL Units: ug/L		Prep Da	te:		RunNo: 797	750	
Sample ID: N005636-009AMS Client ID: ZZZZZZ	SampType: MS Batch ID: D11VW051		de: 8260_WP do: EPA 8260I	-		Prep Da Analysis Da		11	RunNo: 797 SeqNo: 125		
			lo: EPA 8260	-	%REC	Analysis Da	te: 4/15/20	111 RPD Ref Val			Qual
Client ID: ZZZZZZ	Batch ID: D11VW051	TestN	lo: EPA 8260	В		Analysis Da	te: 4/15/20		SeqNo: 125	68748	Qual
Client ID: ZZZZZZ Analyte	Batch ID: D11VW051 Result	TestN PQL	No: EPA 8260	SPK Ref Val	%REC	Analysis Da LowLimit	te: 4/15/20 HighLimit		SeqNo: 125	68748	Qual
Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane	Batch ID: D11vw051 Result 23,720	TestN PQL 1.0	SPK value 25.00	SPK Ref Val	%REC 94.9	Analysis Da LowLimit 81	te: 4/15/20 HighLimit 129		SeqNo: 125	68748	Qual
Client ID: ZZZZZZ Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	Batch ID: D11vw051 Result 23.720 19.380	TestN PQL 1.0 1.0	SPK value 25.00 25.00	SPK Ref Val 0 0	%REC 94.9 77.5	Analysis Da LowLimit 81 67	te: 4/15/20 HighLimit 129 132		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	Batch ID: D11VW051 Result 23.720 19.380 21.720	TestN PQL 1.0 1.0	SPK value 25.00 25.00 25.00	SPK Ref Val 0 0 0	%REC 94.9 77.5 86.9	Analysis Da LowLimit 81 67 63	te: 4/15/20 HighLimit 129 132 128		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane	Batch ID: D11VW051 Result 23.720 19.380 21.720 21.370	TestN PQL 1.0 1.0 1.0	SPK value 25.00 25.00 25.00 25.00 25.00	SPK Ref Val 0 0 0 0	%REC 94.9 77.5 86.9 85.5	Analysis Da LowLimit 81 67 63 75	HighLimit 129 132 128 125		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	Batch ID: D11VW051 Result 23.720 19.380 21.720 21.370 25.050	TestN PQL 1.0 1.0 1.0 1.0	SPK value 25.00 25.00 25.00 25.00 25.00 25.00	8 SPK Ref Val 0 0 0 0 0 0 0 0 0 0	%REC 94.9 77.5 86.9 85.5 100	Analysis Da LowLimit 81 67 63 75	HighLimit 129 132 128 125 133		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	Batch ID: D11VW051 Result 23,720 19,380 21,720 21,370 25,050 25,800	TestN PQL 1.0 1.0 1.0 1.0 1.0	SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	8 SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 94.9 77.5 86.9 85.5 100 103	Analysis Da LowLimit 81 67 63 75 69 68	HighLimit 129 132 128 125 133 130		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	Batch ID: D11vw051 Result 23.720 19.380 21.720 21.370 25.050 25.800 23.620	TestN PQL 1.0 1.0 1.0 1.0 1.0 1.0	SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 94.9 77.5 86.9 85.5 100 103 94.5	Analysis Da LowLimit 81 67 63 75 69 68 73	HighLimit 129 132 128 125 133 130 132		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene	Batch ID: D11vw051 Result 23.720 19.380 21.720 21.370 25.050 25.800 23.620 25.950	TestN PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0	SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	SPK Ref Val 0 0 0 0 0 0 0 0 0	%REC 94.9 77.5 86.9 85.5 100 103 94.5 104	Analysis Da LowLimit 81 67 63 75 69 68 73 67	HighLimit 129 132 128 125 133 130 132 137		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	Batch ID: D11vw051 Result 23.720 19.380 21.720 21.370 25.050 25.800 23.620 25.950 21.160	TestN PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0	SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0	%REC 94.9 77.5 86.9 85.5 100 103 94.5 104 84.6	Analysis Da LowLimit 81 67 63 75 69 68 73 67 73	HighLimit 129 132 128 125 133 130 132 137 124		SeqNo: 125	68748	Qual
Analyte 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	Batch ID: D11VW051 Result 23,720 19,380 21,720 21,370 25,050 25,800 23,620 25,950 21,160 26,960	TestN PQL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	SPK value 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	8 SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 94.9 77.5 86.9 85.5 100 103 94.5 104 84.6 108	Analysis Da LowLimit 81 67 63 75 69 68 73 67 73 66	HighLimit 129 132 128 125 133 130 132 137 124 134		SeqNo: 125	68748	Qual

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL N005635

" Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: N005636-009AMS	SampType: MS	TestCo	de: 8260_WP _	LL Units: ug/L		Prep Da	te:		RunNo: 79	750	
Client ID: ZZZZZZ	Batch ID: D11VW051	Test	No: EPA 8260	3		Analysis Da	le: 4/15/20	111	SeqNo: 12	58748	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	25.560	1,0	25.00	0	102	71	122				
1,2-Dichloroethane	20,630	1.0	25.00	0	82.5	69	132				
1,2-Dichloropropane	23.190	1.0	25.00	0	92.8	75	125				
1,3,5-Trimethylbenzene	27.340	1.0	25.00	0	109	74	131				
1,3-Dichlorobenzene	26.880	1.0	25.00	0	108	75	124				
1,3-Dichloropropane	21.640	1.0	25.00	0	86.6	73	126				
1,4-Dichlorobenzene	26.260	1.0	25.00	0	105	74	123				
2,2-Dichloropropane	17,240	1.0	25.00	0	69.0	69	137				S
2-Butanone	82.320	10	250.0	0	32.9	49	136				s
2-Chlorotoluene	27.860	1.0	25.00	0	111	73	126				
4-Chlorotoluene	27.030	1.0	25.00	0	108	74	128				
4-Isopropyltoluene	28,130	1.0	25,00	0	113	73	130				
4-Methyl-2-pentanone	171,090	10	250.0	0	68.4	58	134				
Acetone	50,170	10	250.0	0	20.1	40	135				S
Acrolein	149,160	20	250.0	0	59.7	75	125				S
Acrylonitrile	183,740	20	250.0	0	73.5	75	125				s
Benzene	25.010	1.0	25.00	0	100	81	122				
Bromobenzene	25.450	1.0	25.00	0	102	76	124				
Bromochloromethane	22.680	1.0	25.00	0	90.7	65	129				
Bromodichloromethane	20,130	1.0	25.00	0	80.5	76	121				
Bromoform	19.700	1.0	25.00	0	78.8	69	128				
Bromomethane	33,320	1.0	25,00	0	133	53	141				
Carbon disulfide	23.060	1.0	25.00	0	92.2	75	125				
Carbon tetrachloride	18.700	1.0	25.00	0	74.8	66	138				
Chlorobenzene	26,200	1.0	25.00	0	105	81	122				
Chloroethane	25,540	1.0	25.00	0	102	58	133				
Chloroform	24.750	1.0	25.00	0	99.0	69	128				
Chloromethane	27.090	1.0	25.00	0	108	56	131		*		
cis-1,2-Dichloroethene	25,540	1.0	25.00	0	102	72	126				
cis-1,3-Dichloropropene	20.550	1.0	25.00	0	82.2	69	131				

- B Analyte detected in the associated Method Blank
- NO Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- II Holding times for preparation or analysis exceeded.
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

N005635

Work Order: Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample iD: N005636-009AMS	Samp⊤ype: MS	TestCo	de: 8260_WP _	_LL Units: ug/L		Prep Da	te:		RunNo: 797	750	
Client ID: ZZZZZZ	Batch ID: D11VW051	Testi	No: EPA 8260	В		Analysis Da	te: 4/15/20	111	SeqNo: 128	58748	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dibromochloromethane	20,930	1.0	25.00	0	83.7	66	133				
Dibromomethane	20.890	1.0	25.00	0	83.6	76	125				
Dichlorodifluoromethane	22.820	1.0	25.00	0	91.3	53	153				
Ethylbenzene	26.830	1.0	25.00	0	107	73	127				
Freon-113	22,290	1,0	25.00	0	89.2	75	125				
Hexachlorobutadiene	28.240	1.0	25.00	0	113	67	131				
Isopropylbenzene	27.780	1.0	25.00	0	111	75	127				
m,p-Xylene	53.950	1.0	50.00	0	108	76	128				
Methylene chloride	24.160	5.0	25.00	0	96.6	63	137				
MTBE	18.900	1.0	25.00	0	75.6	65	123				
n-Butylbenzene	30.000	1.0	25.00	0	120	69	137				
n-Propylbenzene	28,080	1.0	25.00	0	112	72	129				
Naphthalene	23,110	1.0	25.00	0	92.4	54	138				
o-Xylene	25.960	1.0	25.00	0	104	80	121				
sec-Butylbenzene	28,120	1.0	25.00	0	112	72	127				
Styrene	23,100	1.0	25,00	0	92.4	65	134				
tert-Butylbenzene	27.130	1.0	25.00	0	109	70	129				
Tetrachloroethene	26.720	1.0	25.00	0	107	66	128				
Toluene	25.260	2.5	25.00	0	101	77	122				
trans-1,2-Dichloroethene	25,840	1.0	25.00	0	103	63	137				
trans-1,3-Dichloropropene	18,650	1.0	25.00	0	74.6	59	135				
Trichloroethene	24,300	1.0	25.00	0	97.2	70	127				
Trichlorofluoromethane	24.930	1.0	25.00	0	99.7	57	129				
Vinyl chloride	25.890	1.0	25.00	0	104	50	134				
Xylenes, Total	79.910	2.0	75.00	0	107	75	125				
Surr: 1,2-Dichloroethane-d4	21.130		25.00		84.5	72	119				
Surr: 4-Bromofluorobenzene	25,240		25.00		101	76	119				
Surr: Dibromofluoromethane	25.040		25.00		100	85	115				
Surr: Toluene-d8	25.950		25.00		104	81	120				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

307-2659 Fax: 702

CH2M HILL

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

ork Order: N005635

Project: PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Spike/Surrogate outside of limits due to matrix interference

Sample ID: D110415MB2	SampType: MBLK	TestCo	de: 8260_WP	_LL Units: ug/L		Prep Da	ate:		RunNo: 79	750	
Client ID: PBW	Batch ID: D11VW051	Test	No: EPA 8260	В		Analysis Da	ete: 4/15/2	011	SeqNo: 12	58749	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	1.0									
1,1,1-Trichloroethane	ND	1.0									
1,1,2,2-Tetrachloroethane	ND	1.0									
1,1,2-Trichloroethane	ND	1.0									
1,1-Dichloroethane	ND	1.0									
1,1-Dichloroethene	ND	1.0									
1,1-Dichloropropene	ND	1.0									
1,2,3-Trichlorobenzene	ND	1.0									
1,2,3-Trichtoropropane	ND	1.0									
1,2,4-Trichlorobenzene	ND	1.0									
1,2,4-Trîmethylbenzene	ND	1.0									
1,2-Dibromo-3-chloropropane	ND	2.0									
1.2-Dibromoethane	ND	1.0									
1,2-Dichlorobenzene	ND	1.0									
1,2-Dichloroethane	ND	1.0									
1,2-Dichloropropane	ND	1.0									
1,3,5-Trimethylbenzene	ND	1.0									
1,3-Dichlorobenzene	ND	1.0									
1,3-Dichloropropane	ND	1.0									
1,4-Dichlorobenzene	ND	1.0									
2,2-Dichloropropane	ND	1.0									
2-Butanone	ND	10									
2-Chlorotoluene	ND	1.0									
4-Chlorotoluene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	10									
Acetone	ND	10									
Acrolein	ND	20									
Acrylonitrile	ND	20									
Benzene	ND	1.0									
Qualificant											
Qualifiers: B Analyte detected in the	e associated Method Blank	Е	Value above	quantitation range			Н Нов	ding times for prep	nestion or such	reie avaaadad	
D Amaryte detected in th	AHRIC DOUDTS DANK	C	value anove	quantitation range			11 1300	ang times for prej	aradon or analy	AND CALCERER	

RPD outside accepted recovery limits

Calculations are based on raw values

Advanced Technology

CLIENT: Work Order:

CH2M HILL N005635

Project:

PG&E Topock

Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit

DO Surrogate Diluted Out

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Sample iD: D110415MB2	SampType: MBLK	TestCo	de: 8260_WP	LL Units: ug/L		Prep Da	ite:		RunNo: 79	750	
Client ID: PBW	Batch ID: D11VW051	Test	No: EPA 8260	В		Analysis Da	ite: 4/15/2	011	SeqNo: 12	58749	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HìghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	ND	1,0									
Bromochloromethane	ND	1.0									
Bromodichloromethane	ND	1,0									
Bromoform	ND	1.0									
Bromomethane	ND	1,0									
Carbon disulfide	ND	1.0									
Carbon tetrachloride	ND	1.0									
Chlorobenzene	ND	1,0									
Chloroethane	ND	1.0									
Chloroform	ND	1.0									
Chloromethane	ND	1.0									
cis-1,2-Dichloroethene	ND	1.0									
cis-1,3-Dichloropropene	ND	1.0									
Dibromochloromethane	ND	1.0									
Dibromomethane	ND	1.0									
Dichlorodifluoromethane	ND	1.0									
Ethylbenzene	ND	1.0									
Freon-113	ND	1.0									
Hexachlorobutadiene	ND	1.0									
Isopropylbenzene	ND	1.0									
m.p-Xylene	ND	1.0									
Methylene chloride	ND	5.0									
MTBE	ND	1.0									
n-Butylbenzene	ND	1.0									
n-Propylbenzene	ND	1.0									
Naphthalene	ND	1.0									
o-Xylene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
	ND	1.0									

Value above quantitation range

RPD outside accepted recovery limits

Calculations are based on raw values

CLIENT: Work Order:

CH2M HILL

N005635

Project:

PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

Sample ID: D110415MB2 Client ID: PBW	SampType: MBLK Batch ID: D11VW051		TestCode: 8260_WP_LL Units: ug/L TestNo: EPA 8260B			Prep Date: Analysis Date: 4/15/2011				RunNo: 79750 SeqNo: 1258749		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Tetrachloroethene	ND	1,0							<u> </u>			
Toluene	ND	2.5										
trans-1,2-Dichloroethene	ND	1.0										
trans-1,3-Dichloropropene	ND	1.0										
Trichloroethene	ND	1.0										
Trichlorofluoromethane	ND	1.0										
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	2.0										
Surr: 1,2-Dichloroethane-d4	23.280		25 .00		93.1	72	119					
Surr: 4-Bromofluorobenzene	26,910		2 5.00		108	76	119					
Surr: Dibromofluoromethane	23.930		25.00		95.7	85	115					
Surr: Toluene-d8	28.490		25.00		114	81	120					

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CHAIN OF CUSTODY RECORD

COC Number

					-,,,,,,,	-, -									TUŔNA DATE	AROUN 4-1	D TIME -	PAC	GE /	OF /
COMPANY	CHam	Hill					<u>/</u> /	<u>_</u> in/ ,	1/	7	7	/ /	7		7	7	/ /	7 7		<u> </u>
PROJECT NAME	PG&E Topock					10	2/,	Y	7	/ ,	/ /				[.]	/ /		/ /	COM	MENTS
PHONE	(530) 229-3303	3	FAX (530) 339-3303				75	<i>≵\</i> \		\ \(\text{\text{20}} \)		/ /	/ /			///			
ADDRESS	155 Grand Ave		***************************************				15/		37/	, 53. 10. 53. 53. 53. 53. 53. 53. 53. 53. 53. 53	5/ /	/ /	/ /			/ /		2/ `		
	Oakland, CA 9				/	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AUTO BE	5 CO 24 CO 2	5m 540	22	7 /			/ ,	/ /	/ /	N K	/		
P.O. NUMBER	105681. MI	202 GN) TEAN	1 1	/	2	5/ 18	1 35 P	/ Y/				/ /	/ /			CONTAINERS		•	
SAMPLERS (SIGNA	.//		_	enterior avec	1	4/5	$\langle \vec{x} \rangle$	5/5	`ر\ر اير\ب	Ĭ)	//	/ /	/ /			/ /	/&/ ~			
,	-0/1				165	3	TO THE	汉	<i>!\\$</i>	<i>y</i>	/ /			/ ,	/ /	/ /,	χ_{BE}			
SAMPLE I.D.		DATE	TIME	DESCRIPTION			₹	/ /	/	_/		/_	1-1	/_/	-	_/_	<u> </u>		-	
mw-64BR-U	PR-150-176	4-12-11	1447	water	NO	$\angle X$	X	X	X							8			NOOS	-785
TB-Pack	Lr-176-03	<u> </u>	1300	<u> </u>					X	£	-rip	161	unk			1/	Hel	d		especial control of the control of t
																			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				*																1-
																				•

	1											-								***************************************
The state of the s		HAIN OF	ÇUSTO	DY SIGNATUR	RE REC	CORD	-	l		wei ambien	zenelazarze	1	chence una march	(M.T. parking of present		SAMPI	E CONDI	rions		A STATE OF THE PARTY OF THE PAR
Signature (Relinquished)	5)/[Printed Name	milo	Company, Agency	CHAN	n Hi	//	Date Time	1 4/~/	13-11	1532	키 년	RECEIV	'ED	_COO	l 🖳	₩AF	RM 🔲		° [
Signature (Received)	M.	Printed Name	mond	- / Company	' kt	1/		Date Time		13/1/	15:30	7 ,	CUSTO	DY SEA	ا موردند ALEO	- UZ 7	F.⊥ S □	, NO		
Signature (Relinquished)	who the	Printed	Jander	Comorny	1 17	<u> </u>	_,		ا لئ اه	13/11 /	18/0		CIAL R							
Signature (Received)		Printed Name	400.0000	/ Company	, , , , ,			Date	1	11.						-				
Signature (Relinquished)		Printed		Agency Company/	· · · · · · · · · · · · · · · · · · ·			Time Date	:/											
Signature (Received)		Name Printed		Agency Company/	,		· • • • • • • • • • • • • • • • • • • •	Time Date	7			-								
(outvett)		Name	· · · · · · · · · · · · · · · · · · ·	Agency			Ţ	Time	3								4			

CHAIN OF CUSTODY RECORD

COC Number

						-,,,,						,						TUŘI DAT	NARC E4	UNO 12	TIME -	PAG	= 1 0	F/
COMPANY	CHam	TH				T	************	7-		20/	1/	7	7	7	7	7	7	7	7	7	7	77	· · · · · · · · · · · · · · · · · · ·	
PROJECT NAME	PG&E Topock	•						100	2/	$\mathcal{Y}_{\mathcal{S}}$	7	/,						/.			//	' /	COMMEN	ITS
PHONE	(530) 229-3303	}	FAX (530	0) 339-33	303		ç	医	$\langle u \rangle$	73	X V	533		/ ,	Ι,	/ /	/ /	/ /	/ /	/ /	/ /	/ .		
ADORESS	155 Grand Ave						/.		S. DET	Z	V 1/	3	0/								ERS			-
	Oakland, CA 94						8/8/	3/ S	₹/ ⊱		8/5	Z\Z	09/8								/ <u>*</u> */	,		
P.O. NUMBER 4	105681. ME	202 GN) TEAR	vi 1			18	/ উ		1 1	/ V) , Oq	y /	/ ,	Ι,	/ ,	/ /	/ /	/	/ /	/ § /	÷	·	
SAMPLERS (SIGN)			gganik Referension .	***************************************			يً/و	* tal 6	2007	S/S		3								BEG	S OF CONTRINERS			
SAMPLE I.O.		DATE	TIME	DESCI	RIPTION					75	7 -	7	/ ,	/		/ .	/ /	/ /	/ ,		/		gr.	
MW-64BR-U	PK-150-176	4-12-11	1447	Way	ev	X	V	X	N	X	N									8				
TB-Pack	24-176-03	general special 1300			V	~				X		1r	ÌØ	bla	L				1	Hol	J			
				*					·		, ,			₩	U	FUR				-				
																		1	$\neg \uparrow$		· · · · · · · · · · · · · · · · · · ·		,,	
7																						····		
					······	1																		
						1															*******		***************************************	

***************************************	æ																					·····		
	<u> </u>			CONTROL PARTY PROPERTY							XIII DELEK	To Mark Day	ananc			enis kiyeri					anniana Meneralah	nen processor		:SWEW
Signature /		HAIN OF	CUSTO							Dat	al U	-13-	17 10	30						MPLE	CONDIT			
(Relinquished) Signature		Name A	414/6		Company/ Agency		m,	Kil	<u>'/</u>	Tim	ie *	† T			R	ECEI	/ED	CO		了 夏季	1 War	М	www.acaramanana.co.	°F
(Received)	7/1/	Name 🗸	mand	MOUNT	Company/ Agency	<u>A</u>	1		.,	Dat Thr	e 7/	/ <i> </i> 3/ /	1/18	<i>₹</i> 3	С	USTO	DY SE	ALED) ",	YES		ио []	
Signature (Relinquished)		Printed Name	Mandin	Galand	Company/ Agency	Ä	17			Dat Tlm	e/ 54 e = 1	/B/11	15	10	SPE	CIAL R	EQUIR	EWEN.	TS:		and traditional territories			
Signature (Received)	LUL	Printed Name	LIBU	/	Company/ Agency	A	71.	,ır		Dat Tim		131	\	810										
Signature (Relinquished)	···	Printed Name	- 10	***************************************	Company/ Agency			<u>'-</u>		Dat Tim	e/	\1-^\	~ 1											
Signature (Received)		Printed Name		***************************************	Company/					Dat Tim	e/													
		1401116			Agency				1	1 3 1	"				<u> </u>						· · · · · · · · · · · · · · · · · · ·			

Advanced Technology Laboratories, Inc.

Checklist Completed B

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Cooler Received/Opened On:	4/13/2011				Wo	orkorder:	N005635		
Rep sample Temp (Deg C):	2.2				IR	Gun ID:	IR 1		
Temp Blank:	Yes	✓ No							
Carrier name:	ATL								
Last 4 digits of Tracking No.:				Packing	Materi	al Used:	Bubble Wrap		
Cooling process:	✔ lce	Ice Pack	Dry Ice	Other		None			
1. Shipping container/cooler in	good condit	tion?			Yes	Ÿ.	No	Not Present	
2. Custody seals intact, signed,	, dated on s	hippping containe	er/cooler?		Yes		No	Not Present	V
3. Custody seals intact on sam	ple bottles?				Yes		No	Not Present	~
4. Chain of custody present?					Yes	V .	No ·		
5. Sampler's name present in 0	0007				Yes	•	No		
6. Chain of custody signed whe	en relinquist	ned and received?	?		Yes	V .	No .		
7. Chain of custody agrees with	n sample lat	pels?			Yes	Ÿ	No		
8. Samples in proper container	/bottle?				Yes	V ,	No		
9. Sample containers intact?					Yes	.	No		
10. Sufficient sample volume fo	or indicated	test?			Yes	V	No		
11. All samples received within	holding tim	ie?			Yes	Y	No		
12. Temperature of rep sample	or Temp B	lank within accep	table limit?		Yes	*	No	NA	
13. Water - VOA vials have zei	ro headspac	ce?			Yes		No 🗹	NA	
14. Water - pH acceptable upo Example: pH > 12 for (C		for Metals			Yes	V .	No	NA	
15. Did the bottle labels indicate	te correct pr	reservatives used	?		Yes	V	No	NA	- 13
16. Were there Non-Conforma W	nce issues as Client no				Yes Yes		No . No	NA NA	4.50
Comments: Trip Blank TB-Pa	acker-176-0	3 has headspace	>5mm						

38

Reviewed By: 41+/11

SAMPLE CALCULATION

METHOD: SM 2540C

TEST NAME: Total Filterable Residue

MATRIX: Water

FORMULA:

Calculate TDS concentration in mg/L, in the original sample as follows:

TDS, mg/L =
$$(\underline{A-B})*1000000$$

C

Where:

A = weight in g of dish + residue after drying

B = weight of dish in g

C = volume of sample used in mL

For **N005635-001C**, TDS concentration in mg/L is calculated as follows:

TDS, mg/L =
$$(15.7245-15.6462)*1000000$$

10
= 7830 mg/L

Reporting result in two significant figures,

TDS = 7800 mg/L

Sample Calculation

METHOD: EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in $\mu g/L$, in the original sample as follows:

$$Cr^{+6}$$
, $\mu g/L = A * DF$

where:

A = ug/L, IC Cr⁺⁶ calculated concentration DF = dilution factor

For N005635-001A, concentration in μg/L is calculated as follows:

$$Cr^{+6}$$
, $\mu g/L = 13.399322 * 10$
= 133.99322 $\mu g/L$

Reporting results in two significant figures,

$$Cr^{+6}$$
, $\mu g/L = 130$

myli

Sample Calculation

METHOD: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Chloride concentration, in mg/L, in the original sample as follows:

where:

A = mg/L, IC calculated concentration DF = dilution factor

For N005635-001C, concentration in mg/L are calculated as follows:

Chloride, mg/L = 3.536* 1000

= 3536 mg/L

Reporting N005635-001C, results in two significant figures,

Chloride, mg/L = 3500 mg/L

Achla

SAMPLE CALCULATION

METHOD: EPA 6010B

TEST NAME: METALS BY ICP

MATRIX: WATER

FORMULA:

Calculate the individual metal concentration, in mg/L, in the original sample as follows:

M, ug/L = A*C*DF*1000

В

where:

M= concentration of the metal in ug/L A= mg/L, ICP calculated concentration

B= volume of sample, Liter

C= final volume of digestate, Liter

DF= dilution factor

For N005635-001B, concentration in ug/L are calculated as follows:

Cr, ug/L = $0.13862 \frac{\text{mg/L} * 0.025 \text{ L} *1000}{0.025 \text{ L}}$

Cr = 138.62 ug/L

Reporting result in two significant figures,

Cr = 140 ug/L

4.4/20/2011

DILUTION TEST

Matrix: WATER

Units: ug/L

Amount of Sample: 25 mL

Analytical Method:

EPA 6010B / 200.7

Digestion Method: Date of Analysis: EPA 3010A 4/19/2011

Digestion Date: Instrument Name:

4/15/2011 ICP1

Analysts:

KΒ

Work Order #:

N005635-001B

Batch #: 36699

Analyte	A	В	Difference	% D
Chromium	138.6	144.124	-5.52400	-4.0

FORMULA:

%D = (A-B)*100

where:

% D = % Difference

A= ug/L, ICP calculated concentration of the original sample

B= ug/L, ICP calculated concentration @5x dilution

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005635

Project:

PG&E Topock

Date: 19-Apr-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005635-001BDT	Samp⊺ype: DT	TestCode: 6010_WDPG	Units: ug/L	Prep Date		RunNo: 797	743
Client ID: ZZZZZZ	Batch ID: 36699	TestNo: EPA 6010B	EPA 3010A	Analysis Date	: 4/19/2011	SeqNo: 125	58663
Analyte	Result	PQL SPK value SPF	K Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qual
Chromium	144.124	5.0			138.6	3.89	10

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005635

Project:

PG&E Topock

and the second s

Date: 19-Apr-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005635-001BPS	SampType: PS	TestCod	de: 6010_W DF	'G Units: ug/L		Prep Da	te:	RunNo: 79	743	
Client ID: ZZZZZZ	Batch ID: 36699	Test !	lo: EP A 6010 E	B EPA 3010A		Analysis Da	te: 4/19/2011	SeqNo: 12	58666	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HìghLìmit RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	1099,625	2.0	1000	138.6	96.1	75	125			

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005635-001B, the concentration in ug/L is calculated as follows:

Arsenic,
$$ug/L$$
 = 3.1158 * 1 * (1)

$$=$$
 3.1158 ug/L

Reporting results in two significant figures,

Arsenic,
$$ug/L = 3.1$$

Advanced Technology Laboratories, Inc.

ICP-Metals in Water

Dilution Test Summary

Work	Order	No.

N005635

Test Method: Analysis Date: EPA 6020 04/18/11

Matrix:

Aqueous

Batch No.:

36710

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Comments:

Analyzed By: Jojo Tenorio

Sample ID	Analyte	&Units	Calc Val	OQual SAMPrefval	%DIFF	%DIFFlimit
N005651-001B DT 5X	Arsenic	ug/L	5.661057187	5.6601516	6 0.02%	10

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005635

Project: PG&E Topock

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WD_AsPGE

Date: 26-Apr-11

Sample ID: N005651-001B-PS 2	SampType: PS	TestCod	de: 6020_WD _	As Units: ug/L		Prep Da	ite:		RunNo: 79 7	740	
Client ID: ZZZZZZ	Batch ID: 36710	TestN	lo: EPA 6020	EPA 3010A		Analysis Da	ite: 4/18/20	11	SeqNo: 12 6	60565	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	25.060	0.20	20.00	5 .660	97.0	75	125				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

SAMPLE CALCULATION

METHOD: EPA 8260B

TEST NAME: VOLATILE ORGANIC COMPOUNDS BY GC/MS

MATRIX: WATER

CALCULATION OF TARGET PARAMETERS

Calculate the target analyte concentrations using internal standard quantitation

$$C_X$$
,ug/L= $A_X * C_{IS}$
Ave RF * A_{IS}

where:

A_{x =} Area of the TOTAL ion for the compound being measured

C_{IS} = Concentration of the specific internal standard in ug/L

 A_{IS} = Area of the characteristic ion of the specific internal standard

Cx = Concentration of the compound being measured in ug/L

N005635-001E

For Carbon Disulfide the corresponding Internal Standard is Pentafluorobenzene

Ave RF 1.317

Area of Carbon Disulfide 29420

Area of Internal Standard 502065

Conc of Internal Standard (ug/L) 25.00

Conc of Carbon Disulfide (ug/L)= 29420 * 25.00ug/L 1.317 *502065

Conc of Carbon Disulfide (ug/L)= 1.112338464

Reporting result in three significant figures,

Concentration of Carbon Disulfide = 1.11 ug/L

SUMMARY OF SURROGATE RECOVERIES

Spikes and Surrogates Report

RunID: MS1_110415B

Anaiyst:

Quennie Manimtim

RunNo: 79750

Surrogates

SeqNo	SampID	TestCod	ie	SampType	BatchID	DF		
1258743	25ppb-MIDPOINT	8260_WP	LLPGE	CCA	D11VW051	1		
Rpt	Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
V	1,2-Dichloroethane-d4	25	25.37	101.48%	80	120		
V	4-Bromofluorobenzene	25	25.47	101.88%	80	120		
V	Dibromofluoromethane	25	25.56	102.24%	80	120		
V	Toluene-d8	25	25.34	101.36%	80	120		
							Total Out:	0
1258744	25ppb-CCV	8260_WP	_LLPGE	ccv	D11VW051	1		
Rpt	Analyte:	SpkVal;	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
V	1,2-Dichloroethane-d4	25	24.99	99.96%	80	120		
v	4-Bromofluorobenzene	25	25.88	103.52%	80	120		
V	Dibromofluoromethane	25	26.67	106.68%	80	120		
y	Toluene-d8	25	26.33	105.32%	80	120		
							Total Out:	0
1258745	D110415LCS	8260_WF	LLPGE	LCS	D11VW051	1		
Rpt	Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
V	1,2-Dichloroethane-d4	25	25.41	101.64%	72	119		
V	4-Bromofluorobenzene	25	25.35	101.40%	76	119		
V	Dibromofluoromethane	25	26.84	107.36%	85	115		
V	Toluene-d8	25	25.43	101.72%	81	120		
							Total Out:	0
1258746	N005635-001EMS	8260_WF	LLPGE	MS	D11VW051	1		
Rpt	Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
Y	1,2-Dichloroethane-d4	25	21.09	84.36%	72	119		
✓	4-Bromofluorobenzene	25	24.8	99.20%	76	119		
V	Dibromofluoromethane	25	24.66	98.64%	85	115		
V	Toluene-d8	25	25,69	102.76%	81	120		
							Total Out:	0
1258747	N005635-001EMSD	8260_ W I	P_LLPGE	MSD	D11VW051	1		
Rpt	t Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
V	1,2-Dichloroethane-d4	25	22.1	88.40%	72	119		
✓	4-Bromofluorobenzene	25	24.7	98.80%	76	119		
Y	Dibromofluoromethane	25	25.32	101.28%	85	115		
V	Toluene-d8	2 5	25.28	101.12%	81	120		
							Total Out:	0

Spikes and Surrogates Report

RunID:

MS1_110415B

Analyst:

Quennie Manimtim

RunNo: 79750

Surrogates

SeqNo	SamplD	TestCod	de	SampType	BatchID	DF		
1258748	N005636-009AMS	8260_WP	LLPGE	MS	D11VW051	1		
Rpt	Analyte:	SpkVal:	CalcVal:	REC:	LawLimit:	HighLimit:	Qual:	Out:
√	1,2-Dichloroethane-d4	25	21.13	84.52%	72	119		
✓	4-Bromofluorobenzene	25	25.24	100.96%	76	119		
✓	Dibromofluoromethane	25	25.04	100.16%	85	115		
✓	Toluene-d8	25	25.95	103.80%	81	120		
							Total Out:	0
1258749	D110415MB2	8260_WP	_LLPGE	MBLK	D11VW051	1		
Rpt	Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
V	1,2-Dichloroethane-d4	25	23.28	93.12%	72	119		
~	4-Bromofluorobenzene	25	26.91	107.64%	76	119		
V	Dibromofluoromethane	25	23.93	95.72%	85	115		
V	Toluene-d8	25	28.49	113.96%	81	120		
							Total Out:	0
4050750	N005000 000 #	5000 1410	LLDCE	CARAD	DAANDEROEA	4		
1258750	N005636-009A	8260_WP		SAMP	D11VW051	1		
	Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
▽	1,2-Dichloroethane-d4	25	23.23	92.92%	72	119		
	4-Bromofluorobenzene	25	26.97	107.88%	76	119		
<i>y</i>	Dibromofluoromethane	2 5	24.74	98.96%	85	115		
· V	Toluene-d8	25	27.86	111.44%	81	120		_
							Total Out:	0
1258751	N005635-001E	8260_WF	LLPGE	SAMP	D11VW051	1		
Rpt	Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Qut:
V	1,2-Dichloroethane-d4	25	20.96	83.84%	72	119		
✓	4-Bromofluorobenzene	25	26.36	105.44%	76	119		
V	Dibromofluoromethane	25	22.58	90.32%	85	115		
V	Toluene-d8	25	27.8	111.20%	81	120		
							Total Out:	0
1258752	N005635-002A	8260_WF	P_LLPGE	SAMP	D11VW051	1		
Rpt	Analyte:	SpkVal:	CalcVal:	REC:	LowLimit:	HighLimit:	Qual:	Out:
▼	1,2-Dichloroethane-d4	25	23.24	92.96%	72	119		
<u>~</u>	4-Bromofluorobenzene	25	25.95	103.80%	76	119		
V	Dibromofluoromethane	25	24.11	96.44%	85	115		
V	Toluene-d8	25	26.86	107.44%	81	120		
							Total Out:	0

INTERNAL STANDARD AREAS AND RT SUMMARY

INTERNAL STANDARD AREA AND RT SUMMARY

RunID: MS1 110415B

CCV Name:

25ppb-MIDPOINT

Run No:

79750

CCV SeqNo:

1258743

Lab File ID (Standard):

D0324009.D

Date Analyzed:

3/24/2011

Instrument ID:

<u>MS1</u>

Time Analyzed:

14:55

GC Column:

DB-624

ID (mm): <u>53</u>

Length (M):

	IS1 PFB		IS2 DFB		IS3 CBZ		IS4 (DCB)	
	AREA#	RT#	AREA#	RT#	AREA#	RT#	AREA#	RT#
12 HOUR STD	491355	3.995	547858	4.341	590106	6.264	376221	7.919
UPPER LIMIT	982710	4.495	1095716	4.841	1180212	6.764	752442	8.419
LOWER LIMIT	245678	3.495	273929	3.841	295053	5.764	188111	7.419
SAMPLE				·				
NO.								
25ppb-CC\	/ 537228	3.993	622023	4.339	669161	6.262	426988	7.917

IS1 PFB = Pentafluorobenzene

IS2 DFB = 1,4-Difluorobenzene

IS3 CBZ = Chlorobenzene-d5

IS4 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

INTERNAL STANDARD AREA AND RT SUMMARY

RuniD: <u>MS1_110415B</u>

CCV Name:

25ppb-CCV

Run No:

79750

CCV SeqNo:

1258744

Lab File ID (Standard):

D0415002.D

Date Analyzed:

4/15/2011

Instrument ID:

MS1

Time Analyzed:

12:07

GC Column:

DB-624

ID (mm): <u>53</u>

Length (M):

		IS1 PFB		IS2 DFB		IS3 CBZ		IS4 (DCB)	
		AREA#	RT #	AREA#	RT#	AREA#	RT#	AREA#	RT#
12	2 HOUR STD	537228	3.993	622023	4.339	669161	6.262	426988	7.917
U	PPER LIMIT	1074456	4.493	1244046	4.839	1338322	6.762	853976	8.417
LO	OWER LIMIT	268614	3.493	311012	3.839	334581	5.762	213494	7.417
	SAMPLE								
	NO.								
01	D110415LCS	533044	3.993	623757	4.34	675463	6.263	428335	7.917
02	N005635-001EMS	537357	3.991	623522	4.338	653919	6.265	403572	7.919
03	N005635-001EMSD	533073	3.993	614376	4.34	636525	6.263	391092	7,917
04	N005636-009AMS	516564	3.992	586439	4.338	622865	6.266	387935	7.92
05	D110415MB2	502144	3.991	564721	4.341	623941	6.265	385460	7.919
06	N005636-009A	493621	3.992	556719	4.338	592662	6.262	367699	7.92
07	N005635-001E	502065	3.99	563365	4.341	607233	6.264	370301	7.918
08	N005635-002A	465997	3.992	527933	4.339	562601	6.262	347291	7.916

IS1 PFB = Pentafluorobenzene

IS2 DFB = 1,4-Difluorobenzene

IS3 CBZ = Chlorobenzene-d5

IS4 (DCB) = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

May 13, 2011

Shawn P. Duffy CA-ELAP No.: 2676

CH2M HILL NV Cert. No.: NV-009222007A

155 Grand Avenue, Suite 1000

TEL: (530) 229-3303

Oakland, CA 94612

FAX: (530) 339-3303 Workorder No.: N005679

RE: PG&E Topock, 405681.MP.02.GM

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on April 21, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

This is an amended report. Please disregard all previous documentation that corresponds to the page(s) enclosed.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project:

PG&E Topock, 405681.MP.02.GM

Lab Order:

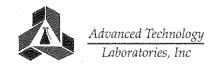
N005679

CASE NARRATIVE

Date: 10-May-11

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.


Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 8260B:

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for some analytes on QC samples N005679-001EMS and N005679-001EMSD possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Date: 13-May-11

Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Work Order Sample Summary Project: PG&E Topock, 405681.MP.02.GM

Lab Order: N005679

Contract No:

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005679-001A	MW-64BR-LWR-150-176	Water	4/20/2011 12:35:00 PM	4/21/2011	5/10/2011
N005679-001B	MW-64BR-LWR-150-176	Water	4/20/2011 12:35:00 PM	4/21/2011	5/10/2011
N005679-001C	MW-64BR-LWR-150-176	Water	4/20/2011 12:35:00 PM	4/21/2011	5/10/2011
N005679-001D	MW-64BR-LWR-150-176	Water	4/20/2011 12:35:00 PM	4/21/2011	5/10/2011
N005679-001E	MW-64BR-LWR-150-176	Water	4/20/2011 12:35:00 PM	4/21/2011	5/10/2011
N005679-002A	TB-Packer-176-04	Water	4/20/2011 12:00:00 PM	4/21/2011	5/10/2011

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: 13-May-11

CLIENT: CH2M HILL Client Sample ID: MW-64BR-LWR-150-176 Lab Order: N005679 Collection Date: 4/20/2011 12:35:00 PM

PG&E Topock, 405681.MP.02.GM Matrix: WATER **Project:**

Lab ID: N005679-001C

Analyses Result **MDL PQL Qual Units DF** Date Analyzed

TOTAL FILTERABLE RESIDUE

SM2540C

RunID: WETCHEM_110425C QC Batch: 36747 PrepDate: 4/25/2011 Analyst: CEI Total Dissolved Solids (Residue, 9600 100 100 mg/L 4/25/2011

Filterable)

Qualifiers:

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

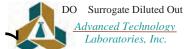
CLIENT: CH2M HILL

Work Order: N005679

PG&E Topock, 405681.MP.02.GM **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 160.1_2540C_W


Date: 13-May-11

Sample ID: MB-36747	SampType: MBLK	TestCode: 160.1_2540C_ Units: mg/L	Prep Date: 4/25/2011	RunNo: 79837
Client ID: PBW	Batch ID: 36747	TestNo: SM2540C	Analysis Date: 4/25/2011	SeqNo: 1261281
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residue	e, Filtera ND	10		
Sample ID: LCS-36747	SampType: LCS	TestCode: 160.1_2540C_ Units: mg/L	Prep Date: 4/25/2011	RunNo: 79837
Client ID: LCSW	Batch ID: 36747	TestNo: SM2540C	Analysis Date: 4/25/2011	SeqNo: 1261282
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residue	e, Filtera 966.000	10 1000 0	96.6 80 120	
Sample ID: N005679-001C-DU	JP SampType: DUP	TestCode: 160.1_2540C_ Units: mg/L	Prep Date: 4/25/2011	RunNo: 79837
Client ID: ZZZZZZ	Batch ID: 36747	TestNo: SM2540C	Analysis Date: 4/25/2011	SeqNo: 1261284
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Dissolved Solids (Residue	e. Filtera 9870.000	100	9580	2.98 5

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: 13-May-11

CLIENT: CH2M HILL Client Sample ID: MW-64BR-LWR-150-176 Lab Order: N005679 Collection Date: 4/20/2011 12:35:00 PM

PG&E Topock, 405681.MP.02.GM Matrix: WATER **Project:**

Lab ID: N005679-001A

Analyses Result **MDL PQL Qual Units DF** Date Analyzed

HEXAVALENT CHROMIUM BY IC

EPA 218.6

RunID: IC1_110422A QC Batch: R79877 PrepDate: Analyst: QBM Hexavalent Chromium 2.1 0.28 2.0 ug/L 10 4/22/2011 01:19 PM

Qualifiers:

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

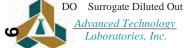
Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

TestCode: 218.6_WPGE


Date: 13-May-11

Sample ID: MB-R79877	SampType: MBLK	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79877
Client ID: PBW	Batch ID: R79877	TestNo: EPA 218.6	Analysis Date: 4/22/2011	SeqNo: 1262262
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	ND	0.20		
Sample ID: LCS-R79877	SampType: LCS	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79877
Client ID: LCSW	Batch ID: R79877	TestNo: EPA 218.6	Analysis Date: 4/22/2011	SeqNo: 1262263
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	4.975	0.20 5.000 0	99.5 90 110	
Sample ID: N005679-001ADUP	SampType: DUP	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79877
Client ID: ZZZZZZ	Batch ID: R79877	TestNo: EPA 218.6	Analysis Date: 4/22/2011	SeqNo: 1262267
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	2.087	2.0	2.090	0.161 20
Sample ID: N005679-001AMS	SampType: MS	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79877
Client ID: ZZZZZZ	Batch ID: R79877	TestNo: EPA 218.6	Analysis Date: 4/22/2011	SeqNo: 1262268
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	11.683	2.0 10.00 2.090	95.9 90 110	
Sample ID: N005679-001AMSD	SampType: MSD	TestCode: 218.6_WPGE Units: ug/L	Prep Date:	RunNo: 79877
Client ID: ZZZZZZ	Batch ID: R79877	TestNo: EPA 218.6	Analysis Date: 4/22/2011	SeqNo: 1262269
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Hexavalent Chromium	11.929	2.0 10.00 2.090	98.4 90 110 11.68	2.09 20

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: 13-May-11

CLIENT: CH2M HILL Client Sample ID: MW-64BR-LWR-150-176 Lab Order: N005679 Collection Date: 4/20/2011 12:35:00 PM

PG&E Topock, 405681.MP.02.GM Matrix: WATER **Project:**

Lab ID: N005679-001C

Analyses Result **MDL PQL Qual Units DF** Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

QC Batch: R79883

RunID: IC2_110422A PrepDate: Analyst: QBM Chloride 5500 500 mg/L 1000 4/22/2011 10:08 AM 63

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

EPA 300.0

RunID: IC2_110422A QC Batch: R79883 PrepDate: Analyst: QBM ND 4/22/2011 10:53 AM Nitrate as N 0.055 2.5 mg/L

Qualifiers:

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

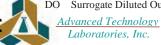
Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

N005679 PG&E Topock, 405681.MP.02.GM **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 300_W_CLPGE


Date: 13-May-11

Sample ID: MB-R79883_CL	SampType: MBLK	TestCode: 300_W_CLPG Units: mg/L	Prep Date:	RunNo: 79883
Client ID: PBW	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262382
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	ND	0.50		
Sample ID: LCS-R79883_CL	SampType: LCS	TestCode: 300_W_CLPG Units: mg/L	Prep Date:	RunNo: 79883
Client ID: LCSW	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262383
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	2.406	0.50 2.500 0	96.2 90 110	
Sample ID: N005679-001CDUP	SampType: DUP	TestCode: 300_W_CLPG Units: mg/L	Prep Date:	RunNo: 79883
Client ID: ZZZZZZ	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262385
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	5425.000	500	5492	1.23 20
Sample ID: N005679-001CMS	SampType: MS	TestCode: 300_W_CLPG Units: mg/L	Prep Date:	RunNo: 79883
Client ID: ZZZZZZ	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262386
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	8026.000	500 2500 5492	101 80 120	
Sample ID: N005679-001CMSD	SampType: MSD	TestCode: 300_W_CLPG Units: mg/L	Prep Date:	RunNo: 79883
Client ID: ZZZZZZ	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262387
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	8012.000	500 2500 5492	101 80 120 8026	0.175 20

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

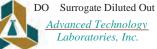
- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project:

ANALYTICAL QC SUMMARY REPORT

PG&E Topock, 405681.MP.02.GM


TestCode: 300W_NO3PGE

Sample ID: MB-R79883_I	NO3 SampType: MBLK	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79883
Client ID: PBW	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262394
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	ND	0.50		
Sample ID: LCS-R79883-	NO3 SampType: LCS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79883
Client ID: LCSW	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262395
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	2.469	0.50 2.500 0	98.8 90 110	
Sample ID: N005679-001	CDUP SampType: DUP Batch ID: R79883	TestCode: 300W_NO3P Units: mg/L TestNo: EPA 300.0	Prep Date: Analysis Date: 4/22/2011	RunNo: 79883 SeqNo: 1262397
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	0.375	2.5	0.3700	0 20
Sample ID: N005679-001	CMS SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79883
Client ID: ZZZZZZ	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262398
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	12.135	2.5 12.50 0.3700	94.1 80 120	
Sample ID: N005679-001	CMSD SampType: MSD	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 79883
Client ID: ZZZZZZ	Batch ID: R79883	TestNo: EPA 300.0	Analysis Date: 4/22/2011	SeqNo: 1262399
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: *13-May-11*

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-64BR-LWR-150-176

 Lab Order:
 N005679
 Collection Date: 4/20/2011 12:35:00 PM

Project: PG&E Topock, 405681.MP.02.GM Matrix: WATER

Lab ID: N005679-001B

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED METALS BY ICP

EPA 3010A EPA 6010B

RunID: ICP1_110426A QC Batch: 36742 PrepDate: 4/22/2011 Analyst: KAB

Chromium 3.2 0.22 1.0 ug/L 1 4/26/2011 09:43 AM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

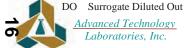
ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

CLIENT: CH2M HILL

Work Order: N005679 **Project:** PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB


Date: 13-May-11

Sample ID: MB-36742	SampType: MBLK	TestCode: 6010_WDPGE Units: ug/L	Prep Date: 4/22/2011	RunNo: 79813
Client ID: PBW	Batch ID: 36742	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/26/2011	SeqNo: 1260727
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	0.507	1.0		
Sample ID: LCS-36742	SampType: LCS	TestCode: 6010_WDPGE Units: ug/L	Prep Date: 4/22/2011	RunNo: 79813
Client ID: LCSW	Batch ID: 36742	TestNo: EPA 6010B EPA 3010A	Analysis Date: 4/26/2011	SeqNo: 1260728
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	489.925	1.0 500.0 0	98.0 85 115	
Onioniani	400.020	1.0 300.0 0	30.0 03 113	
Sample ID: N005679-001B-MS	SampType: MS	TestCode: 6010_WDPGE Units: ug/L	Prep Date: 4/22/2011	RunNo: 79813
				RunNo: 79813 SeqNo: 1260730
Sample ID: N005679-001B-MS	SampType: MS	TestCode: 6010_WDPGE Units: ug/L	Prep Date: 4/22/2011	
Sample ID: N005679-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36742	TestCode: 6010_WDPGE Units: ug/L TestNo: EPA 6010B EPA 3010A	Prep Date: 4/22/2011 Analysis Date: 4/26/2011	SeqNo: 1260730
Sample ID: N005679-001B-MS Client ID: ZZZZZZ Analyte	SampType: MS Batch ID: 36742 Result 470.243	TestCode: 6010_WDPGE Units: ug/L TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val	Prep Date: 4/22/2011 Analysis Date: 4/26/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1260730
Sample ID: N005679-001B-MS Client ID: ZZZZZZ Analyte Chromium	SampType: MS Batch ID: 36742 Result 470.243	TestCode: 6010_WDPGE Units: ug/L TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 1.0 500.0 3.219	Prep Date: 4/22/2011 Analysis Date: 4/26/2011 %REC LowLimit HighLimit RPD Ref Val 93.4 75 125	SeqNo: 1260730 %RPD RPDLimit Qual
Sample ID: N005679-001B-MS Client ID: ZZZZZZ Analyte Chromium Sample ID: N005679-001B-MSD	SampType: MS Batch ID: 36742 Result 470.243 SampType: MSD	TestCode: 6010_WDPGE Units: ug/L TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 1.0 500.0 3.219 TestCode: 6010_WDPGE Units: ug/L	Prep Date: 4/22/2011 Analysis Date: 4/26/2011 %REC LowLimit HighLimit RPD Ref Val 93.4 75 125 Prep Date: 4/22/2011	SeqNo: 1260730 %RPD RPDLimit Qual

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: *13-May-11*

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-64BR-LWR-150-176

 Lab Order:
 N005679
 Collection Date: 4/20/2011 12:35:00 PM

Project: PG&E Topock, 405681.MP.02.GM Matrix: WATER

Lab ID: N005679-001B

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED METALS BY ICP-MS

EPA 3010A EPA 6020

RunID: ICP7_110425A QC Batch: 36744 PrepDate: 4/22/2011 Analyst: JT

Arsenic 3.9 0.0025 0.10 µg/L 1 4/25/2011 10:31 AM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

N005679

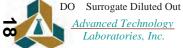
CLIENT: CH2M HILL **Work Order:**

Project:

PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

Date: 13-May-11


TestCode: 6020_DIS

Sample ID: MB-36744	SampType: MBLK	TestCode: 6020_DIS	Units: µg/L	Prep Date: 4/22/2011	RunNo: 79800
Client ID: PBW	Batch ID: 36744	TestNo: EPA 6020	EPA 3010A	Analysis Date: 4/25/2011	SeqNo: 1264454
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	0.026	0.10			
Sample ID: LCS-36744	SampType: LCS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 4/22/2011	RunNo: 79800
Client ID: LCSW	Batch ID: 36744	TestNo: EPA 6020	EPA 3010A	Analysis Date: 4/25/2011	SeqNo: 1264455
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	10.113	0.10 10.00	0	101 85 115	
Sample ID: N005686-001A-MS	SampType: MS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 4/22/2011	RunNo: 79800
Client ID: ZZZZZZ	Batch ID: 36744	TestNo: EPA 6020	EPA 3010A	Analysis Date: 4/25/2011	SeqNo: 1264459
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Analyte Arsenic	Result 9.843	PQL SPK value 0.10 10.00	SPK Ref Val 0.04315	%REC LowLimit HighLimit RPD Ref Val 98.0 75 125	%RPD RPDLimit Qual
	9.843				%RPD RPDLimit Qual RunNo: 79800
Arsenic	9.843	0.10 10.00	0.04315	98.0 75 125	
Arsenic Sample ID: N005686-001A-MSD	9.843 SampType: MSD	0.10 10.00 TestCode: 6020_DIS	0.04315 Units: μg/L	98.0 75 125 Prep Date: 4/22/2011	RunNo: 79800

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: *14-May-11*

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-64BR-LWR-150-176

 Lab Order:
 N005679
 Collection Date: 4/20/2011 12:35:00 PM

Project: PG&E Topock, 405681.MP.02.GM Matrix: WATER

Lab ID: N005679-001E

Analyses Result MDL PQL Qual Units DF Date Analyzed

VOLATILE ORGANIC COMPOUNDS BY GC/MS EPA 8260B QC Batch: D11VW054 RunID: MS1_110425B PrepDate: Analyst: QBM ND ug/L 4/25/2011 01:38 PM 1,1,1,2-Tetrachloroethane 0.061 1.0 1 ND 0.068 1.0 1 1,1,1-Trichloroethane ug/L 4/25/2011 01:38 PM 1,1,2,2-Tetrachloroethane ND 0.054 1.0 ug/L 1 4/25/2011 01:38 PM 0.083 1,1,2-Trichloroethane ND 1.0 ug/L 1 4/25/2011 01:38 PM 1,1-Dichloroethane ND 0.099 1.0 ug/L 1 4/25/2011 01:38 PM 1,1-Dichloroethene ND 0.094 1.0 ug/L 1 4/25/2011 01:38 PM ND 0.082 1.0 ug/L 1 1,1-Dichloropropene 4/25/2011 01:38 PM ND 0.10 1.0 ug/L 4/25/2011 01:38 PM 1,2,3-Trichlorobenzene 1 ND 0.12 1.0 1 1,2,3-Trichloropropane ug/L 4/25/2011 01:38 PM 1,2,4-Trichlorobenzene ND 0.12 1.0 ug/L 1 4/25/2011 01:38 PM ND 1,2,4-Trimethylbenzene 0.095 ug/L 1 1.0 4/25/2011 01:38 PM 1,2-Dibromo-3-chloropropane ND 0.15 2.0 ug/L 1 4/25/2011 01:38 PM ND 1,2-Dibromoethane 0.14 1.0 ug/L 1 4/25/2011 01:38 PM ND 0.070 1.0 ug/L 1 4/25/2011 01:38 PM 1,2-Dichlorobenzene 1,2-Dichloroethane ND 0.17 1.0 ug/L 1 4/25/2011 01:38 PM ND 0.085 1.0 1 4/25/2011 01:38 PM 1,2-Dichloropropane ug/L 1,3,5-Trimethylbenzene ND 0.087 1.0 ug/L 1 4/25/2011 01:38 PM 1,3-Dichlorobenzene ND 0.090 1.0 ug/L 1 4/25/2011 01:38 PM ND 0.074 1.0 ug/L 1 4/25/2011 01:38 PM 1,3-Dichloropropane 1,4-Dichlorobenzene ND 0.092 1.0 ug/L 1 4/25/2011 01:38 PM 2,2-Dichloropropane ND 0.061 1.0 ug/L 1 4/25/2011 01:38 PM ND 1.0 2-Butanone 10 ug/L 1 4/25/2011 01:38 PM 2-Chlorotoluene ND 0.080 1.0 ug/L 4/25/2011 01:38 PM 4-Chlorotoluene ND 0.10 1.0 1 ug/L 4/25/2011 01:38 PM ND 0.080 4-Isopropyltoluene 1.0 ug/L 1 4/25/2011 01:38 PM 4-Methyl-2-pentanone ND 0.76 10 ug/L 1 4/25/2011 01:38 PM Acetone 15 1.6 10 ug/L 1 4/25/2011 01:38 PM Acrolein ND 4.3 20 ug/L 1 4/25/2011 01:38 PM Acrylonitrile ND 0.61 20 ug/L 1 4/25/2011 01:38 PM 0.075 Benzene ND 1.0 ug/L 1 4/25/2011 01:38 PM Bromobenzene ND 0.082 1.0 ug/L 1 4/25/2011 01:38 PM Bromochloromethane ND 0.15 1.0 ug/L 1 4/25/2011 01:38 PM Bromodichloromethane ND 0.063 1.0 ug/L 1 4/25/2011 01:38 PM

Qualifiers:

Bromoform

Bromomethane

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ND

ND

0.086

0.13

1.0

1.0

DO Surrogate Diluted Out

E Value above quantitation range

ug/L

ug/L

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

1

4/25/2011 01:38 PM

4/25/2011 01:38 PM

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: *14-May-11*

 CLIENT:
 CH2M HILL
 Client Sample ID: MW-64BR-LWR-150-176

 Lab Order:
 N005679
 Collection Date: 4/20/2011 12:35:00 PM

Project: PG&E Topock, 405681.MP.02.GM Matrix: WATER

Lab ID: N005679-001E

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS					
			E	PA 8260B		
RunID: MS1_110425B	QC Batch: D1	1VW054		PrepDate:		Analyst: QBM
Carbon disulfide	ND	0.054	1.0	ug/L	1	4/25/2011 01:38 PM
Carbon tetrachloride	ND	0.10	1.0	ug/L	1	4/25/2011 01:38 PM
Chlorobenzene	ND	0.092	1.0	ug/L	1	4/25/2011 01:38 PM
Chloroethane	ND	0.14	1.0	ug/L	1	4/25/2011 01:38 PM
Chloroform	ND	0.058	1.0	ug/L	1	4/25/2011 01:38 PM
Chloromethane	ND	0.054	1.0	ug/L	1	4/25/2011 01:38 PM
cis-1,2-Dichloroethene	ND	0.11	1.0	ug/L	1	4/25/2011 01:38 PM
cis-1,3-Dichloropropene	ND	0.10	1.0	ug/L	1	4/25/2011 01:38 PM
Dibromochloromethane	ND	0.061	1.0	ug/L	1	4/25/2011 01:38 PM
Dibromomethane	ND	0.15	1.0	ug/L	1	4/25/2011 01:38 PM
Dichlorodifluoromethane	ND	0.12	1.0	ug/L	1	4/25/2011 01:38 PM
Ethylbenzene	ND	0.051	1.0	ug/L	1	4/25/2011 01:38 PM
Freon-113	ND	0.080	1.0	ug/L	1	4/25/2011 01:38 PM
Hexachlorobutadiene	ND	0.17	1.0	ug/L	1	4/25/2011 01:38 PM
Isopropylbenzene	ND	0.057	1.0	ug/L	1	4/25/2011 01:38 PM
m,p-Xylene	ND	0.17	1.0	ug/L	1	4/25/2011 01:38 PM
Methylene chloride	ND	0.10	5.0	ug/L	1	4/25/2011 01:38 PM
MTBE	ND	0.089	1.0	ug/L	1	4/25/2011 01:38 PM
n-Butylbenzene	ND	0.082	1.0	ug/L	1	4/25/2011 01:38 PM
n-Propylbenzene	ND	0.087	1.0	ug/L	1	4/25/2011 01:38 PM
Naphthalene	ND	0.056	1.0	ug/L	1	4/25/2011 01:38 PM
o-Xylene	ND	0.077	1.0	ug/L	1	4/25/2011 01:38 PM
sec-Butylbenzene	ND	0.098	1.0	ug/L	1	4/25/2011 01:38 PM
Styrene	ND	0.072	1.0	ug/L	1	4/25/2011 01:38 PM
tert-Butylbenzene	ND	0.062	1.0	ug/L	1	4/25/2011 01:38 PM
Tetrachloroethene	ND	0.13	1.0	ug/L	1	4/25/2011 01:38 PM
Toluene	14	0.12	2.5	ug/L	1	4/25/2011 01:38 PM
trans-1,2-Dichloroethene	ND	0.094	1.0	ug/L	1	4/25/2011 01:38 PM
trans-1,3-Dichloropropene	ND	0.10	1.0	ug/L	1	4/25/2011 01:38 PM
Trichloroethene	ND	0.060	1.0	ug/L	1	4/25/2011 01:38 PM
Trichlorofluoromethane	ND	0.097	1.0	ug/L	1	4/25/2011 01:38 PM
Vinyl chloride	ND	0.12	1.0	ug/L	1	4/25/2011 01:38 PM
Xylenes, Total	ND	1.5	2.0	ug/L	1	4/25/2011 01:38 PM
Surr: 1,2-Dichloroethane-d4	79.9	0	72-119	%REC	1	4/25/2011 01:38 PM
Surr: 4-Bromofluorobenzene	105	0	76-119	%REC	1	4/25/2011 01:38 PM

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: 14-May-11

CLIENT: CH2M HILL Client Sample ID: MW-64BR-LWR-150-176 Lab Order: N005679 Collection Date: 4/20/2011 12:35:00 PM

PG&E Topock, 405681.MP.02.GM Matrix: WATER **Project:**

Lab ID: N005679-001E

Analyses	Result	MDL	PQL (Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	INDS BY GC/MS					
			EPA	8260B		
RunID: MS1_110425B	QC Batch: D11\	/W054		PrepDate:		Analyst: QBM
Surr: Dibromofluoromethane	85.0	0	85-115	%REC	1	4/25/2011 01:38 PM
Surr: Toluene-d8	107	0	81-120	%REC	1	4/25/2011 01:38 PM

Qualifiers:

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE


Date: 14-May-11

Sample ID: D110425LCS Client ID: LCSW	SampType: LCS Batch ID: D11VW054		de: 8260_WP_ No: EPA 8260	_		Prep Dat		11	RunNo: 798 SeqNo: 126		
Client ID. LC3W	Balcillo. Dilyw034					•			·		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	27.170	1.0	25.00	0	109	81	129				
1,1,1-Trichloroethane	20.410	1.0	25.00	0	81.6	67	132				
1,1,2,2-Tetrachloroethane	26.710	1.0	25.00	0	107	63	128				
1,1,2-Trichloroethane	26.070	1.0	25.00	0	104	75	125				
1,1-Dichloroethane	25.190	1.0	25.00	0	101	69	133				
1,1-Dichloroethene	25.540	1.0	25.00	0	102	68	130				
1,1-Dichloropropene	24.640	1.0	25.00	0	98.6	73	132				
1,2,3-Trichlorobenzene	30.520	1.0	25.00	0	122	67	137				
1,2,3-Trichloropropane	26.840	1.0	25.00	0	107	73	124				
1,2,4-Trichlorobenzene	31.610	1.0	25.00	0	126	66	134				
1,2,4-Trimethylbenzene	29.370	1.0	25.00	0	117	74	132				
1,2-Dibromo-3-chloropropane	25.770	2.0	25.00	0	103	50	132				
1,2-Dibromoethane	25.600	1.0	25.00	0	102	80	121				
1,2-Dichlorobenzene	28.200	1.0	25.00	0	113	71	122				
1,2-Dichloroethane	25.940	1.0	25.00	0	104	69	132				
1,2-Dichloropropane	24.270	1.0	25.00	0	97.1	75	125				
1,3,5-Trimethylbenzene	28.430	1.0	25.00	0	114	74	131				
1,3-Dichlorobenzene	28.820	1.0	25.00	0	115	75	124				
1,3-Dichloropropane	26.050	1.0	25.00	0	104	73	126				
1,4-Dichlorobenzene	28.530	1.0	25.00	0	114	74	123				
2,2-Dichloropropane	17.800	1.0	25.00	0	71.2	69	137				
2-Butanone	246.140	10	250.0	0	98.5	49	136				
2-Chlorotoluene	28.460	1.0	25.00	0	114	73	126				
4-Chlorotoluene	27.680	1.0	25.00	0	111	74	128				
4-Isopropyltoluene	29.160	1.0	25.00	0	117	73	130				
4-Methyl-2-pentanone	269.610	10	250.0	0	108	58	134				
Acetone	260.770	10	250.0	0	104	40	135				
Acrolein	197.040	20	250.0	0	78.8	75	125				
Acrylonitrile	286.560	20	250.0	0	115	75	125				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

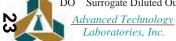
- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project:

PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT


TestCode: 8260_WP_LLPGE

Sample ID: D110425LCS	SampType: LCS	TestCod	de: 8260_WP _	LL Units: ug/L		Prep Da	te:		RunNo: 798	350	
Client ID: LCSW	Batch ID: D11VW054	TestN	lo: EPA 8260 I	3		Analysis Da	te: 4/25/20	11	SeqNo: 126	1544	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	25.870	1.0	25.00	0	103	81	122				
Bromobenzene	27.530	1.0	25.00	0	110	76	124				
Bromochloromethane	25.560	1.0	25.00	0	102	65	129				
Bromodichloromethane	22.770	1.0	25.00	0	91.1	76	121				
Bromoform	25.820	1.0	25.00	0	103	69	128				
Bromomethane	37.470	1.0	25.00	0	150	53	141				S
Carbon disulfide	22.360	1.0	25.00	0	89.4	75	125				
Carbon tetrachloride	20.420	1.0	25.00	0	81.7	66	138				
Chlorobenzene	27.350	1.0	25.00	0	109	81	122				
Chloroethane	26.480	1.0	25.00	0	106	58	133				
Chloroform	26.530	1.0	25.00	0	106	69	128				
Chloromethane	23.670	1.0	25.00	0	94.7	56	131				
cis-1,2-Dichloroethene	26.460	1.0	25.00	0	106	72	126				
cis-1,3-Dichloropropene	23.220	1.0	25.00	0	92.9	69	131				
Dibromochloromethane	25.420	1.0	25.00	0	102	66	133				
Dibromomethane	25.850	1.0	25.00	0	103	76	125				
Dichlorodifluoromethane	19.610	1.0	25.00	0	78.4	53	153				
Ethylbenzene	27.120	1.0	25.00	0	108	73	127				
Freon-113	22.560	1.0	25.00	0	90.2	75	125				
Hexachlorobutadiene	29.930	1.0	25.00	0	120	67	131				
Isopropylbenzene	27.980	1.0	25.00	0	112	75	127				
m,p-Xylene	55.940	1.0	50.00	0	112	76	128				
Methylene chloride	25.030	5.0	25.00	0	100	63	137				
MTBE	21.700	1.0	25.00	0	86.8	65	123				
n-Butylbenzene	30.420	1.0	25.00	0	122	69	137				
n-Propylbenzene	28.060	1.0	25.00	0	112	72	129				
Naphthalene	30.370	1.0	25.00	0	121	54	138				
o-Xylene	26.870	1.0	25.00	0	107	80	121				
sec-Butylbenzene	28.390	1.0	25.00	0	114	72	127				
Styrene	27.550	1.0	25.00	0	110	65	134				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

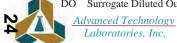
- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE


Sample ID: D110425LCS Client ID: LCSW	SampType: LCS Batch ID: D11VW054		de: 8260_WP _ No: EPA 8260		Prep Date: Analysis Date: 4/25/2011				RunNo: 798 SeqNo: 126		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
tert-Butylbenzene	27.750	1.0	25.00	0	111	70	129				
Tetrachloroethene	27.830	1.0	25.00	0	111	66	128				
Toluene	26.240	2.5	25.00	0	105	77	122				
trans-1,2-Dichloroethene	26.280	1.0	25.00	0	105	63	137				
trans-1,3-Dichloropropene	22.940	1.0	25.00	0	91.8	59	135				
Trichloroethene	25.390	1.0	25.00	0	102	70	127				
Trichlorofluoromethane	28.790	1.0	25.00	0	115	57	129				
Vinyl chloride	25.010	1.0	25.00	0	100	50	134				
Xylenes, Total	82.810	2.0	75.00	0	110	75	125				
Surr: 1,2-Dichloroethane-d4	24.490		25.00		98.0	72	119				
Surr: 4-Bromofluorobenzene	25.140		25.00		101	76	119				
Surr: Dibromofluoromethane	25.540		25.00		102	85	115				
Surr: Toluene-d8	25.590		25.00		102	81	120				
Sample ID: N005679-001EMS	SampType: MS	TestCod	de: 8260_WP _	LL Units: ug/L		Prep Dat	te:		RunNo: 798	350	
Client ID: ZZZZZZ	Batch ID: D11VW054	TestN	No: EPA 8260	3		Analysis Dat	te: 4/25/20 1	11	SeqNo: 126	31545	

Sample ID. NOUSOT 9-00 TENIS	Samp Type. WS	1631660	Je. 0200_VVF_	LL Offics. ug/L		гтер Ба	ie.		Kullino. 130	550	
Client ID: ZZZZZZ	Batch ID: D11VW054	TestN	No: EPA 8260 I	3		Analysis Da	te: 4/25/20	11	SeqNo: 126	61545	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	25.970	1.0	25.00	0	104	81	129				
1,1,1-Trichloroethane	19.030	1.0	25.00	0	76.1	67	132				
1,1,2,2-Tetrachloroethane	22.130	1.0	25.00	0	88.5	63	128				
1,1,2-Trichloroethane	21.730	1.0	25.00	0	86.9	75	125				
1,1-Dichloroethane	22.860	1.0	25.00	0	91.4	69	133				
1,1-Dichloroethene	23.670	1.0	25.00	0	94.7	68	130				
1,1-Dichloropropene	23.590	1.0	25.00	0	94.4	73	132				
1,2,3-Trichlorobenzene	27.730	1.0	25.00	0	111	67	137				
1,2,3-Trichloropropane	21.320	1.0	25.00	0	85.3	73	124				
1,2,4-Trichlorobenzene	29.460	1.0	25.00	0	118	66	134				
1,2,4-Trimethylbenzene	25.360	1.0	25.00	0	101	74	132				
1,2-Dibromo-3-chloropropane	19.620	2.0	25.00	0	78.5	50	132				

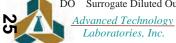
- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT


TestCode: 8260_WP_LLPGE

Sample ID: N005679-001EMS	SampType: MS	TestCo	de: 8260_WP _	_LL Units: ug/L	·	Prep Da	te:		RunNo: 798	350	·
Client ID: ZZZZZZ	Batch ID: D11VW054	Test	No: EPA 8260	В		Analysis Da	te: 4/25/20	11	SeqNo: 126	61545	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromoethane	21.170	1.0	25.00	0	84.7	80	121				
1,2-Dichlorobenzene	26.700	1.0	25.00	0	107	71	122				
1,2-Dichloroethane	21.080	1.0	25.00	0	84.3	69	132				
1,2-Dichloropropane	22.410	1.0	25.00	0	89.6	75	125				
1,3,5-Trimethylbenzene	26.650	1.0	25.00	0	107	74	131				
1,3-Dichlorobenzene	28.080	1.0	25.00	0	112	75	124				
1,3-Dichloropropane	22.430	1.0	25.00	0	89.7	73	126				
1,4-Dichlorobenzene	27.590	1.0	25.00	0	110	74	123				
2,2-Dichloropropane	16.320	1.0	25.00	0	65.3	69	137				S
2-Butanone	77.930	10	250.0	0	31.2	49	136				S
2-Chlorotoluene	28.090	1.0	25.00	0	112	73	126				
4-Chlorotoluene	27.540	1.0	25.00	0	110	74	128				
4-Isopropyltoluene	28.810	1.0	25.00	0	115	73	130				
4-Methyl-2-pentanone	174.640	10	250.0	0	69.9	58	134				
Acetone	72.920	10	250.0	15.07	23.1	40	135				S
Acrolein	141.800	20	250.0	0	56.7	75	125				S
Acrylonitrile	206.800	20	250.0	0	82.7	75	125				
Benzene	24.610	1.0	25.00	0	98.4	81	122				
Bromobenzene	26.210	1.0	25.00	0	105	76	124				
Bromochloromethane	21.590	1.0	25.00	0	86.4	65	129				
Bromodichloromethane	20.510	1.0	25.00	0	82.0	76	121				
Bromoform	22.040	1.0	25.00	0	88.2	69	128				
Bromomethane	35.510	1.0	25.00	0	142	53	141				S
Carbon disulfide	21.280	1.0	25.00	0	85.1	75	125				
Carbon tetrachloride	19.590	1.0	25.00	0	78.4	66	138				
Chlorobenzene	26.570	1.0	25.00	0	106	81	122				
Chloroethane	25.020	1.0	25.00	0	100	58	133				
Chloroform	23.490	1.0	25.00	0	94.0	69	128				
Chloromethane	23.340	1.0	25.00	0	93.4	56	131				
cis-1,2-Dichloroethene	23.730	1.0	25.00	0	94.9	72	126				

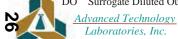
- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT


TestCode: 8260_WP_LLPGE

Sample ID: N005679-001EMS Client ID: ZZZZZZ	SampType: MS Batch ID: D11VW054		de: 8260_WP _ No: EPA 8260 I	LL Units: ug/L		Prep Da Analysis Da		11	RunNo: 798 SeqNo: 126		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	21.220	1.0	25.00	0	84.9	69	131				
Dibromochloromethane	22.720	1.0	25.00	0	90.9	66	133				
Dibromomethane	20.690	1.0	25.00	0	82.8	76	125				
Dichlorodifluoromethane	19.560	1.0	25.00	0	78.2	53	153				
Ethylbenzene	27.240	1.0	25.00	0	109	73	127				
Freon-113	20.650	1.0	25.00	0	82.6	75	125				
Hexachlorobutadiene	29.730	1.0	25.00	0	119	67	131				
Isopropylbenzene	28.230	1.0	25.00	0	113	75	127				
m,p-Xylene	54.720	1.0	50.00	0	109	76	128				
Methylene chloride	22.200	5.0	25.00	0	88.8	63	137				
MTBE	18.030	1.0	25.00	0	72.1	65	123				
n-Butylbenzene	30.600	1.0	25.00	0	122	69	137				
n-Propylbenzene	28.060	1.0	25.00	0	112	72	129				
Naphthalene	23.910	1.0	25.00	0	95.6	54	138				
o-Xylene	26.140	1.0	25.00	0	105	80	121				
sec-Butylbenzene	28.400	1.0	25.00	0	114	72	127				
Styrene	20.640	1.0	25.00	0	82.6	65	134				
tert-Butylbenzene	27.820	1.0	25.00	0	111	70	129				
Tetrachloroethene	27.830	1.0	25.00	0	111	66	128				
Toluene	41.360	2.5	25.00	14.03	109	77	122				
trans-1,2-Dichloroethene	23.890	1.0	25.00	0	95.6	63	137				
trans-1,3-Dichloropropene	19.810	1.0	25.00	0	79.2	59	135				
Trichloroethene	24.470	1.0	25.00	0	97.9	70	127				
Trichlorofluoromethane	27.100	1.0	25.00	0	108	57	129				
Vinyl chloride	23.750	1.0	25.00	0	95.0	50	134				
Xylenes, Total	80.860	2.0	75.00	0	108	75	125				
Surr: 1,2-Dichloroethane-d4	20.470		25.00		81.9	72	119				
Surr: 4-Bromofluorobenzene	25.110		25.00		100	76	119				
Surr: Dibromofluoromethane	23.470		25.00		93.9	85	115				
Surr: Toluene-d8	25.600		25.00		102	81	120				

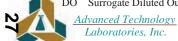
- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT


TestCode: 8260_WP_LLPGE

Sample ID: N005679-001EMSD	SampType: MSD		de: 8260_WP _	•	<u> </u>	Prep Da		·	RunNo: 798		
Client ID: ZZZZZZ	Batch ID: D11VW054	TestN	No: EPA 8260 I	3		Analysis Da	te: 4/25/20	11	SeqNo: 126	61546	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	26.160	1.0	25.00	0	105	81	129	25.97	0.729	20	
1,1,1-Trichloroethane	19.120	1.0	25.00	0	76.5	67	132	19.03	0.472	20	
1,1,2,2-Tetrachloroethane	22.400	1.0	25.00	0	89.6	63	128	22.13	1.21	20	
1,1,2-Trichloroethane	21.370	1.0	25.00	0	85.5	75	125	21.73	1.67	20	
1,1-Dichloroethane	22.830	1.0	25.00	0	91.3	69	133	22.86	0.131	20	
1,1-Dichloroethene	23.190	1.0	25.00	0	92.8	68	130	23.67	2.05	20	
1,1-Dichloropropene	23.470	1.0	25.00	0	93.9	73	132	23.59	0.510	20	
1,2,3-Trichlorobenzene	26.240	1.0	25.00	0	105	67	137	27.73	5.52	20	
1,2,3-Trichloropropane	21.940	1.0	25.00	0	87.8	73	124	21.32	2.87	20	
1,2,4-Trichlorobenzene	28.040	1.0	25.00	0	112	66	134	29.46	4.94	20	
1,2,4-Trimethylbenzene	18.040	1.0	25.00	0	72.2	74	132	25.36	33.7	20	SR
1,2-Dibromo-3-chloropropane	19.430	2.0	25.00	0	77.7	50	132	19.62	0.973	20	
1,2-Dibromoethane	20.350	1.0	25.00	0	81.4	80	121	21.17	3.95	20	
1,2-Dichlorobenzene	26.810	1.0	25.00	0	107	71	122	26.70	0.411	20	
1,2-Dichloroethane	20.710	1.0	25.00	0	82.8	69	132	21.08	1.77	20	
1,2-Dichloropropane	22.190	1.0	25.00	0	88.8	75	125	22.41	0.987	20	
1,3,5-Trimethylbenzene	24.470	1.0	25.00	0	97.9	74	131	26.65	8.53	20	
1,3-Dichlorobenzene	28.380	1.0	25.00	0	114	75	124	28.08	1.06	20	
1,3-Dichloropropane	22.600	1.0	25.00	0	90.4	73	126	22.43	0.755	20	
1,4-Dichlorobenzene	27.590	1.0	25.00	0	110	74	123	27.59	0	20	
2,2-Dichloropropane	16.170	1.0	25.00	0	64.7	69	137	16.32	0.923	20	S
2-Butanone	75.890	10	250.0	0	30.4	49	136	77.93	2.65	20	S
2-Chlorotoluene	28.480	1.0	25.00	0	114	73	126	28.09	1.38	20	
4-Chlorotoluene	27.780	1.0	25.00	0	111	74	128	27.54	0.868	20	
4-Isopropyltoluene	27.830	1.0	25.00	0	111	73	130	28.81	3.46	20	
4-Methyl-2-pentanone	171.410	10	250.0	0	68.6	58	134	174.6	1.87	20	
Acetone	71.820	10	250.0	15.07	22.7	40	135	72.92	1.52	20	S
Acrolein	136.510	20	250.0	0	54.6	75	125	141.8	3.80	20	S
Acrylonitrile	202.690	20	250.0	0	81.1	75	125	206.8	2.01	20	
Benzene	24.470	1.0	25.00	0	97.9	81	122	24.61	0.570	20	

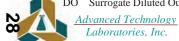
- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT


TestCode: 8260_WP_LLPGE

Sample ID: N005679-001EMSD	SampType: MSD		de: 8260_WP _	•		Prep Da			RunNo: 798		
Client ID: ZZZZZZ	Batch ID: D11VW054	TestN	No: EPA 8260 1	В		Analysis Da	te: 4/25/20	11	SeqNo: 126	61546	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	26.820	1.0	25.00	0	107	76	124	26.21	2.30	20	
Bromochloromethane	21.450	1.0	25.00	0	85.8	65	129	21.59	0.651	20	
Bromodichloromethane	20.440	1.0	25.00	0	81.8	76	121	20.51	0.342	20	
Bromoform	21.780	1.0	25.00	0	87.1	69	128	22.04	1.19	20	
Bromomethane	35.120	1.0	25.00	0	140	53	141	35.51	1.10	20	
Carbon disulfide	21.240	1.0	25.00	0	85.0	75	125	21.28	0.188	20	
Carbon tetrachloride	19.490	1.0	25.00	0	78.0	66	138	19.59	0.512	20	
Chlorobenzene	26.560	1.0	25.00	0	106	81	122	26.57	0.0376	20	
Chloroethane	24.560	1.0	25.00	0	98.2	58	133	25.02	1.86	20	
Chloroform	23.100	1.0	25.00	0	92.4	69	128	23.49	1.67	20	
Chloromethane	22.360	1.0	25.00	0	89.4	56	131	23.34	4.29	20	
cis-1,2-Dichloroethene	23.680	1.0	25.00	0	94.7	72	126	23.73	0.211	20	
cis-1,3-Dichloropropene	20.670	1.0	25.00	0	82.7	69	131	21.22	2.63	20	
Dibromochloromethane	22.970	1.0	25.00	0	91.9	66	133	22.72	1.09	20	
Dibromomethane	20.350	1.0	25.00	0	81.4	76	125	20.69	1.66	20	
Dichlorodifluoromethane	18.670	1.0	25.00	0	74.7	53	153	19.56	4.66	20	
Ethylbenzene	27.010	1.0	25.00	0	108	73	127	27.24	0.848	20	
Freon-113	20.650	1.0	25.00	0	82.6	75	125	20.65	0	20	
Hexachlorobutadiene	28.660	1.0	25.00	0	115	67	131	29.73	3.67	20	
Isopropylbenzene	28.930	1.0	25.00	0	116	75	127	28.23	2.45	20	
m,p-Xylene	51.830	1.0	50.00	0	104	76	128	54.72	5.42	20	
Methylene chloride	21.920	5.0	25.00	0	87.7	63	137	22.20	1.27	20	
MTBE	18.130	1.0	25.00	0	72.5	65	123	18.03	0.553	20	
n-Butylbenzene	30.410	1.0	25.00	0	122	69	137	30.60	0.623	20	
n-Propylbenzene	28.430	1.0	25.00	0	114	72	129	28.06	1.31	20	
Naphthalene	20.340	1.0	25.00	0	81.4	54	138	23.91	16.1	20	
o-Xylene	25.290	1.0	25.00	0	101	80	121	26.14	3.31	20	
sec-Butylbenzene	28.580	1.0	25.00	0	114	72	127	28.40	0.632	20	
Styrene	10.410	1.0	25.00	0	41.6	65	134	20.64	65.9	20	SR
tert-Butylbenzene	28.210	1.0	25.00	0	113	70	129	27.82	1.39	20	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

Project: PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_WP_LLPGE

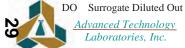
Sample ID: N005679-001EMSD	SampType: MSD	TestCode: 8260_WP_LL Units: ug/L				Prep Da	ite:		RunNo: 79	850	
Client ID: ZZZZZZ	Batch ID: D11VW054	TestN	No: EPA 8260	В		Analysis Da	te: 4/25/20	11	SeqNo: 12	61546	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tetrachloroethene	28.280	1.0	25.00	0	113	66	128	27.83	1.60	20	
Toluene	40.140	2.5	25.00	14.03	104	77	122	41.36	2.99	20	
trans-1,2-Dichloroethene	23.560	1.0	25.00	0	94.2	63	137	23.89	1.39	20	
trans-1,3-Dichloropropene	18.950	1.0	25.00	0	75.8	59	135	19.81	4.44	20	
Trichloroethene	24.610	1.0	25.00	0	98.4	70	127	24.47	0.570	20	
Trichlorofluoromethane	27.180	1.0	25.00	0	109	57	129	27.10	0.295	20	
Vinyl chloride	23.560	1.0	25.00	0	94.2	50	134	23.75	0.803	20	
Xylenes, Total	77.120	2.0	75.00	0	103	75	125	80.86	4.73	20	
Surr: 1,2-Dichloroethane-d4	20.190		25.00		80.8	72	119		0		
Surr: 4-Bromofluorobenzene	24.600		25.00		98.4	76	119		0		
Surr: Dibromofluoromethane	23.440		25.00		93.8	85	115		0		
Surr: Toluene-d8	25.070		25.00		100	81	120		0		
Sample ID: D110425MB2	SampType: MBLK	TestCo	de: 8260 WP	_LL Units: ug/L		Prep Da	te:		RunNo: 79	850	

Sample ID. DTT0423WB2	Samp Type. WIBLK	163166	ue. 0200_ VVF	_LL Office. ug/L		i iep Da	iie.		INUITINO. 190	550	
Client ID: PBW	Batch ID: D11VW054	Test	No: EPA 8260	В		Analysis Da	ate: 4/25/20)11	SeqNo: 126	61547	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	1.0									
1,1,1-Trichloroethane	ND	1.0									
1,1,2,2-Tetrachloroethane	ND	1.0									
1,1,2-Trichloroethane	ND	1.0									
1,1-Dichloroethane	ND	1.0									
1,1-Dichloroethene	ND	1.0									
1,1-Dichloropropene	ND	1.0									
1,2,3-Trichlorobenzene	ND	1.0									
1,2,3-Trichloropropane	ND	1.0									
1,2,4-Trichlorobenzene	ND	1.0									

Qualifiers:

B Analyte detected in the associated Method Blank

ND


ND

ND

- ND Not Detected at the Reporting Limit

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

1,2,4-Trimethylbenzene

1,2-Dibromoethane

1,2-Dibromo-3-chloropropane

1.0

2.0

1.0

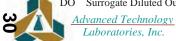
CLIENT: CH2M HILL

Project:

PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT **Work Order:** N005679

Sample ID: D110425MB2	SampType: MBLK	TestCod	de: 8260_WP _	LL Units: ug/L		Prep Da	ite:		RunNo: 798	350	
Client ID: PBW	Batch ID: D11VW054	TestN	lo: EPA 8260	В		Analysis Da	ate: 4/25/2 0)11	SeqNo: 126	1547	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	ND	1.0									
1,2-Dichloroethane	ND	1.0									
1,2-Dichloropropane	ND	1.0									
1,3,5-Trimethylbenzene	ND	1.0									
1,3-Dichlorobenzene	ND	1.0									
1,3-Dichloropropane	ND	1.0									
1,4-Dichlorobenzene	ND	1.0									
2,2-Dichloropropane	ND	1.0									
2-Butanone	ND	10									
2-Chlorotoluene	ND	1.0									
4-Chlorotoluene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	10									
Acetone	ND	10									
Acrolein	ND	20									
Acrylonitrile	ND	20									
Benzene	ND	1.0									
Bromobenzene	ND	1.0									
Bromochloromethane	ND	1.0									
Bromodichloromethane	ND	1.0									
Bromoform	ND	1.0									
Bromomethane	ND	1.0									
Carbon disulfide	ND	1.0									
Carbon tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroethane	ND	1.0									
Chloroform	ND	1.0									
Chloromethane	ND	1.0									
cis-1,2-Dichloroethene	ND	1.0									
cis-1,3-Dichloropropene	ND	1.0									


Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

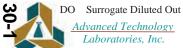
- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

TestCode: 8260_WP_LLPGE

N005679 **Project:** PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT


TestCode: 8260_WP_LLPGE

Sample ID: D110425MB2	SampType: MBLK TestCode: 8260_WP_LL Units: ug/L					Prep Da	te:	RunNo: 79850				
Client ID: PBW	Batch ID: D11VW054	TestN	lo: EPA 8260	В		Analysis Da	te: 4/25/2 0	SeqNo: 1261547				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Dibromochloromethane	ND	1.0										
Dibromomethane	ND	1.0										
Dichlorodifluoromethane	ND	1.0										
Ethylbenzene	ND	1.0										
Freon-113	ND	1.0										
Hexachlorobutadiene	ND	1.0										
Isopropylbenzene	ND	1.0										
m,p-Xylene	ND	1.0										
Methylene chloride	ND	5.0										
MTBE	ND	1.0										
n-Butylbenzene	ND	1.0										
n-Propylbenzene	ND	1.0										
Naphthalene	0.310	1.0										
o-Xylene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylbenzene	ND	1.0										
Tetrachloroethene	ND	1.0										
Toluene	ND	2.5										
trans-1,2-Dichloroethene	ND	1.0										
trans-1,3-Dichloropropene	ND	1.0										
Trichloroethene	ND	1.0										
Trichlorofluoromethane	ND	1.0										
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	2.0										
Surr: 1,2-Dichloroethane-d4	22.950		25.00		91.8	72	119					
Surr: 4-Bromofluorobenzene	25.460		25.00		102	76	119					
Surr: Dibromofluoromethane	22.400		25.00		89.6	85	115					
Surr: Toluene-d8	25.570		25.00		102	81	120					

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference

														TUŔN/ DATE	AROUN	OTIME 20-1/-	PAGE	7 6	OF /
COMPANY CHAM	11.11	***************************************	Philippin and the second secon			7-	1	7	,7				, 			, , ,		·	
	中山					1	3/ ~{ /					//			/ /	′ / ,	/ /	COMME	NTS
, oak Topock						tod	(4)	9	/ (Ι,	/	/ /		/ /	/ /	//			
PHONE (530) 229-3303		FAX (530) 339-3303		9	(E)	WS		1/5	7 m/	/	′ /	//	/ /		/ /			
ADDRESS 155 Grand Ave	Ste 1000									0/		//	/ /		/ /	S			
Oakland, CA 94		····		ĺ	/8	3		18	2/2	\$0\ 		/ /		/ ,	/ /		f		
P.O. NUMBER 405681. MF	of an		1 1		18	6010 kg		20758 W	2 23/c] - 	' 	/ /	//	/ /		WIBER OF CONTAINERS			
SAMPLERS (SIGNATURE	T. '	•	T-Martin and and and		(o /	3	3/5/	$^{\prime}$					/ /		/ /	4			
- ASL	-	Colomba News Colombia Colombia	Water Water States	16	4/	To the		D/.	Ţ,		/	/ /		/ ,	/ /,	£ /			
SAMPLE I.D.	DATE	TIME	DESCRIPTION		1/2	April 1		7-	7	/ /	/ /	/ /	/ ,	/ /				•	
	4-20-11	1235	water	8	N		$\sqrt{}$	1	1	f	-f	-	f - f		8		**************************************		
TB-Packer-176-04	ì	1200	(OD) PEN				1		1			7)	1			1	77	*************************************	
TO TACKET (18-07)	<u> </u>	EXEC.						X		+11		blon			1	110	10		
Please change the sample ID																			
from MW-64BR-150-LWR-176	5 5PD				ĺ		ĺ												
to MW-64BR-LWR-150-176								†									***************************************		
	1						_	 					-						
			**************************************					ļ					-						
																			to to contract to
//12 CH	-IAIN OF (CUSTO	DY SIGNATU	REDI	=	en Di	and and			encodo:		#3###CT9#CT\$X/\$#C1	COTZ DE LA CALLANTA			ACIC MEDICAL PROPERTY OF	***********	***************************************	Эта
Signature Relinguisheti)	Printed /	7	// Compan	y/20 11 -		./ //	, Da	ie/ H	-2t-	4_						E CONDITI			
ignature	Printed D	ryle	Compan Agency	CHd	m.	4111	Tin	те	425	2 /		RECEI	VED	COOL	- I J.	J~CWARI	v 🗆		°F
Received)	Name Y V	in kndr	Compan Compan	" A7			Da Tin		/21/	⁽	二)	CUSTO	DY SE		J K YES	#]	NO 🔲		
ignature Relinquished)	Printed Name	rlan Da	Gala Conipan Agency	"AT	T		Da Tlır		21/	1/10	-10								*********
ignature Received mm	Printed Name M.B	BCARA	Compan	/.1			Dai	le/ .	hi Co	171	7	Please	make	the c	orrect	ions det	ailed in	red ab	ove.
ignature Relipquished)	Printed Name		Compan			· · · · · · · · · · · · · · · · · · ·	Dat	e/	***************************************	* * * * *						Shu	~7. 1	Dulle	
ighature	Printed		Agency Compan	//			Tin Dal									5/13/	2011	111	
Received)	Name		Agency	***************************************			Thr										Olikayaya ka ka ka ka ka ka ka ka ka ka ka ka ka		

Advanced Technology Laboratories, Inc.

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Cooler Received/Opened On:	4/21/2011				Workorder:	N005679			
Rep sample Temp (Deg C):	2.2				IR Gun ID:	1			
Temp Blank:	Yes	✓ No							
Carrier name:	ATL								
Last 4 digits of Tracking No.:	na			Packing	Material Used:	None			
Cooling process:	✓ Ice	[] Ice Pack	Dry Ice	Other	None				
1. Shipping container/cooler in	good condi	tion?			Yes 🗹	No 🗀	Not Present		
2. Custody seals intact, signed	l, dated on s	shippping containe	er/cooler?		Yes 🗌	No 🗌	Not Present	✓	
3. Custody seals intact on sam	iple bottles?	i			Yes	No 🛄	Not Present	y	
4. Chain of custody present?					Yes 🗸	No			
5. Sampler's name present in	COC?				Yes 🗸	No 📖			
6. Chain of custody signed who	en relinquish	ned and received	•		Yes 🗸	No 🗌			
7. Chain of custody agrees wit	h sample lat	oels?			Yes 🗸	No			
8. Samples in proper container	r/bottle?				Yes 🗸	No			
9. Sample containers intact?					Yes 🗸	No			
10. Sufficient sample volume f	or indicated	test?			Yes 🗸	No 🗔			
11. All samples received within	n holding tim	ne?			Yes 🗸	No			
12. Temperature of rep sample	e or Temp B	lank within accep	table limit?		Yes 🗸	No 🗔	NA		
13. Water - VOA vials have ze	ro headspac	ce?			Yes 🗸	No	NA		
14. Water - pH acceptable upo Example: pH > 12 for (C		for Metals			Yes 🗸	No 🔛	NA		
15. Did the bottle labels indica	te correct pr	eservatives used	?		Yes 🗹	No []	NA		
16. Were there Non-Conforma W	as Client no	tified?			Yes Yes	No 🗀	NA NA	Y	
Comments:									

Checklist Completed By

MBC 4/22/11

Reviewed By:

my/wh

SAMPLE CALCULATION

METHOD: SM 2540C

TEST NAME: Total Filterable Residue

MATRIX: Water

FORMULA:

Calculate TDS concentration in mg/L, in the original sample as follows:

TDS, mg/L =
$$(A-B)*1000000$$

Where:

A = weight in g of dish + residue after drying

B = weight of dish in g

C = volume of sample used in mL

For N005679-001C, TDS concentration in mg/L is calculated as follows:

TDS,
$$mg/L = (15.5882-15.4924)*1000000$$

10
= 9580 mg/L

Reporting result in two significant figures,

$$TDS = 9600 \text{ mg/L}$$

Sample Calculation

METHOD: EPA 218.6

TEST NAME: HEXAVALENT CHROMIUM BY IC

MATRIX: Water

FORMULA:

Calculate the Hexavalent Chromium concentration, in $\mu g/L$, in the original sample as follows:

$$Cr^{+6}$$
, $\mu g/L = A * DF$

where:

A = ug/L, IC Cr⁺⁶ calculated concentration DF = dilution factor

For N005679-001A, concentration in μg/L is calculated as follows:

$$Cr^{+6}$$
, $\mu g/L = 0.209020 * 10$
= 2.09020 $\mu g/L$

Reporting results in two significant figures,

$$Cr^{+6}$$
, $\mu g/L = 2.1$

Mylala

Sample Calculation

METHOD: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Chloride concentration, in mg/L, in the original sample as follows:

Chloride, mg/L = A * DF

where:

A = mg/L, IC calculated concentration DF = dilution factor

For N005679-001C, concentration in mg/L are calculated as follows:

Chloride, mg/L = 5.492*1000

= 5492 mg/L

Reporting N005679-001C, results in two significant figures,

Chloride, mg/L = 5500 mg/L

MS 5/6/11

SAMPLE CALCULATION

METHOD: EPA 6010B

TEST NAME: METALS BY ICP

MATRIX: WATER

FORMULA:

Calculate the individual metal concentration, in mg/L, in the original sample as follows:

M, ug/L = A*C*DF*1000

R

where:

M= concentration of the metal in ug/L A= mg/L, ICP calculated concentration

B= volume of sample, Liter

C= final volume of digestate, Liter

DF= dilution factor

For N005679-001B, concentration in ug/L are calculated as follows:

Cr, ug/L = $0.00322 \frac{\text{mg/L} * 0.025 \text{ L} *1000}{0.025 \text{ L}}$

Cr = 3.22 ug/L

Reporting result in two significant figures,

Cr = 3.2 ug/L

fe. aprefron

CLIENT:

CH2M HILL

Work Order:

N005679

Project:

PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Date: 26-Apr-11

Sample ID: N005679-001BPS	SampType: P S	TestCode: 6010_WDP	G Units: ug/L	Pri	ep Date:	RunNo: 79813
Client ID: ZZZZZZ	Batch ID: 36742	TestNo: EPA 6010B	EPA 3010A	Analys	sis Date: 4/26/2011	SeqNo: 1260732
Analyte	Result	PQL SPK value	SPK Ref Val	%REC Low	Limit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	974.776	2.0 1000	3.219	97.2	75 125	the difference of the differen
Sample ID: N005679-001BPS	SampType: PS	TestCode: 6010_WDP	G Units: ug/L	Pro	ep Date:	RunNo: 79813
Client ID: ZZZZZZ	Batch ID: 36742	TestNo: EPA 6010B	EPA 3010A	Analys	sis Date: 4/26/2011	SeqNo: 1260733
Analyte	Result	PQL SPK value	SPK Ref Val	%REC Low	Limit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium	2468.839	5.0 2500	3.219	98.6	75 125	

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic,
$$ug/L = A * DF * PF$$

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005679-001B, the concentration in ug/L is calculated as follows:

Arsenic,
$$ug/L$$
 = 3.880 * 1 * (1)

Reporting results in two significant figures,

Arsenic,
$$ug/L = 3.9$$

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

N005679

Test Method: Analysis Date: EPA 6020 04/25/11

Matrix:

Aqueous

Batch No.:

36744

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Comments:

Analyzed By:

Jojo Tenorio

Dilution Test is not applicable to As. The calc. Values are < 25X the RL.

OQual %DIFF Sample ID Analyte &Units Calc Val SAMPrefval %DIFFlimit N005651-001B-DT 5X 0.015107654 NΑ 0.043153155 Arsenic ug/L

Date: 09-May-11

CLIENT:

CH2M HILL

Work Order:

N005679

Project:

PG&E Topock, 405681.MP.02.GM

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: N005686-001A-PS.2	SampType: PS	TestCod	de: 6020_DIS	Units: µg/L		Prep Da	te:	RunNo: 79	800	
Client ID: ZZZZZZ	Batch ID: 36744	TestN	No: EPA 6020	EPA 3010A		Analysis Da	te: 4/25/2011	SeqNo: 12 6	64458	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	18.931	0.20	20.00	0.04315	94.4	75	125			

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

SAMPLE CALCULATION

METHOD: EPA 8260B

TEST NAME: VOLATILE ORGANIC COMPOUNDS BY GC/MS

MATRIX: WATER

CALCULATION OF TARGET PARAMETERS

Calculate the target analyte concentrations using internal standard quantitation

$$C_X$$
,ug/L= $A_X * C_{IS}$
Ave RF * A_{IS}

where: $A_{x=}$ Area of the TOTAL ion for the compound being measured

C_{IS} = Concentration of the specific internal standard in ug/L

 A_{IS} = Area of the characteristic ion of the specific internal standard

C_{x =} Concentration of the compound being measured in ug/L

N005679-001E

For Toluene the corresponding Internal Standard is 1,4-Difluorobenzene

Ave RF 1.905

Area of Toluene 498151

Area of Internal Standard 466044

Conc of Internal Standard (ug/L) 25.00

Conc of Toluene (ug/L)= 498151 * 25.00ug/L

1.905 * 466044

Conc of Toluene (ug/L)= 14.02746242

Reporting result in three significant figures,

Concentration of Toluene = 14.0 ug/L

Major

May 23, 2011

Shawn P. Duffy CA-ELAP No.: 2676

CH2M HILL NV Cert. No.: NV-009222007A

155 Grand Avenue, Suite 1000

Oakland, CA 94612 TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N005735

RE: PG&E Topock, 405681.MP.02.GM.04

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 02, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

This is an amended report. Please disregard all previous documentation that corresponds to the page(s) enclosed.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

CLIENT:

CH2M HILL

Project:

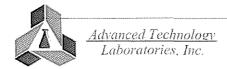
PG&E Topock, 405681.MP.02.GM.04

Lab Order:

N005735

CASE NARRATIVE

Date: 18-May-11


SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

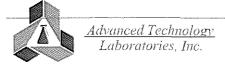
Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

CLIENT:

CH2M HILL

Project:


PG&E Topock, 405681.MP.02.GM.04

Lab Order:

N005735

Contract No:

Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
MW-27-085-177	Water	4/28/2011 1:05:00 PM	5/2/2011	
MW-27-085-177	Water	4/28/2011 1:05:00 PM	5/2/2011	
MW-34-080-177	Water	4/28/2011 3:58:00 PM	5/2/2011	
MW-34-080-177	Water	4/28/2011 3:58:00 PM	5/2/2011	
MW-34-100-177	Water	4/28/2011 2:22:00 PM	5/2/2011	
MW-34-100-177	Water	4/28/2011 2:22:00 PM	5/2/2011	
MW-93-177	Water	4/28/2011 12:30:00 PM	5/2/2011	
MW-93-177	Water	4/28/2011 12:30:00 PM	5/2/2011	
MW-94-177	Water	4/28/2011 2:05:00 PM	5/2/2011	
MW-94-177	Water	4/28/2011 2:05:00 PM	5/2/2011	
MW-29-177	Water	4/29/2011 12:44:00 PM	5/2/2011	
MW-29-177	Water	4/29/2011 12:44:00 PM	5/2/2011	
MW-42-055-177	Water	4/29/2011 8:31:00 AM	5/2/2011	
MW-42-055-177	Water	4/29/2011 8:31:00 AM	5/2/2011	
MW-42-065-177	Water	4/29/2011 9:16:00 AM	5/2/2011	
MW-42-065-177	Water	4/29/2011 9:16:00 AM	5/2/2011	
MW-43-025-177	Water	4/29/2011 10:13:00 AM	5/2/2011	
MW-43-025-177	Water	4/29/2011 10:13:00 AM	5/2/2011	
MW-43-090-177	Water	4/29/2011 11:37:00 AM	5/2/2011	
MW-43-090-177	Water	4/29/2011 11:37:00 AM	5/2/2011	
	MW-27-085-177 MW-27-085-177 MW-34-080-177 MW-34-080-177 MW-34-100-177 MW-34-100-177 MW-93-177 MW-93-177 MW-94-177 MW-94-177 MW-29-177 MW-29-177 MW-42-055-177 MW-42-065-177 MW-42-065-177 MW-43-025-177 MW-43-025-177 MW-43-090-177	MW-27-085-177 Water MW-34-080-177 Water MW-34-080-177 Water MW-34-100-177 Water MW-34-100-177 Water MW-93-177 Water MW-93-177 Water MW-94-177 Water MW-94-177 Water MW-29-177 Water MW-29-177 Water MW-29-177 Water MW-29-177 Water MW-42-055-177 Water MW-42-055-177 Water MW-42-065-177 Water MW-43-025-177 Water MW-43-025-177 Water MW-43-025-177 Water MW-43-025-177 Water	MW-27-085-177 Water 4/28/2011 1:05:00 PM MW-27-085-177 Water 4/28/2011 1:05:00 PM MW-34-080-177 Water 4/28/2011 3:58:00 PM MW-34-080-177 Water 4/28/2011 3:58:00 PM MW-34-100-177 Water 4/28/2011 2:22:00 PM MW-93-100-177 Water 4/28/2011 2:22:00 PM MW-93-177 Water 4/28/2011 12:30:00 PM MW-93-177 Water 4/28/2011 12:30:00 PM MW-94-177 Water 4/28/2011 2:05:00 PM MW-94-177 Water 4/28/2011 2:05:00 PM MW-29-177 Water 4/29/2011 12:44:00 PM MW-29-177 Water 4/29/2011 12:44:00 PM MW-42-055-177 Water 4/29/2011 8:31:00 AM MW-42-065-177 Water 4/29/2011 9:16:00 AM MW-43-025-177 Water 4/29/2011 10:13:00 AM MW-43-025-177 Water 4/29/2011 10:13:00 AM MW-43-090-177 Water 4/29/2011 11:37:00 AM	MW-27-085-177 Water 4/28/2011 1:05:00 PM 5/2/2011 MW-27-085-177 Water 4/28/2011 1:05:00 PM 5/2/2011 MW-34-080-177 Water 4/28/2011 3:58:00 PM 5/2/2011 MW-34-080-177 Water 4/28/2011 3:58:00 PM 5/2/2011 MW-34-100-177 Water 4/28/2011 2:22:00 PM 5/2/2011 MW-93-177 Water 4/28/2011 2:22:00 PM 5/2/2011 MW-93-177 Water 4/28/2011 2:30:00 PM 5/2/2011 MW-93-177 Water 4/28/2011 12:30:00 PM 5/2/2011 MW-94-177 Water 4/28/2011 2:05:00 PM 5/2/2011 MW-94-177 Water 4/28/2011 2:05:00 PM 5/2/2011 MW-29-177 Water 4/28/2011 2:05:00 PM 5/2/2011 MW-29-177 Water 4/29/2011 12:44:00 PM 5/2/2011 MW-42-055-177 Water 4/29/2011 8:31:00 AM 5/2/2011 MW-42-065-177 Water 4/29/2011 9:16:00 AM 5/2/2011 MW-43-025-177 Water 4/29/2011 10:13:00 AM 5/2/2011

Date: 18-May-11

Work Order Sample Summary

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-27-085-177

Print Date: 18-May-11

Lab Order:

N005735

Collection Date: 4/28/2011 1:05:00 PM

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-001

PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110503E

QC Batch: R79912

Result MDL

PrepDate:

1

Analyst: CEI

Specific Conductance

13000

0.10

0.10

umhos/cm

5/3/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-34-080-177

Lab Order:

N005735

Project:

Collection Date: 4/28/2011 3:58:00 PM

Print Date: 18-May-11

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-002

Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110503E

QC Batch: R79912

PrepDate:

Analyst: CEI

Specific Conductance

76**0**0 0.10 0.10

umhos/cm

5/3/2011

1

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 18-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-34-100-177

Lab Order:

N005735

Collection Date: 4/28/2011 2:22:00 PM

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005735-003

Analyses Result MDL PQL	Qual Units	DF	Date Analyzed
-------------------------	------------	----	---------------

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110503E

QC Batch: R79912

PrepDate:

Analyst: CEI

Specific Conductance

16000 0.10

0.10

umhos/cm

1

5/3/2011

Qualifiers:

- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 18-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005735

PG&E Topock, 405681.MP.02.GM.04

Project: Lab ID:

N005735-004

Client Sample ID: MW-93-177

Collection Date: 4/28/2011 12:30:00 PM

Matrix: WATER

Analyses Result MDL POL Qual Units DF Date Analyzed

0.10

SPECIFIC CONDUCTANCE

Specific Conductance

EPA 120.1

RunID: WETCHEM_110503E

QC Batch: R79912

13000

0.10

PrepDate:

umhos/cm

Analyst: CEI

5/3/2011

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 18-May-11

CLIENT:

CH2M HILL

Advanced Technology Laboratories, Inc.

Client Sample ID: MW-94-177

Lab Order:

N005735

Collection Date: 4/28/2011 2:05:00 PM

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-005

Result MDL **PQL** Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110503E

QC Batch: R79912

PrepDate:

Analyst: CEI

Specific Conductance

16000 0.10 0.10

umhos/cm

5/3/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range E
- Not Detected at the Reporting Limit ND Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 18-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005735

PG&E Topock, 405681.MP.02.GM.04

Project: Lab ID:

N005735-006

Client Sample ID: MW-29-177

Collection Date: 4/29/2011 12:44:00 PM

Matrix: WATER

Analyses Result MDL **PQL** Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

0.10

RunID: WETCHEM_110503E

Specific Conductance

QC Batch: R79912 2200

0.10

PrepDate:

Analyst: CEI

umhos/cm 5/3/2011

Qualifiers:

Analyte detected in the associated Method Blank В

Η Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-42-055-177

Print Date: 18-May-11

Lab Order:

N005735

Collection Date: 4/29/2011 8:31:00 AM

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-007

DF

SPECIFIC CONDUCTANCE

EPA 120.1

Qual Units

RuniD: WETCHEM_110503E

QC Batch: R79912

Result

MDL

PrepDate:

Analyst: CEI

Date Analyzed

Specific Conductance

7500 0.10 0.10

PQL

umhos/cm

1

5/3/2011

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-42-065-177

Lab Order:

N005735

Collection Date: 4/29/2011 9:16:00 AM

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-008

PQL Qual Units DF Date Analyzed

Print Date: 18-May-11

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110503E

QC Batch: R79912

Result MDL

PrepDate:

1

Analyst: CEI

Specific Conductance

9500 0.10 0.10

umhos/cm

5/3/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-43-025-177

Lab Order:

N005735

Collection Date: 4/29/2011 10:13:00 AM

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-009

DF

Print Date: 18-May-11

SPECIFIC CONDUCTANCE

EPA 120.1

Qual Units

RuniD: WETCHEM_110503E

QC Batch: R79912

PrepDate:

Analyst: CEI

Date Analyzed

Specific Conductance

1200 0.10

Result MDL

0.10

PQL

umhos/cm

5/3/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range Ë
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005735

PG&E Topock, 405681.MP.02.GM.04

Project: Lab ID:

N005735-010

Client Sample ID: MW-43-090-177

Print Date: 18-May-11

Collection Date: 4/29/2011 11:37:00 AM

Matrix: WATER

Result MDL PQL Qual Units DF Date Analyzed Analyses

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110503E

QC Batch: R79912

PrepDate:

Analyst: CEI

Specific Conductance

17000 0.10 0.10

umhos/cm

5/3/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

PG&E Topock, 405681.MP.02.GM.04

CLIENT: CH2M HILL

Work Order: N005735

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Date: 18-May-11

Sample ID: LCS-R79912	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79912
Client ID: LCSW	Batch ID: R79912	TestNo: EPA 120.1	Analysis Date: 5/3/2011	SeqNo: 1263322
Analyte	Result	PQL SPK value SPK Ref Val %REG	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	9620.000	0.10 9985 0 96.3	85 115	
Sample ID: N005735-001BDUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79912
Client ID: ZZZZZZ	Batch ID: R79912	TestNo: EPA 120.1	Analysis Date: 5/3/2011	SeqNo: 1263333
Analyte	Result	PQL SPK value SPK Ref Val %REG	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	13240.000	0.10	13250	0.0755 10
Sample ID: N005735-001BMS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79912
Sample ID: N005735-001BMS Client ID: ZZZZZZ	SampType: MS Batch ID: R79912	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	Prep Date: Analysis Date: 5/3/2011	RunNo: 79912 SeqNo: 1263334
,	. ,,	-	Analysis Date: 5/3/2011	
Client ID: ZZZZZZ	Batch ID: R79912	TestNo: EPA 120.1	Analysis Date: 5/3/2011 C LowLimit HighLimit RPD Ref Val	SeqNo: 1263334
Client ID: ZZZZZZ Analyte	Batch ID: R79912 Result	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %REC	Analysis Date: 5/3/2011 C LowLimit HighLimit RPD Ref Val	SeqNo: 1263334
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79912 Result 23120.000	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %REC 0.20 9985 13250 98.8	Analysis Date: 5/3/2011 LowLimit HighLimit RPD Ref Val 75 125	SeqNo: 1263334 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005735-001BMSD	Result 23120.000 SampType: MSD	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %REC 0.20 9985 13250 98.8 TestCode: 120.1_WPGE Units: umhos/cm	Analysis Date: 5/3/2011 LowLimit HighLimit RPD Ref Val 75 125 Prep Date: Analysis Date: 5/3/2011	SeqNo: 1263334 %RPD RPDLimit Qual RunNo: 79912

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-27-085-177

Lab Order:

N005735

Collection Date: 4/28/2011 1:05:00 PM

Print Date: 18-May-11

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-001

Qual Units DF PQL

Date Analyzed

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RunID: ICP7_110503C

QC Batch: 36812

PrepDate:

5/3/2011 Analyst: JT

Arsenic

1.4 0.012

Result MDL

0.50

μg/L

5/3/2011 02:40 PM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-34-080-177

Lab Order:

der: N005735

Collection Date: 4/28/2011 3:58:00 PM

Print Date: 18-May-11

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-002

Result	MDL	POL	Qual Units	DF	Date Analyzed
Meanir	(VIII)	IVL	Ouai Cinta	D).	Date Analyzeu

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RunID: ICP7_110503C

QC Batch: 36812

PrepDate:

5/3/2011 Analyst: **JT**

Arsenic

1.4 0.0025

0.10

μg/L

5/3/2011 02:59 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-34-100-177

Lab Order:

N005735

Collection Date: 4/28/2011 2:22:00 PM

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005735-003

DF

Print Date: 18-May-11

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

Qual Units

RunID: ICP7_110503C

QC Batch: 36812

PrepDate:

5/3/2011 Analyst: JT

Arsenic

1.4 0.0025

Result MDL

0.10

PQL

μg/L

5/3/2011 03:04 PM

Date Analyzed

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 18-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

Project:

Lab ID:

CH2M HILL

Lab Order: N005735

RuniD: ICP7_110503C

PG&E Topock, 405681.MP.02.GM.04

N005735-004

Client Sample ID: MW-93-177

Collection Date: 4/28/2011 12:30:00 PM

Matrix: WATER

Result MDL DF PQL Qual Units Date Analyzed Analyses

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

PrepDate: 5/3/2011 Analyst: JT

Arsenic

1.4 0.0025

QC Batch: 36812

0.10

μg/L

5/3/2011 03:09 PM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 18-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

.

N005735

PG&E Topock, 405681.MP.02.GM.04

Project: Lab ID:

Arsenic

N005735-005

Client Sample ID: MW-94-177

Collection Date: 4/28/2011 2:05:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

0.0025

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RuniD: ICP7_110503C QC Batch

QC Batch: 36812

1.3

0.10

PrepDate: µg/L 5/3/2011 Analyst: JT

1 5/3/2011 03:23 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 18-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005735

PG&E Topock, 405681.MP.02.GM.04

Project: Lab ID:

N005735-006

Client Sample ID: MW-29-177

Collection Date: 4/29/2011 12:44:00 PM

Matrix: WATER

Analyses	Result	MDL 1	PQL Qual	Units	DF	Date Analyzed
DISSOLVED ICP-MS METALS						
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110503C	QC Batch: 368	312		PrepDate:	5/3/201	1 Analyst: JT
Arsenic	9.0	0.025	0.10	μg/L	1	5/3/2011 03: 2 8 PM
Manganese	400	0.46	2,5	ua/L	5	5/3/2011 04:53 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005735

Project:

PG&E Topock, 405681.MP.02.GM.04

Lab ID:

N005735-007

Client Sample ID: MW-42-055-177

Collection Date: 4/29/2011 8:31:00 AM

Print Date: 18-May-11

Matrix: WATER

Analyses Result MDL PQL Qual Units \mathbf{DF} Date Analyzed

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RunID: ICP7_110503C

Arsenic

QC Batch: 36812

13

0.0025

0.10

PrepDate: μg/L

5/3/2011 Analyst: JT

5/3/2011 03:33 PM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u> Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: C

CH2M HILL

Client Sample ID: MW-42-065-177

Lab Order:

N005735

Collection Date: 4/29/2011 9:16:00 AM

Print Date: 18-May-11

Project:

PG&E Topock, 405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005735-008

Analyses	Result	MDL	PQL Qual	Units	DF D	ate Analyzed
DISSOLVED ICP-MS METALS						
	EPA 3010A		EPA	6020		
RuniD: ICP7_110503C	QC Batch: 368	312		PrepDate:	5/3/2011	Analyst: JT
Arsenic	2.2	0.025	0.10	μg/L	1	5/3/2011 03:38 PM
Manganese	1600	2.3	12	μg/L	25	5/3/2011 05:07 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005735

PG&E Topock, 405681.MP.02.GM.04

Project: Lab ID:

N005735-009

Client Sample ID: MW-43-025-177

Collection Date: 4/29/2011 10:13:00 AM

Print Date: 18-May-11

Matrix: WATER

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED ICP-MS METALS			-			
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110503C	QC Batch: 368	312		PrepDate:	5/3/201	1 Analyst: JT
Arsenic	20	0.025	0.10	μg/L	1	5/3/2011 03:43 PM
Manganese	270	0.46	2.5	μg/L	5	5/3/2011 05:12 PM

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

REVISION 1, 05/23/11

ANALYTICAL RESULTS

Print Date: 23-May-11

Advanced Technology Laboratories, Inc.

CH2M HILL Client Sample ID: MW-43-090-177

Lab Order: N005735 **Collection Date:** 4/29/2011 11:37:00 AM

Project: PG&E Topock, 405681.MP.02.GM.04 Matrix: WATER

Lab ID: N005735-010

CLIENT:

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED ICP-MS METALS						
	EPA 3010A		EP	A 6020		
RunID: ICP7_110503C	QC Batch: 368	12		PrepDate:	5/3/20	11 Analyst: JT
Arsenic	3.3	0.12	0.50	μg/L	5	5/3/2011 05:17 PM
Manganese	1000	0.46	2.5	μg/L	5	5/3/2011 05:17 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005735

Project: PG&E Topock, 405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WD_AsPGE

Date: 18-May-11

Sample ID: MB-36812	SampType: MBLK	TestCode: 6020_WD_As Units: µg/L	Prep Date: 5/3/2011	RunNo: 80072
Client ID: PBW	Batch ID: 36812	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/3/2011	SeqNo: 1268466
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	0.041	0.10		
Sample ID: LCS-36812	SampType: LCS	TestCode: 6020_WD_As Units: µg/L	Prep Date: 5/3/2011	RunNo: 80072
Client ID: LCSW	Batch ID: 36812	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/3/2011	SeqNo: 1268467
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	10.398	0.10 10.00 0	104 85 115	
Sample ID: N005735-001A-MS	SampType: M S	TestCode: 6020_WD_As Units: μg/L	Prep Date: 5/3/2011	RunNo: 80072
Sample ID: N005735-001A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36812	TestCode: 6020_WD_As Units: μg/L TestNo: EPA 6020 EPA 3010A	Prep Date: 5/3/2011 Analysis Date: 5/3/2011	RunNo: 80072 SeqNo: 1268491
		- -	•	
Client ID: ZZZZZZ	Batch ID: 36812	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/3/2011	SeqNo: 1268491
Client ID: ZZZZZZ Analyte	Batch ID: 36812 Result	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1268491
Client ID: ZZZZZZ Analyte Arsenic	Batch ID: 36812 Result 12.128	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 1.438	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val 107 75 125	SeqNo: 1268491 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Arsenic Sample ID: N005735-001A-MSD	Batch ID: 36812 Result 12.128 SampType: MSD	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 1.438 TestCode: 6020_WD_As Units: μg/L	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val 107 75 125 Prep Date: 5/3/2011	SeqNo: 1268491 %RPD RPDLimit Qual RunNo: 80072

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005735

Project:

PG&E Topock, 405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020WDAsMnHink

Sample ID: MB-36812	SampType: MBLK	TestCode: 6020WDAsM Units: μg/L	Prep Date: 5/3/2011	RunNo: 80072
Client ID: PBW	Batch ID: 36812	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/3/2011	SeqNo: 1268519
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	0.041	0.10		
Manganese	ND	0.50		
Sample ID: LCS-36812	SampType: LCS	TestCode: 6020WDAsM Units: μg/L	Prep Date: 5/3/2011	RunNo: 80072
Client ID: LCSW	Batch ID: 36812	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/3/2011	SeqNo: 1268520
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	10.398	0.10 10.00 0	104 85 115	
Manganese	113,289	0.50 100.0 0	113 85 115	
Sample ID: N005735-001A-MS	SampType: MS	TestCode: 6020WDAsM Units: µg/L	Prep Date: 5/3/2011	RunNo: 80072
Sample ID: N005735-001A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36812	TestCode: 6020WDAsM Units: µg/L TestNo: EPA 6020 EPA 3010A	Prep Date: 5/3/2011 Analysis Date: 5/3/2011	RunNo: 80072 SegNo: 1268544
·	, -,	, ,	,	
Client ID: ZZZZZZ	Batch ID: 36812	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/3/2011	SeqNo: 1268544
Client ID: ZZZZZZZ	Batch ID: 36812 Result	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1268544
Client ID: ZZZZZZ Analyte Arsenic	Batch ID: 36812 Result 12.128 217.662	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 1.438	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val 107 75 125	SeqNo: 1268544
Client ID: ZZZZZZ Analyte Arsenic Manganese	Batch ID: 36812 Result 12.128 217.662	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 1.438 2.5 100.0 133.0	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val 107 75 125 84.7 75 125	SeqNo: 1268544 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Arsenic Manganese Sample ID: N005735-001A-MSD	Result	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 1.438 2.5 100.0 133.0 TestCode: 6020WDAsM Units: μg/L	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val 107 75 125 84.7 75 125 Prep Date: 5/3/2011	SeqNo: 1268544 %RPD RPDLimit Qual RunNo: 80072
Client ID: ZZZZZZ Analyte Arsenic Manganese Sample ID: N005735-001A-MSD Client ID: ZZZZZZ	Result 12.128 217.662 SampType: MSD Batch ID: 36812	TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 1.438 2.5 100.0 133.0 TestCode: 6020WDAsM Units: μg/L TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/3/2011 %REC LowLimit HighLimit RPD Ref Val 107 75 125 84.7 75 125 Prep Date: 5/3/2011 Analysis Date: 5/3/2011	SeqNo: 1268544 %RPD RPDLimit Qual RunNo: 80072 SeqNo: 1268545

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

	CH2MHILL							CHAIN OF CUSTODY RECORD 4/29/2011 2:41:45 PM	Page	_1_ OF	_ 1
	Project Name PG&E Topock Location Topock		С	ontainer:	500 ml Poly	500 ml Poly	1 Liter Poly 4°C		Ţ		
	Project Number 405681.MP.0	2.GM.04	Prese	ervatives:	HNO3, 4°C	HNO3, 4°C	4.0				
	Project Manager Jay Piper			Filtered:	Field	Field	NA		ł		
	Sample Manager Shawn Duffy		Holdi	ng Time:	180	180	2				
	Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/2/2011 COC Number: 2				Arsenic (6020) Field Filtered	Metals (6020A) Field Filtered Mn	Specific Conductance (E120.1)		Number of Containers		
		DATE	т	Matrix	<u></u>				<u> </u>	COMME	ENTS
-	MW-27-085-177	4/28/2011		Water	Х		X	NOVS73&- OU(2		
9	MW-34-080-177	4/28/2011		Water	Х		Х	, Ó7	2		
ê	MW-34-100-177	4/28/2011	14:22	Water	X		X	<u>~©₁</u>	2	<u> </u>	
to to	MW-93-177	4/28/2011	12:30	Water	х		х	- ONF	2		
G	MW-94-177	4/28/2011	14:05	Water	X		Х	-0/1	2		
₀)	MW-29-177	4/29/2011	12:44	Water	х	х	х	~ (D)	28	2	
3	MW-42-055-177	4/29/2011	8:31	Water	х		X	- 177	2		
	MW-42-065-177	4/29/2011	9:16	Water	Х	х	х		3	2	
*	MW-43-025-177	4/29/2011	10:13	Water	х	х	х	-014	3/	2	
	MW-43-090-177	4/29/2011	11:37	Water	х	х	х	-070	.2/	Ź	

Approved by
Sampled by
Refinquished by
Received by
Relinquished by
Received by

5-2-1/ 1/20 5/2/1/1/20 5/2/1/1/30

Date/Time Shipping Details

| 1/20 | Method of Shipment: FedEx
On Ice: yes / no | 1.20

On Ice: yes / no (, 2°C (P#/

Lab Name: ADVANCED TECHNOLOGY LABORATO

ATTN: Special Instructions:

April 28 - May 13, 2011

(530) 229-3303

TOTAL NUMBER OF CONTAINERS

Sample Custody

and Report Copy to
Marion Shawn Duffy

CH2MHILL							CHAIN OF CUSTODY RECORD 4/29/2011 2:41:45 PM	Page	_1_OF_1
Project Name PG&E Topock Location Topock			Container	Poly HNO3,	500 ml Poly HNO3,	1 Liter Poly 4°C			
Project Number 405681.MP.02.GM.04		Preservatives:		4 °C	4°C				
Project Manager Jay Piper			Filtered:		Fíeld	NA			l
Sample Manager Shawn Duffy		Hold	ling Time:	180	180	2			i
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/2/2011 COC Number: 2	DATE	TIME	Matrix	Arsenic (6020) Field Filtered	Metals (6020A) Field Filtered Mn	Specific Conductance (E120 1)		Number of Containers	COMMENTS
MW-27-085-177	4/28/2011	13:05	Water	ж		х		2	
MW-34-080-177	4/28/2011	15:58	Water	х		Х		2	
MW-34-100-177	4/28/2011	14:22	Water	Х		Х		2	
MW-93-177	4/28/2011	12:30	Water	Х		Х		2	
MW-94-177	4/28/2011	14:05	Water	х		×		2	
MW-29-177	4/29/2011	12:44	Water	Х	х	х		18	2
MW-42-055-177	4/29/2011	8:31	Water	x		x		2	

TOTAL NUMBER OF CONTAINERS

&ignatures Shipping Details Special Instructions: Approved by ATTN: Method of Shipment: FedEx April 28 - May 13, 2011 Sampled by On Ice: yes / no 1,2°C (E#) Relinquished by Sample Custody Received by and Report Copy to 13 - 6- Lab Name: ADVANCED TECHNOLOGY LABORATO Relinquished by Marion Shawn Duffy (3 %) Lab Phone: (702) 307-2659 Received by (530) 229-3303

MW-42-065-177

MW-43-025-177

MW-43-090-177

4/29/2011

4/29/2011

4/29/2011

9:16

10:13

11:37

Water

Water

Water

Х

X

Х

X

X

x

Х

X

Х

Checklist Completed By GG G11(

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

	5/2/2011					orkorder:			
Rep sample Temp (Deg C):	1.2				!R	Gun ID:	IR#1		
Temp Blank:	Yes	✓ No							
Carrier name:	ATL								
Last 4 digits of Tracking No.:					Mater	ial Used:	None		
Cooling process:	火 Ice	Ice Pack	Dry Ice	Other		None			
Shipping container/cooler in	good condi	tion?			Yes		No	Not Present	- 13
2. Custody seals intact, signed	d, dated on s	shippping contain		Yes	1.13 1.1	No	Not Present	V	
3. Custody seals intact on san	nple bottles?		Yes	1 % 	No .	Not Present	V		
4. Chain of custody present?				Yes	¥.	No			
5. Sampler's name present in	COC?				Yes	Y	No		
6. Chain of custody signed wh	en relinquist	ned and received	?		Yes	V	No .		
7. Chain of custody agrees wi	th sample la	bels?			Yes	Y .	No		
8. Samples in proper contained	er/bottle?				Yes		No		
9. Sample containers intact?					Yes	X	No		
10. Sufficient sample volume	for indicated	test?			Yes	V	No :		
11. All samples received withi	n holding tim	ıe?			Yes	Y .	No		
12. Temperature of rep sample	e or Temp B	Slank within accep	otable limit?		Yes	×	No	NA	i
13. Water - VOA vials have ze	ero headspa	ce?			Yes	1	No	NA	V
14. Water - pH acceptable up Example: pH > 12 for (0		for Metals			Yes	×	No	NA	
15. Did the bottle labels indica	ate correct p	reservatives used	1?		Yes	*	No	NA	
16. Were there Non-Conforma	ance issues	at login?			Yes	· · · ·	No	NA	V
	Vas Client no	otified?			Yes	i	No :	NA	V

Reviewed By: US Tyly

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005735-001B, the concentration in ug/L is calculated as follows:

Arsenic,
$$ug/L$$
 = 0.28761 * 5 * (1)

$$=$$
 1.4438 ug/L

Reporting results in two significant figures,

Arsenic,
$$ug/L = 1.4$$

Advanced Technology Laboratories, Inc.

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

N005735

Test Method: Analysis Date: EPA 6020

05/03/11

Matrix:

Aqueous

Batch No.:

36812

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Comments:

Analyzed By:

Jojo Tenorio

Dilution Test is not applicable to As &Mn. The calc. Values are < 25X the RL.

Sample ID	Analyte	&Units	Calc Val	OQual .	SAMPrefval	%DIFF	%DIFFlimit
N005735-001A-DT 25X	Arsenic	ug/L	0	NA	1.438032847	-100,00%	10
N005735-001A-DT 25X	Manganese	ug/L	126.7494628		132.9757139	-4.68%	. 10

5/18/h

Advanced Technology Laboratories, Inc.

Date: 18-May-11

CLIENT:

CH2M HILL

Work Order: N

N005735

Project: PG&E Topock, 405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WD_AsPGE

Sample ID: N005735-001A-P	S 5 SampType: PS	TestCo	de: 6020_WD_	As Units: µg/L		Prep Da	te:	RunNo: 80	1072	
Client ID: ZZZZZZ	Batch ID: 36812	Testi	No: EPA 6020	EPA 3010A		Analysis Da	te: 5/3/2011	SeqNo: 12	68490	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	53.303	0.50	50.00	1.438	104	75	125			

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005735

Project:

PG&E Topock, 405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020WDAsMnHink

Sample ID: N005735-001A-PS 5	SampType: PS	TestCod	de: 6020WDA	sM Units: μg/L		Prep Da	te:		RunNo: 800	072	
Client ID: ZZZZZZ	Batch ID: 36812	TestN	No: EPA 6020	EPA 3010A	Analysis Date: 5/3/2011		SeqNo: 1268543				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	53.303	0.50	50.00	1.438	104	75	125				
Manganese	581.071	2 .5	500.0	133.0	89.6	75	125				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

May 20, 2011

Shawn P. Duffy CA-ELAP No.: 2676

CH2M HILL NV Cert. No.: NV-009222007A

155 Grand Avenue, Suite 1000

Oakland, CA 94612

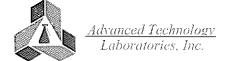
TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N005743

RE: PG&E Topock,405681.MP.02.GM.04

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 03, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.


Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

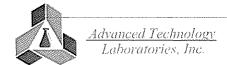
Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Project: PG&E Topock,405681.MP.02.GM.04

Lab Order: N005743 **CASE NARRATIVE**

Date: 20-May-11


SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project:

PG&E Topock,405681.MP.02.GM.04

Lab Order:

N005743

Contract No:

Date: 20-May-11

Lab Sample ID C	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005743-001A MV	W-16-177	Water	5/2/2011 2:59:00 PM	5/3/2011	
N005743-001B MV	W-16-177	Water	5/2/2011 2:59:00 PM	5/3/2011	
N005743-002A M	W-17-177	Water	5/3/2011 1:16:00 PM	5/3/2011	
N005743-002B M	W-17-177	Water	5/3/2011 1:16:00 PM	5/3/2011	
N005743-003A M	W-28-025-177	Water	5/2/2011 11:32:00 AM	5/3/2011	
N005743-003B M	W-28-025-177	Water	5/2/2011 11:32:00 AM	5/3/2011	
N005743-004A M	W-28-090-177	Water	5/2/2011 12:26:00 PM	5/3/2011	
N005743-004B M	W-28-090-177	Water	5/2/2011 12:26:00 PM	5/3/2011	
N005743-005A M	W-30-030-177	Water	5/3/2011 1:22:00 PM	5/3/2011	
N005743-005B M	W-30-030-177	Water	5/3/2011 1:22:00 PM	5/3/2011	
N005743-006A M	W-32-035-177	Water	5/2/2011 1:51:00 PM	5/3/2011	
N005743-006B M	W-32-035-177	Water	5/2/2011 1:51:00 PM	5/3/2011	
N005743-007A M	W-33-040-177	Water	5/2/2011 3:06:00 PM	5/3/2011	
N005743-007B M	W-33-040-177	Water	5/2/2011 3:06:00 PM	5/3/2011	
N005743-008A M	W-36-090-177	Water	5/2/2011 3:05:00 PM	5/3/2011	
N005743-008B M	W-36-090-177	Water	5/2/2011 3:05:00 PM	5/3/2011	
N005743-009A M	W-36-100-177	Water	5/3/2011 2:12:00 PM	5/3/2011	
N005743-009B M	W-36-100-177	Water	5/3/2011 2:12:00 PM	5/3/2011	
N005743-010A M	W-41D-177	Water	5/2/2011 12:43:00 PM	5/3/2011	
N005743-011A M	W-44-070-177	Water	5/3/2011 9:25:00 AM	5/3/2011	
N005743-011B M	W-44-070-177	Water	5/3/2011 9:25:00 AM	5/3/2011	
N005743-012A M	W-44-115-177	Water	5/3/2011 10:01:00 AM	5/3/2011	
N005743-012B M	W-44-115-177	Water	5/3/2011 10:01:00 AM	5/3/2011	
N005743-013A M	W-44-125-177	Water	5/3/2011 12:18:00 PM	5/3/2011	
N005743-013B M	W-44-125-177	Water	5/3/2011 12:18:00 PM	5/3/2011	
N005743-014A M	W-46-175-177	Water	5/3/2011 4:06:00 PM	5/3/2011	
N005743-014B M	W-46-175-177	Water	5/3/2011 4:06:00 PM	5/3/2011	
N005743-015A M	W-50-095-177	Water	5/3/2011 2:21:00 PM	5/3/2011	
N005743-016A M	W-57-185-177	Water	5/3/2011 11:46:00 AM	5/3/2011	

<u>Advanced Technology</u> Laboratories, Inc. Page 1 of 2 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691 CLIENT:

CH2M HILL

Project:

PG&E Topock,405681.MP.02.GM.04

Lab Order:

N005743

Contract No:

Lab Sample ID Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005743-016B MW-57-185-177	Water	5/3/2011 11:46:00 AM	5/3/2011	
N005743-017A MW-63-065-177	Water	5/3/2011 9:12:00 AM	5/3/2011	
N005743-017B MW-63-065-177	Water	5/3/2011 9:12:00 AM	5/3/2011	
N005743-018A MW-95-177	Water	5/3/2011 11:52:00 AM	5/3/2011	
N005743-018B MW-95-177	Water	5/3/2011 11:52:00 AM	5/3/2011	
N005743-019A MW-96-177	Water	5/3/2011 3:53:00 PM	5/3/2011	
N005743-019B MW-96-177	Water	5/3/2011 3:53:00 PM	5/3/2011	

Work Order Sample Summary

Print Date: 20-May-11

CLIENT:

CH2M HILL

Advanced Technology Laboratories, Inc.

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-001

Client Sample ID: MW-16-177

Collection Date: 5/2/2011 2:59:00 PM

Matrix: WATER

Result MDL POL Qual Units DF Analyses Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110504D

QC Batch: R79957

PrepDate:

Analyst: CEI

Specific Conductance

1100 0.10 0.10

umhos/cm

1

5/4/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Ε Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-002

Client Sample ID: MW-17-177

Collection Date: 5/3/2011 1:16:00 PM

Matrix: WATER

DF Analyses Result MDL PQL Qual Units Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110504D

QC Batch: R79957

PrepDate:

Analyst: CEI

Specific Conductance

1500 0.10

0.10

umhos/cm

1

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

]-[Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample 1D: MW-28-025-177

Lab Order:

N005743

Collection Date: 5/2/2011 11:32:00 AM

Print Date: 20-May-11

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-003

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE						
				EPA 120.1		

RunID: WETCHEM_110504D

QC Batch: R79957

PrepDate:

Analyst: CEI

Specific Conductance

1000 0.10

0.10

umhos/cm

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range Ε

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005743

Project:

PG&E Topock,405681.MP.02.GM.04

Lab 1D:

Analyses

N005743-004

Client Sample ID: MW-28-090-177 Collection Date: 5/2/2011 12:26:00 PM

Matrix: WATER

DF

Print Date: 20-May-11

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110504D

QC Batch: R79957

PQL Qual Units

PrepDate:

Analyst: CEI

Specific Conductance

7100 0.10

Result MDL

0.10

umhos/cm

1

5/4/2011

Date Analyzed

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-30-030-177

Lab Order:

N005743

Collection Date: 5/3/2011 1:22:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-005

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE				
		EPA 120.1		
RuniD: WETCHEM_110504D	QC Batch: R79957	PrepDate:		Analyst: CEI
Specific Conductance	12000 0.10	0.10 umhos/cm	1	5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-32-035-177

Print Date: 20-May-11

Lab Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

Collection Date: 5/2/2011 1:51:00 PM Matrix: WATER

Lab ID:

Analyses

N005743-006

 \mathbf{DF} Qual Units

Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM 110504D

QC Batch: R79957

PQL

PrepDate:

Analyst: CEI

Specific Conductance

17000 0.10

Result MDL

0.10

umhos/cm

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-007

Print Date: 20-May-11

Client Sample ID: MW-33-040-177

Matrix: WATER

Collection Date: 5/2/2011 3:06:00 PM

Analyse	es .	Result	MDL	PQL Qual	Units	DF	Date Analyzed
SPECII	FIC CONDUCTANCE						
				EPA	120.1		
RunID:	WETCHEM110504D	QC Batch: R79	957		PrepDate:		Analyst: CEI
Speci	fic Conductance	5900	0.10	0.10	umhos/cm	1	5/4/2011

Qualifiers:

- Analyte detected in the associated Method Blank В
- **]·[** Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Adyanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Advanced Technology Laboratories, Inc.

Client Sample ID: MW-36-090-177

Lab Order:

N005743

Collection Date: 5/2/2011 3:05:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005743-008

Quai	Units	DF	Date	Analyzea

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110504D

QC Batch: R79957

PrepDate:

Analyst: CEI

Specific Conductance

1300 0.10

Result MDL

0.10

PQL

umhos/cm

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

 \mathbf{E} Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

Analyses

N005743-009

Print Date: 20-May-11

Client Sample ID: MW-36-100-177 Collection Date: 5/3/2011 2:12:00 PM

Matrix: WATER

Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110504D

QC Batch: R79957

PrepDate:

Analyst: CEI

Specific Conductance

9700 0.10 0.10

umhos/cm

1

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-41D-177

Lab Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

Collection Date: 5/2/2011 12:43:00 PM Matrix: WATER

Lab ID:

Analyses

N005743-010

DF

Print Date: 20-May-11

SPECIFIC CONDUCTANCE

EPA 120.1

PQL Qual Units

RuniD: WETCHEM_110504D

QC Batch: R79957

Result MDL

PrepDate:

Analyst: CEI

Date Analyzed

Specific Conductance

18000 0.10

0.10

umhos/cm

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-44-070-177

Print Date: 20-May-11

Lab Order:

N005743

Collection Date: 5/3/2011 9:25:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005743-011

sult	MDL	PQL	Qual	Units	DF	Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110504E

QC Batch: R79958

Res

PrepDate:

Analyst: CEI

Specific Conductance

2500 0.10 0.10

umhos/cm

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order:

Project:

CH2M HILL

N005743

PG&E Topock,405681.MP.02.GM.04

Lab ID: N005743-012 Client Sample ID: MW-44-115-177

Collection Date: 5/3/2011 10:01:00 AM

Matrix: WATER

Date Analyzed Analyses Result MDL POL Qual Units DF

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM 110504E

QC Batch: R79958

0.10

PrepDate:

Analyst: CEI

Specific Conductance

11000

0.10

umhos/cm

1

5/4/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-013

Print Date: 20-May-11

Client Sample ID: MW-44-125-177

Collection Date: 5/3/2011 12:18:00 PM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE						
				EDA 120 1		

RuniD: WETCHEM_110504E

Specific Conductance

QC Batch: R79958 11000

0.10

0.10

PrepDate: umhos/cm

Analyst: CEI

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Adyanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005743

RunID: WETCHEM_110504E

PG&E Topock.405681.MP.02.GM.04

Project: Lab ID:

N005743-014

Print Date: 20-May-11

Client Sample ID: MW-46-175-177

Collection Date: 5/3/2011 4:06:00 PM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE							

EPA 120.1

QC Batch: R79958

PrepDate:

Analyst: CEI

Specific Conductance 16000 0.10

0.10

umhos/cm

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-015

Print Date: 20-May-11

Client Sample ID: MW-50-095-177

Collection Date: 5/3/2011 2:21:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110504E Specific Conductance

QC Batch: R79958 5000

0.10

0.10

PrepDate: umhos/cm

Analyst: CEI

5/4/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Adyanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-016

Client Sample ID: MW-57-185-177

Collection Date: 5/3/2011 11:46:00 AM

Matrix: WATER

PQL Qual Units Analyses Result MDL DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM 110504E

QC Batch: R79958

PrepDate:

Analyst: CEI

Specific Conductance

17000 0.10 0.10

umhos/cm

1

5/4/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Value above quantitation range E

Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-017

Client Sample ID: MW-63-065-177

Collection Date: 5/3/2011 9:12:00 AM

Matrix: WATER

Result MDL PQL Qual Units \mathbf{DF} Date Analyzed Analyses

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110504E

QC Batch: R79958

PrepDate:

Analyst: CEI

Specific Conductance

7200 0.10

0.10

umhos/cm

5/4/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

5/4/2011

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Lab Order: N005743

Specific Conductance

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID: N005743-018

Client Sample ID: MW-95-177

Collection Date: 5/3/2011 11:52:00 AM

Matrix: WATER

umhos/cm

Analyses	Result MDL P	QL Qual Units	DF D	ate Analyzed
SPECIFIC CONDUCTANCE				
		EPA 120.1		
RunID: WETCHEM_110504E	QC Batch: R79958	PrepDate:		Analyst: CEI

0.10

0.10

10000

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-96-177

Lab Order:

N005743

Collection Date: 5/3/2011 3:53:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-019

Analyses	Result	MDL	POL	Qual Units	\mathbf{DF}	Date Analyzed
				~		

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110504E

QC Batch: R79958

PrepDate:

Analyst: CEI

Specific Conductance

16000 0.10 0.10

umhos/cm

5/4/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range Ë
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005743

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

Date: 20-May-11

TestCode: 120.1_WPGE

Sample ID: LCS-R79957	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm Prep Date:	RunNo: 79957
Client ID: LCSW	Batch ID: R79957	TestNo: EPA 120.1 Analysis Date: 5/4/20	011 SeqNo: 1264811
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit	it RPD Ref Val %RPD RPDLimit Qual
Specific Conductance	1415.000	0.10 1411 0 100 85 118	5
Sample ID: N005743-001A-DUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm Prep Date:	RunNo: 79957
Client ID: ZZZZZZ	Batch ID: R79957	TestNo: EPA 120.1 Analysis Date: 5/4/20	011 SeqNo: 1264823
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimi	t RPD Ref Val %RPD RPDLimit Qual
Specific Conductance	1079.000	0.10	1092 1.20 10
Sample ID: N005743-001A-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm Prep Date:	RunNo: 79957
Sample ID: N005743-001A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79957	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: TestNo: EPA 120.1 Analysis Date: 5/4/20	
	, ,,		011 SeqNo: 1264824
Client ID: ZZZZZZ	Batch ID: R79957	TestNo: EPA 120.1 Analysis Date: 5/4/20	SeqNo: 1264824 t RPD Ref Val %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte	Batch ID: R79957 Result	TestNo: EPA 120.1 Analysis Date: 5/4/20 PQL SPK value SPK Ref Val %REC LowLimit HighLimit	SeqNo: 1264824 t RPD Ref Val %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79957 Result 2568,000	TestNo: EPA 120.1 Analysis Date: 5/4/20 PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.20 1411 1092 105 75 125	SeqNo: 1264824 t RPD Ref Val %RPD RPDLimit Qual RunNo: 79957
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005743-001A-MSD	Batch ID: R79957 Result 2568.000 SampType: MSD	TestNo: EPA 120.1 Analysis Date: 5/4/20 PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.20 1411 1092 105 75 125 TestCode: 120.1_WPGE Units: umhos/cm Prep Date:	SeqNo: 1264824 t RPD Ref Val %RPD RPDLimit Qual RunNo: 79957 SeqNo: 1264826

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

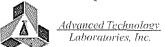
N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE


Sample ID: LCS-R79958	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 7	9958
Client ID: LCSW	Batch ID: R79958	TestNo: EPA 120.1 Analysis Date: 5/4/2011 SeqNo: 1	264850
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD	RPDLimit Qual
Specific Conductance	1405.000	0.10 1411 0 99.6 85 115	
Sample ID: N005743-011A-DUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 7	9958
Client ID: ZZZZZZ	Batch ID: R79958	TestNo: EPA 120.1 Analysis Date: 5/4/2011 SeqNo: 1	264853
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD	RPDLimit Qual
Specific Conductance	2500.000	0.10 25 40 1.59	10
<u> </u>		5.10	
Sample ID: N005743-011A-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 7	
Sample ID: N005743-011A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79958		9958
ŕ		TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 7	9958 264854
Client ID: ZZZZZZ	Batch ID: R79958	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 7 TestNo: EPA 120.1 Analysis Date: 5/4/2011 SeqNo: 1	9958 264854
Client ID: ZZZZZZ Analyte	Batch ID: R79958 Result	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: SPK value SPK Ref Val Prep Date: 5/4/2011 RunNo: 7 Analysis Date: 5/4/2011 SeqNo: 1 PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD Ref Val %RPD	9958 264854 RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79958 Result 3674.000	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: SPR plant RunNo: 7 TestNo: EPA 120.1 Analysis Date: 5/4/2011 SeqNo: 1 PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 0.20 1411 2540 80.4 75 125 125	9958 264854 RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005743-011A-MSD	Result 3674.000 SampType: MSD	TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 7 TestNo: EPA 120.1 Analysis Date: 5/4/2011 SeqNo: 1 PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 0.20 1411 2540 80.4 75 125 RunNo: 7 TestCode: 120.1_WPGE Units: umhos/cm Prep Date: RunNo: 7	9958 264854 RPDLimit Qual 9958 264855

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

Analyses

N005743-005

Client Sample ID: MW-30-030-177 Collection Date: 5/3/2011 1:22:00 PM

Matrix: WATER

DF Qual Units Date Analyzed

Print Date: 20-May-11

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2_110504A

QC Batch: R80000

Result MDL

PQL

PrepDate:

Analyst: QBM

Nitrate as N

ND 0.022 1.0

mg/L

2

5/4/2011 11:49 AM

Qualifiers:

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-36-100-177

Lab Order:

N005743

Collection Date: 5/3/2011 2:12:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005743-009

Result MDL PQL Qual Units	\mathbf{DF}	Date Analyzed
---------------------------	---------------	---------------

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2_110504A

QC Batch: R80000

PrepDate:

Analyst: QBM

Nitrate as N

ND 0.022 1.0

mg/L

2

5/4/2011 10:09 AM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005743

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005743-012

Print Date: 20-May-11

Client Sample ID: MW-44-115-177 Collection Date: 5/3/2011 10:01:00 AM

Matrix: WATER

DF Result MDL PQL Qual Units Date Analyzed Analyses

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RuniD: IC2_110504A

QC Batch: R80000

PrepDate:

2

Analyst: QBM

Nitrate as N

ND 0.022 1.0

mg/L

5/4/2011 10:20 AM

Qualifiers:

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Γ. Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-44-125-177

Lab Order:

N005743

Collection Date: 5/3/2011 12:18:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005743-013

Result MDL \mathbf{DF} PQL Qual Units Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2 110504A

Nitrate as N

QC Batch: R80000

ND

0.022

1.0

PrepDate: mg/L

Analyst: QBM

2 5/4/2011 10:31 AM

Qualifiers:

Analyte detected in the associated Method Blank

Ħ Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-46-175-177

Lab Order:

N005743

Collection Date: 5/3/2011 4:06:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab lD:

Analyses

N005743-014

DF

5

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2_110504A

QC Batch: R80000

PrepDate:

Analyst: QBM

Date Analyzed

Nitrate as N

ND 0.055

Result MDL

2.5

PQL Qual Units

mg/L

5/4/2011 10:42 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-57-185-177

Print Date: 20-May-11

Lab Order:

N005743

Collection Date: 5/3/2011 11:46:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab 1D:

Analyses

N005743-016

DF

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

PQL Qual Units

RuniD: IC2_110504A

QC Batch: R80000

PrepDate:

Analyst: QBM

Nitrate as N

ND 0.055

Result MDL

2.5

mg/L

5/4/2011 10:53 AM 5

Date Analyzed

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E; Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-017

Client Sample ID: MW-63-065-177

Collection Date: 5/3/2011 9:12:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units \mathbf{DF} Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2_110504A

QC Batch: R80000

PrepDate:

Analyst: QBM

Nitrate as N

1.0 0.011 0.50

mg/L

5/4/2011 11:04 AM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Ê Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Lahoratories, Inc.

5/4/2011 11:16 AM

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-95-177

Lab Order:

N005743

Collection Date: 5/3/2011 11:52:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

mg/L

Lab ID:

Nitrate as N

N005743-018

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
ANIONS BY ION CHROMATO	GRAPHY			-
		EPA 300.0		
RunID: IC2_110504A	QC Batch: R80000	PrepDate:		Analyst: QBM

0.50

0.011

0.55

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

5/4/2011 12:00 PM

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-96-177

Lab Order:

Nitrate as N

N005743

Collection Date: 5/3/2011 3:53:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

mg/L

Lab ID:

N005743-019

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
ANIONS BY ION CHROMATO	OGRAPHY			_
		EPA 300.0		
RunID: IC2_110504A	QC Batch: R80000	PrepDate:		Analyst: QBM

2.5

0.055

ND

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 20-May-11

CLIENT:

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

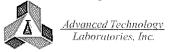
TestCode: 300W_NO3PGE

C	CTNDIV	ToolCode 200M NO2B	Pro- Data:	Dunkley 90000
Sample ID: MB-R80000_NO3	SampType: MBLK	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: PBW	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266297
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	ND	0.50		
Sample ID: LCS-R80000_NO3	SampType: L C S	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: LCSW	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266298
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	2.408	0.50 2.500 0	96.3 90 110	
Sample ID: N005744-001BDUP	SampType: DU P	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: ZZZZZZ	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266311
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	2,066	1.0	2.066	0 20
Sample ID: N005743-017AMS	SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: ZZZZZZ	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 126631 5
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Vai	%RPD RPDLimit Qual
Nitrate as N	3.470	0.50 2.500 1.016	98.2 80 120	
Sample ID: N005745-003CMS	SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: ZZZZZZ	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266316
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	4.365	0.50 2.500 1.774	104 80 120	

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit


DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits
Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 300W_NO3PGE

Sample ID: N005745-003CMSD	SampType: MSD	TestCo	de: 300W_NO	3P Units: mg/L		Prep Da	te:		RunNo: 800	000	
Client ID: ZZZZZZ	Batch ID: R80000	TestN	No: EPA 300. 0)		Analysis Da	te: 5/4/201	1	SeqNo: 12 6	66317	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate as N	4.438	0.50	2.500	1.774	107	80	120	4.365	1.66	20	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

N005743

Client Sample ID: MW-16-177

Lab Order:

Collection Date: 5/2/2011 2:59:00 PM

Project: PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-001

Analyses	Result	MDL	PQL Qual	Units	DF D	ate Analyzed
DISSOLVED METALS BY ICP						
	EPA 3010A		EPA	A 6010B		
RuniD: ICP1_110507A	QC Batch: 36	827		PrepDate:	5/4/2011	Analyst: KAB
Aluminum	ND	8.4	50	ug/L	1	5/7/2011 09:12 AM
Antimony	ND	5.4	10	ug/L	1	5/7/2011 09:12 AM
Barium	30	0.20	3.0	ug/L	1	5/7/2011 09:12 AM
Beryllium	ND	0.090	1.0	ug/L	1	5/7/2011 09:12 AM
Boron	310	13	100	ug/L	1	5/7/2011 09:12 AM
Cadmium	ND	0.23	3.0	ug/L	1	5/7/2011 09:12 AM
Cobalt	ND	0.31	3.0	ug/L	1	5/7/ 2 011 09:12 AM
Copper	ND	0.53	5.0	ug/L	1	5/7/2011 09:12 AM
iron	30	14	20	ug/L	1	5/9/2011 12:50 PM
Lead	ND	1.5	10	ug/L	1	5/7/2011 09:12 AM
Manganese	ND	1.7	10	ug/L	1	5/9/2011 12:50 PM
Molybdenum	13	0.49	5.0	ug/L	1	5/7/2011 09:12 AM
Nickel	ND	1.1	5.0	ug/L	1	5/7/2011 09:12 AM
Silver	ND	0.72	3.0	ug/L	1	5/7/2011 09:12 AM
Vanadium	35	0.19	3.0	ug/L	1	5/7/2011 09:12 AM
Zinc	ND	4.6	10	ug/L	1	5/7/2011 09:12 AM
DISSOLVED METALS BY ICP						
	EPA 3010A		EP	A 6010B		
RunID: ICP1_110509A	QC Batch: 36	8858		PrepDate:	5/7/2011	Analyst: KAB
Calcium	28	0.12	0.50	mg/L	1	5/9/2011 12:50 PM
Magnesium	5.0	0.0063	0.10	mg/L	1	5/9/2011 12:50 PM

Qualifiers:

- Analyte detected in the associated Method Blank
-]-[Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-17-177

Lab Order:

N005743

Collection Date: 5/3/2011 1:16:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-002

Analyses	Result	MDL	PQL Qual	Units	DF D	Oate Analyzed
DISSOLVED METALS BY ICP				***************************************		
	EPA 3010A		EPA	A 6010B		
RunID: ICP1_110507A	QC Batch: 3	6827		PrepDate:	5/4/2011	Analyst: KAB
Aluminum	ND	8.4	50	ug/L	1	5/7/2011 09:17 AM
Antimony	ND	5.4	10	ug/L	1	5/7/2011 09:17 AM
Barium	25	0.20	3.0	ug/L	1	5/7/2011 09:17 AM
Beryllium	ND	0.090	1.0	ug/L	1	5/7/2011 09:17 AM
Boron	230	13	100	ug/L	1	5/7/2011 09:17 AM
Cadmium	ND	0.23	3.0	ug/L	1	5/7/2011 09:17 AM
Cobalt	ND	0.31	3.0	ug/L	1	5/7/2011 09:17 AM
Copper .	ND	0.53	5.0	ug/L	1	5/7/2011 09:17 AM
iron	ND	14	20	ug/L	1	5/9/2011 12:53 PM
Lead	ND	1.5	10	ug/L	1	5/7/2011 09:17 AM
Manganese	ND	1.7	10	ug/L	1	5/9/2011 12:53 PM
Molybdenum	15	0.49	5.0	ug/L	1	5/7/2011 09:17 AM
Nickel	ND	1.1	5.0	ug/L	1	5/7/2011 09:17 AM
Silver	ND	0.72	3.0	ug/L	1	5/7/2011 09:17 AM
Vanadium	4.9	0.19	3.0	ug/L	1	5/7/2011 09:17 AM
Zinc	21	4.6	10	ug/L	1	5/7/2011 09:17 AM
DISSOLVED METALS BY ICP	i					
	EPA 3010A		EPA	A 6010B		
RuniD: ICP1_110509A	QC Batch: 3	6858		PrepDate:	5/7/2011	1 Analyst: KAB
Calcium	89	0.12	0.50	mg/L	1	5/9/2011 12:53 PM
Magnesium	12	0.0063	0.10	mg/L	1	5/9/2011 12:53 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Date: 20-May-11

CLIENT: CH2M HILL Work Order: N005743

Project: PG&E Topock,405681.MP.02.GM.04

Sample ID: MB-36827 Client ID: PBW	SampType: MBLK Batch ID: 36827	_	Units: ug/L EPA 3010A	Prep Date: 5/4/2011 Analysis Date: 5/7/2011	RunNo: 79941 SeqNo: 1264333
Analyte	Result	PQL SPK value SPK	K Ref Val %REC	: LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	ND	50			0.1000000000000000000000000000000000000
Antimony	ND	10			
Barium	ND	3.0			
Beryllium	ND	1.0			
Boron	ND	100			
Cadmium	ND	3.0			
Cobalt	ND	3.0			
Copper	1.255	5,0			
Lead	ND	10			
Mołybdenum	2.624	5.0			
Nickel	ND	5.0			
Silver	ND	3.0			
Vanadium	ND	3.0			
Zinc	ND	10			
Sample ID: LCS-36827	SampType: LCS	TestCode: 6010 WDPG	Units: ua/L	Prep Date: 5/4/2011	RunNo: 79941

Sample ID: LCS-36827	SampType: LCS	TestCo	de: 6010_WD I	PG Units: ug/L		Prep Da	te: 5/4/201	11	RunNo: 79	941	
Client ID: LCSW	Batch ID: 36827	Testi	No: EPA 6010	B EPA 3010A		Analysis Da	te: 5/7/201	11	SeqNo: 12	64334	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	9958.321	50	10000	0	99.6	85	115				
Antimony	484.795	10	500.0	0	97.0	85	115				
Barium	503,589	3.0	500.0	0	101	85	115				
Beryllium	485.619	1,0	500.0	0	97.1	85	115				
Boron	4753.587	100	5000	0	95.1	85	115				
Cadmium	491.979	3.0	500.0	0	98.4	85	115				
Cobalt	502.844	3.0	500.0	0	101	85	115				
Copper	512.870	5.0	500.0	0	103	85	115				
Lead	493.614	10	500.0	0	98.7	85	115				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: LCS-36827	SampType: LCS	TestCo	de: 6010_WDPG	G Units: ug/L		Prep Dat	e: 5/4/201	1	RunNo: 79 5	941	
Client ID: LCSW	Batch ID: 36827	Test	No: EPA 6010B	EPA 3010A		Analysis Dat	te: 5/7/201	1	SeqNo: 12	64334	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Molybdenum	497,699	5.0	500.0	0	99.5	85	115				
Nickel	503.439	5.0	500.0	0	101	85	115				
Silver	488.807	3.0	500.0	0	97.8	85	115				
Vanadium	500.005	3.0	500.0	0	100	85	115				
Zinc	491.236	10	500.0	0	98.2	85	115				
Sample ID: N005743-001 B -MS	SampType: MS	TestCod	de: 6010_WDPG	Units: ug/L		Prep Dat	e: 5/4/201	1	RunNo: 799	941	
Client ID: ZZZZZZ	Batch ID: 36827	TestN	√o: E PA 6010B	EPA 3010A		Analysis Dat	e: 5/7/201	1	SeqNo: 126	64340	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vai	%RPD	RPDLimit	Qual
Aluminum	10030,832	50	10000	14.20	100	75	125				
Antimony	505.325	10	500.0	0	101	75	125				
Barium	531.628	3.0	500.0	30.10	100	7 5	125				
Beryllium	501,989	1.0	500.0	0	100	75	125				
Boron	5279,490	100	5000	310.3	99,4	75	125				
Cadmium	499,640	3.0	500.0	0	99.9	75	125				
Cobalt	508.407	3.0	500.0	0	102	75	125				
Copper	528.857	5.0	500.0	2.222	105	75	125				
Lead	491.826	10	500.0	1.990	98.0	75	1 2 5				
Molybdenum	521.922	5.0	500.0	12.70	102	75	125				
Nickel	519.573	5.0	500.0	2.4 4 0	103	75	125				
Silver	504.873	3.0	500.0	0	101	75	125				
Vanadium	555,641	3.0	500.0	35.14	104	75	125				
Zînc	506.896	10	500.0	6.37 3	100	75	125		_		
Sample ID: N005743-001B-MSD	SampType: MSD	TestCod	le: 6010_WDPG	Units: ug/L		Prep Date	e: 5/4/201	1	RunNo: 799	141	
Client ID: ZZZZZZ	Batch ID: 36827	TestN	lo: EPA 6010B	EPA 3010A		Analysis Date	e: 5/7/20 1	1	SeqNo: 126	4341	
Analyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	10126.560	50	10000	14.20	101	75	125	10030	0.950	20	
				***************************************	***************************************			***************************************			

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005743-001B-MSD	SampType: MSD	TestCo	de: 6010_WD I	PG Units: ug/L		Prep Da	te: 5 /4/201	11	RunNo: 79 9	941	
Client ID: ZZZZZZ	Batch ID: 36827	Test	No: E PA 6010	B EPA 3010A		Analysis Da	te: 5/ 7/201	11	SeqNo: 12 (64341	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	512.886	10	500.0	0	103	75	125	505.3	1.49	20	
Barium	536.960	3.0	500.0	30.10	101	75	125	531.6	0.998	20	
Beryllium	501.293	1.0	500.0	0	100	75	125	502.0	0.139	20	
Boron	5316.669	100	5000	310.3	100	75	125	5279	0.702	20	
Cadmium	503.435	3.0	500.0	0	101	75	125	499.6	0.757	20	
Cobalt	514.680	3.0	500.0	0	103	75	125	508.4	1.23	20	
Copper	5 3 2.041	5.0	500.0	2.222	106	75	125	528.9	0.600	20	
Lead	498.766	10	500.0	1,990	99.4	75	125	491.8	1,40	20	
Molybdenum	528,563	5.0	500.0	12.70	103	75	125	521.9	1.26	20	
Nickel	523.856	5.0	500.0	2,440	104	75	125	519.6	0.821	20	
Silver	509.186	3.0	500.0	0	102	75	125	504.9	0,851	20	
Vanadium	560.984	3.0	500.0	35,14	105	75	125	555,6	0.957	20	
Zinc	507.245	10	500.0	6. 3 73	100	75	125	506.9	0.0689	20	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: MB-36858	SampType: MBLK	TestCode: 6010_WDPG Units: ug/L	Prep Date: 5/7/2011	RunNo: 79956
Client ID: PBW	Batch ID: 36858	TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/9/2011	SeqNo: 1264799
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
fron	ND	20		
Manganese	ND	10		
Sample ID: LCS-36858	SampType: LCS	TestCode: 6010_WDPG Units: ug/L	Prep Date: 5/7/2011	RunNo: 79956
Client ID: LCSW	Batch ID: 36858	TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/9/2011	SeqNo: 1264800
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Iron	9870.875	20 10000 0	98.7 85 115	
Manganese	9 9 3.560	10 1000 0	99.4 85 115	
Sample ID: N005743-001B-MS	SampType: MS	TestCode: 6010_WDPG Units: ug/L	Prep Date: 5/7/2011	RunNo: 79956
Sample ID: N005743-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36858	TestCode: 6010_WDPG Units: ug/L TestNo: EPA 6010B EPA 3010A	Prep Date: 5/7/2011 Analysis Date: 5/9/2011	RunNo: 79956 SeqNo: 1264803
•		- =		
Client ID: ZZZZZZ	Batch ID: 36858	TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/9/2011	SeqNo: 1264803
Client ID: ZZZZZZZ	Batch ID: 36858 Result	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1264803
Client ID: ZZZZZZ Analyte Iron	Batch ID: 36858 Result 9900.496 964, 6 66	TestNo: EPA 6010B	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 98.7 75 125	SeqNo: 1264803
Client ID: ZZZZZZ Analyte Iron Manganese	Batch ID: 36858 Result 9900.496 964, 6 66	TestNo: EPA 6010B	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 98.7 75 125 96.5 75 125	SeqNo: 1264803 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Iron Manganese Sample ID: N005743-001B-MSD	Batch ID: 36858 Result 9900,496 964,666 SampType: MSD	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 20 10000 30.42 10 1000 0 TestCode: 6010_WDPG Units: ug/L	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 98.7 75 125 96.5 75 125 Prep Date: 5/7/2011	SeqNo: 1264803 %RPD RPDLimit Qual RunNo: 79956
Client ID: ZZZZZZ Analyte Iron Manganese Sample ID: N005743-001B-MSD Client ID: ZZZZZZ	Batch ID: 36858 Result 9900,496 964,666 SampType: MSD Batch ID: 36858	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 20 10000 30.42 10 1000 0 TestCode: 6010_WDPG Units: ug/L TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 98.7 75 125 96.5 75 125 Prep Date: 5/7/2011 Analysis Date: 5/9/2011	SeqNo: 1264803 %RPD RPDLimit Qual RunNo: 79956 SeqNo: 1264804
Client ID: ZZZZZZ Analyte Iron Manganese Sample ID: N005743-001B-MSD Client ID: ZZZZZZ Analyte	Batch ID: 36858 Result 9900.496 964.666 SampType: MSD Batch ID: 36858 Result	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 20 10000 30.42 10 1000 0 TestCode: 6010_WDPG Units: ug/L TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 98.7 75 125 96.5 75 125 Prep Date: 5/7/2011 Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1264803 %RPD RPDLimit Qual RunNo: 79956 SeqNo: 1264804 %RPD RPDLimit Qual

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPM

Sample ID: MB-36858 Client ID: PBW	SampType: MBLK Batch ID: 36858	TestCode: 6010_WDPG Units: mg/L TestNo: EPA 6010B EPA 3010A	Prep Date: 5/7/2011 Analysis Date: 5/9/2011	RunNo: 79956 SeqNo: 1268692
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Calcium	ND	0.50		-
Magnesium	ND	0.10		
Sample ID: LCS-36858	SampType: LCS	TestCode: 6010_WDPG Units: mg/L	Prep Date: 5/7/2011	RunNo: 79956
Client ID: LCSW	Batch ID: 36858	TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/9/2011	SeqNo: 1268693
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Calcium	9.688	0.50 10.00 0	96.9 85 115	
Magnesium	9.755	0.10 10.00 0	97.6 85 115	
				······································
Sample ID: N005743-001B-MS	SampType: MS	TestCode: 6010_WDPG Units: mg/L	Prep Date: 5/7/2011	RunNo: 79956
Sample ID: N005743-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36858	TestCode: 6010_WDPG Units: mg/L TestNo: EPA 6010B EPA 3010A	Prep Date: 5/7/2011 Analysis Date: 5/9/2011	RunNo: 79956 SeqNo: 1268696
			•	
Client ID: ZZZZZZ	Batch ID: 36858	TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/9/2011	SeqNo: 1268696
Client ID: ZZZZZZ Analyte	Batch ID: 36858 Result	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1268696
Client ID: ZZZZZZ Analyte Calcium	Batch ID: 36858 Result 37.052 14.450	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 27.85	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 92.1 75 125	SeqNo: 1268696
Client ID: ZZZZZZ Analyte Calcium Magnesium	Batch ID: 36858 Result 37.052 14.450	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 27.85 0.10 10.00 5.004	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 92.1 75 125 94.5 75 125	SeqNo: 1268696 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Calcium Magnesium Sample ID: N005743-001B-MSD	Batch ID: 36858 Result 37.052 14.450 SampType: MSD	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 27.85 0.10 10.00 5.004 TestCode: 6010_WDPG Units: mg/L	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 92.1 75 125 94.5 75 125 Prep Date: 5/7/2011	SeqNo: 1268696 %RPD RPDLimit Qual RunNo: 79956
Client ID: ZZZZZZ Analyte Calcium Magnesium Sample ID: N005743-001B-MSD Client ID: ZZZZZZ	Batch ID: 36858 Result 37.052 14.450 SampType: MSD Batch ID: 36858	TestNo: EPA 6010B EPA 3010A PQL SPK value SPK Ref Val 0.50 10.00 27.85 0.10 10.00 5.004 TestCode: 6010_WDPG Units: mg/L TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/9/2011 %REC LowLimit HighLimit RPD Ref Val 92.1 75 125 94.5 75 125 Prep Date: 5/7/2011 Analysis Date: 5/9/2011	SeqNo: 1268696 %RPD RPDLimit Qual RunNo: 79956 SeqNo: 1268697

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

gy Laboratories, Inc. Print Date: 20-May-11

CLIENT: CH2M HILL Client Sample ID: MW-16-177

Lab Order: N005743 **Collection Date:** 5/2/2011 2:59:00 PM

Project: PG&E Topock,405681.MP.02.GM.04 Matrix: WATER

Lab ID: N005743-001

Analyses	Result	MDL	PQL Qual	Units	DF D	ate Analyzed
DISSOLVED METALS BY I	CP-MS					
	EPA 3010A		EPA	6020		
RunID: ICP7_110505B	QC Batch: 368	31		PrepDate:	5/4/2011	Analyst: JT
Arsenic	10	0.0025	0.10	μg/L	1	5/5/2011 06:26 PM
Selenium	1.6	0.29	0.50	μg/L	1	5/5/2011 06:26 PM
Thallium	ND	0.015	0.50	μg/L	1	5/5/2011 06: 2 6 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-17-177

Lab Order:

N005743

Collection Date: 5/3/2011 1:16:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-002

Analyses	Result	MDL	PQL Qual	Units	DF I	Date Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EP#	6020		
RunID: ICP7_110505B	QC Batch: 368	331		PrepDate:	5/4/2011	Analyst: JT
Arsenic	1.3	0.0025	0.10	μg/L	1	5/5/2011 07:10 PM
Selenium	11	0.29	0.50	μg/L	1	5/5/2011 07:10 PM
Thalfium	ND	0.015	0.50	μg/L	1	5/5/2011 07:10 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005743

Project: Lab ID: 14005745

PG&E Topock,405681.MP.02.GM.04

N005743-003

Client Sample ID: MW-28-025-177

Collection Date: 5/2/2011 11:32:00 AM

Matrix: WATER

PrepDate:

Analyses Result MDL PQL Qual Units DF Date Analyzed

0.0025

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RunID: ICP7_110505E

Arsenic

QC Batch: 36831

2.0

0.10

5/4/2011 Analyst: JT

μg/L 1 5/5/2011 07:20 PM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-28-090-177

Lab Order:

N005743

Collection Date: 5/2/2011 12:26:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-004

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed
DISSOLVED ICP-MS METALS						-

EPA 3010A

EPA 6020

RuniD: ICP7_110505E

QC Batch: 36831

PrepDate:

5/4/2011 Analyst: JT

Arsenic

2.0 0.0025

0.10

μg/L

5/5/2011 07:30 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- $\mathbf{E} = \mathbf{Value}$ above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-005

1999

Print Date: 20-May-11

Client Sample ID: MW-30-030-177
Collection Date: 5/3/2011 1:22:00 PM

Matrix: WATER

Analyses	Result MDL	PQL Qual Units	DF Date Analyzed
DISSOLVED METALS BY ICE	P-MS		
	EPA 3010A	EPA 6020	
RunID: ICP7_110505B	QC Batch: 36831	PrepDate:	5/4/2011 Analyst: JT
Molybdenum	24 0.24	2.5 μg/L	5 5/5/2011 07:44 PM
Selenium	ND 1.4	2.5 μg/L	5 5/5/2011 07:44 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-32-035-177

Lab Order:

N005743

Collection Date: 5/2/2011 1:51:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

N005743-006 Lab ID:

Analyses	Result	MDL P	PQL Qual	Units	DF _	Date Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EPA	\ 6020		
RunID; ICP7_110505B	QC Batch: 3683	31		PrepDate:	5/4/201	1 Analyst: JT
Arsenic Manganese	26 2200	0.0025 1.8	0.10 10	μg/L μg/L	1 20	5/5/2011 07:49 PM 5/6/2011 08:44 AM

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range E
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-33-040-177

Lab Order:

N005743

Collection Date: 5/2/2011 3:06:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005743-007

DF PQL Qual Units Date Analyzed

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RuniD: ICP7_110505E

QC Batch: 36831

Result MDL

PrepDate:

5/4/2011 Analyst: JT

Arsenic

19 0.0025

0.10

μg/L

5/5/2011 08:13 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-36-090-177

Print Date: 20-May-11

DF

Lab Order:

N005743

Collection Date: 5/2/2011 3:05:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005743-008

PQL Qual Units

Date Analyzed

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RunID: ICP7_110505E

QC Batch: 36831

PrepDate:

5/4/2011 Analyst: **JT**

Arsenic

19 0.0025

Result MDL

0.10

μg/L

5/5/2011 08:23 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range Ε

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Lab Order:

N005743

Client Sample ID: MW-36-100-177

Collection Date: 5/3/2011 2:12:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-009

Analyses	Result	MDL F	QL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY I	CP-MS					
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110505B	QC Batch: 36	331		PrepDate:	5/4/201	1 Analyst: JT
Arsenic	6.3	0.0025	0.10	μg/L	1	5/5/2011 08:33 PM
Manganese	75	0.091	0.50	μg/L	1	5/5/2011 08:33 PM
Molybdenum	42	0.047	0.50	μg/L	1	5/5/2011 08:33 PM
Seleníum	0.77	0.29	0.50	μg/L	1	5/5/2011 08:33 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

Arsenic

CH2M HILL

Lab Order:

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-011

-

Print Date: 20-May-11

Client Sample ID: MW-44-070-177
Collection Date: 5/3/2011 9:25:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

0.0025

DISSOLVED ICP-MS METALS

EPA 3010A

EPA 6020

RunID: ICP7_110505E

QC Batch: 36831

3.3

0.10

PrepDate: 5/4/2011 Analyst: JT

μg/L 1 5/5/2011 08:**4**3 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-44-115-177

Lab Order:

N005743

Collection Date: 5/3/2011 10:01:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-012

Analyses	Result	MDL	PQL Qual	Units	DF I	Date Analyzed
DISSOLVED METALS BY I	CP-MS					
	EPA 3010A		EPA	A 6020		
RuniD: ICP7_110505B	QC Batch: 368	831		PrepDate:	5/4/2011	Analyst: JT
Arsenic	5.6	0.0025	0.10	μg/L	1	5/5/2011 08:52 PM
Manganese	5.2	0.091	0.50	μg/L	1	5/5/2011 08:52 PM
Molybdenum	83	0.24	2.5	μg/L	5	5/5/2011 09:12 PM
Selenium	ND	1.4	2.5	μg/L	5	5/5/2011 09:12 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-44-125-177

Lab Order:

N005743

Collection Date: 5/3/2011 12:18:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-013

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EPA	6020		
RunID: ICP7_110505B	QC Batch: 368	31		PrepDate:	5/4/20	11 Analyst: JT
Arsenic	3.7	0.0025	0.10	µg/L	1	5/5/2011 09:17 PM
Manganese	480	0.46	2.5	μg/L	5	5/5/2011 09:21 PM
Molybdenum	83	0.047	0.50	μg/L	1	5/5/2011 09:17 PM
Selenium	0.81	0.29	0.50	μg/L	1	5/5/2011 09:17 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-46-175-177

Lab Order:

N005743

Collection Date: 5/3/2011 4:06:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-014

Analyses	Result MDL	PQL Qual Units	DF Date Analyzed
DISSOLVED METALS BY IC	CP-MS		
	EPA 3010A	EPA 6020	
RuniD: 1CP7_110505B	QC Batch: 36831	PrepDate:	5/4/2011 Analyst: J T
Molybdenum	170 0.24	2.5 μg/L	5 5/5/2011 09:31 PM
Seleníum	2.9 1.4	2.5 μg/L	5 5/5/2011 09:31 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-57-185-177

Lab Order:

N005743

Collection Date: 5/3/2011 11:46:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-016

Analyses	Result	MDL	PQL Qual	Units	DF 1	Date Analyzed
DISSOLVED METALS BY I	CP-MS		"			
	EPA 3010A		EPA	A 6020		
RuniD: ICP7_110505B	QC Batch: 36	831		PrepDate:	5/4/201	1 Analyst: JT
Arsenic	12	0.0025	0.10	μg/L	1	5/5/2011 09:36 PM
Manganese	540	0.46	2.5	μg/L	5	5/5/2011 09:41 PM
Molybdenum	88	0.24	2.5	μg/L	5	5/5/2011 09:41 PM
Selenium	3.3	1.4	2.5	μg/L	5	5/5/2011 09:41 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-63-065-177

Print Date: 20-May-11

Lab Order:

N005743

Collection Date: 5/3/2011 9:12:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-017

Analyses	Result	MDL P	QL Qual	Units	DF]	Date Analyzed
DISSOLVED METALS BY I	CP-MS					_
	EPA 3010A		EPA	A 6020		
RuniD: ICP7_110505B	QC Batch: 368:	31		PrepDate:	5/4/201	1 Analyst: JT
Arsenic	1.6	0.0025	0.10	μg/L	1	5/5/2011 09:46 PM
Manganese	43	0.091	0.50	μg/L	1	5/5/2011 09:46 PM
Molybdenum	27	0.047	0.50	μg/L	1	5/5/2011 09:46 PM
Selenium	1.8	0.29	0.50	μg/L	1	5/5/2011 09:46 PM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

ories, Inc. Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-95-177

Lab Order:

N005743

Collection Date: 5/3/2011 11:52:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-018

Analyses	Result	MDL PQ	L Qual	Units	DF 1	Date Analyzed
DISSOLVED METALS BY I	CP-MS					
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110505B	QC Batch: 368	31		PrepDate:	5/4/201	1 Analyst: JT
Arsenic	3.4	0.0025	0.10	μg/L	1	5/5/2011 09:56 PM
Manganese	750	0.46	2.5	μg/L	5	5/5/2011 10:15 PM
Malybdenum	130	0.24	2.5	μg/L	5	5/5/2011 10:15 PM
Selenium	ND	1.4	2.5	μg/L	5	5/5/2011 10:15 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-96-177

Lab Order:

N005743

Collection Date: 5/3/2011 3:53:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005743-019

		DOT 0 1 77	• .	
Analyses	Result MDL	PQL Qual Un	its	DF Date Analyzed
DISSOLVED METALS BY IC	P-MS			
	EPA 3010A	EPA 60)20	
RunID: ICP7_110505B	QC Batch: 36831		PrepDate:	5/4/2011 Analyst: JT
Molybdenum	170 0.24	2.5	µg/L	5 5/5/2011 10:25 PM
Selenium	4.9 1.4	2.5	μg/L	5 5/5/2011 10:25 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 20-May-11

CLIENT:

CH2M HILL

Work Order:

N005743

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: MB-36831	SampType: MBLK	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/4/2011	RunNo: 80091
Client ID: PBW	Batch ID: 36831	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1268935
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Arsenic	0.020	0.10			
Manganese	0.368	0.50			
Molybdenum	0.123	0.50			
Selenium	ND	0.50			
Thallium	0.031	0.50			
Sample ID: LCS-36831	SampType: LCS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/4/2011	RunNo: 80091
Client ID: LCSW	Batch ID: 36831	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1268936
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Arsenic	10.009	0.10 10.00	0	100 85 115	
Manganese	107.008	0.50 100.0	0	107 85 115	
Molybdenum	10.057	0.50 10.00	0	101 85 115	
Selenium	9.754	0.50 10.00	0	97.5 85 115	
Thallium	10.175	0.50 10.00	0	102 85 115	
Sample ID: N005743-001B-MS	SampType: MS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/4/2011	RunNo: 80091
Client ID: ZZZZZZ	Batch ID: 36831	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1268941
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Arsenic	20.461	0.10 10.00	10.29	102 75 125	
Manganese	101.028	0.50 100.0	1.226	99.8 75 125	
Molybdenum	23 .130	0.50 10.00	12. 3 6	108 75 125	
Selenium	10.828	0.50 10.00	1.635	91.9 75 125	
Thallium	10.374	0.50 10.00	0.06034	103 75 125	

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits
Calculations are based on raw values

S Spike/Surrogate outside of limits due to matrix interference

H Holding times for preparation or analysis exceeded

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: N005743-001B-MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: 36831	· · · · · · · · · · · · · · · · · · ·				•	te: 5/4/201	RunNo: 800								
Client ID: ZZZZZZ	Batch 1D. 30831	1650	NO: EPA 6020	EPA 3010 A		Analysis Dat	te: 5/5/201	13	SeqNo: 1268942							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual					
Arsenic	20.647	0.10	10.00	10.29	104	75	125	20.46	0.904	20						
Manganese	102.723	0.50	100.0	1.226	101	75	125	101.0	1.66	20						
Molybdenum	23,386	0.50	10.00	12.36	110	75	125	23.13	1.10	20						
Selenium	10.839	0.50	10.00	1,635	92.0	75	125	10.83	0.0961	20						
Thallium	10.476	0.50	10.00	0.06034	104	75	125	10.37	0.987	20						

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WD_AsPGE

Sample ID: MB-36831	SampType: MBLK	TestCode: 6020_WD_As Units: µg/L	Prep Date: 5/4/2011	RunNo: 80094
Client ID: PBW	Batch ID: 36831	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1269058
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	0.020	0.10		
Sample ID: LCS-36831	SampType: LCS	TestCode: 6020_WD_As Units: μg/L	Prep Date: 5/4/2011	RunNo: 80094
Client ID: LCSW	Batch ID: 36831	TestNo: EPA 6020 EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1269059
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	10,009	0.10 10.00 0	100 85 115	
Sample ID: N005743-001B-MS	SampType: MS	TestCode: 6020_WD_As Units: μg/L	Prep Date: 5/4/2011	RunNo: 80094
Sample ID: N005743-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36831	1111		RunNo: 80094 SeqNo: 1269064
	. 37	TestCode: 6020_WD_As Units: µg/L	Prep Date: 5/4/2011	
Client ID: ZZZZZZ	Batch ID: 36831	TestCode: 6020_WD_As Units: μg/L TestNo: EPA 6020 EPA 3010A	Prep Date: 5/4/2011 Analysis Date: 5/5/2011	SeqNo: 1269064
Client ID: ZZZZZZ Analyte	Batch ID: 36831 Result	TestCode: 6020_WD_As Units: µg/L TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val	Prep Date: 5/4/2011 Analysis Date: 5/5/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1269064
Client ID: ZZZZZZ Analyte Arsenic	Batch ID: 36831 Result 20.461	TestCode: 6020_WD_As Units: μg/L TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.10 10.00 10.29	Prep Date: 5/4/2011 Analysis Date: 5/5/2011 %REC LowLimit HighLimit RPD Ref Val 102 75 125	SeqNo: 1269064 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Arsenic Sample ID: N005743-001B-MSD	Batch ID: 36831 Result 20.461 SampType: MSD	TestCode: 6020_WD_As Units: μg/L TestNo: EPA 6020 EPA 3010A PQL SPK value SPK Ref Val 0.10 10.00 10.29 TestCode: 6020_WD_As Units: μg/L	Prep Date: 5/4/2011 Analysis Date: 5/5/2011 %REC LowLimit HighLimit RPD Ref Val 102 75 125 Prep Date: 5/4/2011	SeqNo: 1269064 %RPD RPDLimit Qual RunNo: 80094

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-16-177

Lab Order:

N005743

Collection Date: 5/2/2011 2:59:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005743-001

DF Qual Units Date Analyzed

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE

EPA 7470A

RuniD: AA1_110505A

QC Batch: 36835

Result MDL

PQL

PrepDate:

5/5/2011 Analyst: CEI

Mercury

ND 0.091

0.20

μg/L

5/5/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005743

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005743-002

Client Sample ID: MW-17-177

Collection Date: 5/3/2011 1:16:00 PM

Matrix: WATER

DF Result MDL Qual Units Date Analyzed PQL Analyses

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE

EPA 7470A

RunID: AA1_110505A

QC Batch: 36835

PrepDate:

5/5/2011 Analyst: CEI

Mercury

ND 0.091 0.20

μg/L

1

5/5/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- \mathbf{S} Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005743

Project: PG&E Topock,405681.MP.02.GM.04

Date: 20-May-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 7470_W_DISSPGE

Sample ID: LCS-36835	SampType: LCS	TestCode: 7470_W_DIS Units: μg/L	Prep Date: 5/5/2011	RunNo: 79969
Client ID: LCSW	Batch ID: 36835	TestNo: EPA 7470A	Analysis Date: 5/5/2011	SeqNo: 1264966
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	10.183	0.20 10.00 0	102 85 115	
Sample ID: MB-36835	SатрТуре: МВLК	TestCode: 7470_W_DIS Units: µg/L	Prep Date: 5/5/2011	RunNo: 7996 9
Client ID: PBW	Batch ID: 36835	TestNo: EPA 7470A	Analysis Date: 5/5/2011	SeqNo: 1264967
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.20		
Sample ID: N005743-001B-MS	SampType: MS	TestCode: 7470_W_DIS Units: µg/L	Prep Date: 5/5/2011	RunNo: 79969
Sample ID: N005743-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36835	TestCode: 7470_W_DIS Units: µg/L TestNo: EPA 7470A	Prep Date: 5/5/2011 Analysis Date: 5/5/2011	RunNo: 79969 SeqNo: 1264969
	, ,.		•	
Client ID: ZZZZZZ	Batch ID: 36835	TestNo: EPA 7470A	Analysis Date: 5/5/2011	SeqNo: 1264969
Client ID: ZZZZZZ Analyte	Batch ID: 36835 Result 19.270	TestNo: EPA 7470A PQL SPK value SPK Ref Val	Analysis Date: 5/5/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1264969
Client ID: ZZZZZZ Analyte Mercury	Batch ID: 36835 Result 19.270	TestNo: EPA 7470A PQL SPK value SPK Ref Val 0.20 20.00 0	Analysis Date: 5/5/2011 %REC LowLimit HighLimit RPD Ref Val 96.3 75 125	SeqNo: 1264969 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Mercury Sample ID: N005743-001B-MSD	Batch ID: 36835 Result 19.270 SampType: MSD	TestNo: EPA 7470A PQL SPK value SPK Ref Val 0.20 20.00 0 0 TestCode: 7470_W_DIS Units: μg/L	Analysis Date: 5/5/2011 %REC LowLimit HighLimit RPD Ref Val 96.3 75 125 Prep Date: 5/5/2011	SeqNo: 1264969 %RPD RPDLimit Qual RunNo: 79969
Client ID: ZZZZZZ Analyte Mercury Sample ID: N005743-001B-MSD Client ID: ZZZZZZ	Batch ID: 36835 Result 19.270 SampType: MSD Batch ID: 36835	TestNo: EPA 7470A PQL SPK value SPK Ref Val 0.20 20.00 0 TestCode: 7470_W_DIS Units: μg/L TestNo: EPA 7470A	Analysis Date: 5/5/2011 %REC LowLimit HighLimit RPD Ref Val 96.3 75 125 Prep Date: 5/5/2011 Analysis Date: 5/5/2011	SeqNo: 1264969 %RPD RPDLimit Qual RunNo: 79969 SeqNo: 1264970

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Chain of Custody F	Record COC Number: 5		CH	2 F	W	HIL	L	5/3	/2011	4:32	:38 /	PM	Pa	age 1	1 of 7							
Project Name PG&E Topock Task Order Proj Project Number 405681.MR Project Manager Jay Piper Sample Manager Shawn Dul Turnaround Time 10 Days PO Number 405681.MP.02	ect: 2011-GMP-177-Q2 P.02.GM.04 Ty	rix # Containers Prese	Arsen(C	E120.1	E300.0	SW6010B/SW6020A					The second secon	- 1 = 1444-144-1444-1444-144-144-144-144-144-		, , ,						a m		
MW-16-177	02-May-11 14:59 N Wa	ter			<u>.</u>	-	ĺ				- - :			1					i		N60274	13-1
	Field Fil	ened: 1 4°C						П) _i [ם!ֶׁב	$\mathbb{J}_{\mathbb{L}}$];C				٦jC				r
Bkg:AISbAsBaBeBCaCdCoCuFeP	bMgMnHgMcNiSeAgTNZn Field Fil	ered: 🚺 1 HNO3, 4°	c [C) 🗀		V][] [] 🗆		•	
annament v	T	otal Containers: 2			ĺ	1]	***************************************	Ĺ	:			1					_j			
MW-17-177	03-May-11 13:16 N Wa	ter		i									Ì			Ŧ				*		← 2
	Field Fil	ered{ 1 4°C					$\Box_{i}\Box$	\Box		عار	ַם כֿ	٦Įc	JE		lįΰ			$\exists_i \Box$				
Bkg:AlSbAsBaBeBCaCdCoCuFeP	oMgMnHgMcNiSeAgTIVZn Field Fil	ered 1 HNO3, 4°0	c [V					3 [ŢĽ] 🗆									
V 2000 27 AND 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		etal Containers: 2								,		·		:		ŀ				:		
MW-28-025-177	02-May-11 11:32 N Wa	er				İ	1	1			[]	ĺ	į	ļ		Ì	Ĭ		Ì			-3
**************************************	Field Fil	ered 1 4°C	Ī	9			113] [[םונ			
The second secon	Field Fill	ered: ✓ 1 HNO3, 4°0	c 🔽			\Box				JE	J C][ΙÜ	Ιį́Ο								
// / / / / / / / / / / / / / / / / / /	Te	tal Containers: 2	i -		<u> </u>		- T		· ·			T	-		1	ĺ		i		!		
MS = Matrix Spike SD = Ma	ntrix Spike Duplicate 7 Signatures Date/Time	Shippin	-	İs				MARKET SE AN OF S	·	A	 			į .			uctio			%		
Approved by Sampled by	1652	Method of Shipment:	cour	ier						A	און נ.	۱,		Apr	il 28	Мау	/ 13, 2	2011				
Relinquished by	017-11	On ice: yes / no							5	ampl	le Ci	usto	dy	ļ								
Received by	HMF- OGOSCIGSZ	Airbill No:	VED TE	NU KAZ	11 0 4	O	! ለመሳ	7D 4			and			Rep	oort (Сору	to					
Relinquished by	· · · · · · · · · · · · · · · · · · ·	Lab Name: ADVANO Lab Phone: (702) 307		SHNC	7100	۱۲ی	LARC	JKA		M	lario	in				Sha	iyir D		ī			
Received by		Lad Priorie; (702) 307	7-2009											İ		(200)	229-	J J UJ	١			

Chain of Custody R	ecord COC Number: 5		CH	†2 ř	WH	4FL	L	5/3/2	011 4:	32:3t	B PM	·	Page	2 of	7			No. of processing					
Project Name PG&E Topock Task Order Proje Project Number 405581.MP Project Manager Jay Piper Sample Manager Shawn Duff Turnaround Time 10 Days PO Number 405681.MP.02.	ot: 2011-GMP-177-Q2 D2.GM.04 y GM.02		i	E120.1	£300.0	Y0209MS/80109MS	منأ		***	Automotive Control of the Control of	Commission of the commission o	The state of the s					,			STRANGER OF S & CHANGE WHEN THE STREET STREET STREET STREET STREET STREET			
Sample ID	Sample Date/Time Type Matrix #	Containers P	reserv		╬	<u> </u>	-			-	I			Ť	<u>.</u>	+	Ì		+		NOW	574	o) — (
MW-28-090-177	02-May-11 12:26 N Water		· · · · · · · · · · · · · · · · · · ·				<u> </u>			ŀ		\exists		\exists	7		7	1 [$+\Box !$				
	Field Filtered:					-3	erd Print And							I.w	.,		L	-		40-10***		٠	
		ontainers:	2	- 1	ر. س	1		. <u> </u>				_		Ì		= =	T		1=1	1			
in the second se	make a process of the contract of the cont	Jillanigia.				.ـــدار د	 1	<u> </u>		i				1	-, . l	: 			. السياد ا	*			~_Z
MW-30-030-177	03-May-11 13:22 N Water Field Filtered	 7 1 4	°C [đΘ	1]				! 	<u>'</u> T:f	7/5	٦F	-! 7.r	ה הוור		-i			
Nitrate	Field Filtered:		ggerm 1		T 4-0-			IE		1.0000	0.00 N CHO												
Mo,Se		ontainers:	2		1	;													1	-			
Proteinmontainmonthing delicement const.	A STATE OF THE STA	//**********************************			ļ.	1	1	!! i		1		·					Ļ Î		¦				. (
MW-32-035-177	02-May-11 13:51 N Water Field Filtered		*c		!] 🗆	in	İ	' . □	- <u>'</u> -	ilmi		лÌі	<u> </u>	7/[jl.	عاد		ا ا					0
Minimum community to the control of	Field Filtered:		/""·	7)[]		4		10000				 [_];	 			_] [][]					
WALL TO SERVE THE SERVE TH	Field Filtered:		3,4°C].c			ے ار		Ji			
Ma		ontainers:	3	_ _	+					Ţ	!	- -}	-		Ŧ			1	- +	-			
The second state of the se	Utd.			٠٠٠است		د در دا	.l	ļ <u>.</u>]_			b - 200		1.					".l., . <u>.</u>		- marin Ja			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						·									· —						
MS = Matrix Spike SD = Ma	trix Spike Duplicate / Signatures Date/Time	 Sh	ipping Deb	ails	-								Ş	pec	ial I	nstru	ıctia	ns:					
Approved by	5-3-11 m	ethod of Shipn	•	urier						ΑT	TN:		p	φril :	28 -	May	13, 7	2011					
Sampled by	//	nice: yes/i							Sa	a mple	Cus	tody	j										İ
Relinquished by		rbill No:						i		-	nd	ŕ		2	.d C	ору І	ło.						
Received by Relinquished by	La Company	ib Name: AD\	ANCED TO	ECHN	IO LO	ΟGΥ	LAB	ORA		Ma	arlon		1	(epo		Shar	wn D						
Received by	LE	b Phone: (702	2) 307-2659	•				į	;				İ		(530}	229-	3303	i				

cord cod	Numbe	∉ 5		•	CH	2N	ЛН	ILL	. 5	/3/20	114	32:3	8 PA	1	Pag	e 3	of 7							
t: 2011-GMP-177 12.GM.04 M.02	/-Q2				Arsenic	E120.1	E300.0	SW6010B/SW6020A	3460203FF	Carallel Market		· · · · · · · · · · · · · · · · · · ·	The state of the s						AND THE PROPERTY OF THE PROPER	· · · · · · · · · · · · · · · · · · ·	Li Li de communicación de la company de comp			٠
			# Contai	iners Preserv		<u> </u>		1		_	-	╂	<u> </u>	ļ			_	-		+			- VART	7311
02-May-11	15:D6				i.	-			- ¦-	- :	1 -	<u> </u>		┞				[] i	_	- - r	-1/-	1./7	 13602	.7/4-
	id words tar come						1 1			i				÷	L		Ł.	1			-0.00	* E a . was ro		
		.,						<u> </u>	- -	- -	ــا لـ ا		'] [] 			<u>트리</u>	늬		1 	<u> </u>	1	J LJ		
	·		Contain	ers: Z	<u> </u>	. .	ļi		<u>-</u>		ans, Longweite	<u>.</u>		<u>!</u>				· · ·				nd. odnikovanica (1400	İ	(
02-May-11	15:05				_ _	i Virsi				<u> </u>	<u> </u> 	 							r	<u>;</u> 	7.6	רו ר	-	
management - 190 injuries have been blocked to the		***				. 1					L	1	.1	I	b- wegener = 7				TOTAL CONTRACTOR		- -		- The state of the	
A 400 HIMSEY 77 1 A 400 HIMSE 147					Y				ᆛ	45	J L				ב	Ч	L-3	יוט		71	_ -		£	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	No. of ages of All and another conference on the	Containe	ers: 2	عطوم	<u> </u>				<u> </u>		ļ		ļ	, ,,			_		-	. <u>.</u> Ļ.		<u> </u>	9
03-May-11	14:12		.53		[-			<u>_</u>	_ -	3 1-	1 6	 		ĺъ	<u> </u>				-	- -	- -	7	Ĺ	ļ
yer we	عمونديين	Carried Marketine Control of the Con		COMMUNICATION CONTRACTOR OF THE CONTRACTOR OF TH		1	1 1		{	- 1		4	1	I		. 1		- 1						
				Last abdominion			- www		4.000	ca.om		= 1.00000			AUAUUUUV					www.married.htm	A ANGE			
					_ <u> </u> L_			믜		ᆜᆫ	11-			Ш			!		<u> </u>			تال		
	- n.m. 175,1600 - 52,57	Total	Contain	ers: 3							Ed ment	<u></u>	<u> </u>			ļ				, . <u></u>			ĺ	
rix Spike Duplica Signatures	D	ate/Time	300000004999999444000000000000000000000	Shipping					- 1-0-1-0-1-1			A1	ITN:		- 1	-								
				•	Coul	ier							_		1	₩IJ	20 -	·rvia	r i 3,	201	•			
			On ice:	ves / no							Sa	mpk	e Cu	stod	1									
				-											- 1									
Told	asjuz	01652	Airbill No	-	D TEC	CHNC	OLOG	Y LA	MBOR	ı,			and arlon			Rep	or t C			Duffy				
	Location t: 2011-GMP-177 2.GM.04 M.02 Sample Dat 02-May-11 03-May-11	Location Topock t: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time 02-May-11 15:06 03-May-11 14:12 rix Spike Duplicate Signatures D	Location Topock 1: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time Type Matrix 02-May-11 15:06 N Water Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere Field Filtere	Location Topock 1: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time Type Matrix # Conta 02-May-11 15:06 N Water Field Filtered: 1 Total Contains 02-May-11 15:05 N Water Field Filtered: 1 Field Filtered: 1 Total Contains 03-May-11 14:12 N Water Field Filtered: 1 Field Filtered: 1 Field Filtered: 1 Total Contains 1 Total Contains 1 Total Contains 1 Total Contains 1 Total Contains 1 Total Contains 1 Total Contains 1 Total Contains 1 Total Contains	Location Topock 1: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time Type Matrix # Containers Preserv 02-May-11 15:06 N Water Field Filtered: 1 4°C Field Filtered: 1 HNO3, 4°C Total Containers: 2 02-May-11 15:05 N Water Field Filtered: 1 HNO3, 4°C Total Containers: 2 03-May-11 14:12 N Water Field Filtered: 1 4°C Field Filtered: 1 HNO3, 4°C Total Containers: 3 Field Filtered: 1 HNO3, 4°C Field Filtered: 1 HNO3, 4°C Field Filtered: 1 HNO3, 4°C Field Filtered: 3 HNO3, 4°C Field Filtered: 3 HNO3, 4°C Field Filtered: 5 HNO3, 4°C Field Filtered: 6 HNO3, 4°C Field Filtered: 7 HNO3, 4°C Field Filtered: 7 HNO3, 4°C Field Filtered: 7 HNO3, 4°C Field Filtered: 7 HNO3, 4°C Field Filtered: 7 HNO3, 4°C	Location Topock 1: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time Type Matrix # Containers Preserv 02-May-11 15:06 N Water Field Filtered: 1 4°C Field Filtered: 1 HN03, 4°C Total Containers: 2 02-May-11 15:05 N Water Field Filtered: 1 HN03, 4°C Field Filtered: 1 HN03, 4°C Total Containers: 2 03-May-11 14:12 N Water Field Filtered: 1 HN03, 4°C Field Filtered: 1 HN03, 4°C Field Filtered: 1 HN03, 4°C Field Filtered: 1 HN03, 4°C Field Filtered: 1 HN03, 4°C Field Filtered: 1 HN03, 4°C Field Filtered: 3 Shipping Details Total Containers: 3	Location Topock 1: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time Type Matrix #Containers Preserv 02-May-11 15:06 N Water Field Filtered: 1 4°C	Location Topock 1: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time Type Matrix # Containers Preserv 02-May-11 15:06 N Water Field Filtered: 1 4°C	Location Topock In: 2011-GMP-177-Q2 2.GM.04 M.02 Sample Date/Time Type Matrix # Containers Preserv O2-May-11 15:05 N Water Field Filtered: 1 4°C	Location Topock t: 2011-GMP-177-Q2 2. GM.04 M.02 Sample Date/Time Type Matrix #Containers Preserv 02-May-11 15:06 N Water Field Filtered: 1 4°C	Location Topock 2011-GMP-177-Q2 2.GM.04 3.000	Location Topock 2011-GMP-177-Q2 2.GM.04	Location Topock 1: 2011-GMP-177-Q2 2: GM.04 M.02 Sample Date/Time Type Matrix #Containers Preserv 02-May-11 15:06 N Water Field Filtered: 1 4*C	Location Topock 1	Location Topock 1	Location Topock 1	Location Topock 1	Location Topock :: 2011-GMP-177-Q2 2 GM.04 M.02 Sample Date/Time	Location Topock 1: 2011-GMP-177-Q2 2 GM.04 M.02 Sample Date/Time	Location Topock :: 2011-GMP-177-Q2 2 GM.04 M.02 Sample Date/Time Type Matrix #Containers Preserv 02-May-11 15:05 N Water Field Filtered: 1 4*C	Location Topock :: 2011-GMP-177-Q2 2 GM: 04 M.02 Sample Date/Time Type Matrix # Containers Preserv 02-May-11 15:05 N Water Field Filtered: 1 4*C	Location Topock 2011-GMP-177-Q2 2 GM.04	Location Topock :: 2011-GMP-177-Q2 2. GM.04 M.02 Sample Date/Time Type Matrix # Containers Preserv O2-May-11 15:05 N Water Field Filtered: 1 4°C	Location Topock 2 cold-GMP-177-Q2 2 cold

Chain of Custody I	Record COC Number	en: 5	C	:H:	2 F 4	ЛН	ĮL,	L	5/3/2	0114	:32:3	18 P	И	Pag	je 4	of 7						
Project Number 405681.M Project Manager Jay Piper Sample Manager Shawn Du Turnaround Time 10 Days PO Number 405681.MP.02	ect: 2011-GMP-177-Q2 P.02.GM.04 ffy s :.GM.02			Arsenic	E120.1	0,000	SW6010B/SW6020A	SW6020AFE					· bstrammanning.	C. C. C. C. C. C. C. C. C. C. C. C. C. C			- and an analysis of the state					
Sample ID MW-41D-177	O2-May-11 12:43	Type Matrix #Contain N Water	ers Preserv	+-		1	\dashv	1	-	+	<u></u>	÷	<u> </u>			_	1		_		-	NOUS743-10
		Field Filtered: 1	4°C		N					عار	ì	to		i I 🗆					<u>;</u> _	jic		· · · · · · · · · · · · · · · · · · ·
		Total Container	s: 1		i	<u>.</u>	L	i		. –		+	 i				<u>-</u> -	<u> </u>				
MW-44-070-177	03-May-11 9:25	N Water	mm , web in the received in the			CONTRACTOR STATES	ĺ		r were the	-	- I		-	 	ļ	Ī	~	t i		manadowene.	<u></u>	
		Field Filtered: 1	4ºC]'[٦¡C			Ī		Ü			عاد		JC		
	- White the state of the state	Field Filtered: 1	HNO3, 4°C							ם כ												
N. V V V V V		Total Container	s: 2							-	l		1	***************************************			i	i	Ī		-	
MW-44-115-177	03-May-11 10:01	N Water		Ī		manana and a Maria	i					ļ		~~=-	أ	. commercial in						
Nitrate		Field Filtered: 1	4°C		V] <u>_</u>	İΠ	$ \Box$			Δį			֓֞֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	֓֞֓֞֞֞֞֓֓֞֓֓֓֓֓֓֓֞֓֓֓֓֓֓֓֓֓֓֡֓֓֡֡֡֓֓֓֡֡֡֓֓֡֡֡֡֡֡	J¦O		
AND THE RESIDENCE OF THE STATE	gennman на г. т. т. д. С. у , у , у ц. ф. ф. д. д. в. т. т. т. т. т. т. т. ф. ф. ф. д. в. т. т. т. т. т. т. ф. ф. ф. ф. д. в. т. т. т. т. т. т. т. т. т. т. т. т. т.	Field Filtered: 1	HNO3, 4°C						ا را	JE	İΟ	$ \Box$		Πį				عاد	֓֞֞֞֞֞֓֞֞֞֓֓֞֓֓֓֓֓֓֓֓֓֓֡֓֡֓֡֓֡֡	310		
No,Se,Ma	, alak, ere agum, er e um er m. e	Field Fillered: ✓ 1	HNO3, 4°C				إٰت			٦¦٦		İ		\Box		ם נו	$\Box \hat{c}$		ם כ	ם כ		
		Total Container	s: 3			-	ĺ			<u> </u>		ĺ	{	Ī	Ī	7		Ţ-			Ī	

MS = Matrix Spike	SD = Maylix Spike Duplic	ate			
	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by		5-3-11	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by	10/0/1	1652	On ice: yes / no	Campolo Cuatado	
Relinquished by	11 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1			Sample Custody	
Received by	/mmOlf	5/3/10/652	Airbili No:	and	Report Copy to
Relinquished by			Lab Name: ADVANCED TECHNOLOGY LABORA	Marlon	Shawn Duffy
Received by		THE WAY I A THE PARTY OF THE PA	Lab Phone: (702) 307-2659		(630) 229-3303

Chain of Cus	tody Record	COC Numbe	r: 5			C	H	2	W	HIL	L	5/3,	2011	4:3.	2:38	PM	F	age	5 of 1	7							
Project Name PG& Task Order Project Number 4 Project Manager J Sample Manager S Turnaround Time PO Number 40566	Project: 2011-GMP- 05681.MP.02.GM.04 ay Piper hawn Duffy 10 Days 31.MP.02.GM.02						Arsenic	· I •	E300.0	SW6010B/SW6020A	SW6020AFE	A T T T T T T T T T T T T T T T T T T T						***************************************			The state of the s	The state of the s			Management () and the second of the second		
Sample ID	Sample	Date/Time	Type Matrix	# Cont	tainers	Preserv				F		-	! 		ļ					╆.	ļ				_	F2006	ila I
MW-44-125-177	03-May-	11 12:18	N Water							! 		\downarrow				_ .			-	1 .	1	,				1000 J	77-1
Nitrate		PARTING A DECEMBER	Field Fillerer	<u>:</u>	1	4°C		V		J:L		<u></u>			믜		L]			4				LJ: i		
and the second s			Field Filtere	i:🕢	1 H	NO3, 4°C	V										<u>ا ا</u> ر	. 1		<u> </u>			1 1				
Mo,Se,Ma	Leading Microsoft Control of the Con	wasses	Field Filtered	1: 🗸	1 }	1NO3, 4°C											Jį										
			Total	Contai	iners:	3				!	3			: 					.]	ACTONIO	ppinonenene e	<u> </u>	ļ <u>ļ</u>				14
MW-46-175-177	03- M ay-	11 16:06	N Water		<u> </u>		Ĭ			İ	Ì	: :		1		į		:	1	; 	Ì]	i				ı Į
Nitrate			Field Filtere	d:[1	4°C	įΩ	V) [)[C			$_{i}\Box $				
Mo,Se	See the second s	e y e eta antes Mistra Nation States	Field Filtere	1:[4]	1 F	NO3, 4°C][], [`□					
			Total	Contai	iners:	2		·- - ·- 		<u></u> {−	- -			 	ĺ	1				1	1]		
MW-50-095-177	D3-Mav-	11 14:21	N Water	. 2220.		=	İ	1-	İ	1	2.57		ĺ	Ţ]	Ī	i		Ì			***************************************					15
16114-30-030-111	- A		Field Filtered	<u></u>	1	4°C				ΪC							٦įٔ[
		N. Mary Commercia		Contai		1	1		-	1							1					1			j		
MS = Matrix Spike	SD = Matrix Spike Du	dicate			A S				and the say						-vi iši	Some words P	wi.k) \$40 o	and at	10 · · · · · · · · · · · · · · · · · · ·				. HALV.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
no - maura opike	Signatures	D	ate/Time			Shipping I	Detai	ls										S	pecia	al In:	struc	tion	s:				
Approved by	_///		3-11	Metho	d of Sh	ipment:	Cour	rier							ATI	'n:		A	orii 2	8 - N	lay 1	3, 20)11				
Sampled by Retinquished by Received by Received by	Jan John		nepsz	On Ice Airbill Lab Na	e: yes No: ame: /	-		CHN	IOLO	OGY	LAB	ORA		San	npie ar Mar		ody	R	ерог	S	py to shawr 30) 2:	n Dui					

Chain of Custody	Record COC Number: 5	CH2MHILL	5/3/2011 4:32:38 PM	Page 6 of 7	
Project Name PG&E Topor Task Order Project Number 405681.M Project Manager Jay Piper Sample Manager Shawn D	oject: 2011-GMP-177-Q2 MP.02.GM.04	80109AS			
Turnaround Time 10 Day	ys	12, , 5 §			
PO Number 405681.MP.0	2,GM.02	8/5W6020A E300.0 E120.1 Arsenic			:
Sample ID	Sample Date/Time Type Matrix # Containers Pres	serv C L O P S			Ì
MVV-57-185-177	O3-May-11 11:46 N Water				NO05743-11
Nitrate	Field Fillered: 1 4°C				տ ն - -
ZAMOSTIC TYWY, — 1977 - ZAGAMARAN, WWW. ZAMOSTIC L. E. AM	Field Filteredt ✓ 1 HNC3, 4				†
Mo ₁ Se,Mn	Field Filtered: ✓ 1 HN03, 4			مرم،م،ماماماماه	**************************************
W. D. THE VANCE AND ADDRESS OF THE STREET	Total Containers:	3			
MW-63-065-177	03-May-11 9:12 N Water		6-c amminganous and accompany was a first		-17
Nitrate	Field Filtered: 1 4°C				magnetic control of the control of t
 monomonomicino?si (*) , ¿, ¿, , ¿, , , , , , , , , , , , , ,	Field Filtered: ☑ 1 HNO3, 4			ِمَامَامَ مَامَامُ مُلَّمَامُ	y 3 1 1
Mo,Se,Mn	Field Filtered 🕢 1 HNO3, 4		ام مامام ام		1
	Total Containers: 3	3			
timmakidi o a santa a santa a santa a santa a santa a santa a santa a santa a santa a santa a santa a santa a		o verre	o de la company de la company de la company de la company de la company de la company de la company de la comp de la company de la company de la company de la company de la company de la company de la company de la compa	and a summer was a second of the second of t	it.
•	•				
•					

MS = Matrix Spike	SD = Matrix Spike Duplic	ate			
- 1	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by		5-3-11	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by Relinquished by	121-121	1652	On Ice: yes / no	Sample Custody	1
Received by	mille	5/3/20165	Airbill No:	and	Report Copy to
Relinquished by	7.0.	_/=/=	Lab Name: ADVANCED TECHNOLOGY LABORA	Marion	Shawn Duffy
Received by			Lab Phone: (702) 307-2659		(530) 229-3303

Chain of Custody Red	cord COC Numbe	# 5		•	:H2	M	HIL	L 5	/3/2011	4:32	:39 PA	a F	Page 7	of 7				
Project Name PG&E Topock Task Order Project: Project Number 405681.MP.02 Project Manager Jay Piper Sample Manager Shawn Duffy	Location Topock 2011-GMP-177-Q2 .GM.04						SW6010B/SW6020A	10 mm		And in the second secon		41.6						
Turnaround Time 10 Days					Ars	면명	7596	5W6020A				!						
PO Number 405681.MP.02.GM	. D2				rseni	E300.0	5020	20455		ĺ		ı	j		ļ			
Sample ID	Sample Date/Time	Type Matrix # Co	ntainers	Preserv	10	- 0) F1		<u> </u>	l_								
MW-95-177	03-May-11 11:52	N Water				i				<u> </u>		-		Ĺ				1,700
Nitrale		Field Filtered:	1	4°C											□'□) ' 🗆 []
with the second		Field Filtered:	1 HN	03,4°C					$\Box\Box$									וכ
Mo,Se,Min		Field Filtered:	1 HN	03, 4°C],⊏	ום!נ	\mathbf{M}^{I}	ום (נ					االا				Ī
		Total Cont	tainers:	3	i 1	1	- i										<u> </u>	1
WW-96-177	03-May-f1 15:53	N Water	Complete acres of the Co.	, , / 2000/2000/2000/200	1 :								. 1 4 - 1 2-175	. 1				
Nitrate		Field Filtered:	1 .	4°C		7 9	i.ˈ[-]]		o lo lo	Ī
Mo,Se	A 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Field Filtered	1 HN(D3, 4°C			֓֞֞֞֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֡֓֓֡֓֓֡֓						30					וֹכ
	135 ₀₀	Total Cont	ainere:	2		· ·	1 1		+		1	-	- : - :- 1	L	\top	╅╌┋		i İ

MS = Matrix Spike	SD = Matrix Spike Duplic	ate			
77.	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by		5-3-11	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by	Phase	1652	Onice: yes i no	Sample Custody	1
Relinquished by	AN ATH		3 1.L. 101 B.L.		,
Received by	/prw/UNT	5/3/11@1652	Lab Name: ADVANCED TECHNOLOGY LABORA	and	Report Copy to
Relinquished by			Lab Phone: (702) 307-2659	Marion	Shawn Duffy
Received by 🥖 🚆	**************************************		Lau Phone: (192) 301-2009		(530) 229-3303
		•			

•

Chain of Custody Record COC Number: 5 Page 1 of 7 5/3/2011 4:32:38 PM Project Name PG&E Topock Location Topock Task Order Project: 2011-GMP-177-Q2 Project Number 405681.MP.02.GM.04 SW6010B/SW6020A Project Manager Jay Piper Sample Manager Shawn Duffy Turnaround Time 10 Days E300.0 E120.1 PO Number 405681.MP.02.GM.02 Sample ID Sample Date/Time Type Matrix # Containers Preserv MW-16-177 02-May-11 14:59 N Water Field Filtered: 4°C Bkg:AlSbAsBaBeBCaCdCoCuFePbMgMnHgMoNiSeAgTlVZn Field Filtered: 7 HNO3, 4°C Total Containers: 2 MW-17-177 03-May-11 13:16 N Water Field Filtered: 4°C Bkg:AlSbAsBaBeBCaCdCoCuFePbMgMnHgMoNiSeAgTIVZn Field Filtered: HNO3, 4°C 2 Total Containers: MW-28-025-177 02-May-11 11:32 N Water Field Filtered: 4°C Field Filtered: HNO3, 4°C 2 Total Containers:

MS = Matrix Spike	SD = Matrix Spike Dupli				
	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by	$\mathcal{A}\mathcal{A}$	シーラー//	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by	HILAN	1652	1 1 1 1 1		
Relinquished by	W VAT H			Sample Custody	•
Received by	mar and	00/030/60Z	Airbill No:	and	Report Copy to
Relinquished by		, some car same	Lab Name: ADVANCED TECHNOLOGY LABORA	Marlon	Shawn Duffy
Received by	*		Lab Phone: (702) 307-2659		(530) 229-3303

Chain of Custody Record COC Number: 5 5/3/2011 4:32:38 PM Page 2 of 7 Project Name PG&E Topock Location Topock Task Order Project: 2011-GMP-177-Q2 Project Number 405681.MP.02.GM.04 SW6010B/SW6020A Project Manager Jay Piper Sample Manager Shawn Duffy Turnaround Time 10 Days E120.1 E300.0 PO Number 405681.MP.02.GM.02 Sample ID Sample Date/Time Type Matrix # Containers Preserv MW-28-090-177 02-May-11 12:26 Water Field Filtered: 4°C Field Filtered: HNO3, 4°C 2 **Total Containers:** N Water MW-30-030-177 03-May-11 13:22 Nitrate Field Filtered: 4°C Mo.Se Field Filtered: 1 HNO3, 4°C **Total Containers:** 2 MW-32-035-177 02-May-11 13:51 N Water Field Filtered: 4°C Field Filtered: HNO3, 4°C Field Filtered: Mn HNO3, 4°C Total Containers: MS = Matrix Spike SD = Matrix Spike Duplicate Signatures Date/Time **Shipping Details** Special Instructions: 5-3-11 Approved by ATTN: April 28 - May 13, 2011 Method of Shipment: courier Sampled by On Ice: (yes //no Sample Custody Relinquished by Airbill No: Received by and

Lab Name: ADVANCED TECHNOLOGY LABORA

Lab Phone: (702) 307-2659

Report Copy to

Marlon

Shawn Duffy

(530) 229-3303

Relinquished by

Received by

Chain of Custody Reco	rd COC Number: 5				. 1-11	2-	HIL	5/	3/2011	4:32:3	8 PM	Page	3 of 7			
Project Name PG&E Topock Task Order Project: 20 Project Number 405681.MP.02.GN Project Manager Jay Piper Sample Manager Shawn Duffy	Location Topock 11-GMP-177-Q2 и.04						SW6010B	رن د								
Turnaround Time 10 Days					Ar	: 四	0B/SW6020A	SW6020A	:	:	:	:				
PO Number 405681.MP.02.GM.02	2				Arseni	E120.	W6020	20AF				:				
Sample ID	Sample Date/Time Type M	latrix #Con	ntainer	s Preserv	Ω	\$m.i	0	- শ্ব								
MW-33-040-177	02-May-11 15:06 N W	Vater														
	Field F	iltered:	1	4°C		V										
The second secon	Field F	Filtered:	1	HNO3, 4°C	. 🗸											
•		Total Conta	ainers:	2			:									
MW-36-090-177	02-May-11 15:05 N W	Vater													. :	
	Field F	Filtered:	1	4°C		V										
and the second of the second o	Field F	Filtered:	1	HNO3, 4°C	· •] [.[
		Total Conta	iners:	2			•									
MW-36-100-177	03-May-11 14:12 N W	Vater														
Nitrate	Field F	-iltered:	1	4°C			~ [] .				
grand desirable and granger and the second s	Field F	iltered:	1	HNO3, 4°C	~				· - -		: П <u>:</u> С					
Mo,Se,Mn	Field F	iltered 🗸	1	HNO3, 4°C				V								
		Total Conta	iners:	3												
				,												
MS = Matrix Spike SD = Matrix S																
Approved by	atures Date/Time	; ;		Shipping C	etail	s				ΔТ	TN:		pecial			
Sampled by	1653	Metho	AND SHAPE OF THE PARTY OF THE P	\~.	couri	er				Α1	114'	A	pril 28 -	May 1:	3, 2011	
Relinquished by	My 05/030165	On Ice	A	s 🌶 no	4	-, 1	1.2	C		Sample	Custo	dy				
Received by	Af asposerus	Airbill		4 BV / 4 V O E =	·		000		•	â	and	F	Report C	opy to		
Relinquished by Received by		Lau N		ADVANCED (702) 307-26		HNO	LOGY	LABOR,	4	M	arlon	•	·	Shawr		

Chain of Custody Reco	ord COC Numbe	er: 5	¥.			Lacor Roma	5/3/2011 4	1:32:38 PM	Page 4 o	of 7		
Project Name PG&E Topock Task Order Project: 20 Project Number 405681.MP.02.G Project Manager Jay Piper Sample Manager Shawn Duffy	Location Topock 011-GMP-177-Q2 3M.04				- h-	00 00 00 00 00 00 00 00 00 00 00 00 00						
Turnaround Time 10 Days PO Number 405681.MP.02.GM.0	2			Arser	E120	. 574						
Sample ID	Sample Date/Time	Type Matrix # Containers	Preserv	- C -	0.0) H					4	
MW-41D-177	02-May-11 12:43	N Water			: -							
		Field Filtered: 1	4°C									
		Total Containers:	1									
MW-44-070-177	03-May-11 9:25	N Water										
		Field Filtered: 1	4°C									
		Field Filtered: 1	HNO3, 4°C	✓								
		Total Containers:	2									
MW-44-115-177	03-May-11 10:01	N Water								:		
Nitrate		Field Filtered: 1	4°C									
		Field Filtered: ✓ 1	HNO3, 4°C	/								
Mo,Se,Mn		Field Filtered: ✓ 1	HNO3, 4°C									
and the second s	w.	Total Containers:	3									

MS = Matrix Spike	SD = Mayrix Spike Duplica				
	// Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by	K.	5-3-11	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by	10/1-	1652			
Relinquished by	mobilet	يد ش	On Ice: yes / no	Sample Custody	
Received by	MMOUNT-	5/3/10/2/652	Airbill No:	and	Report Copy to
Relinquished by		, ,	Lab Name: ADVANCED TECHNOLOGY LABORA	Marlon	Shawn Duffy
Received by	/	••	Lab Phone: (702) 307-2659		(530) 229-3303

Chain of Custody Record COC Number: 5 5/3/2011 4:32:38 PM Page 5 of 7 Project Name PG&E Topock Location Topock Project: 2011-GMP-177-Q2 Task Order Project Number 405681.MP.02.GM.04 SW6010B/SW6020A Project Manager Jay Piper Sample Manager Shawn Duffy Turnaround Time 10 Days E300.0 PO Number 405681.MP.02.GM.02 Sample Date/Time Type Matrix # Containers Preserv Sample ID MW-44-125-177 03-May-11 12:18 N Water Nitrate Field Filtered: 4°C Field Filtered: HNO3, 4°C Mo,Se,Mn Field Filtered: HNO3, 4°C **Total Containers:** 3 03-May-11 16:06 N Water MW-46-175-177 Nitrate Field Filtered: 1 4°C Mo,Se Field Filtered: 1 HNO3, 4°C Total Containers: 2 03-May-11 14:21 N Water MW-50-095-177 Field Filtered: 1 Total Containers:

MS = Matrix Spike	SD = Matrix Spike Duplicat	e			
	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by		5-3-11	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by	K//	1652	And the second s		
Relinquished by			On Ice: (yes) no 4.1.17.9	Sample Custody	•
Received by	Thurs D/ L. F.	B/a/ne 1652	Airbill No:	and	Report Copy to
Relinquished by		and the second second	Lab Name: ADVANCED TECHNOLOGY LABORA	Marlon	Shawn Duffy
Received by	* · · *		Lab Phone: (702) 307-2659		(530) 229-3303

Chain of Custody Record COC Number: 5 5/3/2011 4:32:38 PM Page 6 of 7 Project Name PG&E Topock Location Topock Task Order Project: 2011-GMP-177-Q2 Project Number 405681.MP.02.GM.04 SW6010B/SW6020A Project Manager Jay Piper Sample Manager Shawn Duffy Turnaround Time 10 Days E120.1 E300.0 PO Number 405681.MP.02.GM.02 Sample ID Sample Date/Time Type Matrix # Containers Preserv 03-May-11 11:46 N Water MW-57-185-177 Field Filtered: Nitrate 4°C Field Filtered: HNO3, 4°C Field Filtered: Mo,Se,Mn HNO3, 4°C Total Containers: 3 03-May-11 9:12 N Water MW-63-065-177 Field Filtered: Nitrate 4°C Field Filtered: HNO3, 4°C Field Filtered: Mo,Se,Mn HNO3, 4°C Total Containers: 3

MS = Matrix Spike	SD = Matrix Spike Duplic	ate			
	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by		5-3-11	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by	KI	1652			
Relinquished by			On Ice: yes / no	Sample Custody	
Received by	mur Wate	5/3/10/65	Airbill No:	and	Report Copy to
Relinquished by	100	1-11-6	Lab Name: ADVANCED TECHNOLOGY LABORA	Marion	Shawn Duffy
Received by			Lab Phone: (702) 307-2659		(530) 229-3303

Chain of Custody Record COC Number: 5 5/3/2011 4:32:39 PM Page 7 of 7 Project Name PG&E Topock Location Topock Task Order Project: 2011-GMP-177-Q2 Project Number 405681.MP.02.GM.04 SW6010B/SW6020A Project Manager Jay Piper Sample Manager Shawn Duffy Turnaround Time 10 Days E120.1 E300.0 PO Number 405681,MP.02.GM.02 Sample Date/Time Type Matrix # Containers Preserv Sample ID N Water MW-95-177 03-May-11 11:52 Nitrate Field Filtered: 1 4°C Field Filtered: 1 HNO3, 4°C Field Filtered: 1 HNO3, 4°C Mo,Se,Mn **Total Containers:** 3 03-May-11 15:53 N Water MW-96-177 Nitrate Field Filtered: 4°C Field Filtered: 🗸 1 Mo,Se HNO3, 4°C 2 **Total Containers:**

MS = Matrix Spike	SD = Matrix Spike Duplica	ite			
	Signatures	Date/Time	Shipping Details		Special Instructions:
Approved by		5-3-11	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by	DI - n	1652	On Ice: Ves / no		
Relinquished by	1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>. </u>	41,12 6	Sample Custody	
Received by	Mhw ElAF	5/3/1101652	Airbill No:	and	Report Copy to
Relinguished by	proceeding of	/ //	Lab Name: ADVANCED TECHNOLOGY LABORA	Marlon	Shawn Duffy
Received by			Lab Phone: (702) 307-2659		(530) 229-3303

Checklist Completed B

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Cooler Received/Opened On:	5/3/2011				Wo	orkorder:	N005743		
Rep sample Temp (Deg C):	4.1,1.2				IR	Gun ID:	1		
Temp Blank:	Yes	✓ No							
Carrier name:	ATL								
Last 4 digits of Tracking No.:				Packing	Materi	al Used:	None		
Cooling process:	✓ Ice	Ice Pack	Dry Ice	Other	:	None			
Shipping container/cooler in	good conditi	ion?			Yes	Ÿ	No	Not Present	: :
2. Custody seals intact, signed,	dated on sl	hippping containe	r/cooler?		Yes		No	Not Present	V
3. Custody seals intact on samp	ple bottles?				Yes	***	No	Not Present	.
4. Chain of custody present?					Yes	Y	No		
5. Sampler's name present in C	OC?				Yes	V	No ·		
6. Chain of custody signed whe	n relinquish	ed and received?			Yes	~	No :		
7. Chain of custody agrees with	sample lab	els?			Yes	V	No		
8. Samples in proper container.	/bottle?				Yes	∵ .	No :		
9. Sample containers intact?					Yes	V	No :		
10. Sufficient sample volume for	or indicated	test?			Yes	X .	No		
11. All samples received within	holding tim	e?			Yes	, V	No :		
12. Temperature of rep sample	or Temp Bi	lank within accep	table limit?		Yes	V	No :	NA	
13. Water - VOA vials have zer	o headspac	e?			Yes	5	No 🌕	NA	
14. Water - pH acceptable upo Example: pH > 12 for (Cl	•	for Metals			Yes	V	No	NA	* * * * * * * * * * * * * * * * * * *
15. Did the bottle labels indicat	e correct pr	eservatives used	?		Yes	¥	No	NA	:
16. Were there Non-Conformation With the West Conformation (W. 1997) with the West Co	nce issues a as Client no	-			Yes Yes		No :	NA NA	
Comments:									

84

9 3/9/11

Reviewed By:

Sample Calculation

METHOD: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Nitrate concentration, in mg/L, in the original sample as follows:

Nitrate, mg/L = A * DF

where:

A = mg/L, IC calculated concentration DF = dilution factor

For N005743-017A, concentration in mg/L are calculated as follows:

Nitrate, mg/L = 1.016 * 1

= 1.016 mg/L

Reporting N005743-017A, results in two significant figures,

Nitrate, mg/L = 1.0 mg/L

Axlula

SAMPLE CALCULATION

METHOD: EPA 6010B

TEST NAME: METALS BY ICP

MATRIX: WATER

FORMULA:

Calculate the individual metal concentration, in ug/L, in the original sample as follows:

M, ug/L = A*C*DF*1000

В

where:

M= concentration of the metal in ug/L A= mg/L, ICP calculated concentration

B= volume of sample, Liter

C= final volume of digestate, Liter

DF= dilution factor

For N005743-001B, concentration in ug/L are calculated as follows:

Ba, ug/L = 0.03010 mg/L * 0.025 L * 1*10000.025 L

**---

Ba = 30.10 ug/L

Reporting result in two significant figures,

Ba = 30 ug/L

f.51012011/

DILUTION TEST

Matrix: Water

Units: ug/L

Amount of Sample: 25 mL

Analytical Method: EPA 6010B / 200.7

Digestion Method: EPA 3010A
Date of Analysis: 5/7/2011

Digestion Date: 5/4/2011 Instrument Name: ICP1 Analysts; KB

Work Order #: N005743-001B

Batch #: 36827

Analyte	A	8.00 B	Difference	% D
Barium	30.1	31.41	-1.31000	-4.4
Boron	310.3		-243.88400	-78.6
Vanadium	35.14	35.935	-0.79500	-2.3

FORMULA:

%D = (A-B)*100A

where: % D = % Difference

A= ug/L, ICP calculated concentration of the original sample

B= ug/L, ICP calculated concentration @5x dilution

DILUTION TEST

Matrix: Water

Units: ug/L

Amount of Sample: 25 mL

Analytical Method:

EPA 6010B / 200.7

Digestion Method: Date of Analysis: EPA 3010A

Digestion Date:

5/9/2011 5/7/2011

Instrument Name: Analysts: 5/7/201² ICP1 KB

Work Order #:

N005743-001B

Batch #: 36858

Analyte	Α	В	Difference	% D
Calcium	27.85	27.338	0.51200	1.8
Magnesium	5.004	5.187232	-0.18323	-3.7

FORMULA:

D = (A-B)*100

Α

where:

% D = % Difference

A= ug/L, ICP calculated concentration of the original sample

B= ug/L, ICP calculated concentration @5x dilution

CLIENT:

Project:

CH2M HILL

Work Order: N005743

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Date: 10-May-11

Sample ID: N005743-001BDT	SampType: DT	TestCode: 6010_WDPG Units: ug/L	Prep Date:	RunNo: 7994 1
Client ID: ZZZZZZ	Batch ID: 36827	TestNo: EPA 6010B EPA 3010A	Analysis Date: 5/7/2011	SeqNo: 1264342
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Barium	31.410	15	30.10	4.26 10
Boron	554.184	500	310.3	56.4 10 R
Vanadium	35.9 3 5	15	35.14	2 .25 10

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits
 Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPM

Sample ID: N005743-001BDT	SampType: DT	TestCo	de: 6010_WDP(9 Units: mg/L		Prep Da	te:		RunNo: 79	956	
Client ID: ZZZZZZ	Batch ID: 36858	Test	No: EPA 6010B	EPA 3010A		Analysis Da	te: 5/9/201	11	SeqNo: 12	68699	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	27.338	2.5						27.85	1.84	10	
Magnesium	5.187	0.50						5.004	3.59	10	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT: CH2M HILL Work Order: N005743

PG&E Topock,405681.MP.02.GM.04 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Date: 19-May-11

Sample ID: N005743-001BPS	SampType: PS	TestCo	de: 6010_WDP G	Units: ug/L		Prep Da	ite:		RunNo: 79	941	
Client ID: ZZZZZZ	Batch ID: 36827	Testi	No: EPA 6010B	EPA 3010A		Analysis Da	ate: 5/7/201	11	SeqNo: 12	64346	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	20780.115	100	20000	14.20	104	75	125				· · · · · · · · · · · · · · · · · · ·
Antimony	1086.964	20	1000	0	109	75	125				
Barium	1084,274	6.0	1000	30.10	105	75	125				
Beryllium	1063,861	2.0	1000	0	106	75	125				
Boron	10986,846	200	10000	310.3	107	75	125				
Cadmium	1098.857	6.0	1000	0	110	75	125				
Cobalt	1098.902	6.0	1000	0	110	75	125				
Copper	1073.174	10	1000	2.222	107	75	125				
Lead	1090.134	20	1000	1.9 9 0	109	75	125				
Molybdenum	1091,101	10	1000	12.70	108	75	125				
Nickel	1118,774	10	1000	2,440	112	75	125				
Silver	1043.875	6.0	1000	0	104	75	125				
Vanadium	1114.932	6.0	1000	35.14	108	75	125				
Zinc	1122.724	20	1000	6.373	112	75	125				
Sample ID: N005743-001BPS	SampType: PS	TestCod	de: 6010_WDPG	Units: ug/L		Prep Da	te:		RunNo: 79 9	941	
Client ID: ZZZZZZ	Batch ID: 36827	TestN	lo: EPA 6010B	EPA 3010A		Aпalysis Da	te: 5/7/201	1	SeqNo: 126	64347	
Analyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	51552.145	250	50000	14.20	103	75	125				
Antimony	2694.341	50	2500	0	108	75	125				
Barium	2656.887	15	2 500	30.10	105	75	125				
Beryllium	2609.031	5.0	2500	0	104	75	125				
Boron	26797,012	500	25000	310.3	106	75	125				
Cadmium	2731,769	15	2500	0	109	75	125				
Cobalt	2714.407	15	2500	0	109	75	125				
Copper	2628.490	25	2500	2.222	105	75	125				
Lead	2713.590	50	2500	1.990	108	75	125				

Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

Value above quantitation range

RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005743-001BPS Client ID: ZZZZZZ	SampType: PS Batch ID: 36827	TestNo: EPA 6010B EPA 3010A			Prep Date: Analysis Date: 5/7/2011			RunNo: 79941 SeqNo: 126434 7			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Molybdenum	2662.665	25	2500	12,70	106	75	125				
Nickel	2756.969	25	2500	2.440	110	75	125				
Silver	2582.320	15	2500	0	103	75	125				
Vanadium	2688.727	15	2500	35.14	106	75	125				
Zinc	2785.225	50	2500	6.373	111	75	125				

Qualifiers:

DO Surrogate Diluted Out

S Spike/Surrogate outside of limits due to matrix interference

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

E Value above quantitation range

R RPD outside accepted recovery limits
 Calculations are based on raw values

H Holding times for preparation or analysis exceeded

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005743-001BPS	SатрТуре: PS	TestCo	de: 6010_WDI	PG Units: ug/L		Prep Da	te:		RunNo: 799	956	
Client ID: ZZZZZZ	Batch ID: 36858	Test	No: EPA 6010 I	3 EPA 3010A		Analysis Da	te: 5/9/201	1	SeqNo: 12 6	64805	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Iron	19721.784	40	20000	30.42	98.5	75	125				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPM

Sample ID: N005743-001BPS	SampType: PS	TestCo	de: 6010_WD F	PG Units: mg/L		Prep Da	te:		RunNo: 799	956	
Client ID: ZZZZZZ	Batch ID: 36858	TestN	No: EPA 6010 E	B EPA 3010A		Analysis Da	te: 5/9/201	1	SeqNo: 12 (68707	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Calcium	46.505	1.0	20.00	2 7.85	93.3	75	125				
Magnesium	24.184	0.20	20.00	5.004	95.9	75	125				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- II Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in mg/L, in the original sample as follows:

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005743-001B, the concentration in mg/L is calculated as follows:

= 10.2864 mg/L

Reporting results in two significant figures,

Arsenic, ug/L = 10

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

N005743

Test Method:

EPA 6020

Matrix:

Aqueous

Analysis Date:

05/05/11

Batch No.:

36831

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Comments:

Analyzed By: Jojo Tenorio

Dilution Test is not applicable to Mn & Tl. The calc. Values are < 25X the RL.

Sample ID	Analyte	&Units	Calc Val	OQual	SAMPrefval	%DIFF	%DIFFlimit
N005743-001B-DT 5X	Arsenic	ug/L	11.10124398		10.28640717	7.92%	10
N005743-001B-DT 5X	Manganese	ug/L	1.593625887	NA	1.225816316	30.01%	10
N005743-001B-DT 5X	Molybdenum	ug/L	12.82707954		12.36165095	3.77%	10
N005743-001B-DT 5X	Selenium	ug/L	1.745793673		1.635411536	6.75%	10
N005743-001B-DT 5X	Thallium	ug/L	0.101159281	NA	0.060335367	67.66%	10

CLIENT:

CH2M HILL

Work Order: N005743

Project:

PG&E Topock,405681.MP.02.GM.04

Date: 18-May-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: N005743-001B-PS 2 Client ID: ZZZZZZ	SampType: PS Batch ID: 36831	TestCode: 6020_DIS Units: μg/L TestNo: EPA 6020 EPA 3010A		Prep Date: Analysis Date: 5/5/2011			RunNo: 80091 SeqNo: 1268940				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	30.371	0.20	20.00	10.29	100	75	125				
Manganese	196.323	1.0	200.0	1. 2 26	97.5	75	125				
Molybdenum	33.715	1.0	20.00	12.36	107	75	125				
Selenium	20.147	1.0	20.00	1.635	92.6	75	125				
Thallium	20.255	1.0	20.00	0.06034	101	75	125				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005743

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WD_AsPGE

Sample ID: N005743-001B-PS 2	SampType: PS	TestCod	de: 6020_WD_	As Units: μg/L		Prep Da	te:	RunNo: 80094	
Client ID: ZZZZZZ	Batch ID: 36831	Test ¹	lo: EPA 6020	EPA 3010A		Analysis Da	ite: 5/5/2011	SeqNo: 1269063	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLim	t Qual
Arsenic	30.371	0.20	20.00	10.29	100	75	125		

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 7470

TEST NAME: Mercury in Water by Cold-Vapor Technique

MATRIX: Aqueous

FORMULA:

Calculate the Mercury concentration, in ug/L, in the original sample as follows:

Mercury,
$$ug/L = A * DF * PF * 0.5$$

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Wt. of Sample used in mL

0.5, is the coversion factor.

For Sample N005743-001B, the concentration in ug/L is calculated as follows:

Mercury,
$$ug/L$$
 = 0.0 * 1 * (50/25) * 0.5

$$=$$
 0.0 ug/L

Reporting results in two significant figures,

Mercury,
$$ug/L$$
 = 0.0

Mercury,
$$ug/L$$
 = ND

910

May 20, 2011

Shawn P. Duffy CA-ELAP No.: 2676

CH2M HILL NV Cert. No.: NV-009222007A

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N005744

RE: PG&E Topock,405681.MP.02.GM.04

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 03, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

CLIENT:

CH2M HILL

Project:

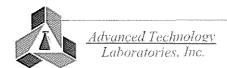
PG&E Topock,405681.MP.02.GM.04

Lab Order:

N005744

CASE NARRATIVE

Date: 20-May-11


SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

CLIENT:

CH2M HILL

Project:

PG&E Topock,405681.MP.02.GM.04

Lab Order:

N005744

Work Order Sample Summary

Date: 20-May-11

Contract No:

Lab Sample ID Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005744-001A MW-21-177	Water	5/3/2011	5/3/2011	
N005744-001B MW-21-177	Water	5/3/2011	5/3/2011	

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005744

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005744-001

Print Date: 20-May-11

Client Sample ID: MW-21-177

Collection Date: 5/3/2011

Matrix: WATER

DF Result MDL Qual Units Analyses PQL Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110504E

QC Batch: R79958

PrepDate:

Analyst: CEI

Specific Conductance 9000 0.10 0.10 umhos/cm

5/4/2011 1

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

CLIENT: CH2M HILL

Work Order: N005744

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Date: 20-May-11

Project: PG&E	Topock,405681.MP.02.GM.04
---------------	---------------------------

Sample ID: LCS-R79958	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm Prep Da	
Client ID: LCSW	Batch ID: R79958	TestNo: EPA 120.1 Analysis Da	te: 5/4/2011 SeqNo: 1264850
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit	HighLìmit RPD Ref Val %RPD RPDLimit Qual
Specific Conductance	1405.000	0.10 1411 0 99.6 85	115
Sample ID: N005743-011A-DUP	SampType; DUP	TestCode: 120.1_WPGE Units: umhos/cm Prep Da	te: RunNo: 79958
Client ID: ZZZZZZ	Batch ID: R79958	TestNo: EPA 120.1 Analysis Da	te: 5/4/2011 SeqNo: 1264853
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit	HighLimit RPD Ref Val %RPD RPDLimit Qual
Specific Conductance	2500.000	0.10	2540 1.59 10
			2340 1.35 10
Sample ID: N005743-011A-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm Prep Da	
Sample ID: N005743-011A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79958	TestCode: 120.1_WPGE Units: umhos/cm Prep Da	
	1 31	TestCode: 120.1_WPGE Units: umhos/cm Prep Da TestNo: EPA 120.1 Analysis Da	te: RunNo: 79958
Client ID: ZZZZZZ	Batch ID: R79958	TestCode: 120.1_WPGE Units: umhos/cm Prep Da TestNo: EPA 120.1 Analysis Da	te: RunNo: 79958 te: 5/4/2011 SeqNo: 1264854
Client ID: ZZZZZZ Analyte	Batch ID: R79958 Result	TestCode: 120.1_WPGE Units: umhos/cm Prep Da TestNo: EPA 120.1 Analysis Da PQL SPK value SPK Ref Val %REC LowLimit	te: RunNo: 79958 te: 5/4/2011 SeqNo: 1264854 HighLimit RPD Ref Val %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79958 Result 3674,000	TestCode: 120.1_WPGE Units: umhos/cm Prep Da TestNo: EPA 120.1 Analysis Da PQL SPK value SPK Ref Val %REC LowLimit 0.20 1411 2540 80.4 75 TestCode: 120.1_WPGE Units: umhos/cm Prep Da	te: RunNo: 79958 te: 5/4/2011 SeqNo: 1264854 HighLimit RPD Ref Val %RPD RPDLimit Qual
Client ID: zzzzzz Analyte Specific Conductance Sample ID: N005743-011A-MSD	Batch ID: R79958 Result 3674,000 SampType: MSD	TestCode: 120.1_WPGE Units: umhos/cm Prep Da TestNo: EPA 120.1 Analysis Da PQL SPK value SPK Ref Val %REC LowLimit 0.20 1411 2540 80.4 75 TestCode: 120.1_WPGE Units: umhos/cm Prep Da	te: RunNo: 79958 te: 5/4/2011 SeqNo: 1264854 HighLimit RPD Ref Val %RPD RPDLimit Qual 125 te: RunNo: 79958

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005744

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005744-001

Print Date: 20-May-11

Client Sample ID: MW-21-177

Collection Date: 5/3/2011

Matrix: WATER

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IG2_110504A

QC Batch: R80000

PrepDate:

Analyst: QBM

Nitrate as N

2.1 0.022 1.0

mg/L

2 5/4/2011 12:11 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691

Date: 20-May-11

CLIENT:

CH2M HILL

Work Order:

N005744

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 300W_NO3PGE

Sample ID: MB-R80000_NO3	SampType: MBLK	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: PBW	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266297
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	ND	0,50		
Sample ID: LCS-R80000_NO3	SampType: LCS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: LCSW	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266298
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLîmit Qual
Nitrate as N	2.408	0.50 2.500 0	96.3 90 110	
Sample ID: N005744-001BDUP	SampType: DUP	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: ZZZZZZ	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266311
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	2.066	1.0	2.066	0 20
Sample ID: N005743-017AMS	SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: ZZZZZZ	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266315
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	3.470	0.50 2.500 1.016	98.2 80 120	
Sample ID: N005745-003CMS	SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80000
Client ID: ZZZZZZ	Batch ID: R80000	TestNo: EPA 300.0	Analysis Date: 5/4/2011	SeqNo: 1266316
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	4.365	0.50 2.500 1.774	104 80 120	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

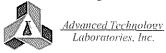
Work Order:

N005744

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT


TestCode: 300W_NO3PGE

Sample ID: N005745-003CMSD	SampType: MSD	TestCode: 300W_NO3P Units: mg/L		Prep Date:			RunNo: 80000				
Client ID: ZZZZZZ	Batch ID: R80000	Testi	TestNo: EPA 300.0		Analysis Date: 5/4/2011			SeqNo: 1266317			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrate as N	4.438	0.50	2.500	1.774	107	80	120	4,365	1.66	20	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 20-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-21-177

Lab Order:

N005744

Collection Date: 5/3/2011

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005744-001

Analyses Result MD			PQL Qual	Units	DF !	Date Analyzed
DISSOLVED METALS BY IC	CP-MS			****		
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110505B	QC Batch: 368	31		PrepDate:	5/4/2011	I Analyst: JT
Molybdenum	59	0.047	0.50	μg/L	1	5/5/2011 10:30 PM
Selenium	21	0.29	0.50	μg/L	1	5/5/2011 10:30 PM

Qualifiers:

3 Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 20-May-11

CLIENT:

CH2M HILL

Work Order:

N005744

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: MB-36831	SampType: MBLK	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/4/2011	RunNo: 80091
Client ID: PBW	Batch ID: 36831	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1268935
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Molybdenum	0.123	0.50			
Selenium	ND	0.50			
Sample ID: LCS-36831	SampType: LCS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/4/2011	RunNo: 80091
Client ID: LCSW	Batch ID: 36831	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1268936
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Molybdenum	10.057	0.50 10.00	0	101 85 115	
Selenium	9,754	0.50 10.00	0	97.5 85 115	
Sample ID: N005743-001B-MS	SampType: MS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/4/2011	RunNo: 80091
Client ID: ZZZZZZ	Batch ID: 36831	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/5/2011	SeqNo: 1268941
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Molybdenum	23.130	0.50 10.00	12.36	108 75 125	
Molybdenum Selenium	23.130 10.828	0.50 10.00 0.50 10.00	12.36 1.635	108 75 125 91.9 75 125	
· ·	10.828				RunNo: 8009 1
Selenium	10.828	0.50 10.00	1.635	91.9 75 125	RunNo: 800 91 SeqNo: 1268942
Sample ID: N005743-001B-MSD	10.828 SampType: MSD	0.50 10.00 TestCode: 6020_DIS TestNo: EPA 6020	1.635 Units: µg/L	91.9 75 125 Prep Date: 5/4/2011	
Sample ID: N005743-001B-MSD Client ID: ZZZZZZ	10.828 SampType: MSD Batch ID: 36831	0.50 10.00 TestCode: 6020_DIS TestNo: EPA 6020	1.635 Units: μg/L EPA 3010A	91.9 75 125 Prep Date: 5/4/2011 Analysis Date: 5/5/2011	SeqNo: 1268942

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2MHILL					CHAIN OF CUSTODY RECORD	5/3/2011 5:05:07 PM	Page	1_	OF _1
Project Name PG&E Topock	Container	500 ml Poly	1 Liter Poly	1 Liter Poly				Ī	
Location Topock	Preservatives:	HNO3, 4°C	4°C	4°C				1	
Project Number 405681.MP.02.GM.04	1 12001 74111201	'							
Project Manager Jay Piper	Filtered:	Field	NA	NA.					
Sample Manager Shawn Duffy	Holding Time:	180	2	2		-			
Task Order		Metals	Specific						
Project 2011-GMP-177-Q2		als (5	Aniona			E N		
Turnaround Time 10 Days		(6020A) Field Mo,Se	ğ	ب ق			į		
Shipping Date: 5/3/2011		(\$ A)	ducts	(E300,0)			ero		
COC Number: 6		6 6	70 A				fCo	1	
		Filtered	Ū,	a)Ethn			ntain		
•		l med	(E120.1)	íũ			inen		
DATE	TIME Matrix						8	COL	MMENTS

DATE

5/3/2011

MW-21-177

TIME

Matrix

Water

X

X

x

Date/Time **Shipping Details** Special Instructions: ATTN: Approved by April 28 - May 13, 2011 Method of Shipment: courier Sampled by Onice: yes i no Sample Custody Relinquished by Airbill No: Received by and Report Copy to Lab Name: ADVANCED TECHNOLOGY LABORATO Relinquished by Marion Shawn Duffy Lab Phone: (702) 307-2659 (530) 229-3303 Received by

N002344

COMMENTS

2

TOTAL NUMBER OF CONTAINERS

_		-	1000	200		
C	- 2	-,-	M.S.	m		

CHAIN OF CUSTODY RECORD

5/3/2011 5:05:07 PM

Page 1 OF 1

Project Name PG&E Topock	Containe	. 500 ml Poly	1 Liter Poly	1 Liter Poly			
Location Topock	Preservatives	HNO3,	4°C	4°C			
Project Number 405681.MP.02.GM.04	Preservatives	4*0					
Project Manager Jay Piper	Filtered	: Field	NA	NA			
Sample Manager Shawn Duffy	Holding Time	: 180	2	2			
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/3/2011 COC Number: 6	TIME Matrix	Metals (6020A) Field Filtered Mo,Se	Specific Conductance (E120.1)	Anions (E300.0) Nitrate		Number of Containers	СОММЕ
MW-21-177 5/3/201	1 Water	Х	Х	Х		2	
	1 1	.1	1	L	TOTAL NUMBER OF CONTAINERS	2	

Anarouad by	Signatures Date/Time	Shipping Details		Special Instructions:
Approved by	551	Method of Shipment: courier	ATTN:	April 28 - May 13, 2011
Sampled by		On Ice: yes no	Causais Costa do	
Relinquished by	VI A A A A A A A A A A A A A A A A A A A	Airbill No:	Sample Custody	
Received by	//mm/[[[]/m755]3]//e[7]	000 to	and	Report Copy to
Relinquished by		Lab Name: ADVANCED TECHNOLOGY LABORATO	Marlon	Shawn Duffy
Received by	\$#**	Lab Phone: (702) 307-2659		(530) 229-3303

Advanced Technology Laboratories, Inc.

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Cooler Received/Opened On:	5/3/2011				Wo	orkorder:	N005744			
Rep sample Temp (Deg C):	4.1,1.2				IR	Gun ID:	1			
Temp Blank:	Yes	✓ No								
Carrier name:	ATL									
Last 4 digits of Tracking No.:				Packing	Materi	ial Used:	None			
Cooling process:	✓ : Ice	ice Pack	Dry Ice	Other	. •	None				
Shipping container/cooler in	good condi	ition?			Yes		No .	Not Present		
2. Custody seals intact, signed	l, dated on :	shippping contain	er/cooler?		Yes		No	Not Present	· ·	
3. Custody seals intact on sam	ple bottles'	?			Yes		No .	Not Present	Y	
4. Chain of custody present?					Yes	•	No J			
5. Sampler's name present in	COC?				Yes	•	No			
6. Chain of custody signed wh	en relinquis	hed and received	?		Yes	V	No :			
7. Chain of custody agrees wit	h sample la	bels?			Yes	V	No			
8. Samples in proper containe	r/bottle?				Yes	Y	No 🗄			
9. Sample containers intact?					Yes	Ÿ	No			
10. Sufficient sample volume f	or indicated	test?			Yes	Y	No :			
11. All samples received within	n holding tin	ne?			Yes		No a			
12. Temperature of rep sample	e or Temp E	Blank within acce	otable limit?		Yes	~	No :	NA		
13. Water - VOA vials have ze	ero headspa	ice?			Yes	* * ****	No	NA	V	
14. Water - pH acceptable upo Example: pH > 12 for (C		for Metals			Yes		No	NA		
15. Did the bottle labels indica	ite correct p	reservatives use	1?		Yes	V	No	NA		
16. Were there Non-Conforma	ince issues /as Client n				Yes Yes		No	NA NA	4.4.4	
Comments: Sarfling		e not ded of	indica	=	С	· 00.) av s	angle c	ortin	ren
Checklist Completed B	NS 5	1414					Reviewed By	· 4	19/	

Sample Calculation

METHOD: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Nitrate concentration, in mg/L, in the original sample as follows:

where:

A = mg/L, IC calculated concentration DF = dilution factor

For N005744-001B, concentration in mg/L are calculated as follows:

Nitrate, mg/L = 1.033 * 2

= 2.066 mg/L

Reporting N005744-001B, results in two significant figures,

Nitrate, mg/L = 2.1 mg/L

MS 5/12/11

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005744-001A, the concentration in ug/L is calculated as follows:

Molybdenum, ug/L = 59.3754* 1 * (25/25)

= 59.3754 ug/L

Reporting results in two significant figures,

Molybdenum, ug/L = 59

Not

Advanced Technology Laboratories, Inc.

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

Test Method: Analysis Date: N005744 EPA 6020 05/05/11

Matrix:

Aqueous

Batch No.:

36831

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Comments:

Analyzed By:

Jojo Tenorio

Sample ID	Analyte	&Units	Calc Val	OQual	SAMPrefval	%DIFF	%DIFFlimit
N005743-001B-DT 5X	Molybdenum	ug/L	12.82707954		12.36165095	3.77%	10
N005743-001B-DT 5X	Selenium	ug/L	1.745793673		1.635411536	6.75%	10

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005744

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

Date: 18-May-11

TestCode: 6020_DIS

Sample ID: N005743-001B-PS 2	SampType: PS	TestCod	de: 6020_DIS	Units: µg/L		Prep Da	te:		RunNo: 80 (91	
Client ID: ZZZZZZ	Batch ID: 36831	Test	la: EPA 6020	EPA 3010A		Analysis Da	te: 5/ 5/201 1	1	SeqNo: 126	68940	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Molybdenum	33.715	1.0	20.00	12.36	107	75	125				
Selenium	20.147	1.0	20.00	1.635	92.6	75	125				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

June 23, 2011

Shawn P. Duffy CA-ELAP No.: 2676

CH2M HILL NV Cert. No.: NV-009222007A

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303

FAX: (530) 339-3303 Workorder No.: N005759

RE: PG&E Topock,405681.MP.02.GM.04

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 05, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

This is an amended report. Please disregard all previous documentation that corresponds to the page(s) enclosed.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project:

PG&E Topock,405681.MP.02.GM.04

Lab Order:

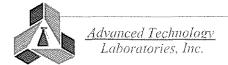
N005759

Date: 31-May-11

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.


Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 6020:

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are outside recovery criteria for Molybdenum on QC sample N005760-001B-MS and for Manganese on QC sample N005760-001B-MSD possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project:

PG&E Topock,405681.MP.02.GM.04

Lab Order:

N005759

Contract No:

Work Order Sample Summary

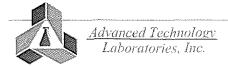
Date: 31-May-11

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005759-001A	MW-22-177	Water	5/3/2011 3:55:00 PM	5/5/2011	
N005759-001B	MW-22-177	Water	5/3/2011 3:55:00 PM	5/5/2011	
N005759-002A	MW-47-055-177	Water	5/3/2011 4:52:00 PM	5/5/2011	
N005759-003A	MW-47-115-177	Water	5/3/2011 4:03:00 PM	5/5/2011	
N005759-004A	MW-52D-177	Water	5/3/2011 11:35:00 AM	5/5/2011	
N005759-004B	MW-52D-177	Water	5/3/2011 11:35:00 AM	5/5/2011	
N005759-005A	MW-52M-177	Water	5/3/2011 10:45:00 AM	5/5/2011	
N005759-005B	MW-52M-177	Water	5/3/2011 10:45:00 AM	5/5/2011	
N005759-006A	MW-52S-177	Water	5/3/2011 9:40:00 AM	5/5/2011	
N005759-006B	MW-52S-177	Water	5/3/2011 9:40:00 AM	5/5/2011	
N005759-007A	MW-53D-177	Water	5/3/2011 1:15:00 PM	5/5/2011	
N005759-007B	MW-53D-177	Water	5/3/2011 1:15:00 PM	5/5/2011	
N005759-008A	MW-53M-177	Water	5/3/2011 2:35:00 PM	5/5/2011	
N005759-008B	MW-53M-177	Water	5/3/2011 2:35:00 PM	5/5/2011	
N005759-009A	MW-19-177	Water	5/4/2011 2:45:00 PM	5/5/2011	
N005759-010A	MW-23-060-177	Water	5/4/2011 10:06:00 AM	5/5/2011	
N005759-010B	MW-23-060-177	Water	5/4/2011 10:06:00 AM	5/5/2011	
N005759-011A	MW-23-080-177	Water	5/4/2011 11:33:00 AM	5/5/2011	
N005759-011B	MW-23-080-177	Water	5/4/2011 11:33:00 AM	5/5/2011	
N005759-012A	MW-31-060-177	Water	5/4/2011 4:06:00 PM	5/5/2011	
N005759-013A	MW-33-090-177	Water	5/4/2011 2:08:00 PM	5/5/2011	
N005759-014A	MW-33-150-177	Water	5/4/2011 10:45:00 AM	5/5/2011	
N005759-015A	MW-33-210-177	Water	5/4/2011 12:03:00 PM	5/5/2011	
N005759-016A	MW-35-060-177	Water	5/4/2011 12:39:00 PM	5/5/2011	
N005759-017A	MW-35-135-177	Water	5/4/2011 1:35:00 PM	5/5/2011	
N005759-018A	MW-46-205-177	Water	5/4/2011 9:23:00 AM	5/5/2011	
N005759-019A	MW-48-177	Water	5/4/2011 3:21:00 PM	5/5/2011	
N005759-020A	MW-92-177	Water	5/4/2011 11:32:00 AM	5/5/2011	
N005759-020B	MW-92-177	Water	5/4/2011 11:32:00 AM	5/5/2011	

<u>Advanced Technologv</u> Laboratories, Inc. Page 1 of 2 3151 W. Post Road, Las Vegas, NV 89118 Tel: 702-307-2659 Fax: 702-307-2691 CLIENT:

CH2M HILL

Project:


PG&E Topock.405681.MP.02.GM.04

Lab Order:

N005759

Contract No:

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005759-021A	MW-37D-177	Water	5/5/2011 9:06:00 AM	5/5/2011	
N005759-021B	MW-37D-177	Water	5/5/2011 9:06:00 AM	5/5/2011	
N005759-022A	MW-40D-177	Water	5/5/2011 10:12:00 AM	5/5/2011	
N005759-022B	MW-40D-177	Water	5/5/2011 10:12:00 AM	5/5/2011	
N005759-023A	MW-57-070-177	Water	5/5/2011 12:39:00 PM	5/5/2011	
N005759-024A	MW-62-065-177	Water	5/5/2011 11:23:00 AM	5/5/2011	
N005759-025A	MW-62-110-177	Water	5/5/2011 1:16:00 PM	5/5/2011	
N005759-025B	MW-62-110-177	Water	5/5/2011 1:16:00 PM	5/5/2011	
N005759-026A	MW-62-190-177	Water	5/5/2011 1:25:00 PM	5/5/2011	
N005759-026B	MW-62-190-177	Water	5/5/2011 1:25:00 PM	5/5/2011	
N005759-027A	MW-97-177	Water	5/5/2011 12:41:00 PM	5/5/2011	

Work Order Sample Summary

Print Date: 31-May-11

CLIENT:

CH2M HILL

Advanced Technology Laboratories, Inc.

Client Sample ID: MW-22-177

Lab Order:

N005759

Collection Date: 5/3/2011 3:55:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-001

Result MDL PQL Qual Units Analyses

DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM 110506E

QC Batch: R79959

PrepDate:

Analyst: CEI

5/6/2011

Specific Conductance 14000 umhos/cm 0.10 0.10

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-47-055-177

Lab Order:

N005759

Collection Date: 5/3/2011 4:52:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-002

DF

SPECIFIC CONDUCTANCE

EPA 120.1

PQL Qual Units

RunID: WETCHEM_110506E

QC Batch: R79959

0.10

PrepDate:

Analyst: CEI

Specific Conductance

4300 0.10

Result MDL

umhos/cm

5/6/2011

Date Analyzed

Qualifiers:

В Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Е Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc. Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-47-115-177

Lab Order:

N005759

Collection Date: 5/3/2011 4:03:00 PM

Project:

PG&E Topock,405681,MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-003

Result	MDL	PQL	Qual Units	\mathbf{DF}	Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506E

QC Batch: R79959

PrepDate:

Analyst: CEI

Specific Conductance

12000

0.10

0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-52D-177

Lab Order:

N005759

Collection Date: 5/3/2011 11:35:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-004

DF

SPECIFIC CONDUCTANCE

EPA 120.1

Qual Units

RunID: WETCHEM_110506E

QC Batch: R79959

Result MDL

PrepDate:

Analyst: CEI

Date Analyzed

Specific Conductance

18000

0.10

0.10

PQL

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range E

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Advanced Technology Laboratories, Inc.

Client Sample ID: MW-52M-177

Lab Order:

N005759

Collection Date: 5/3/2011 10:45:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-005

PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM 110506E

QC Batch: R79959

PrepDate:

Analyst: CEI

Specific Conductance

15000 0.10

Result MDL

0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT: Lab Order: CH2M HILL

N005759

Client Sample ID: MW-52S-177

Collection Date: 5/3/2011 9:40:00 AM

Matrix: WATER

Project: Lab ID:

N005759-006

PG&E Topock.405681.MP.02.GM.04

DF Analyses Result MDL PQL Qual Units Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506E

QC Batch: R79959

0.10

0.10

PrepDate:

Analyst: CEI

5/6/2011

Specific Conductance

10000

umhos/cm

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT: Lab Order: CH2M HILL

N005759

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

Analyses

N005759-007

Client Sample ID: MW-53D-177

Collection Date: 5/3/2011 1:15:00 PM

Matrix: WATER

Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506H

QC Batch: R79962

PrepDate:

Analyst: CEI

Specific Conductance

32000

0.10

0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range E

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc. Print Date: 31-May-11

CLIENT:

CH2M HILL

Lab Order:

N005759

PG&E Topock,405681.MP.02.GM.04

Project: Lab 1D:

N005759-008

Client Sample ID: MW-53M-177

Collection Date: 5/3/2011 2:35:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF **Date Analyzed**

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110506E

QC Batch: R79959

PrepDate:

Analyst: CEI

Specific Conductance

18000

0.10

0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-19-177

Lab Order:

N005759

Collection Date: 5/4/2011 2:45:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-009

Analyses	Result	MDL PC	L Qual	Units	DF	Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110506E

QC Batch: R79959

PrepDate:

Analyst: CEI

Specific Conductance

2200 0.10 0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range E

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Lahoratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-23-060-177

Lab Order:

N005759

Collection Date: 5/4/2011 10:06:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-010

Result MDL **PQL** Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110506E

QC Batch: R79959

PrepDate:

Analyst: CEI

Specific Conductance

15000

0.10

0.10

umhos/cm

5/6/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005759

Project: PG&E Topock,405681.MP.02.GM.04

Lab ID:

Analyses

N005759-011

Print Date: 31-May-11

Client Sample ID: MW-23-080-177 Collection Date: 5/4/2011 11:33:00 AM

Matrix: WATER

Result MDL Qual Units DF Date Analyzed PQL

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506E

QC Batch: R79959

PrepDate:

Analyst: CEI

Specific Conductance

1**50**00

0.10

0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Lab Order:

N005759

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

Analyses

N005759-012

Client Sample ID: MW-31-060-177

Collection Date: 5/4/2011 4:06:00 PM

Matrix: WATER

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM 110506F

QC Batch: R79960

Result MDL

PrepDate:

Analyst: CEI

Specific Conductance

3800 0.10 0.10

PQL Qual Units

umhos/cm

DF

5/6/2011

Date Analyzed

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005759

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005759-013

Client Sample ID: MW-33-090-177

Collection Date: 5/4/2011 2:08:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110506F

QC Batch: R79960

PrepDate:

Print Date: 31-May-11

Analyst: CEI

Specific Conductance

9600 0.10

0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-33-150-177

Lab Order:

N005759

Collection Date: 5/4/2011 10:45:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-014

Analyses	Result MDL	PQL	Qual Units	\mathbf{DF}	Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506F

QC Batch: R79960

0.10

PrepDate:

Analyst: CEI

Specific Conductance

15000

0.10

umhos/cm

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

N005759

Client Sample ID: MW-33-210-177

Lab Order:

PG&E Topock,405681.MP.02.GM.04

Collection Date: 5/4/2011 12:03:00 PM

Matrix: WATER

Project: Lab ID:

Analyses

N005759-015

Result MDL DF PQL Qual Units Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110506F

QC Batch: R79960

0.10

0.10

PrepDate:

Analyst: CEI

5/6/2011

Specific Conductance

1700

umhos/cm

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range Ε

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order:

CH2M HILL

N005759

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

Analyses

N005759-016

Client Sample ID: MW-35-060-177

Print Date: 31-May-11

Collection Date: 5/4/2011 12:39:00 PM

Matrix: WATER

Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506F

Specific Conductance

QC Batch: R79960 6700

0.10

0.10

PrepDate: umhos/cm

Analyst: CEI

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-35-135-177

Lab Order:

N005759

Collection Date: 5/4/2011 1:35:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-017

PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunlD: WETCHEM_110506F

QC Batch: R79960

PrepDate:

Analyst: CEI

5/6/2011

Specific Conductance

9800 0.10

Result MDL

0.10

umhos/cm

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-46-205-177

Lab Order:

N005759

Collection Date: 5/4/2011 9:23:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-018

Qual Units

Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506F

QC Batch: R79960

0.10

Result MDL

PrepDate:

Analyst: CEI

Specific Conductance

18000

PQL

0.10

umhos/cm

DF

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Е Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Lahoratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-48-177

Lab Order:

N005759

Collection Date: 5/4/2011 3:21:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-019

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed	
SPECIFIC CONDUCTANCE		<u></u>			
	EPA 120.1				
RuniD: WETCHEM_110506F	QC Batch: R79960	PrepDate:		Analyst: CEI	
Specific Conductance	1600 0 0.10	0.10 umhos/cm	1	5/6/2011	

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range E
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

Lab ID:

CH2M HILL

N005759

Client Sample ID: MW-92-177

Lab Order:

Collection Date: 5/4/2011 11:32:00 AM

Project: PG&E Topock,405681.MP.02.GM.04 N005759-020

Matrix: WATER

Analyses	Result MDL P	QL Qual Units	DF	Date Analyzed	
SPECIFIC CONDUCTANCE	•				
	EPA 120.1				
RuniD: WETCHEM_110506F	QC Batch: R79960	PrepDate:		Analyst: CEI	
Specific Conductance	16000 0.10	0.10 umhos/cm	1	5/6/2011	

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-37D-177

Lab Order:

N005759

Collection Date: 5/5/2011 9:06:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-021

Analyses Result MDL PQL Qual Units DF Date Analyzed

0.10

SPECIFIC CONDUCTANCE

Specific Conductance

EPA 120.1

RuniD: WETCHEM 110506F

QC Batch: R79960 15000

0.10

PrepDate: umhos/cm

Analyst: CEI

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Lab Order:

N005759

Client Sample ID: MW-40D-177

Project:

Analyses

PG&E Topock,405681.MP.02.GM.04

Collection Date: 5/5/2011 10:12:00 AM Matrix: WATER

Lab ID: N005759-022

SPECIFIC CONDUCTANCE

EPA 120.1

Qual Units

RuniD: WETCHEM_110506G

Specific Conductance

QC Batch: R79961 14000

0.10

Result MDL

0.10

PQL

PrepDate: umhos/cm

DF

Analyst: CEI

5/6/2011

Date Analyzed

Qualifiers:

Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Adyanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

N005759

Lab Order:

Project: Lab ID:

PG&E Topock,405681.MP.02.GM.04

N005759-023

Client Sample ID: MW-57-070-177

Collection Date: 5/5/2011 12:39:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed SPECIFIC CONDUCTANCE

EPA 120.1

RunfD: WETCHEM_110506G

Specific Conductance

QC Batch: R79961 2400

0.10

0,10

PrepDate: umhos/cm

Analyst: CEI

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-62-065-177

Lab Order:

N005759

Collection Date: 5/5/2011 11:23:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-024

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE				
		ED 4 400 4		

EPA 120.1

RunID: WETCHEM_110506G

Specific Conductance

QC Batch: R79961

6000

0.10

0.10

PrepDate: umhos/cm

Analyst: CEI

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

N005759

Client Sample ID: MW-62-110-177

Lab Order:

Collection Date: 5/5/2011 1:16:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-025

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE				
		EPA 120.1		
RuniD: WETCHEM_110506G	QC Batch: R79961	PrepDate:		Analyst: CEI
Specific Conductance	8500 0.10	0.10 umhos/cm	1	5/6/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005759

Project: Lab ID: PG&E Topock,405681.MP.02.GM.04

N005759-026

Client Sample ID: MW-62-190-177

Collection Date: 5/5/2011 1:25:00 PM

Matrix: WATER

Analyses Result MDL SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110506G

QC Batch: R79961

PrepDate:

Analyst: CEI

Specific Conductance

17000 0.10

0.10

PQL Qual Units

umhos/cm

DF

5/6/2011

Date Analyzed

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-97-177

N005759

Lab Order:

PG&E Topock,405681.MP.02.GM.04

Collection Date: 5/5/2011 12:41:00 PM

Print Date: 31-May-11

Project: Lab ID:

N005759-027

Matrix: WATER

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE				
		EPA 120.1		

RunID: WETCHEM_110506G

QC Batch: R79961

PrepDate:

Analyst: CEI

Specific Conductance

2400 0.10 0.10

umhos/cm

1

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005759

Project: PG&E Topock,405681.MP.02.GM.04

Date: 31-May-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Sample ID: LCS-R79959	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79959
Client ID: LCSW	Batch ID: R79959	TestNo: EPA 120.1	Analysis Date: 5/6/2011	SeqNo: 1264866
Analyte	Result	PQL SPK value SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	9955.000	0.10 9985 0 99.7	85 115	
Sample ID: N005759-001B-DUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79959
Client ID: ZZZZZZ	Batch ID: R79959	TestNo: EPA 120.1	Analysis Date: 5/6/2011	SeqNo: 1264878
Analyte	Result	PQL SPK value SPK Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	14530.000	0.10	14500	0.207 10
Sample ID: N005759-001B-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79959
Sample ID: N005759-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79959		Prep Date: Analysis Date: 5/6/2011	RunNo: 79959 SeqNo: 1264879
,	,		,	
Client ID: ZZZZZZ	Batch ID: R79959	TestNo: EPA 120.1	Analysis Date: 5/6/2011	SeqNo: 1264879
Client ID: ZZZZZZ Analyte	Batch ID: R79959 Result	TestNo: EPA 120.1 A PQL SPK value SPK Ref Val %REC	Analysis Date: 5/6/2011 LowLimit HighLimit RPD Ref Val	SeqNo: 1264879
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79959 Result 24220.000	TestNo: EPA 120.1 A PQL SPK value SPK Ref Val %REC 0.20 9985 14500 97.3 TestCode: 120.1_WPGE Units: umhos/cm	Analysis Date: 5/6/2011 LowLimit HighLimit RPD Ref Val 75 125	SeqNo: 1264879 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005759-001B-MSD	Result 24220.000 SampType: MSD	TestNo: EPA 120.1 A PQL SPK value SPK Ref Val %REC 0.20 9985 14500 97.3 TestCode: 120.1_WPGE Units: umhos/cm	Analysis Date: 5/6/2011 LowLimit HighLimit RPD Ref Val 75 125 Prep Date:	SeqNo: 1264879 %RPD RPDLimit Qual RunNo: 79959

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

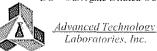
Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT


TestCode: 120.1_WPGE

Sample ID: LCS-R79960	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm	n Prep Date:	RunNo: 79960
Client ID: LCSW	Batch ID: R79960	TestNo: EPA 120.1	Analysis Date: 5/6/2011	SeqNo: 1264881
Analyte	Result	PQL SPK value SPK Ref Val %	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	9580.000	0.10 9985 0	95.9 85 115	
Sample ID: N005759-013B-DUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79960
Client ID: ZZZZZZ	Batch ID: R79960	TestNo: EPA 120.1	Analysis Date: 5/6/2011	SeqNo: 1264893
Analyte	Result	PQL SPK value SPK Ref Val %	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	9620.000	0.10	9580	0.417 10
				<u> </u>
Sample ID: N005759-013B-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79960
Sample ID: N005759-013B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79960	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date: Analysis Date: 5/6/2011	RunNo: 79960 SeqNo: 1264894
'		TestNo: EPA 120.1	,	
Client ID: ZZZZZZ	Batch ID: R79960	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %	Analysis Date: 5/6/2011	SeqNo: 1264894
Client ID: ZZZZZZ Analyte	Batch ID: R79960 Result	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %	Analysis Date: 5/6/2011 BREC LowLimit HighLimit RPD Ref Val 97.1 75 125	SeqNo: 1264894
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79960 Result 19280.000	TestNo: EPA 120.1 PQL SPK value SPK Ref Val % 0.20 9985 9580	Analysis Date: 5/6/2011 BREC LowLimit HighLimit RPD Ref Val 97.1 75 125	SeqNo: 1264894 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005759-013B-MSD	Batch ID: R79960 Result 19280.000 SampType: MSD	TestNo: EPA 120.1 PQL SPK value SPK Ref Val % 0.20 9985 9580 TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	Analysis Date: 5/6/2011 SREC LowLimit HighLimit RPD Ref Val 97.1 75 125 Prep Date:	SeqNo: 1264894 %RPD RPDLimit Qual RunNo: 79960

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Sample ID: LCS-R79961	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm Prep D	ate: RunNo: 79961
Client ID: LCSW	Batch ID: R79961	TestNo: EPA 120.1 Analysis D	ate: 5/6/2011 SeqNo: 1264896
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit	: HighLimit RPD Ref Val %RPD RPDLimit Qual
Specific Conductance	9560.000	0.10 9985 0 95.7 85	115
Sample ID: N005759-022B-DUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm Prep D	rate: RunNo: 79961
Client ID: ZZZZZZ	Batch ID: R79961	TestNo: EPA 120.1 Analysis D	ate: 5/6/2011 SeqNo: 1264903
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit	HighLimit RPD Ref Val %RPD RPDLimit Qual
Specific Conductance	14500.000	0.10	14500 0 10
Sample ID: N005759-022B-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm Prep D	
Sample ID: N005759-022B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79961	•	
'	, ,,	TestNo: EPA 120.1 Analysis D	ate: RunNo: 79961
Client ID: ZZZZZZ	Batch ID: R79961	TestNo: EPA 120.1 Analysis D	ate: RunNo: 79961 ate: 5/6/2011 SeqNo: 1264904 HighLimit RPD Ref Val %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte	Batch ID: R79961 Result	TestNo: EPA 120.1 Analysis D PQL SPK value SPK Ref Val %REC LowLimit	ate: RunNo: 79961 ate: 5/6/2011 SeqNo: 1264904 HighLimit RPD Ref Val %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79961 Result 24280.000	TestNo: EPA 120.1 Analysis D PQL SPK value SPK Ref Val %REC LowLimit 0.20 9985 14500 97.9 75 TestCode: 120.1_WPGE Units: umhos/cm Prep D	ate: RunNo: 79961 ate: 5/6/2011 SeqNo: 1264904 HighLimit RPD Ref Val %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005759-022B-MSD	Batch ID: R79961 Result 24280.000 SampType: MSD	TestNo: EPA 120.1 Analysis D PQL SPK value SPK Ref Val %REC LowLimit 0.20 9985 14500 97.9 75 TestCode: 120.1_WPGE Units: umhos/cm Prep D TestNo: EPA 120.1 Analysis D	ate: RunNo: 79961 ate: 5/6/2011 SeqNo: 1264904 HighLimit RPD Ref Val %RPD RPDLimit Qual 125 ate: RunNo: 79961

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Sample ID: LCS-R79962	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79962
Client ID: LCSW	Batch ID: R79962	TestNo: EPA 120.1	Analysis Date: 5/6/2011	SeqNo: 1264906
Analyte	Result	PQL SPK value SPK Ref Val %	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Quaf
Specific Conductance	101500.000	0.10 100100 0	101 85 115	
Sample ID: N005759-007B-DUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79962
Client ID: ZZZZZZ	Batch ID: R79962	TestNo: EPA 120.1	Analysis Date: 5/6/2011	SeqNo: 1264909
A nalyte	Result	PQL SPK value SPK Ref Val %	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	31700.000	0.10	31600	0.316 10
Specific Conductance Sample ID: N005759-007B-MS	31700.000 SampType: MS	0.10 TestCode: 120.1_WPGE Units: umhos/cm	31600 Prep Date:	0.316 10 RunNo: 79962
Sample ID: N005759-007B-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	Prep Date:	RunNo: 79962 SeqNo: 1264910
Sample ID: N005759-007B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79962	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	Prep Date; Analysis Date: 5/6/2011	RunNo: 79962 SeqNo: 1264910
Sample ID: N005759-007B-MS Client ID: ZZZZZZ Analyte	SampType: MS Batch ID: R79962 Result	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1 PQL SPK value SPK Ref Val %	Prep Date: Analysis Date: 5/6/2011 REC LowLimit HighLimit RPD Ref Val	RunNo: 79962 SeqNo: 1264910
Sample ID; N005759-007B-MS Client ID: ZZZZZZ Analyte Specific Conductance	SampType: MS Batch ID: R79962 Result 140800.000	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1 PQL SPK value SPK Ref Val % 0.20 100100 31600	Prep Date: Analysis Date: 5/6/2011 REC LowLimit HighLimit RPD Ref Val	RunNo: 79962 SeqNo: 1264910 %RPD RPDLimit Qual
Sample ID: N005759-007B-MS Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005759-007B-MSD	SampType: MS Batch ID: R79962 Result 140800.000 SampType: MSD	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1 PQL SPK value SPK Ref Val % 0.20 100100 31600 TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	Prep Date: Analysis Date: 5/6/2011 REC LowLimit HighLimit RPD Ref Val 109 75 125 Prep Date:	RunNo: 79962 SeqNo: 1264910 %RPD RPDLimit Qual RunNo: 79962

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-37D-177

Lab Order:

N005759

Collection Date: 5/5/2011 9:06:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-021

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

Qual Units

RuniD: IC2_110506A

QC Batch: R80020

PQL

PrepDate:

Analyst: QBM

Date Analyzed

Nitrate as N

ND 0.055

Result MDL

2.5

mg/L

5 5/6/2011 10:49 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range E
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

Adyanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

5

5/6/2011 11:00 AM

CLIENT:

CH2M HILL

Client Sample ID: MW-40D-177

Lab Order:

Nitrate as N

N005759

Collection Date: 5/5/2011 10:12:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

mg/L

Lab ID:

N005759-022

Analyses	3	Result MDL F	QL Qual Units	DF	Date Analyzed
ANIONS	BY ION CHROMATOG	RAPHY	EPA 300.0		
RunID:	IC2 110506A	QC Batch: R80020	PrepDate:		Analyst: QBM
Runid;	IC2110506A	QC Batch: R80020	Prepuate:		Analyst

2.5

0.055

2.7

Qualifiers:

Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-62-110-177

Print Date: 31-May-11

Lab Order:

N005759

Collection Date: 5/5/2011 1:16:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-025

Result MDL PQL Qual Units \mathbf{DF} Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2 110506A

QC Batch: R80020

PrepDate:

Analyst: QBM

Nitrate as N

2.5 0.022 1.0

mg/L

2 5/6/2011 11:11 AM

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-62-190-177

Lab Order:

N005759

Collection Date: 5/5/2011 1:25:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-026

DF Date Analyzed Qual Units

5

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RuniD: IC2 110506A

QC Batch: R80020

PrepDate:

Analyst: QBM

Nitrate as N

ND 0.055

Result MDL

2.5

PQL

mg/L

5/6/2011 11:22 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 300W_NO3PGE

Date: 31-May-11

Sample ID: MB-R80020_NO3	SampType: MBLK	TestCode: 300W NO3P Units: mg/L	Prep Date;	RunNo: 80020
Client ID: PBW	Batch ID: R80020	TestNo: EPA 300.0	Analysis Date: 5/6/2011	
Client ID: PBW	Batch ID; R80020	restino: EPA 300.0	Analysis Date: 5/6/2011	SeqNo: 1266869
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	ND	0.50		
Sample ID: LCS-R80020_NO3	SampType: LCS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80020
Client ID: LCSW	Batch ID: R80020	TestNo: EPA 300.0	Analysis Date: 5/6/2011	SeqNo: 1266870
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	2.394	0.50 2.500 0	95.8 90 110	
Sample ID: N005759-021BDUP	SampType: DUP	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80020
Client ID: ZZZZZZ	Batch ID: R80020	TestNo: EPA 300.0	Analysis Date: 5/6/2011	SeqNo: 1266875
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	0.590	2.5	0.6150	0 20
Sample ID: N005759-022BMS	SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80020
Client ID: ZZZZZZ	Batch ID: R80020	TestNo: EPA 300.0	Analysis Date: 5/6/2011	SeqNo: 1266876
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	14.860	2.5 12.50 2.715	97.2 80 120	
Sample ID: N005759-022BMSD	SampType: MSD	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80020
Client ID: ZZZZZZ	Batch ID: R80020	TestNo: EPA 300.0	Analysis Date: 5/6/2011	SeqNo: 1266877
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate as N	14.705	2.5 12 .50 2.715	95.9 80 120 14.86	1.05 20

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-22-177

Lab Order:

N005759

Collection Date: 5/3/2011 3:55:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-001

Analyses	Result	MDL	PQL Qual	Units	DF I	Date Analyzed
DISSOLVED METALS BY ICP						_
	EPA 3010A		EP	4 6010B		
RuniD; ICP1_110510B	QC Batch: 36	860		PrepDate:	5/9/2011	Analyst: KAB
Antimony	ND	5.4	10	ug/L	1	5/10/2011 01:05 PM
Barium	60	0.20	3.0	ug/L	1	5/10/2011 01:05 PM
Beryllium	ND	0.090	1.0	ug/L	1	5/10/ 2 011 01:05 PM
Cadmium	ND	0.23	3.0	ug/L	1	5/10/2011 01:05 PM
Cobalt	ND	0.31	3.0	ug/L	1	5/10/2011 01:05 PM
Copper	ND	0.53	5.0	ug/L	1	5/1 <mark>0/2</mark> 011 01:05 PM
Lead	ND	1.5	10	ug/L	1	5/10/2011 01:05 PM
Molybdenum	28	0.49	5.0	ug/L	1	5/10/2011 01:05 PM
Nickel	ND	1.1	5.0	ug/L	1	5/10/2011 01:05 PM
Silver	ND	0.72	3.0	บg/L	1	5/10/2011 02:30 PM
Vanadium	ND	0.19	3.0	ug/L	1	5/10/2011 01:05 PM
Zinc	ND	4.6	10	ug/L	1	5/10/2011 01:05 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 31-May-11

CLIENT:

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: MB-36860 Client ID: PBW	SampType: MBLK Batch ID: 36860		de: 6010_WDPG lo: EPA 6010B	Units: ug/L EPA 3010A		Prep Da Analysis Da	ite: 5/9/201 ite: 5/10/20		RunNo: 79 9 SeqNo: 12 9		
Analyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HìghLìmit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	ND	10									
Barium	ND	3.0									
Beryllium	ND	1.0									
Cadmium	ND	3.0									
Cobalt	ND	3.0									
Copper	0.728	5.0									
Lead	ND	10									
Molybdenum	4,264	5.0									
Nickel	ND	5.0									
Silver	ND	3.0									
Vanadium	ND	3.0									
Zinc	ND	10									

Sample ID: LCS-36860	SampType: LCS	TestCo	de: 6010_WD I	PG Units: ug/L		Prep Da	te: 5/9/201	1	RunNo: 79	986	
Client ID: LCSW	Batch ID: 36860	Test	No: EPA 6010	B EPA 3010A		Analysis Da	te: 5/10/20	11	SeqNo: 12	65684	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	485,904	10	500.0	0	97,2	85	115				
Barium	504.671	3.0	500.0	0	101	85	115				
Beryllium	487.380	1.0	500.0	0	97,5	85	115				
Cadmium	493.691	3.0	500.0	0	98.7	85	115				
Cobalt	504.067	3.0	500.0	0	101	85	115				
Copper	505,595	5.0	500.0	0	101	85	115				
Lead	494.642	10	500.0	0	98.9	85	115				
Molybdenum	493.697	5.0	500.0	0	98.7	85	115				
Nickel	497.182	5,0	500.0	0	99.4	85	115				
Silver	486.717	3.0	500.0	0	97.3	85	115				
Vanadium	493.824	3.0	500.0	0	98.8	85	115				

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: LCS-36860	SampType: LCS	TestCo	de: 6010_WDPG	Units: ug/L		Prep Date	: 5/9/2011		RunNo: 79	986	
Client ID: LCSW	Batch ID: 36860	TestN	lo: EPA 6010B	EPA 3010A		Analysis Date	: 5/10/201	1	SeqNo: 12	65684	
Analyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit I	HìghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Zinc	489.148	10	500.0	0	97.8	85	115				
Sample ID: N005760-001B-MS	SampType: MS	TestCoo	de: 6010_WDPG	Units: ug/L	***************************************	Prep Date	: 5/9/2011		RunNo: 79	986	
Client ID: ZZZZZZ	Batch ID: 36860	TestN	lo: EPA 6010B	EPA 3010A		Analysis Date	5/10/201	1	SeqNo: 12	65688	
Analyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit I	HìghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	515.533	10	500.0	0	103	75	125				
Barium	610.732	3.0	500.0	122.5	97.6	75	125				
Beryllium	496.178	1.0	500.0	0	99.2	75	125				
Cadmium	498.362	3.0	500.0	0.3380	99.6	75	125				
Cobalt	494.151	3.0	500.0	0	98.8	75	125				
Copper	531.570	5.0	500.0	0	106	75	125				
Lead	477.809	10	500.0	1.665	95.2	75	125				
Molybdenum	572.187	5.0	500.0	69.76	100	75	125				
Nickel	493.104	5.0	500.0	0	98.6	75	125				
Silver	513.570	3.0	500.0	0	103	75	125				
Vanadium	506.001	3.0	500.0	0	101	75	125				
Zinc	510.795	10	500.0	9.389	100	75	125				
Sample ID: N005760-001B-MSD	SampType: MSD	TestCod	le: 6010_WDPG	Units: ug/L		Prep Date:	5/9/2011		RunNo: 79 9	986	
Client ID: ZZZZZZ	Batch ID: 36860	TestN	lo: EPA 6010 B	EPA 3010A		Analysis Date:	5/10/201	1	SeqNo: 126	65689	
Analyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit F	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	512,266	10	500.0	0	10 2	75	125	515.5	0.636	20	
Barium	604.591	3.0	500.0	122.5	96.4	75	125	610.7	1,01	20	
Beryllium	496.766	1.0	500.0	0	99.4	75	125	496.2	0,118	20	

0 0

98.4

97.9

105

94,7

75

75

75

75

125

125

125

125

0.3380

1.665

Qualifiers:

Cadmium

Cobalt

Copper

Lead

Analyte detected in the associated Method Blank

492.457

489.711

526.590

474.960

- Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Value above quantitation range

500.0

500.0

500.0

500.0

RPD outside accepted recovery limits Calculations are based on raw values

Holding times for preparation or analysis exceeded

498.4

494.2

531.6

477.8

Spike/Surrogate outside of limits due to matrix interference

1,19

0.902

0.941

0.598

20

20

20

20

3.0

3.0

5.0

10

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005760-001B-M Client ID: ZZZZZZ	SD SampType: MSD Batch ID: 36860		de: 6010_WD No: EPA 6010	-		Prep Da Analysis Da	te: 5/9/201 te: 5/10/20		RunNo: 79 9 SeqNo: 12 6		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Molybdenum	568.223	5,0	500.0	69.76	99.7	75	125	572.2	0.695	20	
Nickel	488.986	5.0	500.0	0	97.8	75	125	493.1	0.839	20	
Silver	507.802	3.0	500.0	0	102	75	125	513.6	1.13	20	
Vanadium	501.203	3.0	500.0	0	100	75	125	506.0	0.953	20	
Zinc	505.744	10	500.0	9.389	99.3	75	125	510.8	0.994	20	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-22-177

Lab Order:

N005759

Collection Date: 5/3/2011 3:55:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-001

Analyses	Result	MDL	PQL Qual	Units	DF 1	Date Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EPA	4 6020		
RuniD: 1CP7_110510C	QC Batch: 368	343		PrepDate:	5/6/201	1 Analyst: JT
Arsenic	12	0.012	0.50	μg/L	5	5/10/ 2 011 08:43 PM
Manganese	2 300	2.3	12	μg/L	25	5/10/2011 08:48 PM
Selenium	ND	1.4	2.5	μg/L	5	5/10/2011 08:43 PM
Thailium	ND	0.38	12	μg/L	25	5/10/ 2 011 08:48 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005759

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005759-004

Client Sample ID: MW-52D-177

Collection Date: 5/3/2011 11:35:00 AM

Print Date: 31-May-11

Matrix: WATER

Analyses	Result MDL	PQL Qual Units	DF Date Analyzed
DISSOLVED METALS BY IC	CP-MS	The state of the s	
	EPA 3010A	EPA 6020	
RuniD: ICP7_110510C	QC Batch: 36843	PrepDate:	5/6/2011 Analyst: JT
Arsenic	3.3 0.012	0.50 μg/L	5 5/10/2011 08:58 PM
Manganese	280 0.46	2.5 μg/L	5 5/10/2011 08:58 PM

Qualifiers:

Analyte detected in the associated Method Blank

Ħ Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT: Lab Order: CH2M HILL

Advanced Technology Laboratories, Inc.

N005759

PG&E Topock,405681.MP.02.GM.04

Client Sample ID: MW-52M-177

Collection Date: 5/3/2011 10:45:00 AM

Matrix: WATER

Project: Lab ID:

Analyses

N005759-005

Result MDL **PQL** Qual Units DF Date Analyzed

DISSOLVED METALS BY ICP-MS

EPA 3010A

EPA 6020

RunID: ICP7_110510C

QC Batch: 36843

PrepDate:

5/6/2011 Analyst: JT

Arsenic

1.2 0.012 0.50

μg/L

5/10/2011 09:22 PM

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

REVISION 1, 06/23/11

Advanced Technology Laboratories, Inc.

ANALYTICAL RESULTS

Print Date: 23-Jun-11

CLIENT: CH2M HILL Client Sample ID: MW-52S-177

Lab Order: N005759 **Collection Date:** 5/3/2011 9:40:00 AM

Project: PG&E Topock,405681.MP.02.GM.04 Matrix: WATER

Lab ID: N005759-006A

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED METALS BY ICP-MS

EPA 3010A EPA 6020

RunID: ICP7_110510C QC Batch: 36843 PrepDate: 5/6/2011 Analyst: JT

Arsenic 0.50 0.012 0.50 µg/L 5 5/10/2011 09:37 PM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

N005759

Client Sample ID: MW-53D-177

Print Date: 31-May-11

Lab Order:

PG&E Topock,405681,MP.02,GM.04

Collection Date: 5/3/2011 1:15:00 PM

PQL

Matrix: WATER

Project: Lab ID:

Analyses

N005759-007

 \mathbf{DF}

DISSOLVED METALS BY ICP-MS

EPA 3010A

EPA 6020

Qual Units

RunID:	ICP7_110510C	QC

C Batch: 36843

2.5

PrepDate: μg/L

5/6/2011 Analyst: JT 5/10/2011 09:56 PM 25

Arsenic Manganese

0.062 3.2 1900 2.3

Result MDL

12

 $\mu g/L$

5/10/2011 09:56 PM 25

Date Analyzed

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-53M-177

Lab Order:

N005759

Collection Date: 5/3/2011 2:35:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID: N005759-008

Analyses	Result	MDL I	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EPA 6020			
RunID: ICP7_110511A	QC Batch: 368	43		PrepDate:	5/6/201	i1 Analyst: JT
Arsenic	0.96	0.012	0.50	μg/L	5	5/11/2011 12:40 PM
Manganese	400	0.46	2.5	μg/L	5	5/11/2011 12:40 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005759

PG&E Topock,405681.MP.02.GM.04

Client Sample ID: MW-23-060-177

Print Date: 31-May-11

Collection Date: 5/4/2011 10:06:00 AM

Matrix: WATER

Project: Lab ID:

N005759-010

Analyses	Result MDL	PQL Qual Units	DF Date Analyzed
DISSOLVED METALS BY IC	P-MS	, , , , , , , , , , , , , , , , , , , ,	
	EPA 3010A	EPA 6020	
RuniD: ICP7_110511A	QC Batch: 36843	PrepDate:	5/6/2011 Analyst: JT
Arsenic	2.5 0.012	0.50 μg/L	5 5/11/2011 12:55 PM
Manganese	0.51 0 .091	0.50 μg/L	1 5/11/2011 12:50 PM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-23-080-177

Lab Order:

N005759

Collection Date: 5/4/2011 11:33:00 AM

Print Date: 31-May-11

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-011

Analyses	Result	MDL I	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY IC	P-MS					
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110511A	QC Batch: 368	43		PrepDate:	5/6/201	I1 Analyst: JT
Arsenic	3.3	0.012	0.50	μg/L	5	5/11/2011 01:14 PM
Manganese	ND	0.091	0.50	μg/L	1	5/11/2011 01:09 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-92-177

Lab Order:

N005759

Collection Date: 5/4/2011 11:32:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-020

Analyses	Result MDL	PQL Qual Units	DF Date Analyzed
DISSOLVED METALS BY IC	P-MS		
	EPA 3010A	EPA 6020	
RuniD: ICP7_110511A	QC Batch: 36843	PrepDate:	5/6/2011 Analyst: J T
Arsenic	3,4 0.012	0.50 μg/L	5 5/11/ 2 011 01:39 PM
Manganese	ND 0.46	2.5 μg/L	5 5/11/2011 01:39 PM

Qualifiers:

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Value above quantitation range ND Not Detected at the Reporting Limit

Spike/Surrogate outside of limits due to matrix interference Surrogate Diluted Out

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-37D-177

Lab Order:

N005759

Collection Date: 5/5/2011 9:06:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-021

Analyses	Result	MDL .	PQL Qual	Units	DF I	Date Analyzed
DISSOLVED METALS BY IC	P-MS					
	EPA 3010A		EPA 6020			
RunID: ICP7_110511A	QC Batch: 3684	43		PrepDate:	5/6/2011	i Analyst: JT
Molybdenum	47	0.24	2.5	μg/L	5	5/11/2011 04:53 PM
Selenium	ND	1.4	2.5	μg/L	5	5/11/2011 04:53 PM

Qualifiers:

B Analyte detected in the associated Method Blank

11 Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-40D-177

Print Date: 31-May-11

Lab Order:

N005759

Collection Date: 5/5/2011 10:12:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-022

, , , , , , , , , , , , , , , , , , ,		7/-2/1/	
Analyses	Result MDL	PQL Qual Units	DF Date Analyzed
DISSOLVED METALS BY IC	CP-MS		
	EPA 3010A	EPA 6020	
RunID: ICP7_110511A	QC Batch: 36843	PrepDate:	5/6/2011 Analyst: JT
Arsenic	4.3 0.012	0.50 μg/L	5 5 /11/2011 03:23 PM
Manganese	5.6 0.091	0.50 μg/L	1 5/11/2011 03:16 PM
Molybdenum	48 0.24	2.5 μg/L	5 5/11/2011 03:23 PM
Selenium	ND 1,4	2.5 μg/L	5 5/11/2011 03:23 PM

Qualifiers:

Analyte detected in the associated Method Blank

1 Holding times for preparation or analysis exceeded

 \mathbf{S} Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-62-110-177

Lab Order:

N005759

Collection Date: 5/5/2011 1:16:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-025

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY IC	CP-MS				,	
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110511A	QC Batch: 36	843		PrepDate:	5/6/201	1 Analyst: JT
Arsenic	14	0.0025	0.10	μg/L	1	5/11/2011 03:37 PM
Manganese	240	0.46	2.5	μg/L	5	5/11/2011 03:44 PM
Molybdenum	60	0.24	2.5	μg/L	5	5/11/2011 03:44 PM
Selenium	2.5	0.29	0.50	μg/L	1	5/11/2011 03:37 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-62-190-177

Lab Order:

N005759

Collection Date: 5/5/2011 1:25:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005759-026

Analyses	Result	MDL	PQL Qual	Units	DF D	ate Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		A 6020			
RuniD: iCP7_110511A	QC Batch: 368	343		PrepDate:	5/6/2011	Analyst: JT
Arsenic	6.5	0.012	0.50	µg/L	5 5	5/11/2011 04:05 PM
Manganese	1000	2.3	12	µg/L	2 5 5	5/11/2011 04:12 PM
Molybdenum	82	0.24	2.5	μg/L	5 5	5/11/2011 04:05 PM
Selenium	ND	1.4	2,5	μg/L	5 5	5/11/2011 04:05 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Work Order: N005759

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

Date: 31-May-11

TestCode: 6020_DIS

Sample ID: MB-36843	SampType: MBLK	TestCode: 6020_DIS		Units: µg/L		Prep Date: 5/6/2011			RunNo: 80167		
Client ID: PBW	Batch ID: 36843	TestNo: E	PA 6020	EPA 3010A		Analysis Date	: 5/8/201	1	SeqNo: 12		
Analyte	Result	PQL SF	K value	SPK Ref Val	%REC LowLimit Hi		HighLimit	RPD Ref Val	%RPD	RPDLîmit	Qual
Arsenic	ND	0.10									
Manganese	ND	0.50									
Molybdenum	ND	0.50									
Selenium	ND	0.50									
Thallium	ND	0.50									
Sample 1D: LCS-36843	SampType: LCS	TestCode: 6	020_DIS	Units: µg/L		Prep Date	: 5/6/201	1	167		
Client ID: LCSW	Batch ID: 36843	TestNo: E	PA 6020	EPA 3010A		Analysis Date	: 5/8/201	1	SeqNo: 1271371		
Analyte	Result	PQL S P	K value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	9.843	0.10	10.00	0	98.4	85	115				
Manganese	106.061	0.50	100.0	0	106	85	115				
Molybdenum	9.869	0.50	10.00	0	98.7	85	115				
Selenium	9.498	0.50	10.00	0	95.0	85	115				
Thallium	10,219	0.50	10.00	0	102	85	115				
Sample ID: N005760-001B-MS	SampType: MS	TestCode: 60)20_DIS	Units: µg/L		Prep Date	5/6/201	5/6/2011		167	
Client ID: ZZZZZZ	Batch ID: 36843	TestNo: E	PA 6020	EPA 3010A		Analysis Date	: 5/8/201	1	SeqNo: 127	1376	
Analyte	Result	PQL SP	K value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	10.851	0.10	10.00	0,5007	104	75	125				
Molybdenum	96.832	0.50	10.00	83.56	133	75	125				S
Selenium	18,324	0.50	10.00	8.650	96.7	75	125				
Thallium	10.809	0.50	10.00	0.09284	107	75	125				

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values 11 Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: N005760-001B-MS	SampType: MS	TestCode: 6020_DIS	Units: μg/L	Prep Da	ite: 5/6/2011	RunNo: 80167	
Client 1D: ZZZZZZ	Batch ID: 36843	TestNo: EPA 6020	EPA 3010A	Analysis Da	ite: 5/8/2011	SeqNo: 12713 77	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Manganese	567.433	2.5 100.0	477.6	89.8 75	125		
Sample ID: N005760-001B-MSD	SampType: MSD	TestCode: 6020_DIS	Units: µg/L	Prep Da	te: 5/6/2011	RunNo: 80167	
Client ID: ZZZZZZ	Batch ID: 36843	TestNo: EPA 6020	EPA 3010A	Analysis Da	te: 5/8/2011	SeqNo: 1271378	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Arsenic	10.622	0.10 10.00	0.5007	101 75	125 10.85	2.14 20	
Molybdenum	95.498	0.50 10.00	83.56	119 75	125 96.83	1.39 20	
Selenium	18.484	0.50 10.00	8.650	98.3 75	125 18.32	0.871 20	
Thallium	10.798	0.50 10.00	0.09284	107 75	125 10.81	0.102 20	
Sample ID: N005760-001B-MSD	SampType: MS D	TestCode: 6020_DIS	Units: µg/L	Prep Da	te: 5/6/2011	RunNo: 80167	
Client ID: ZZZZZZ	Batch ID: 36843	TestNo: EPA 6020	EPA 3010A	Analysis Da	te: 5/8/2011	SeqNo: 1271379	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HìghLìmit RPD Ref Val	%RPD RPDLimit	Quai
Manganese	547.020	2.5 100.0	477.6	69.4 75	125 567.4	3.66 20	S

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-22-177

Lab Order:

N005759

Collection Date: 5/3/2011 3:55:00 PM

Project:

PG&E Topock.405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005759-001

PQL Qual Units DF Date Analyzed

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE

EPA 7470A

RunID: AA1 110506B

QC Batch: 36844

PrepDate:

5/6/2011 Analyst: CEI

Mercury

ND 0.091

Result MDL

0.20

μg/L

5/6/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 31-May-11

CLIENT:

CH2M HILL

Work Order:

N005759

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 7470_W_DISSPGE

Sample ID Client ID:	: LCS-36844 LCSW	SampType: LCS Batch ID: 36844	TestCode: 7470_W_DIS Units: µg/L TestNo: EPA 7470 A	Prep Date: 5/6/2011 Analysis Date: 5/6/2011	RunNo: 79970 SeqNo: 1264985
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		9.745	0.20 10.00 0	97.4 85 115	
Sample ID:	: MB-36844 PBW	SampType: MBLK Batch ID: 36844	TestCode: 7470_W_DIS Units: μg/L TestNo: EPA 7470A	Prep Date: 5/6/2011 Analysis Date: 5/6/2011	RunNo: 79970 SeqNo: 1264986
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLìmit Qual
Мегсигу		ND	0.20		
'	: N005760-001B-MS ZZZZZZ	SampType: MS Batch ID: 36844	TestCode: 7470_W_DIS Units: µg/L TestNo: EPA 7470A	Prep Date: 5/6/2011 Analysis Date: 5/6/2011	RunNo: 79970 SeqNo: 1264989
·		, ,,,		·	
Client ID:		Batch ID: 36844	TestNo: EPA 7470A	Analysis Date: 5/6/2011	SeqNo: 1264989
Client ID: Analyte Mercury Sample ID:		Batch ID: 36844 Result	TestNo: EPA 7470A PQL SPK value SPK Ref Val	Analysis Date: 5/6/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1264989
Client ID: Analyte Mercury Sample ID:	ZZZZZZ : N005760-001B-MSD	Batch ID: 36844 Result 18.417 SampType: MSD	TestNo: EPA 7470A PQL SPK value SPK Ref Val 0.20 20.00 0 0 TestCode: 7470_W_DIS Units: µg/L	Analysis Date: 5/6/2011 **REC LowLimit HighLimit RPD Ref Val 92.1 75 125 Prep Date: 5/6/2011	SeqNo: 1264989 %RPD RPDLimit Qual RunNo: 79970

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CH2MHILL							CHAI	V OF C	CUSTO	DDY RE	ECORD	5/5/2011 3:22:05 PM	Page	1 OF 2
Project Name PG&E Topock			Container	500 ml Poly	500 ml Poly	500 ml Poly	500 ml Poly	500 ml Poly	1 Liter Poly	1 Liter Poly	4.4004			
Location Topock		Pres	ervatives:	HNO3.	HNO3, 4°C	HNO3, 4°C	HNO3 4°C	HNO3,	4°C	4°C			***	
Project Number 405681.MP. Project Manager Jay Piper	.02.GM.04												Signatura (mod kieleitat ka
Sample Manager Shawn Duff	fv	Hole	:Filtered :Jing Time	Field 180	Field 180	Field 180	Field 180	Field 180	NA 2	NA 2				440 tobustermenta
J	•		J											CONTRACT OF CONTRA
Task Order Project 2011-GMP-177-Q2				Arse	etals	Metal	Metal	Metal 2:Sb/	pecif	Ą			_	2000 COMPANY
Turnaround Time 10 Days				nic (6	(602)	s (60	ls (60 7	s (SV Fie	c Co	iions			lum	STOP MAN STORE
Shipping Date: 5/5/2011				020)) A) F	20A) Mo,	20A) Mo,S	V601 eld Fi	nduc	Anions (E300.0)			bero	A Address of the Control of the Cont
COC Number: 8				Field	ield r	Field Se	Field e,Mn	0B/S ltered	tance	10.0)			of Co	
				Arsenic (6020) Field Filtered	Metals (6020A) Field Filtered	Metals (6020A) Field Filtered Mo,Se	(6020A) Field Fittered Mo,Se,Mn	uPbH	Specific Conductance (E120.1)	Nitrate			Number of Containers	and the second s
				red	Mn be	red	řed	Metals (SW6010B/SW6020A) Field Filtered T22:SbAsBaBeCdCoCuPbHgMoN	20.1)	क			ners	
MVV-22-177	5/3/2011	15:55	Matrix Water		x			×	x		N0057-59-	a g	1-	COMMENTS
MAVV-47-055-177	5/3/2011	16:52	<u> </u>		^				×		10003 + 201-	2	100	286
MW-47-115-177	5/3/2011	16:03	Water						x		**************************************	3	1	
MW-52D-177	5/3/2011	11:35		ж	х				X			<u> </u>	3	2
MW/-52M-177	5/3/2011	10:45		x	**				X			- Consumer	2	
M\\/-52S-177	5/3/2011	9:40	Water	×					Х		Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual		2	
MVV-53D-177	5/3/2011	13:15	Water	x	×				x			suny .	1	2
MW-53M-177	5/3/2011	14:35	Water	х	х				х			X	_3_	2
MW-19-177	5/4/2011	14:45	Water						х			9	1	
MVV-23-060-177	5/4/2011	10:06	Water	Х	Х				X			<u>l</u> O	28	2
MVV-23-080-177	5/4/2011	11:33	Water	х	Х				Х			**************************************	.3-	2
MW-31-060-177	5/4/2011	16:06	Water						х		****	12	1	
MW-33-090-177	5/4/2011	14:08	Water						х			(7)	1	
MW-33-150-177	5/4/2011	10:45	Water						х			N	1	***************************************
MW-33-210-177	5/4/2011	12:03	Water						х				1	
Approved by	ignatures		Date/T چاکاچا	ime -//		;	Shippin	g Details	s			Special Instructions:		
Sampled by			153		Metho	d of Shi	pment:	couri	ier		ATTN:	April 28 - May 13, 2011		
Relinquished by			f npr'., ~************************************		On Ice	: yes	auno $arphi$	·2. ·C	11.0	', T	Sample Custody			
Received by	phiGala	ng .	5/5/1	1 1530	Airbill			l (P#2		and	Report Copy to		
Relinquished by	pusas	edu	5/5/0	1750	1				NOLOGY	/ LABOR/	ATO Marion	Shawn Duffy		
Beceived by					Lab Pi	none: (7	702) 307	-2659				(530) 229-3303		

CH2MHILL							CHAI	N OF C	CUSTO	DDY R	ECORD	5/5/2011 3:22:06 PM	f Pa	age	_2_	OF 2
Project Name PG&E Topock			Container	500 ml Poly	500 mi Poly	500 ml Poly	500 ml Poly	500 ml	1 Liter	1 Liter Poly						ACT DECEMBER OF THE PARTY OF TH
Location Topock		_		HNO3,	HNO3,	HNO3,	HNO3,	Poly HNO3,	Poly 4°C	4°C						
Project Number 405681.MP.0	02.GM.04	Pres	ervatives	: 4°C	4°C	4°C	4°C	4°C								
Project Manager Jay Piper			Filtered	Field	Field	Field	Field	Field	NA	NA						
Sample Manager Shawn Duffy	ř	Hold	ling Time	180	180	180	180	180	2	2				OSSERVICE CONTRACTOR		
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/5/2011 COC Number: 8	DATE	TIME	Matrix	Arsenic (6020) Field Filtered	Metals (6020A) Field Filtered Mn	Metals (6020A) Field Filtered Mo,Se	Metals (6020A) Field Filtered Mo,Se,Mn	Metals (SW6010B/SW6020A) Field Filtered T22:SbAsBaBeCdCoCuPbHgMoNi	Specific Conductance (E120.1)	Anions (E300.0) Nitrate				Number of Containers	COI	MMENTS
MW-35-060-177	5/4/2011	12:39	Water						х		N0023	ta-16		1		
MW-35-135-177	5/4/2011	13:35	Water				••		х					1		
MW-46-205-177	5/4/2011	9:23	Water						х			1 %		1		
MW-48-177	5/4/2011	15:21	Water						х			(9		1		
MW-92-177	5/4/2011	11:32	Water	×	х				Х	***************************************	**************************************	70		, and	26	7×L
MW-37D-177	5/5/2011	9:06	Water			Х			х	х		T.		2		****
MW-40D-177	5/5/2011	10:12	Water	X			х		х	x		$\overline{\mathcal{U}}$		2		
MW-57-070-177	5/5/2011	12:39	Water	***	~				х			73		1		

Х

Х

X

Х

X

Approved by Sampled by Relinquished by Received by Relinquished by Received by

MW-62-065-177

MW-62-110-177

MW-62-190-177

MW-97-177

Date/Time 5-5-1/ / 53-D Signatures

11:23

13:16

13:25

12:41

5/5/2011

5/5/2011

5/5/2011

5/5/2011

Water

Water

Water

Water

Х

X

Shipping Details

Method of Shipment: courier

Х

X

On Ice: yes / no g.2 c/ 1.6 c/

5/5/11 /530 Airbill No: | E# 7

Lab Name: ADVANCED TECHNOLOGY LABORATO

Lab Phone: (702) 307-2659

ATTN:

Special Instructions:

TOTAL NUMBER OF CONTAINERS

1

4

49

April 28 - May 13, 2011

Sample Custody and

Report Copy to Shawn Duffy (530) 229-3303

24

75

26

Marlon

CH	2	MЛ	Н	ш	1

CHAIN OF CUSTODY RECORD

5/5/2011 3:22:05 PM

COBE WALLIEL							QI IAII	. 01	,0010	, D 1 (1	LOOKD	J/ C	72011 3.22.03 F W	, ago	
Project Name PG&E Topock Location Topock		C	Container	500 ml Poly HNO3,	500 ml Poly HNO3,	500 ml Poly HNO3,	500 ml Poly HNO3,	500 ml Poly HNO3,	1 Liter Poly 4°C	1 Liter Poly 4°C		,			
Project Number 405681.MP.0	02.GM.04	Pres	ervatives		4°C	4°C	4°C	4°C							
Project Manager Jay Piper			Filtered		Field	Field	Field	Field	NA	NA					
Sample Manager Shawn Duff	У	Hold	ing Time:	180	180	180	180	180	2	2					
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/5/2011 COC Number: 8				Arsenic (6020) Field Filtered	Metals (6020A) Field Filtered Mn	Metals (6020A) Field Filtered Mo,Se	Metals (6020A) Field Filtered Mo,Se,Mn	Metals (SW6010B/SW6020A) Field Filtered T22:SbAsBaBeCdCoCuPbHgMoNi	Specific Conductance (E120.1)	Anions (E300.0) Nitrate				Number of Containers	
MVV-22-177	5/3/2011	TIME 15:55	Matrix Water		×			<u>∠</u> X	ж					<u> </u>	COMMENTS
MW-47-065-177	5/3/2011		Water						х				<u> </u>	1	2860
MW-47-115-177	5/3/2011	16:03	Water						X					4	
MW-52D-177	5/3/2011	11:35		X	X				X					3	2
MW-52M-177	5/3/2011	10:45	ļ	×					X					2	
MW-52S-177	5/3/2011	9:40	Water	Х					Х					2	
MW-53D-177	5/3/2011	13:15	Water	ц	X				х					3-	2
MW-53M-177	5/3/2011	14:35	Water	Х	х			<u> </u>	x						2
MW-19-177	5/4/2011	14:45	Water						ж					1	100
MW-23-060-177	5/4/2011	10:06	Water	Х	Х				Х					- 2	2
MW-23-080-177	5/4/2011	11:33	Water	Х	Х				х						
MW-31-060-177	5/4/2011	16:06	Water						х					υğ	
MW-33-890-177	5/4/2011	14:08	Water						х				***************************************	4	***************************************
MW-33-150-177	5/4/2011	10:45	Water			and the same of th			х				***************************************	1	
MW-33-210-177	5/4/2011	12:03	Water						ж					***	
Approved by	3 gnatures		Date/				Shippir	g Detail	S	l	:	Spe	cial Instructions:		

Approved by Sampled by Relinquished by Received by Relinquished by

Received by

Method of Shipment:

ATTN:

April 28 - May 13, 2011

Sample Custody

and

Warlon

Report Copy to

Shawn Duffy (530) 229-3303

CI	H2	M	H	ILL

CHAIN OF CUSTODY RECORD

5/5/2011 3:22:06 PM

Page 2 OF 2

C-0 0 C DADI II C C										–	LOGICE 0.22.001 W	, ago	
Project Name PG&E Topock Location Topock		C	Container	500 ml Poly	500 ml Poly	500 ml Poly	500 ml Poly	500 ml Poly	1 Liter Poly	1 Liter Poly			
Location 1 opeck Project Number 405681.MP.03	2.GM.04	Prese	ervatives:	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C			
Project Manager Jay Piper			Filtered:	Field	Field	Field	Field	Field	NA	NA			ļ
Sample Manager Shawn Duffy	•	Hold	ing Time:	180	180	180	180	180	2	2			
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/5/2011 COC Number: 8				Arsenic (6020) Field Filtered	Metals (6020A) Field Filtered Mn	Metals (6020A) Field Filtered Mo,Se	Metals (6020A) Field Filtered Mo,Se,Mn	Metals (SW6010B/SW6020A) Field Filtered T22:SbAsBaBeCdCoCuPbHgMoN	Specific Conductance (E120.1)	Anions (E300.0) Nitrate		Number of Containers	
	DATE	TIME	Matrix		<u> </u>		ę.	Ž					COMMENTS
MW-35-060-177	5/4/2011	12:39	Water						Х			1	
MW-35-135-177	5/4/2011	13:35	Water						Х			1	
MW-46-205-177	5/4/2011	9:23	Water						х			"	
MW-48-177	5/4/2011	15:21	Water	L					х			1	
MW-92-177	5/4/2011	11:32	Water	х	Х				х			_3_	2 6ic
MW-37D-177	5/5/2011	9:06	Water			Х	ww		Х	Х		2	
MW-40D-177	5/5/2011	10:12	Water	X			Х		х	Х		2.	
MW-57-070-177	5/5/2011	12:39	Water	_ * *			****		х			1	
MW-62-065-177	5/5/2011	11:23	Water				<u>'</u>		х			1	
MW-62-110-177	5/5/2011	13:16	Water	Х			Х		х	Х	Attended to the second	سنتد	2
MW-62-190-177	5/5/2011	13:25	Water	Х			х	-	x	Х		سند ا	2
MW-97-177	5/5/2011	12:41	Water						×				7/100 Level
	1	1	I								TOTAL NUMBER OF CONTAINERS	49	

Approved by Sampled by Relinquished by Received by Relinquished by

Received by

Signatures

Shipping Details

Method of Shipment:

ATTN:

Special Instructions: April 28 - May 13, 2011

Sample Custody

and Marion

Report Copy to Shawn Duffy (530) 229-3303

Advanced Technology Laboratories, Inc.

Checklist Completed B

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Temp Blank: Carrier name:	2.2,1.6 Yes	✓. No							
Carrier name:	Yes	✓. No			IR	Gun ID:	2		
	ATL								
Last 4 digits of Tracking No.:				Packing) Mater	ial Used:	None		
Cooling process:	√ lce	ice Pack	Dry Ice	Other	:	None			
Shipping container/cooler in g	jood condit	ilon?			Yes	.	No	Not Present	 1
2. Custody seals intact, signed,	dated on s	hippping containe	er/cooler?		Yes	ł.,	No	Not Present	V
3. Custody seals intact on samp	le bottles?				Yes	* * * * * * * * * * * * * * * * * * * *	No	Not Present	*
4. Chain of custody present?					Yes	V i	No :		
5. Sampler's name present in Co	OC?				Yes	Y .	No :		
6. Chain of custody signed when	n relinquish	ned and received	?		Yes	V	No		
7. Chain of custody agrees with	sample lat	oels?			Yes	X	No E.		
8. Samples in proper container/b	bottle?				Yes	V	No		
9. Sample containers intact?					Yes	V	No		
10. Sufficient sample volume for	r indicated	test?			Yes	~	No E		
11. All samples received within h	holding tim	ie?			Yes	*	No :		
12. Temperature of rep sample	or Temp B	lank within accep	table limit?		Yes	V	No : : :	NA	
13. Water - VOA vials have zero	headspac	ce?			Yes	1	No :	NA	V
14. Water - pH acceptable upon Example: pH > 12 for (CN		for Metals			Yes	V	No :	NA	F. 1.
15. Did the bottle labels indicate	correct pr	eservatives used	?		Yes	V	No	NA	1
16. Were there Non-Conforman	ce issues a s Client no	_			Yes Yes		No : No :	NA NA	.
Comments:									

69

Reviewed By:

Sample Calculation

METHOD: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Nitrate concentration, in mg/L, in the original sample as follows:

Nitrate,
$$mg/L = A * DF$$

where:

A = mg/L, IC calculated concentration DF = dilution factor

For N005759-022B, concentration in mg/L are calculated as follows:

Nitrate, mg/L = 0.543 * 5

= 2.715 mg/L

Reporting N005759-022B, results in two significant figures,

Nitrate, mg/L = 2.7 mg/L

81

SAMPLE CALCULATION

METHOD: EPA 6010B

TEST NAME: METALS BY ICP

MATRIX: WATER

FORMULA:

Calculate the individual metal concentration, in mg/L, in the original sample as follows:

M, ug/L = A*C*DF*1000

В

where: M= concentration of the metal in ug/L

A= mg/L, ICP calculated concentration

B= volume of sample, Liter

C= final volume of digestate, Liter

DF= dilution factor

For N005759-001A, concentration in ug/L are calculated as follows:

Ba, ug/L = $0.06040 \frac{\text{mg/L} * 0.025 \text{ L} *1000}{0.025 \text{ L}}$

Ba = 60.40 ug/L

Reporting result in two significant figures,

Ba = 60 ug/L

f. 5/14/201/

DILUTION TEST

Matrix: Water

Units: ug/L

Amount of Sample: 25 mL

Analytical Method:

EPA 6010B / 200.7

Digestion Method: Date of Analysis: EPA 3010A 5/10/2011

Digestion Date: Instrument Name: 5/10/2011 5/9/2011 ICP1

Instrument Analysts:

KB

Work Order #:

N005760-001B

Batch #: 36860

Analyte	Α	В	Difference	% D
Barium	122.5	126.439	-3.93900	-3.2
Molybdenum	69.76	82.604	-12.84400	-18.4

FORMULA:

%D = (A-B)*100

where:

% D = % Difference

A= ug/L, ICP calculated concentration of the original sample

B= ug/L, ICP calculated concentration @5x dilution

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005759

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Date: 14-May-11

Sample ID: N005760-001BDT	SampType: D T	TestCod	de: 6010_WDP0	G Units: ug/L		Prep Da	te:		RunNo: 799	986	
Client ID: ZZZZZZ	Batch ID: 36860	TestN	lo: EPA 6010B	EPA 3010A		Analysis Da	te: 5/10/2 0)11	SeqNo: 126	55692	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	126.439	15						122.5	3.16	10	
Molybdenum	82.604	25						69.76	16.9	10	R

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Date: 14-May-11

Sample ID: N005760-001BPS	SampType: PS	TestCo	de: 6010_WD F	G Units: ug/L		Prep Da	te:		RunNo: 79 !	986	
Client ID: ZZZZZZ	Batch ID: 36860	TestN	No: EPA 6010E	EPA 3010A		Analysis Da	te: 5/10/20	111	SeqNo: 120	65690	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	1025.979	20	1000	0	103	75	125				
Barium	1097.253	6.0	1000	122.5	97.5	75	125				
Beryllium	1005.060	2.0	1000	0	101	75	125				
Cadmium	986.285	6.0	1000	0.3380	98.6	75	125				
Cobalt	997.770	6.0	1000	0	99.8	75	125				
Copper	1062.834	10	1000	0	106	75	125				
Lead	969.189	20	1000	1.665	96.8	75	125				
Molybdenum	1080.898	10	1000	69.76	101	75	125				
Nickel	988.261	10	1000	0	98.8	75	125				
Silver	1015.851	6.0	1000	0	102	75	125				
Vanadium	1021.166	6.0	1000	0	102	75	125				
Zinc	1009.325	20	1000	9.389	100	75	125				
							· · · · · · · · · · · · · · · · · · ·	····	······		
Sample ID: N005760-001BPS	SampType: PS	TestCod	de: 6010_WD F	G Units: ug/L		Prep Da	te:		RunNo: 79 9	986	
Sample ID: N005760-001BPS Client ID: ZZZZZZ	SampType: PS Batch ID: 36860		de: 6010_WDF No: EPA 6010 E	_		Prep Da Analysis Da		111	RunNo: 79 9 SeqNo: 12 0		
•	,		No: EPA 6010E	_	%REC	Analysis Da	te: 5/10/2 0	111 RPD Ref Val		65691	Qual
Client ID: ZZZZZZ	Batch ID: 36860	Test⁰	No: EPA 6010E	B EPA 3010A		Analysis Da	te: 5/10/2 0		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZZ Analyte	Batch ID: 36860 Result	Testh PQL	No: EPA 60108 SPK value	SPK Ref Val	%REC	Analysis Da LowLimit	te: 5/10/2 0		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZZ Analyte Antimony	Batch ID: 36860 Result 2658.941	Test/\ PQL 50	No: EPA 6010E SPK value 2500	SPK Ref Val	%REC 106	Analysis Da LowLimit 75	te: 5/10/20 HighLimit 125		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZ Analyte Antimony Barium	Batch ID: 36860 Result 2658.941 2673.583	PQL 50 15	SPK value 2500 2500	SPK Ref Val 0 122.5	%REC 106 102	Analysis Da LowLimit 75 75	te: 5/10/20 HighLimit 125 125		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZ Analyte Antimony Barium Beryllium	Result 2658.941 2673.583 2621.222	FQL 50 15 5.0	SPK value 2500 2500 2500	SPK Ref Val 0 122.5 0	%REC 106 102 105	Analysis Da LowLimit 75 75 75	te: 5/10/20 HighLimit 125 125 125		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZ Analyte Antimony Barium Beryllium Cadmium	Result 2658.941 2673.583 2621.222 2684.895	FQL 50 15 5.0 15	SPK value 2500 2500 2500 2500	SPK Ref Val 0 122.5 0 0.3380	%REC 106 102 105 107	Analysis Da LowLimit 75 75 75 75	HighLimit 125 125 125 125 125		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZ Analyte Antimony Barium Beryllium Cadmium Cobalt	Result 2658.941 2673.583 2621.222 2684.895 2654.883	FQL 50 15 5.0 15 15	SPK value 2500 2500 2500 2500 2500 2500	SPK Ref Val 0 122.5 0 0.3380 0	%REC 106 102 105 107 106	Analysis Da LowLimit 75 75 75 75 75	HighLimit 125 125 125 125 125 125		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZ Analyte Antimony Barium Beryllium Cadmium Cobalt Copper	Result 2658.941 2673.583 2621.222 2684.895 2654.883 2615.131	FQL 50 15 5.0 15 15 25	SPK value 2500 2500 2500 2500 2500 2500 2500 25	SPK Ref Val 0 122.5 0 0.3380 0 0	%REC 106 102 105 107 106 105	Analysis Da LowLimit 75 75 75 75 75 75 75	te: 5/10/20 HighLimit 125 125 125 125 125 125 125		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZ Analyte Antimony Barium Beryllium Cadmium Cobalt Copper Lead	Result 2658.941 2673.583 2621.222 2684.895 2654.883 2615.131 2620.540	FQL 50 15 5.0 15 15 25 50	SPK value 2500 2500 2500 2500 2500 2500 2500 25	SPK Ref Val 0 122.5 0 0.3380 0 1.665	%REC 106 102 105 107 106 105	Analysis Da LowLimit 75 75 75 75 75 75 75	HighLimit 125 125 125 125 125 125 125 125 125		SeqNo: 12 6	65691	Qual
Client ID: ZZZZZZ Analyte Antimony Barium Beryllium Cadmium Cobalt Copper Lead Molybdenum	Result 2658.941 2673.583 2621.222 2684.895 2654.883 2615.131 2620.540 2696.843	FQL 50 15 5.0 15 15 25 50 25	SPK value 2500 2500 2500 2500 2500 2500 2500 25	SPK Ref Val 0 122.5 0 0.3380 0 1.665 69.76	%REC 106 102 105 107 106 105 105	Analysis Da LowLimit 75 75 75 75 75 75 75 75 75	HighLimit 125 125 125 125 125 125 125 125 125 125		SeqNo: 12 6	65691	Qual

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005760-001BPS	SampType: PS	TestCod	de: 6010_WDF	'G Units: ug/L		Prep Da	te:		RunNo: 799	986	
Client ID: ZZZZZZ	Batch ID: 36860	TestN	lo: EPA 6010E	B EPA 3010A		Analysis Da	ite: 5/10/201	11	SeqNo: 126	65691	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Zinc	2746.490	50	2500	9.389	109	75	125				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic,
$$mg/L = A * DF * PF$$

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005759-001A, the concentration in ug/L is calculated as follows:

Arsenic, ug/L =
$$2.44015*5*(25/25)$$

Reporting results in two significant figures,

Advanced Technology Laboratories, Inc.

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

N005759

EPA 6020

Matrix:

Aqueous

Test Method: Analysis Date:

05/08/11

Batch No.:

36843

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Comments:

Analyzed By:

Jojo Tenorio

Dilution Test is not applicable to As, Se & TI. The calc. Values are < 25X the RL. PS @ 2X passes the criteria.

Sample ID &Units Calc Val OQual SAMPrefval %DIFF %DIFFlimit Analyte N005760-001B-DT 5X Arsenic μg/L 0.560757634 NA 0.500727346 11.99% 10 N005760-001B-DT 5X Manganese μg/L 477.610259 458.9912567 4.06% 10 N005760-001B-DT 5X Molybdenum 84.75737319 83.5570653 1.44% 10 μg/L N005760-001B-DT 5X Selenium 10.28001094 8,650271339 18.84% 10 µg/L NA N005760-001B-DT 5X Thallium NΑ 0.092839149 -100.00% 10 μg/L

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005759

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

Date: 26-May-11

TestCode: 6020_DIS

Sample ID: N005760-001B-PS 2	SampType: PS	TestCoo	le: 6020_DIS	Units: µg/L		Prep Da	te:		RunNo: 801	167	
Client ID: ZZZZZZ	Batch ID: 36843	TestN	lo: EPA 6020	EPA 3010A		Analysis Da	te: 5/8/201	1	SeqNo: 127	71374	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	19.833	0.20	20.00	0.5007	96.7	75	125				
Molybdenum	107.274	1.0	20.00	83.56	119	75	125				
Selenium	27.431	1.0	20.00	8.650	93.9	75	125				
Thallium	20.277	1.0	20.00	0.09284	101	75	125				
Sample ID: N005760-001B-PS 5	SampType: PS	TestCoo	le: 6020_DIS	Units: µg/L		Prep Da	te;		RunNo: 801	167	
Client ID: ZZZZZZ	Batch ID: 36843	TestN	lo: EPA 6020	EPA 3010A		Analysis Da	te: 5/8/201	1	SeqNo: 127	1375	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	959.385	2.5	500.0	477.6	96,4	75	125				

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 7470

TEST NAME: Mercury in Water by Cold-Vapor Technique

MATRIX: Aqueous

FORMULA:

Calculate the Mercury concentration, in ug/L, in the original sample as follows:

Mercury,
$$ug/L = A * DF * PF * 0.5$$

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Wt. of Sample used in mL

0.5, is the coversion factor.

For Sample N005759-001A, the concentration in ug/L is calculated as follows:

Mercury, ug/L = (

0.06 * 1 * (50/25) * 0.5

= 0.06 ug/L

Reporting results in two significant figures,

Mercury, ug/L

= 0.06

Mercury, ug/L

ND

July 05, 2011

Shawn P. Duffy CA-ELAP No.: 2676

CH2M HILL NV Cert. No.:NV-009222007A

155 Grand Avenue, Suite 1000

Oakland, CA 94612

TEL: (530) 229-3303 FAX: (530) 339-3303 Workorder No.: N005765

RE: PG&E Topock,405681.MP.02.GM.04

Attention: Shawn P. Duffy

Enclosed are the results for sample(s) received on May 06, 2011 by Advanced Technology Laboratories, Inc. . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

This is an amended report. Please disregard all previous documentation that corresponds to the page(s) enclosed.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 if I can be of further assistance to your company.

Sincerely,

Jose Tenorio Jr.

Laboratory Director

The cover letter is an integral part of this analytical report. This Laboratory Report cannot be reproduced in part or in its entirety without written permission from the client and Advanced Technology Laboratories - Las Vegas.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project:

PG&E Topock,405681.MP.02.GM.04

Lab Order:

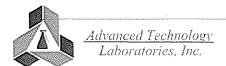
N005765

CASE NARRATIVE

Date: 31-May-11

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.


Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 6020:

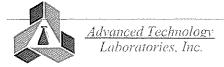
Matrix Spike Duplicate (MSD) is outside recovery criteria for Molybdenum on QC sample N005765-001A-MSD possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Project:


PG&E Topock,405681.MP.02.GM.04

Lab Order:

N005765

Contract No:

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N005765-001A	MW-10-177	Water	5/5/2011 3:24:00 PM	5/6/2011	
N005765-001B	MW-10-177	Water	5/5/2011 3:24:00 PM	5/6/2011	
N005765-002A	MW-24BR-177	Water	5/5/2011 1:58:00 PM	5/6/2011	
N005765-003A	MW-26-177	Water	5/5/2011 4:28:00 PM	5/6/2011	
N005765-003B	MW-26-177	Water	5/5/2011 4:28:00 PM	5/6/2011	
N005765-004A	MW-60-125-177	Water	5/5/2011 3:29:00 PM	5/6/2011	
N005765-004B	MW-60-125-177	Water	5/5/2011 3:29:00 PM	5/6/2011	
N005765-005A	MW-61-110-177	Water	5/5/2011 2:02:00 PM	5/6/2011	
N005765-005B	MW-61-110-177	Water	5/5/2011 2:02:00 PM	5/6/2011	
N005765-006A	MW-91-177	Water	5/5/2011 2:52:00 PM	5/6/2011	
N005765-006B	MW-91-177	Water	5/5/2011 2:52:00 PM	5/6/2011	
N005765-007A	TW-01-177	Water	5/5/2011 5:02:00 PM	5/6/2011	
N005765-007B	TW-01-177	Water	5/5/2011 5:02:00 PM	5/6/2011	
N005765-008A	MW-12-177	Water	5/6/2011 8:26:00 AM	5/6/2011	
N005765-008B	MW-12-177	Water	5/6/2011 8:26:00 AM	5/6/2011	
N005765-009A	MW-20-070-177	Water	5/6/2011 9:20:00 AM	5/6/2011	
N005765-009B	MW-20-070-177	Water	5/6/2011 9:20:00 AM	5/6/2011	
N005765-010A	MW-20-100-177	Water	5/6/2011 10:10:00 AM	5/6/2011	
N005765-010B	MW-20-100-177	Water	5/6/2011 10:10:00 AM	5/6/2011	
N005765-011A	MW-20-130-177	Water	5/6/2011 11:25:00 AM	5/6/2011	
N005765-011B	MW-20-130-177	Water	5/6/2011 11:25:00 AM	5/6/2011	
N005765-012A	MW-50-200-177	Water	5/6/2011 11:40:00 AM	5/6/2011	
N005765-013A	MW-51-177	Water	5/6/2011 9:36:00 AM	5/6/2011	
N005765-013B	MW-51-177	Water	5/6/2011 9:36:00 AM	5/6/2011	
N005765-014A	MW-59-100-177	Water	5/6/2011 10:36:00 AM	5/6/2011	
N005765-014B	MW-59-100-177	Water	5/6/2011 10:36:00 AM	5/6/2011	

Date: 31-May-11

Work Order Sample Summary

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-001

Client Sample ID: MW-10-177

Collection Date: 5/5/2011 3:24:00 PM

Matrix: WATER

DF Analyses Result MDL PQL Qual Units Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110507A

Specific Conductance

QC Batch: R79963 3000

0.10

0.10

PrepDate:

umhos/cm

1

Analyst: CEI

5/7/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

E Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-002

Client Sample ID: MW-24BR-177

Collection Date: 5/5/2011 1:58:00 PM

Matrix: WATER

PQL Qual Units Analyses Result MDL DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110507A

QC Batch: R79963

0.10

PrepDate:

Analyst: CEI

Specific Conductance

14000

0.10

umhos/cm

1

5/7/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- Value above quantitation range
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-003

Client Sample ID: MW-26-177

Collection Date: 5/5/2011 4:28:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110507A

QC Batch: R79963

PrepDate:

Analyst: CEI

4000 5/7/2011 Specific Conductance 0.10 0.10 umhos/cm 1

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u> Advanced Technology</u> Laboratories, Inc.

5/7/2011

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

Project:

Specific Conductance

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005765-004

Client Sample ID: MW-60-125-177

Collection Date: 5/5/2011 3:29:00 PM
Matrix: WATER

umhos/cm

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE	111111111111111111111111111111111111111			
		EPA 120.1		
RunID: WETCHEM_110507A	QC Batch: R79963	PrepDate:		Analyst: CEI

0.10

0.10

8700

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005765

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005765-005

Print Date: 31-May-11

Client Sample ID: MW-61-110-177

Collection Date: 5/5/2011 2:02:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units \mathbf{DF} Date Analyzed **SPECIFIC CONDUCTANCE**

RunID: WETCHEM_110507A QC Batch: R79963

PrepDate:

EPA 120.1

Analyst: CEI

Specific Conductance

15000 0.10

0.10

umhos/cm

5/7/2011

1

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

1

5/7/2011

CLIENT:

CH2M HILL

Client Sample ID: MW-91-177

Lab Order:

N005765

Collection Date: 5/5/2011 2:52:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

umhos/cm

Lab ID:

Specific Conductance

N005765-006

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE				
		EPA 120.1		
RunID: WETCHEM 1105074	OC Batch: R79963	PrenDate:		Analyst: CEI

0.10

0.10

3000

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005765

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005765-007

Client Sample ID: TW-01-177

Collection Date: 5/5/2011 5:02:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110507A

QC Batch: R79963

PrepDate:

Analyst: CEI

Specific Conductance

6900 0.10

0.10

umhos/cm

5/7/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

Client Sample ID: MW-12-177

Collection Date: 5/6/2011 8:26:00 AM

Print Date: 31-May-11

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005765-008

Result MDL PQL Qual Units DF Date Analyzed

SPECIFIC CONDUCTANCE

Specific Conductance

EPA 120.1

RuniD: WETCHEM_110507A

QC Batch: R79963

0.10

6400

0.10

PrepDate: umhos/cm Analyst: CEI

5/7/2011

Qualifiers:

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-009

Print Date: 31-May-11

Client Sample ID: MW-20-070-177

Collection Date: 5/6/2011 9:20:00 AM

Matrix: WATER

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
SPECIFIC CONDUCTANCE							
				EPA	120.1		

RunID: WETCHEM_110507A

QC Batch: R79963

PrepDate:

1

Analyst: CEI

Specific Conductance

2700 0.10 0.10

umhos/cm

5/7/2011

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Ε Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005765

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005765-010

Client Sample ID: MW-20-100-177

Collection Date: 5/6/2011 10:10:00 AM

Print Date: 31-May-11

Matrix: WATER

Analyses Result MDL PQL Qual Units \mathbf{DF} Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110507A

QC Batch: R79963

PrepDate:

Analyst: CEI

Specific Conductance

3100 0.10 0.10

umhos/cm

5/7/2011

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u> Advanced Technology</u> Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-20-130-177

Lab Order:

N005765

Collection Date: 5/6/2011 11:25:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-011

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed

SPECIFIC CONDUCTANCE

EPA 120.1

RuniD: WETCHEM_110507B

QC Batch: R79964

PrepDate:

Analyst: CEI

Specific Conductance

12000 0.10

0.10

umhos/cm

5/7/2011

Qualifiers:

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-50-200-177

Lab Order:

N005765

Collection Date: 5/6/2011 11:40:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-012

DF Result MDL PQL Qual Units Date Analyzed Analyses

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110507B

QC Batch: R79964

PrepDate:

Analyst: CEI

Specific Conductance

18000 0.10

0.10

umhos/cm

1

5/7/2011

Qualifiers:

- В Analyte detected in the associated Method Blank
- \mathbf{H} Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E. Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-013

Client Sample ID: MW-51-177

Collection Date: 5/6/2011 9:36:00 AM

Matrix: WATER

PQL Qual Units DF Date Analyzed Result MDL Analyses

SPECIFIC CONDUCTANCE

EPA 120.1

RunID: WETCHEM_110507B

QC Batch: R79964

PrepDate:

Analyst: CEI

Specific Conductance

10000 0.10 0.10

umhos/cm

1

5/7/2011

Qualifiers:

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range E

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-014

Client Sample ID: MW-59-100-177 Collection Date: 5/6/2011 10:36:00 AM

Matrix: WATER

 \mathbf{DF} Analyses Result MDL PQL Qual Units Date Analyzed

SPECIFIC CONDUCTANCE

Specific Conductance

EPA 120.1

RuniD: WETCHEM_110507B

QC Batch: R79964

10000

0.10

0.10

PrepDate:

umhos/cm

1

Analyst: CEI

5/7/2011

Qualifiers:

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Date: 31-May-11

CLIENT:

CH2M HILL

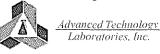
Work Order:

N005765

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE


Sample ID: LCS-R79963	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79963
Client ID: LCSW	Batch ID: R79963	TestNo: EPA 120.1	Analysis Date: 5/7/2011	SeqNo: 1264912
Analyte	Result	PQL SPK value SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	1405.000	0.10 1411 0 99.6	85 115	
Sample ID: N005765-001B-DUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79963
Client ID: ZZZZZZ	Batch ID: R79963	TestNo: EPA 120.1	Analysis Date: 5/7/2011	SeqNo: 1264923
Analyte	Result	PQL SPK value SPK Ref Val %RE	C LowLimit HighLimit RPD Ref Val	%RPD RPDLìmít Qual
Specific Conductance	2970.000	0.10	2980	0.336 10
				<u></u>
Sample ID: N005765-001B-MS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm	Prep Date:	RunNo: 79963
Sample ID: N005765-001B-MS Client ID: ZZZZZZ	SampType: MS Batch ID: R79963	TestCode: 120.1_WPGE Units: umhos/cm TestNo: EPA 120.1	Prep Date: Analysis Date: 5/7/2011	RunNo: 79963 SeqNo: 12649 24
	1 3.		Analysis Date: 5/7/2011	
Client ID: ZZZZZZ	Batch ID: R79963	TestNo: EPA 120.1	Analysis Date: 5/7/2011 C LowLimit HighLimit RPD Ref Val	SeqNo: 12649 2 4
Client ID: ZZZZZZ Analyte	Batch ID: R79963 Result	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %REI	Analysis Date: 5/7/2011 C LowLimit HighLimit RPD Ref Val	SeqNo: 12649 24
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79963 Result 4180.000	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %RE6 0.20 1411 2980 85.0	Analysis Date: 5/7/2011 C LowLimit HighLimit RPD Ref Val 75 125	SeqNo: 12649 24 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005765-001B-MSD	Batch ID: R79963 Result 4180.000 SampType: MSD	TestNo: EPA 120.1 PQL SPK value SPK Ref Val %REI 0.20 1411 2980 85.0 TestCode: 120.1_WPGE Units: umhos/cm	Analysis Date: 5/7/2011 C LowLimit HighLimit RPD Ref Val 75 125 Prep Date: Analysis Date: 5/7/2011	SeqNo: 1264924 %RPD RPDLimit Qual RunNo: 79963

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 120.1_WPGE

Sample ID; LCS-R79964	SampType: LCS	TestCode: 120.1_WPGE Units: umhos/cm F	Prep Date: R	lunNo: 79964
Client ID: LCSW	Batch iD: R79964	TestNo: EPA 120.1 Analy	ysis Date: 5/7/2011 S	eqNo: 1264926
Analyte	Result	PQL SPK value SPK Ref Val %REC Lov	wLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	9520,000	0.10 9985 0 95.3	85 115	
Sample ID: N005765-011BDUP	SampType: DUP	TestCode: 120.1_WPGE Units: umhos/cm P	Prep Date:	dunNo: 79964
Client ID: ZZZZZZ	Batch ID: R79964	TestNo: EPA 120.1 Analy	ysis Date: 5/7/2011 S	eqNo: 1264928
Analyte	Result	PQL SPK value SPK Ref Val %REC Lov	wLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Specific Conductance	11600.000	0.10	11540	0.519 10
Sample ID: N005765-011BMS	SampType: MS	TestCode: 120.1_WPGE Units: umhos/cm P	Prep Date: R	unNo: 79964
Sample ID: N005765-011BMS Client ID: ZZZZZZ	SampType: MS Batch ID: R79964			unNo: 79964 eqNo: 1264929
	- 1 21	TestNo: EPA 120.1 Analy	,	
Client ID: ZZZZZZ	Batch ID: R79964	TestNo: EPA 120.1 Analy	ysis Date: 5/7/2011 S	eqNo: 1264929
Client ID: ZZZZZZ Analyte	Batch ID: R79964 Result	TestNo: EPA 120.1 Analy PQL SPK value SPK Ref Val %REC Low 0.20 9985 11540 97.3	ysis Date: 5/7/2011 SowLimit HighLimit RPD Ref Val	eqNo: 1264929
Client ID: ZZZZZZ Analyte Specific Conductance	Batch ID: R79964 Result 21260.000	TestNo: EPA 120.1 Analy PQL SPK value SPK Ref Val %REC Low 0.20 9985 11540 97.3 TestCode: 120.1_WPGE Units: umhos/cm P	ysis Date: 5/7/2011 SewLimit HighLimit RPD Ref Val 75 125 Prep Date: Ref	eqNo: 1264929 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Specific Conductance Sample ID: N005765-011BMSD	Batch ID: R79964 Result 21260.000 SampType: MSD	TestNo: EPA 120.1 Analy PQL SPK value SPK Ref Val %REC Low 0.20 9985 11540 97.3 TestCode: 120.1_WPGE Units: umhos/cm P TestNo: EPA 120.1 Analy	ysis Date: 5/7/2011 SewLimit HighLimit RPD Ref Val 75 125 Prep Date: Ref	eqNo: 1264929 %RPD RPDLimit Qual unNo: 79964

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-10-177

Lab Order:

N005765

Collection Date: 5/5/2011 3:24:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-001

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
ANIONS BY ION CHROMATO	GRAPHY			
		EPA 300.0		
RuniD: IC2_110509A	QC Batch: R80084	PrepDate:		Analyst: QBM
Fluoride	7.7 0.23	2.5 mg/L	5	5/9/2011 10:30 AM
ANIONS BY ION CHROMATO	GRAPHY			
		EPA 300.0		
RunID: IC2_110507A	QC Batch: R80021	PrepDate:		Analyst: QBM
Nitrate as N	11 0.055	2.5 mg/L	5	5/7/2011 08:45 AM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

5

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order: N005765

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

N005765-003

Client Sample ID: MW-26-177

Collection Date: 5/5/2011 4:28:00 PM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2_110507A

QC Batch: R80021

PrepDate:

Analyst: **QBM**

Nitrate as N

14 0.055

2.5

mg/L

5/7/2011 08:56 AM

Qualifiers:

3 Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

Client Sample ID: MW-60-125-177

Collection Date: 5/5/2011 3:29:00 PM

DF

2

Print Date: 31-May-11

Matrix: WATER

Project: Lab ID:

N005765-004

Analyses	Result	MDL
ANIONS BY ION CHROMATOGRAPHY	•	

EPA 300.0

Qual Units

RuniD: IC2_110507A

QC Batch: R80021

PG&E Topock,405681.MP.02.GM.04

PQL

PrepDate:

Analyst: QBM

Date Analyzed

Nitrate as N 3.6 0.022

1.0

mg/L

5/7/2011 09:07 AM

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out Value above quantitation range

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

Lab ID:

Analyses

N005765-005

Collection Date: 5/5/2011 2:02:00 PM

Client Sample ID: MW-61-110-177

Matrix: WATER

DF

Print Date: 31-May-11

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

Qual Units

RunID: IC2_110507A Nitrate as N

QC Batch: R80021

0.055

ND

Result MDL

2.5

PQL

PrepDate:

Analyst: QBM

Date Analyzed

mg/L 5 5/7/2011 09:18 AM

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-006

Client Sample ID: MW-91-177

Collection Date: 5/5/2011 2:52:00 PM

Matrix: WATER

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
ANIONS BY ION CHROMATO	DGRAPHY	VARIABINIA TELEVISIONI DE LA CONTROLLA CONTROLLA CONTROLLA CONTROLLA CONTROLLA CONTROLLA CONTROLLA CONTROLLA C		
		EPA 300.0		
RunID: IC2_110509A	QC Batch: R80084	PrepDate:		Analyst: QBM
Fluoride	7.7 0.23	2.5 mg/L	5	5/9/2011 11:03 AM
ANIONS BY ION CHROMATO	OGRAPHY			
		EPA 300.0		
RunID: IC2_110507A	QC Batch: R80021	PrepDate:		Analyst: QBM
Nitrate as N	11 0.055	2.5 mg/L	5	5/7/2011 11:10 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: TW-01-177

Lab Order:

N005765

Collection Date: 5/5/2011 5:02:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-007

Analyse	es .	Result	MDL 1	PQL Qual	Units	DF	Date Analyzed
ANION	S BY ION CHROMAT	OGRAPHY		EDA	. 300.0		
RunID:	IC2 110507A	QC Batch: R80	021	EFA	PrepDate:		Analyst: QBM
	e as N	24	0.11	5.0	mg/L	10	5/7/2011 09:40 AM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Díluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

5

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order: CH2M HILL

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-008

Client Sample ID: MW-12-177

Collection Date: 5/6/2011 8:26:00 AM

Matrix: WATER

Result MDL **PQL** Qual Units DF Date Analyzed Analyses

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RuniD: IC2_110507A

QC Batch: R80021

PrepDate:

Analyst: QBM

Nitrate as N

10 0.055 2.5

mg/L

5/7/2011 09:51 AM

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Surrogate Diluted Out

Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Lab Order:

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-009

Client Sample ID: MW-20-070-177 Collection Date: 5/6/2011 9:20:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RunID: IC2_110507A

Nitrate as N

QC Batch: R80021

PrepDate:

Analyst: QBM

5/7/2011 10:03 AM

13 0.055 2.5 mg/L 5

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

Value above quantitation range \mathbf{E}

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Lab Order:

N005765

Client Sample ID: MW-20-100-177

Collection Date: 5/6/2011 10:10:00 AM

Print Date: 31-May-11

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-010

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
ANIONS BY ION CHROMATOGRAPHY							

EPA 300.0

RuniD: IC2_110507A Nitrate as N

QC Batch: R80021

0.055

18

2.5

PrepDate:

mg/L

5

Analyst: QBM 5/7/2011 11:32 AM

Qualifiers:

В Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: Lab Order:

CH2M HILL

N005765

Client Sample ID: MW-20-130-177

Collection Date: 5/6/2011 11:25:00 AM

Print Date: 31-May-11

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-011

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
ANIONS BY ION CHROMATOGRAPHY							

EPA 300.0

RunID: IC2_110507A

QC Batch: R80021

PrepDate:

Analyst: QBM

Nitrate as N

0.055

2.5

mg/L

5 5/7/2011 11:43 AM

Qualifiers:

- В Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-51-177

Lab Order:

N005765

Collection Date: 5/6/2011 9:36:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

Analyses

N005765-013

Result MDL PQL Qual Units DF Date Analyzed

ANIONS BY ION CHROMATOGRAPHY

EPA 300.0

RuniD: IC2_110507A

QC Batch: R80021

PrepDate:

Analyst: QBM

Nitrate as N

10 0.055 2.5

mg/L

5

5/7/2011 11:54 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

Value above quantitation range

Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-59-100-177

Lab Order:

N005765

Collection Date: 5/6/2011 10:36:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-014

Analyses	Result MDL	PQL Qual Units	DF	Date Analyzed
ANIONS BY ION CHROMATOGRAPHY				
		EPA 300.0		

0.022

Nitrate as N

RunID: IC2_110507A

QC Batch: R80021

3.8

1.0

PrepDate: mg/L Anaiyst: **QBM**

2

5/7/2011 12:05 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 31-May-11

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT


TestCode: 300_W_FPGE

Sample ID: MB-R80084_F Client ID: PBW	SampType: MBLK Batch ID: R80084	TestCode: 300_W_FPGE Units: mg/L TestNo: EPA 300.0	Prep Date: Analysis Date: 5/9/2011	RunNo: 80084 SeqNo: 1268748		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Fluoride	ND	0.50				
Sample ID: LCS-R80084_F	SampType: LCS	TestCode: 300_W_FPGE Units: mg/L	Prep Date:	RunNo: 80084		
Client ID: LCSW	Batch ID: R80084	TestNo: EPA 300.0	Analysis Date: 5/9/2011	SeqNo: 1268749		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Fluoride	2.4 2 5	0.50 2.500 0	97.0 90 110			
Sample ID: N005765-001BMS	SampType: MS	TestCode: 300_W_FPGE Units: mg/L	Prep Date:	RunNo; 80084		
Client ID: ZZZZZZ	Batch ID: R80084	TestNo: EPA 300.0	Analysis Date: 5/9/2011	SeqNo: 1268751		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Fluoride	20.360	2 .5 12.50 7.700	101 80 120			
Sample ID: N005765-001BMSD	SampType: MSD	TestCode: 300_W_FPGE Units: mg/L	Prep Date:	RunNo: 80084		
Client ID: ZZZZZZ	Batch ID: R80084	TestNo: EPA 300.0	Analysis Date: 5/9/2011	SeqNo: 1268752		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Fluoride	20.165	2.5 12.50 7.700	99.7 80 120 20.36	0.962 20		
Sample ID: N005765-006BDUP	SampType: DUP	TestCode: 300_W_FPGE Units: mg/L	Prep Date:	RunNo: 80084		
Client ID; ZZZZZZ	Batch ID: R80084	TestNo: EPA 300.0	Analysis Date: 5/9/2011	SeqNo: 1268754		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Fluoride	7.715	2.5	7.670	0.585 20		

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

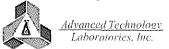
Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT


TestCode: 300W_NO3PGE

Sample ID: MB-R80021_NO3	SampType: MBLK	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80021		
Client ID: PBW	Batch ID: R80021	TestNo: EPA 300.0	Analysis Date: 5/7/2011	SeqNo: 1266915		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate as N	ND	0.50				
Sample ID: LCS-R80021_NO3	SampType: LCS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80021		
Client ID: LCSW	Batch ID: R80021	TestNo: EPA 300.0	Analysis Date: 5/7/2011	SeqNo: 1266916		
Апаlyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate as N	2.416	0.50 2.500 0	96.6 90 110			
Sample ID: N005765-001BMS	SampType: MS	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80021		
Client ID: ZZZZZZ	Batch ID: R80021	TestNo: EPA 300.0	Analysis Date: 5/7/2011	SeqNo: 1266926		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate as N	23.320	2.5 12.50 10.90	99.3 80 120			
Sample ID: N005765-001BMSD	SampType: MSD	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80021		
Client ID: ZZZZZZ	Batch ID: R80021	TestNo: EPA 300.0	Analysis Date: 5/7/2011	SeqNo: 1266927		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate as N	23.385	2.5 12.50 10.90	99.8 80 120 23.32	0.278 20		
Sample ID: N005765-003BDUP	SampType: DUP	TestCode: 300W_NO3P Units: mg/L	Prep Date:	RunNo: 80021		
Client ID: ZZZZZZ	Batch ID: R80021	TestNo: EPA 300.0	Analysis Date: 5/7/2011	SeqNo: 1266928		
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Nitrate as N	13.880	2.5	14.06	1.29 20		

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 300W_NO3PGE

Sample ID: N005765-008BMS	SampType: MS	TestCo	TestCode: 300W_NO3P Units: mg/L			Prep Date:				RunNo: 80021		
Client ID: ZZZZZZ	Batch ID: R80021	Test	TestNo: EPA 300.0			Analysis Date: 5/7/2011				SeqNo: 1266930		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vai	%RPD	RPDLimit	Qual	
Nitrate as N	22.525	2.5	12.50	9,975	100	80	120				· · · · · · · · · · · · · · · · · · ·	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-12-177

Lab Order:

N005765

Collection Date: 5/6/2011 8:26:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-008

Analyses	Result	MDL	PQL Qual	Units	DF D	ate Analyzed
DISSOLVED METALS BY ICP						_
	EPA 3010A		EP#	\ 6010B		
RunID: ICP1_110510B	QC Batch: 36	86 0		PrepDate:	5/9/2011	Analyst: KAB
Antimony	ND	5.4	10	ug/L	1 5	5/10/2011 01:20 PM
Barium	59	0.20	3.0	ug/L	1 5	5/10/2011 01:20 PM
Beryllium	ND	0.090	1.0	ug/L	1 5	5/10/2011 01:20 PM
Cadmium	ND	0.23	3.0	ug/L	1 5	5/10/2011 01:20 PM
Cobalt	ND	0.31	3.0	ug/L	1 5	5/10/2011 01:20 PM
Copper	ND	0.53	5.0	ug/L	1 5	5/10/2011 01:20 PM
Lead	ND	1.5	10	ug/L	1 {	5/10/2011 01:20 PM
Molybdenum	13	0.49	5.0	ug/L	1 (5/10/2011 01:20 PM
Nickei	ND	1.1	5.0	ug/L	1 5	5/10/2011 01:20 PM
Silver	ND	0.72	3.0	ug/L	1 !	5/10/2011 01:20 PM
Vanadium	9.9	0.19	3.0	ug/L	1 !	5/10/2011 01:20 PM
Zinc	ND	4.6	10	ug/L	1 :	5/10/2011 01:20 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 31-May-11

CLIENT:

CH2M HILL

Work Order:

N005765

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: MB-36860 Client ID: PBW	SampType: MBLK Batch ID: 36860		de: 6010_WDPG Units: ug/L No: EPA 6010B EPA 3010A	Prep Date: 5/9/2011 Analysis Date: 5/10/2011	RunNo: 79986 SeqNo: 1265683
	Result	PQL	SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	
Analyte	Result	FQL	SPR value SPR Rei val	76REC LOWLINIII FIIGHLINIII RPD Rei Vai	/altro trocinit Qual
Antimony	ND	10			
Barium	ND	3.0			
Beryllium	ND	1.0			
Cadmium	ND	3.0			
Cobalt	ND	3.0			
Copper	0.728	5.0			
Lead	ND	10			
Molybdenum	4.264	5.0			
Nickel	ND	5.0			
Silver	ND	3.0			
Vanadium	ND	3.0			
Zinc	ND	10			

Sample ID: LCS-36860	SampType: LCS	TestCo	TestCode: 6010_WDPG Units: ug/L			Prep Da	te: 5/9/20 11	RunNo: 79986	
Client ID: LCSW	Batch ID: 36860	Testi	No: EPA 6010	B EPA 3010A		Analysis Da	te: 5/10/2011	SeqNo: 1265684	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Re	f Val %RPD RPDLimit Qu	ıal
Antimony	485.904	10	500.0	0	97.2	85	115		-
Barium	504.671	3.0	500.0	0	101	85	115		
Beryllium	487.380	1.0	500.0	0	97.5	85	115		
Cadmium	493.691	3.0	500.0	0	98.7	85	115		
Cobalt	504.067	3.0	500.0	0	101	85	115		
Copper	505,595	5,0	500.0	0	101	85	115		
Lead	494.642	10	500.0	0	98,9	85	115		
Molybdenum	493.697	5.0	500.0	0	98.7	85	115		
Nickel	497.182	5.0	500.0	0	99.4	85	115		
Silver	486,717	3.0	500.0	0	97.3	85	115		
Vanadium	493.824	3.0	500.0	0	98.8	85	115		

- B Analyte detected in the associated Method Blank.
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: LCS-36860	SampType: LCS	TestCo	de: 6010_WDF	G Units: ug/L		Prep Da	ite: 5/9/20	11	RunNo; 79	986	
Client ID: LCSW	Batch ID: 36860	Testl	No: EPA 6010 E	B EPA 3010A		Analysis Da	ate: 5/1 0/2	011	SeqNo: 12	65684	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Zinc	489.148	10	500.0	0	97.8	85	115				
Sample ID: N005760-001B-MS	SampType: MS	TestCo	de: 6010_WDF	G Units: ug/L		Prep Da	ite: 5/9/20	11	RunNo: 79	986	
Client ID; ZZZZZZ	Batch ID: 36860	Testf	No: EPA 6010 E	B EPA 3010A		Analysis Da	ite: 5/10/20	011	SeqNo: 12	65688	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	515.533	10	500.0	0	103	75	125				
Barium	610.732	3.0	500.0	122.5	97.6	75	125				
Beryllium	496.178	1.0	500.0	0	99.2	75	12 5				
Cadmium	498.362	3.0	500.0	0.3380	99.6	75	125				
Cobalt	4 94.151	3.0	500.0	0	8.86	75	125				
Copper	531.570	5.0	500.0	0	106	75	125				
Lead	477.809	10	500.0	1.665	95.2	75	125				
Molybdenum	572.187	5.0	500.0	69.76	100	75	125				
Nickel	493.104	5.0	500.0	0	98.6	75	125				
Silver	513.570	3.0	500.0	0	103	75	125				
Vanadium	506.001	3.0	500.0	0	101	75	125				
Zinc	510.795	10	500.0	9.389	100	75	125				
Sample ID: N005760-001B-MSD	SampType: MSD	TestCod	de: 6010WDP	G Units: ug/L		Prep Dat	te: 5/9/201	1	RunNo: 799	986	
Client ID: ZZZZZZ	Batch ID: 36860	TestN	lo: EPA 6010 B	EPA 3010A		Analysis Da	te: 5/1 0/2 0)11	SeqNo: 12 0	65689	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	512.266	10	500.0	0	102	75	125	515.5	0.636	20	
Barium	604.591	3.0	500.0	122.5	96.4	75	125	610.7	1.01	20	
Beryllium	496.766	1.0	500.0	0	99.4	75	125	496.2	0.118	20	
Cadmium	492.457	3.0	500.0	0.3380	98.4	75	125	498.4	1,19	20	
Cobalt	489,711	3.0	500.0	0	97.9	75	125	494.2	0.902	20	
Copper	526.590	5.0	500.0	0	105	75	125	531.6	0.941	20	
Lead	474.960	10	500.0	1.665	94.7	75	125	477.8	0.598	20	

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005760-001B-N	∕ISD SampType: MSD	TestCo	de: 6010_WDI	PG Units: ug/L		Prep Da	te: 5/9/20 1	11	RunNo: 799	986	
Client ID: ZZZZZZ	Batch ID: 36860	Testi	No: EPA 6010	B EPA 3010A		Analysis Da	te: 5/10/20	011	SeqNo: 126	55689	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Molybdenum	568.223	5.0	500.0	69.76	99.7	75	125	572.2	0.695	20	
Nickel	488,986	5.0	500.0	0	97.8	75	125	493.1	0.839	20	
Silver	507.802	3.0	500.0	0	102	75	125	513.6	1.13	20	
Vanadium	501.203	3.0	500.0	0	100	75	125	506.0	0.953	20	
Zinc	50 5 .744	10	500.0	9.389	99.3	75	125	510.8	0.994	20	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-10-177

Lab Order:

N005765

Collection Date: 5/5/2011 3:24:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-001

Analyses	Result N	ADL PQL (Qual Units	DF D	ate Analyzed
DISSOLVED METALS BY IC	P-MS				
	EPA 3010A		EPA 6020		
RunID: ICP7_110508C	QC Batch: 3685	5	PrepDate:	5/7/2011	Analyst: JT
Molybdenum	64	0.047 0.5) μg/L	1	5/8/2011 11:24 AM
Selenium	5.5	0.29 0.5) μg/L	1	5/8/2011 11:24 AM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-26-177

Lab Order:

N005765

Collection Date: 5/5/2011 4:28:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-003

Analyses	Result I	MDL PQL	Qual Units	DF D:	ate Analyzed
DISSOLVED METALS B	Y ICP-MS				
	EPA 3010A		EPA 6020		
RunID: ICP7_110510C	QC Batch: 3685	5	PrepDate:	5/7/2011	Analyst: JT
Arsenic	. 1.4	0.012 0.	50 μg/L	5 5/	10/2011 05:22 PM
Manganese	16	0.091 0.	50 μg/L	1 5/	10/2011 05:17 PM
Molybdenum	17	0.24 2	.5 μg/L	5 5/	10/2011 05:22 PM
Selenium	5.6	1.4 2	.5 μg/L	5 5/	10/2011 05:22 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit
Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-60-125-177

Print Date: 31-May-11

Lab Order:

N005765

Collection Date: 5/5/2011 3:29:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-004

Analyses	Result	MDL	PQL Qual	Units	DF I	ate Analyzed
DISSOLVED METALS BY IC	P-MS					
	EPA 3010A		EPA	6020		
RunID: ICP7_110510C	QC Batch: 36	855		PrepDate:	5/7/2011	Analyst: JT
Arsenic	1.8	0.0025	0.10	μg/L	1 :	5/10/2011 05:42 PM
Manganese	ND	0.091	0.50	μg/L	1 :	5/10/2011 05;42 PM
Molybdenum	32	0.24	2.5	μg/L	5	5/10/ 2 011 05:47 PM
Selenium	34	0.29	0.50	μg/L	1 :	5/10/2011 05:42 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- 1-1 Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- Surrogate Diluted Out

Value above quantitation range E

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-61-110-177

Lab Order:

N005765

Collection Date: 5/5/2011 2:02:00 PM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-005

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EPA	6020		
RuniD: ICP7_110510C	QC Batch: 368	55		PrepDate:	5/7/201	1 Analyst: JT
Arsenic	3.4	0.012	0.50	μg/L	5	5/10/2011 06:01 PM
Manganese	360	0.46	2.5	μg/L	5	5/10/2011 06:01 PM
Molybdenum	23	0.24	2.5	μg/L	5	5/10/2011 06:01 PM
Selenium	ND	1.4	2,5	μg/L	5	5/10/2011 06:01 PM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-91-177

Print Date: 31-May-11

Lab Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

Collection Date: 5/5/2011 2:52:00 PM

Lab ID:

N005765-006

Matrix: WATER

Analyses	Resu	ılt Mi	DL PQL	Qual Un	its	DF	Date Analyzed
DISSOLVED METALS E	BY ICP-MS						
	EPA 3010A			EPA 60)20		
RunID: ICP7_110510C	QC Batch:	36855			PrepDate:	5/7/20	011 Analyst: JT
Molybdenum	1	61 0).24	2.5	μg/L	5	5/10/2011 06:16 PM
Selenium	5	5.5 0),29	0.50	μg/L	1	5/10/2011 06:11 PM

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

- Value above quantitation range E
- Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CH2M HILL

Lab Order: N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

CLIENT:

N005765-007

Client Sample ID: TW-01-177

Collection Date: 5/5/2011 5:02:00 PM

Matrix: WATER

Analyses	Result MDL	PQL Qual Units	DF Date Analyzed
DISSOLVED METALS BY IC	P-MS	_	
	EPA 3010A	EPA 6020	
RunID: ICP7_110510C	QC Batch: 36855	PrepDate:	5/7/2011 Analyst: JT
Molybdenum	14 0.24	2.5 μg/L	5 5/10/2011 06:41 PM
Selenium	28 1.4	2.5 μg/L	5 5/10/2011 06:41 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
 Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-12-177

Lab Order:

N005765

Collection Date: 5/6/2011 8:26:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-008

Analyses	Result	MDL	PQL Qual	Units	DF D	ate Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EPA	6020		
RuniD: ICP7_110510C	QC Batch: 36	855		PrepDate:	5/7/2011	Analyst: JT
Arsenic	49	0.0025	0.10	μg/L	1 5	5/10/ 2 011 06:51 PM
Selenium	9.5	0.29	0.50	μg/L	1 5	5/10/2011 06:51 PM
Thallium	ND	0.076	2.5	μg/L	5 5	5/10/2011 06:55 PM

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

CLIENT:

CH2M HILL

Client Sample ID: MW-20-070-177

Lab Order:

N005765

Collection Date: 5/6/2011 9:20:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-009

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY	Y ICP-MS		_			
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110510C	QC Batch: 368	55		PrepDate:	5/7/201	1 Analyst: JT
Molybdenum	35	0.047	0.50	μg/L	1	5/10/2011 07:05 PM
Selenium	9.0	0.29	0.50	µg/L	1	5/10/2011 07:05 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-20-100-177

Lab Order:

N005765

Collection Date: 5/6/2011 10:10:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

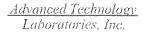
Matrix: WATER

Lab ID:

N005765-010

Analyses	Result N	IDL PQL	Qual Units	DF Date Analyzed
DISSOLVED METALS BY IC	P-MS			
	EPA 3010A		EPA 6020	
RunID: ICP7_110510C	QC Batch: 36855	5	PrepDate:	5/7/2011 Analyst: JT
Molybdenum	4.2	0.047 0.8	50 μg/L	1 5/10/2011 07:30 PM
Selenium	11	0.29 0.5	50 μg/L	1 5/10/2011 07:30 PM

Qualifiers:


Analyte detected in the associated Method Blank В

Value above quantitation range E

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Spike/Surrogate outside of limits due to matrix interference

Results are wet unless otherwise specified

REVISION 1, 07/05/11

ANALYTICAL RESULTS

Advanced Technology Laboratories, Inc.

Print Date: 05-Jul-11

CLIENT: Client Sample ID: MW-20-130-177 CH2M HILL

N005765 Lab Order: **Collection Date:** 5/6/2011 11:25:00 AM

Project: PG&E Topock,405681.MP.02.GM.04 Matrix: WATER

Lab ID: N005765-011

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY IC	CP-MS					
	EPA 3010A		EPA	A 6020		
RunID: ICP7_110510C	QC Batch: 368	55		PrepDate:	5/7/20	11 Analyst: JT
Arsenic	5.1	0.012	0.50	μg/L	5	5/10/2011 07:49 PM
Manganese	ND	0.46	2.5	μg/L	5	5/10/2011 07:49 PM
Molybdenum	43	0.24	2.5	μg/L	5	5/10/2011 07:49 PM
Selenium	16	1.4	2.5	μg/L	5	5/10/2011 07:49 PM

Qualifiers:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- Ε Value above quantitation range
- ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-51-177

Lab Order:

N005765

Collection Date: 5/6/2011 9:36:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-013

**************************************	(-y-y-), (-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y		A.u.f//	,,,,,,
Analyses	Result N	MDL PQL	Qual Units	DF Date Analyzed
DISSOLVED METALS BY K	CP-MS			
	EPA 3010A		EPA 6020	
RunID: ICP7_110510C	QC Batch: 3685	5	PrepDate:	5/7/2011 Analyst: JT
Arsenic	3.9	0.012	.50 μg/L	5 5/10/2011 08:04 PM
Manganese	ND	0.46	2.5 μg/L	5 5/10/2011 08:04 PM
Molybdenum	39	0.24	2.5 μg/L	5 5/10/2011 08:04 PM
Selenium	13	1.4	2.5 μg/L	5 5/10/2011 08:04 PM

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

- E Value above quantitation range
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Client Sample ID: MW-59-100-177

Lab Order:

N005765

Collection Date: 5/6/2011 10:36:00 AM

Project:

PG&E Topock,405681.MP.02.GM.04

Matrix: WATER

Lab ID:

N005765-014

Analyses	Result	MDL	PQL Qual	Units	DF	Date Analyzed
DISSOLVED METALS BY I	CP-MS					
	EPA 3010A		EP.	6020		
RunID: ICP7_110510C	QC Batch: 368	55		PrepDate:	5/7/20	011 Analyst: JT
Arsenic	2.0	0.012	0.50	μg/L	5	5/10/2011 08:28 PM
Manganese	3.4	0.46	2.5	μg/L	5	5/10/2011 08:28 PM
Molybdenum	ND	1.2	12	μg/L	25	5/10/2011 08:33 PM
Selenium	4.7	1.4	2.5	μg/L	5	5/10/2011 08:28 PM

Qualifiers:

- 3 Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

E Value above quantitation range

ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

Advanced Technology Laboratories, Inc.

Date: 31-May-11

CLIENT:

CH2M HILL

Work Order:

N005765

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: MB-36855	SampType: MBLK	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/7/2011	RunNo: 80167
Client ID: PBW	Batch ID: 36855	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/8/2011	SeqNo: 1271351
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref V	ai %RPD RPDLimit Qual
Arsenic	0.018	0.10			
Manganese	ND	0.50			
Molybdenum	0.102	0.50			
Selenium	ND	0.50			
Thallium	ND	0,50			
Sample ID: LCS-36855	SampType: LCS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/7/2011	RunNo: 80167
Client ID: LCSW	Batch ID: 36855	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/8/2011	SeqNo: 1271352
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Arsenic	10,334	0.10 10.00	0	103 85 115	
Manganese	108,841	0.50 100.0	0	109 85 115	
Molybdenum	10.128	0.50 10.00	0	101 85 115	
Setenium	9.889	0.50 10.00	0	98.9 85 115	
Thallium	10.688	0.50 10.00	0	107 85 115	
Sample ID: N005765-001A-MS	SampType: MS	TestCode: 6020_DIS	Units: µg/L	Prep Date: 5/7/2011	RunNo: 80167
Client ID: ZZZZZZ	Batch ID: 36855	TestNo: EPA 6020	EPA 3010A	Analysis Date: 5/8/2011	SeqNo: 1271358
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref V	al %RPD RPDLimit Qual
Arsenic	16.105	0.10 10.00	5.520	106 75 125	
Manganese	93.309	0.50 100.0	0	93.3 75 125	
Molybdenum	76,277	0.50 10.00	64.36	119 75 125	
Selenium	15.010	0.50 10.00	5.462	95.5 75 125	
Thallium	10.697	0.50 10.00	0.04327	107 75 125	

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits
 Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_DIS

Sample ID: N005765-001A-MSD Client ID: ZZZZZZ	SampType: MSD Batch ID: 36855	•				Prep Dat Analysis Dat	te: 5/7/201 te: 5/8/201		RunNo: 80167 SeqNo: 1271360			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	16.192	0.10	10.00	5.520	107	75	1 2 5	16.10	0.542	20		
Manganese	92.7 8 4	0.50	100.0	0	92.8	75	125	93.31	0.564	20		
Molybdeпит	77.640	0.50	10.00	64.36	133	75	125	76.28	1.77	20	S	
Selenium	14.741	0.50	10.00	5.462	92.8	75	125	15.01	1.81	20		
Thallium	10,683	0.50	10.00	0.04327	106	75	125	10.70	0.123	20		

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Print Date: 31-May-11

Advanced Technology Laboratories, Inc.

/

CLIENT:

CH2M HILL

Lab Order: N

N005765

PG&E Topock,405681.MP.02.GM.04

Project: Lab ID:

N005765-008

Client Sample ID: MW-12-177

Collection Date: 5/6/2011 8:26:00 AM

Matrix: WATER

Analyses Result MDL PQL Qual Units DF Date Analyzed

DISSOLVED MERCURY BY COLD VAPOR TECHNIQUE

EPA 7470A

RunID: AA1_110512A

QC Batch: 36872

PrepDate: 5/1

5/11/2011 Analyst: CEI

Mercury

ND 0.091

0.20

μg/L

1

5/11/2011

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

E Value above quantitation range

NO Not Detected at the Reporting Limit Results are wet unless otherwise specified

<u>Advanced Technology</u> Laboratories, Inc.

Advanced Technology Laboratories, Inc.

CLIENT: CH2M HILL

Work Order:

N005765

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 7470_W_DISSPGE

Date: 31-May-11

Sample ID: LCS-36872 Client ID: LCSW	SampType: LCS Batch ID: 36872	TestCode: 7470_W_DIS Units: μg/L TestNo: EPA 7470A	Prep Date: 5/11/2011 Analysis Date: 5/11/2011	RunNo: 80012 SeqNo: 1266722
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	10.261	0.20 10.00 0	103 85 115	
Sample ID: MB-36872 Client ID: PBW	SampType: MBLK Batch ID: 36872	TestCode: 7470_W_DIS Units: μg/L TestNo: EPA 7470 A	Prep Date: 5/11/2011 Analysis Date: 5/11/2011	RunNo: 80012 SeqNo: 126 6723
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.20		
Sample ID: N005765-008A-MS	SampType: MS	TestCode: 7470_W_DIS Units: μg/L	Prep Date: 5/11/2011	RunNo: 80012
Sample ID: N005765-008A-MS Client ID: ZZZZZZ	SampType: MS Batch ID: 36872	TestCode: 7470_W_DIS Units: μg/L TestNo: EPA 7470A	Prep Date: 5/11/2011 Analysis Date: 5/11/2011	RunNo: 80012 SeqNo: 1266725
,	, ,,		·	
Client ID: ZZZZZZ	Batch ID: 36872	TestNo: EPA 7470A	Analysis Date: 5/11/2011	SeqNo: 1266725
Client ID: ZZZZZZ Analyte	Batch ID: 36872 Result	TestNo: EPA 7470A PQL SPK value SPK Ref Val	Analysis Date: 5/11/2011 %REC LowLimit HighLimit RPD Ref Val	SeqNo: 1266725
Client ID: ZZZZZZ Analyte Mercury	Batch ID: 36872 Result 20.367	TestNo: EPA 7470A PQL SPK value SPK Ref Val 0.20 20.00 0	Analysis Date: 5/11/2011 %REC LowLimit HighLimit RPD Ref Val 102 75 125	SeqNo: 1266725 %RPD RPDLimit Qual
Client ID: ZZZZZZ Analyte Mercury Sample ID: N005765-008A-MSD	Batch ID: 36872 Result 20.367 SampType: MSD	TestNo: EPA 7470A PQL SPK value SPK Ref Val 0.20 20.00 0 TestCode: 7470_W_DIS Units: μg/L	Analysis Date: 5/11/2011 %REC LowLimit HighLimit RPD Ref Val 102 75 125 Prep Date: 5/11/2011	SeqNo: 1266725 %RPD RPDLimit Qual RunNo: 80012

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S . Spike/Surrogate outside of limits due to matrix interference

CH2MHILL	-1L						CHAIN	N OF C	USTO	DY RI	ECORD 5/6/2011 1:13:27 PM Pi	age .	1 OF 1
Project Name PG&E Topock Location Topock		(Container	500 ml Poly HNO3,	500 ml Poly HNO3,	500 ml Poly HNO3,	500 ml Poly HNO3,	1 Liter Poly 4*C	1 Liter Poly 4°C	1 Liter Poly 4°C		Ī	
Project Number 405681.MP.0	02.GM.04	Pres	ervatives:		4°C	4°C	4°C	40	40	10	1		
Project Manager Jay Piper			Filtered:	ļ	Field	Fleid	Field	NA	NA	NA			
Sample Manager Shawn Duffy	y	Hold	ling Time:	180	180	180	180	2	2	2			
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/6/2011 COC Number: 12				Arsenic (6020) Field Filtered	Metals (8020A) Field Filtered Mo, Se	Metals (6020A) Field Fittered Mo,Se,Mn	Metals (SW6010B/SW8020A) Field Filtered T22:SbAsBaBeCdCoCuPbHgMoNi	Specific Conductance (E120.1)	Anions (E300.0) Nitrate	Anians (E300.0) Nitrate, Fluorida		Number of Containers	
	DATE	TIME	Matrix			7	oNi.	Š		뮵		5	COMMENTS
MW-10-177	5/5/2011	15:24	Water		Х			х	<u> </u>	х	N005765 -1	2	
MW-24BR-177	5/5/2011	13:58	Water					х			2	1	
MW-26-177	5/5/2011	18:28	Water	х		X		X	х		3	3	2
MW-60-126-177	5/5/2011	15:29	Water	х		x		x	'χ		4	2	2 BEC
MW-61-110-177	5/5/2011	14:02	Water	x		х		х	, x		Ż	3	2
MW-91-177	5/5/2011	14:52	Water		Х			х	i	х	C	2	
TW-G1-177	5/5/2011	17:02	Water		х			х	х		7	2	
MW-12-177	5/6/2011	8:26	Water				х	х	х		Ÿ	2	7
MW-20-070-177	5/6/2011	9:20	Water		x			x	x		9	2	
MW-20-100-177	5/6/2011	10:10	Water		ж			х	х		10	2	
MW-20-130-177	5/6/2011	11:25	Water	х				X	x			2	
MW-50-200-177	5/6/2011	11:40	Water	-				х			iv.	1	
MW-51-177	5/6/2011	9:36	Water	×		х		X	, x			2	2
MW-59-100-177	5/6/2011	10:36	Water	х		х		X	х		14	2	ኋ
									1		TOTAL NUMBER OF CONTAINERS	31	
Approved by Sampled by Relinquished by	Signatures		Date/		On Ic	od of Sh e: yes I Na:		cou	rier	SY LABOR	Special Instructions: April 28 - May 13, 2011 Sample Custody and Report Copy to		and the second s
Received by				_1	:		(7 02) 30		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.001	Marion Shawn Duffy (530) 229-3303		

ATL

CH2MHILI

CITAIN	\sim	CHOT	$F \cap D V$	RECORD
CHAIN	UJE.	LUD	LUIT	RELUKII

5/6/2011 1:13:27 PM

Page 1 OF 1

												, 490	
Project Name PG&E Topoc	k	C	ontainer:	Poly	500 ml Poly	500 ml Poly	500 ml Poly	1 Liter Poly	1 Liter Poly	1 Liter Poly			
Location Topock Project Number 405681.MI		Prese	rvatives:		HNO3, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C			
Project Manager Jay Piper			Filtered:		Field	Field	Field	NA	NA	NA			
Sample Manager Shawn Du	affy	Holdi	ng Time:	180	180	180	180	2	2	2			
Task Order Project 2011-GMP-177-Q2 Turnaround Time 10 Days Shipping Date: 5/6/2011 COC Number: 12	S DATE	TIME	Matrix	Arsenic (6020) Field Filtered	Metals (6020A) Field Filtered Mo,Se	Metals (6020A) Field Filtered Mo,Se,Mn	Metals (SW6010B/SW6020A) Field Filtered T22:SbAsBaBeCdCoCuPbHgMoNi	Specific Conductance (E120.1)	Anions (E300.0) Nitrate	Anions (E300.0) Nitrate,Fluoride		Number of Containers	COMMENTS
MW-10-177	5/5/2011	15:24	Water		х			х		ж	**************************************	2	
MW-24BR-177	5/5/2011	13:58	Water					х				1	
MW-26-177	5/5/2011	16:28	Water	Х		Х		×	Х			ai.	2
MW-60-125-177	5/5/2011	15:29	Water	Х		х		Х	х			1	2 860
MW-61-110-177	5/5/2011	14:02	Water	х		х		х	ж			3	\sim
MW-91-177	5/5/2011	14:52	Water	***************************************	х			х		Х		2	
TW-01-177	5/5/2011	17:02	Water	V	x			х	×			2	
MW-12-177	5/6/2011	8:26	Water	•			Х	х	х			2	
MW-20-070-177	5/6/2011	9:20	Water		Х			Х	Х			2	
MW-20-100-177	5/6/2011	10:10	Water		х			Х	Х			2	
MVV-20-130-177	5/6/2011	11:25	Water	х				х	х			2	
MW-50-200-177	5/6/2011	11:40	Water					Х				1	
MW-51-177	5/6/2011	9:36	Water	Х		х		х	Х			سخت	2
MW-59-100-177	5/6/2011	10:36	Water	Х		Ж	<u> </u>	Х	х			æ	ì
		<u> </u>				L			<i>t</i>		TOTAL NUMBER OF CONTAINERS	31	
	Signatures		Date/T	ime	:		Shippin	o Detail	s		Special Instructions:		

Approved by
Sampled by
Relinquished by
Received by
Relinquished by
Received by

Duralay principle

Date/Time

te/Time

Airbill No:

Shipping Details

ATTN:

Special Instructions: April 28 - May 13, 2011

Method of Shipment: courier

. . .

Sample Custody

and

Report Copy to

1949 Lab Name: ADVANCED TECHNOLOGY LABORATO

Marion

Shawn Duffy (530) 229-3303

Advanced Technology Laboratories, Inc.

Please review the checklist below. Any NO and/or NA signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Sample Receipt Checklist

Cooler Received/Opened On:	5/6/2011				Wor	korder:	N005765		
Rep sample Temp (Deg C):	5.2,3.2				IR (Gun ID:	2		
Temp Blank:	Yes	✓ No							
Carrier name:	ATL								
Last 4 digits of Tracking No.:				Packing	Materia	l Used:	None		
Cooling process:	✓ Ice	ice Pack	Dry Ice	Other	* * * * 1 2	None			
1. Shipping container/cooler in	good condi	ition?			Yes	V	No	Not Present	 1
2. Custody seals intact, signed	, dated on s	shippping contain	er/cooler?		Yes .	114	No	Not Present	×
3. Custody seals intact on sam	ple bottles	?			Yes		No	Not Present	X :
4. Chain of custody present?					Yes !	V :	No 5.		
5. Sampler's name present in 0	COC?				Yes	Ž.	No E		
6. Chain of custody signed who	en relinquis	hed and received	?		Yes	Y .	No		
7. Chain of custody agrees wit	h sample la	bels?			Yes	V	No		
8. Samples in proper container	/bottle?				Yes	Y .	No		
9. Sample containers intact?					Yes	.	No		
10. Sufficient sample volume f	or indicated	I test?			Yes	V	No		
11. All samples received within	n holding tin	ne?			Yes	V .:	No .		
12. Temperature of rep sample	e or Temp E	Blank within accep	otable limit?		Yes	V	No 🛄	NA	
13. Water - VOA vials have ze	ro headspa	ce?			Yes	V .	No 🏥	NA	
14. Water - pH acceptable upo Example: pH > 12 for (C		for Metals			Yes	.	No	NA	e de la companya de l
15. Did the bottle labels indica	te correct p	reservatives used	l?		Yes	~	No	NA	
16. Were there Non-Conforma W	nce issues 'as Client n				Yes Yes		No		
Comments:									
Checklist Completed B	Ь NS J	16/n					Reviewed By:	G) &	Jak

Gyah

Sample Calculation

METHOD: EPA 300

TEST NAME: INORGANIC ANIONS BY IC

MATRIX: WATER

FORMULA:

Calculate the Nitrate concentration, in mg/L, in the original sample as follows:

Nitrate,
$$mg/L = A * DF$$

where:

For N005765-001B, concentration in mg/L are calculated as follows:

Nitrate, mg/L =
$$2.181 * 5$$

$$=$$
 10.905 mg/L

JX/16/11

Reporting N005765-001B, results in two significant figures,

Nitrate,
$$mg/L$$
 = 11 mg/L

SAMPLE CALCULATION

METHOD: EPA 6010B

TEST NAME: METALS BY ICP

MATRIX: WATER

FORMULA:

Calculate the individual metal concentration, in mg/L, in the original sample as follows:

M, ug/L = A*C*DF*1000

R

where: M= concentration of the metal in ug/L

A= mg/L, ICP calculated concentration

B= volume of sample, Liter

C= final volume of digestate, Liter

DF= dilution factor

For N005765-008A, concentration in ug/L are calculated as follows:

Ba, ug/L = $0.05890 \text{ } \underline{\text{mg/L} * 0.025 \text{ } \underline{\text{L} *1000}}$

0.025 L

 $Ba = 58.9 \, ug/L$

Reporting result in two significant figures,

Ba = 59 ug/L

k-5/14/2011

DILUTION TEST

Analytical Method: EPA 6010B / 200.7

Matrix: Water Digestion Method: EPA 3010A Amount of Sample: 25 mL Date of Analysis: 5/10/2011 Units: ug/L

Digestion Date: 5/9/2011 Instrument Name: ICP1 Analysts: KΒ

Work Order #: N005760-001B Batch #: 36860

Analyte	Α	В	Difference	% D
Barlum	122.5	126.439	-3.93900	÷3.2
Molybdenum	69.76	82.604	-12.84400	-18.4

FORMULA:

%D = (A-B)*100Α

% D = % Difference where:

A= ug/L, ICP calculated concentration of the original sample

B= ug/L, ICP calculated concentration @5x dilution

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

Date: 14-May-11

TestCode: 6010_WDPGEPPB

Sample ID: N005760-001BDT	SampType: DT	TestCo	TestCode: 6010_WDPG Units: ug/L			Prep Da	te:		RunNo: 79 9	986	
Client ID: ZZZZZZ	Batch ID: 36860	Test	No: EPA 6010B	EPA 3010A	A Analysis Date: 5/10/2011			SeqNo: 1265692			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	126.439	15						122.5	3.16	10	
Molybdenum	82.604	25						69.76	16.9	10	R

Qualifiers:

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

E Value above quantitation range

R RPD outside accepted recovery limits Calculations are based on raw values H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Date: 24-May-11

CLIENT: CH2M HILL Work Order: N005765

TestCode: 6010_WDPGEPPB Project: PG&E Topock,405681.MP.02.GM.04

Sample ID: N005760-001BPS	SampType: PS	TestCor	de: 6010_WD F	PG Units: ug/L		Prep Da	ite:		RunNo: 799	986	
Client ID: ZZZZZZ	Batch ID: 36860	Testh	No: EPA 6010 E	B EPA 3010A		Analysis Date: 5/10/2011			SeqNo: 120		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	1025.979	20	1000	0	103	75	125				
Barium	1097.253	6.0	1000	122.5	97.5	75	125				
Beryllium	1005.060	2.0	1000	0	101	75	125				
Cadmium	986.285	6.0	1000	0.3380	98.6	75	125				
Cobalt	997.770	6.0	1000	0	99.8	75	125				
Copper	1062.834	10	1000	0	106	75	125				
Lead	969.189	20	1000	1.665	96.8	75	125				
Molybdenum	1080.898	10	1000	69.76	101	75	125				
Nickel	988.261	10	1000	0	98.8	75	125				
Silver	1015.851	6.0	1000	0	102	75	125				
Vanadium	1021.166	6.0	1000	0	102	75	125				
Zinc	1009.325	20	1000	9.389	100	75	125				

Sample ID: N005760-001BPS	SampType: PS	TestCo	de: 6010_WD F	G Units: ug/L	L Prep Date:			RunNo: 79 !	986		
Client ID: ZZZZZZ	Batch ID: 36860	Testi	No: EPA 6010E	B EPA 3010A		Analysis Da	ite: 5/10/20)11	SeqNo: 12	55691	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	2658.941	50	2500	0	106	75	125				
Barium	2673.583	15	2500	122.5	102	75	125				
Beryllium	2621.2 22	5.0	2500	0	105	75	125				
Cadmium	2684.895	15	2500	0.3380	107	75	125				
Cobalt	2654.883	15	2500	0	106	75	125				
Copper	2615.131	25	2500	0	105	75	125				
Lead	2620.540	50	2500	1.665	105	75	125				
Molybdenum	2696.843	25	2500	69.76	105	75	125				
Nickel	2678.856	25	2500	0	107	75	125				
Silver	2552.244	15	2500	0	102	75	125				
Vanadium	2614.194	15	2500	0	105	75	125				

Qualifiers:

Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

- Value above quantitation range
- RPD outside accepted recovery limits Calculations are based on raw values

H Holding times for preparation or analysis exceeded

ANALYTICAL QC SUMMARY REPORT

Spike/Surrogate outside of limits due to matrix interference

CLIENT:

CH2M HILL

Work Order:

N005765

Project:

PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

TestCode: 6010_WDPGEPPB

Sample ID: N005760-001BPS	SampType: PS	TestCode; 6010_WDPG		PG Units: ug/L	Prep Date:			RunNo: 799			
Client ID: ZZZZZZ	Batch ID: 36860	TestN	lo: EPA 6010	B EPA 3010A	EPA 3010A Analysis Date: 5/10/2011		SeqNo: 1265691				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Zinc	2746.490	50	2500	9.389	109	75	125				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- E Value above quantitation range
- R RPD outside accepted recovery limits Calculations are based on raw values

- H Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 6020

TEST NAME: Heavy Metals by ICP-MS

MATRIX: Aqueous

FORMULA:

Calculate the Arsenic concentration, in ug/L, in the original sample as follows:

Arsenic,
$$mg/L = A * DF * PF$$

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Vol. of Sample used in mL

For Sample N005765-001A, the concentration in ug/L is calculated as follows:

Arsenic, ug/L =
$$5.51987*1*(25/25)$$

= 5.51987 ug/L

Reporting results in two significant figures,

Arsenic, ug/L = 5.5

Advanced Technology Laboratories, Inc.

ICP-Metals in Water

Dilution Test Summary

Work Order No.:

N005765

Test Method: Analysis Date: EPA 6020 05/08/11

Matrix:

Aqueous

Batch No.:

36855

Instrument ID:

ICP-MS #2

Instrument Description: Agilent 7700x

Comments:

Analyzed By:

Jojo Tenorio

Dilution Test is not applicable to TI. The calc. Values are < 25X the RL. PS @ 2X passes the criteria.

Sample ID	Analyte	&Units	Calc Val	OQual	SAMPrefval	%DIFF	%DIFFlimit
N005765-001A-DT 5X	Arsenic	μg/L	5.211659335		5.519872743	-5.58%	10
N005765-001A-DT 5X	Manganese	μg/L	0		0		10
N005765-001A-DT 5X	Molybdenum	μg/L	61.08007449		64.36394451	-5.10%	10
N005765-001A-DT 5X	Selenium	μg/L	5.743605216		5.461716168	5.16%	10
N005765-001A-DT 5X	Thallium	μg/L	0	NA	0.04327046	-100.00%	10

Advanced Technology Laboratories, Inc.

CLIENT:

CH2M HILL

Work Order:

N005765

Project: PG&E Topock,405681.MP.02.GM.04

ANALYTICAL QC SUMMARY REPORT

Date: 26-May-11

TestCode: 6020_DIS

Sample ID: N005765-001A-PS 2	SampType: PS	TestCo	de: 6020_DIS	Units: μg/L		Prep Da	te:		RunNo: 801	167	
Client ID: ZZZZZZ	Batch ID: 36855	Test	No: EPA 6020	EPA 3010A	Analysis Date: 5/8/2011			1	SeqNo: 1271356		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	26.369	0.20	20.00	5.520	104	75	125				
Manganese	189.240	1.0	200.0	0	94.6	75	125				
Molybdenum	85.826	1.0	20.00	64,36	107	75	125				
Selenium	24.315	1.0	20.00	5.462	94.3	75	125				
Thallium	21.122	1.0	20.00	0.04327	105	75	125				

Qualifiers:

DO Surrogate Diluted Out

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

E Value above quantitation range

R PD outside accepted recovery limits
 Calculations are based on raw values

H Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

Sample Calculation

METHOD: EPA 7470

TEST NAME: Mercury in Water by Cold-Vapor Technique

MATRIX: Aqueous

FORMULA:

Calculate the Mercury concentration, in ug/L, in the original sample as follows:

Mercury,
$$ug/L = A * DF * PF * 0.5$$

where:

A = ug/L, calculated concentration

DF = dilution factor

PF = Final Vol. of Digestate in mL / Wt. of Sample used in mL

0.5, is the coversion factor.

For Sample N005765-008A, the concentration in ug/L is calculated as follows:

Mercury, ug/L = 0.02 * 1 * (50/25) * 0.5

= 0.02 ug/L

Reporting results in two significant figures,

Mercury, ug/L = 0.02

Mercury, ug/L = ND

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

July 13, 2011

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

REVISED CASE NARRATIVE PG&E TOPOCK 2011-RMP-177, SURFACEWATER

MONITORING PROJECT, TLI No.: 995499

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2011-RMP-177 surfacewater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on June 7, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the late arrival of the samples, all samples, except C-MAR-D-177 and C-MAR-S-177, for pH analysis by SM 4500-H B were analyzed past the method specified holding time. Mr. Shawn Duffy approved the analysis.

Mr. Shawn Duffy requested that Total Arsenic and Manganese be added to the list of reported analytes for samples 995499-1 through 995499-12.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

for Mona Nassimi

Manager, Analytical Services

K.R.P. Iyer

Quality Assurance/Quality Control Officer

Al. Thay

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Event 2010-RMP-177 Cr by SW 6020, Surfacewater Samples Samples field filtered unless otherwise noted

Sample ID	Initial pH	pH adjustment needed?	Amount of additional acid needed	Final pH	Comments
C-BNS-D-177	2.00	No			
C-I-3-D-177	2.00	No			
C-I-3-S-177	2.00	No			
C-MAR-D-177	2.00	No			
C-MAR-S-177	2.00	No			
C-R22A-D-177	2.00	No			
C-R22A-S-177	2.00	No			
C-R27-D-177	2.00	No			
C-R27-S-177	2.00	No			
C-TAZ-D-177	2.00	No			
C-TAZ-S-177	2.00	No			
R63-177	2.00	No			
SW1-177	2.00	No			
SW2-177	2.00	No			

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Event 2010-RMP-177 Cr (VI) by EPA 218.6, Surfacewater Samples Samples field filtered unless otherwise noted

Sample ID	Initial pH	pH adjustment needed?	Amount of additional buffer needed	Final pH	Comments
C-BNS-D-177	9.50	No			
C-I-3-D-177	9.50	No			
C-I-3-S-177	9.50	No			
C-MAR-D-177	9.50	No		4	
C-MAR-S-177	9.50	No	f 		
C-R22A-D-177	9.50	No			
C-R22A-S-177	9.50	No			
C-R27-D-177	9.50	No			
C-R27-S-177	9.50	No			
C-TAZ-D-177	9.50	No			
C-TAZ-S-177	9.50	No .			
R63-177	9.50	No			
SW1-177	9.50	No			
SW2-177	9.50	No			

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 995499 Date Received: June 7, 2011

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

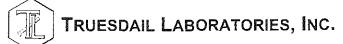
Oakland, CA 94612
Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 405681.MP.02.RM P.O. No.: 405681.MP.02.RM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995499-001	C-BNS-D-177	E120.1	NONE	6/7/2011	12:23	EC	987	umhos/cm	2.00
995499-001	C-BNS-D-177	E218.6	FLDFLT	6/7/2011	12:23	Chromium, hexavalent	ND	ug/L	0.20
995499-001	C-BNS-D-177	E300	NONE	6/7/2011	12:23	Nitrate as N	ND	mg/L	0.500
995499-001	C-BNS-D-177	SM2320B	NONE	6/7/2011	12:23	Alkalinity	127	mg/L	5.00
995499-001	C-BNS-D-177	SM2320B	NONE	6/7/2011	12:23	Bicarbonate	127	mg/L	5.00
995499-001	C-BNS-D-177	SM2320B	NONE	6/7/2011	12:23	Carbonate	ND	mg/L	5.00
995499-001	C-BNS-D-177	SM2540D	NONE	6/7/2011	12:23	Total Suspended Solids	ND	mg/L	2.50
995499-001	C-BNS-D-177	SM4500HB	NONE	6/7/2011	12:23	PH	7.99 J	рĤ	4.00
995499-001	C-BNS-D-177	SW6010B	NONE-digested	6/7/2011	12:23	Iron	51.8	ug/L	20.0
995499-001	C-BNS-D-177	SW6010B	FLDFLT-digested	6/7/2011	12:23	Iron	ND	ug/L	20.0
995499-001	C-BNS-D-177	SW6010B	NONE-digested	6/7/2011	12:23	Manganese	ND	ug/L	11.1
995499-001	C-BNS-D-177	SW6010B	FLDFLT-digested	6/7/2011	12:23	Molybdenum	ND	ug/L	11.1
995499-001	C-BNS-D-177	SW6010B	FLDFLT-digested	6/7/2011	12:23	Selenium	ND	ug/L	11.1
995499-001	C-BNS-D-177	SW6020	FLDFLT-digested	6/7/2011	12:23	Arsenic	2.8	ug/L	1.0
995499-001	C-BNS-D-177	SW6020	NONE-digested	6/7/2011	12:23	Arsenic	2.7	ug/L	1.0
995499-001	C-BNS-D-177	SW6020	FLDFLT-digested	6/7/2011	12:23	Chromium	ND	ug/L	1.0
995499-001	C-BNS-D-177	SW6020	FLDFLT-digested		12:23	Manganese	ND	ug/L	10.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995499-002	C-I-3-D-177	E120.1	NONE	6/7/2011	10:37	EC	953	umhos/cm	2.00
995499-002	C-I-3-D-177	E218.6	FLDFLT	6/7/2011	10:37	Chromium, hexavalent	ND	ug/L	0.20
995499-002	C-I-3-D-177	E300	NONE	6/7/2011	10:37	Nitrate as N	ND	mg/L	0.500
995499-002	C-I-3-D-177	SM2320B	NONE	6/7/2011	10:37	Alkalinity	116	mg/L	5.00
995499-002	C-I-3-D-177	SM2320B	NONE	6/7/2011	10:37	Bicarbonate	116	mg/L	5.00
995499-002	C-I-3-D-177	SM2320B	NONE	6/7/2011	10:37	Carbonate	ND	mg/L	5.00
995499-002	C-I-3-D-177	SM2540D	NONE	6/7/2011	10:37	Total Suspended Solids	ND	mg/L	2.50
995499-002	C-I-3-D-177	SM4500HB	NONE	6/7/2011	10:37	PH .	8.17 J	Hq	4.00
995499-002	C-I-3-D-177	SW6010B	NONE-digested	6/7/2011	10:37	Iron	32,3	ug/L	20.0
995499-002	C-I-3-D-177	SW6010B	FLDFLT-digested	6/7/2011	10:37	!ron	ND	ug/L	20.0
995499-002	C-I-3-D-177	SW6010B	NONE-digested	6/7/2011	10:37	Manganese	ND	ug/L	11.1
995499-002	C-I-3-D-177	SW6010B	FLDFLT-digested	6/7/2011	10:37	Molybdenum	ND	ug/L	11.1
995499-002	C-I-3-D-177	SW6010B	FLDFLT-digested		10:37	Selenium	ND	ug/L	11.1
995499-002	C-I-3-D-177	SW6020	FLDFLT-digested	6/7/2011	10:37	Arsenic	2.5	ug/L	1.0
995499-002	C-I-3-D-177	SW6020	NONE-digested	6/7/2011	10:37	Arsenic	2.6	ug/L	1.0
995499-002	C-I-3-D-177	SW6020	FLDFLT-digested	6/7/2011	10:37	Chromium	ND	ug/L	1.0
995499-002	C-I-3-D-177	SW6020	FLDFLT-digested	6/7/2011	10:37	Manganese	ND	ug/L	10.0
995499-003	C-I-3-S-177	E120.1	NONE	6/7/2011	10:53	EC	952	umhos/cm	2.00
995499-003	C-I-3-S-177	E218.6	FLDFLT	6/7/2011	10:53	Chromium, hexavalent	ND	ug/L	0.20
995499-003	C-I-3-S-177	E300	NONE	6/7/2011	10:53	Nitrate as N	ND	mg/L	0.500
995499-003	C-I-3-S-177	SM2320B	NONE	6/7/2011	10:53	Alkalinity	125	mg/L	5.00
995499-003	C-I-3-S-177	SM2320B	NONE	6/7/2011	10:53	Bicarbonate	125	mg/L	5.00
995499-003	C-I-3-S-177	SM2320B	NONE	6/7/2011	10:53	Carbonate	ND	mg/L	5.00
995499-003	C-I-3-S-177	SM2540D	NONE	6/7/2011	10:53	Total Suspended Solids	ND	mg/L	2.50
995499-003	C-I-3-S-177	SM4500HB	NONE	6/7/2011	10:53	PH	8.17 J	РH	4.00
995499-003	C-I-3-S-177	SW6010B	NONE-digested	6/7/2011	10:53	Iron	89.5	ug/L	20.0
995499-003	C-I-3-S-177	SW6010B	FLDFLT-digested	6/7/2011	10:53	Iron	ND	ug/L	20.0
995499-003	C-I-3-S-177	SW6010B	NONE-digested	6/7/2011	10:53	Manganese	ND	ug/L	11.1
995499-003	C-I-3-S-177	SW6010B	FLDFLT-digested	6/7/2011	10:53	Molybdenum	ND	ug/L	11.1
995499-003	C-I-3-S-177	SW6010B	FLDFLT-digested	6/7/2011	10:53	Selenium	ND	ug/L	11.1
995499-003	C-I-3-S-177	SW6020	FLDFLT-digested		10:53	Arsenic	2.8	ug/L	1.0
995499-003	C-I-3-S-177	SW6020	NONE-digested	6/7/2011	10:53	Arsenic	2.6	ug/L	1.0
995499-003	C-I-3-S-177	SW6020	FLDFLT-digested	6/7/2011	10:53	Chromium	ND	ug/L	1.0
995499-003	C-I-3-S-177	SW6020	FLDFLT-digested	6/7/2011	10:53	Manganese	ND	ug/L	10.0


07

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995499-004	C-MAR-D-177	E120.1	NONE	6/7/2011	13:25	EC	980	umhos/cm	2.00
995499-004	C-MAR-D-177	E218.6	FLDFLT	6/7/2011	13:25	Chromium, hexavalent	ND	ug/L	0.20
995499-004	C-MAR-D-177	E300	NONE	6/7/2011	13:25	Nitrate as N	ND	mg/L	0.500
995499-004	C-MAR-D-177	SM2320B	NONE	6/7/2011	13:25	Alkalinity	125	mg/L	5.00
995499-004	C-MAR-D-177	SM2320B	NONE	6/7/2011	13:25	Bicarbonate	125	mg/L	5.00
995499-004	C-MAR-D-177	SM2320B	NONE	6/7/2011	13:25	Carbonate	ND	mg/L	5.00
995499-004	C-MAR-D-177	SM2540D	NONE	6/7/2011	13:25	Total Suspended Solids	15.8	mg/L	2.50
995499-004	C-MAR-D-177	SM4500HB	NONE	6/7/2011	13:25	PH	7.83	pН	4.00
995499-004	C-MAR-D-177	SW6010B	NONE-digested	6/7/2011	13:25	! ron	650	ug/L	20.0
995499-004	C-MAR-D-177	SW6010B	FLDFLT-digested	6/7/2011	13:25	fron	ND	ug/L	20.0
995499-004	C-MAR-D-177	SW6010B	NONE-digested	6/7/2011	13:25	Manganese	32.0	ug/L	11.1
995499-004	C-MAR-D-177	SW6010B	FLDFLT-digested	6/7/2011	13:25	Molybdenum	ND	ug/L	11.1
995499-004	C-MAR-D-177	SW6010B	FLDFLT-digested	6/7/2011	13:25	Selenium	ND	ug/L	11.1
995499-004	C-MAR-D-177	SW6020	FLDFLT-digested	6/7/2011	13:25	Arsenic	2.4	ug/L	1.0
995499-004	C-MAR-D-177	SW6020	NONE-digested	6/7/2011	13:25	Arsenic	2.9	ug/L	1.0
995499-004	C-MAR-D-177	SW6020	FLDFLT-digested	6/7/2011	13:25	Chromium	ND	ug/L	1.0
995499-004	C-MAR-D-177	SW6020	FLDFLT-digested	6/7/2011	13:25	Manganese	16.3	ug/L	10.0
995499-005	C-MAR-S-177	E120.1	NONE	6/7/2011	13:38	EC	970	umhos/cm	2.00
995499-005	C-MAR-S-177	E218.6	FLDFLT	6/7/2011	13:38	Chromium, hexavalent	ND	ug/L	0.20
995499-005	C-MAR-S-177	E300	NONE	6/7/2011	13:38	Nitrate as N	1.88	mg/L	1.00
995499-005	C-MAR-S-177	SM2320B	NONE	6/7/2011	13:38	Alkalinity	135	mg/L	5.00
995499-005	C-MAR-S-177	SM2320B	NONE	6/7/2011	13:38	Bicarbonate	135	mg/L	5.00
995499-005	C-MAR-S-177	SM2320B	NONE	6/7/2011	13:38	Carbonate	NĎ	mg/L	5.00
995499-005	C-MAR-S-177	SM2540D	NONE	6/7/2011	13:38	Total Suspended Solids	18.8	mg/L	2.50
995499-005	C-MAR-S-177	SM4500HB	NONE	6/7/2011	13:38	PH	7.8	pΗ	4.00
995499-005	C-MAR-S-177	SW6010B	NONE-digested	6/7/2011	13:38	Iron	675	ug/L	20.0
995499-005	C-MAR-S-177	SW6010B	FLDFLT-digested	6/7/2011	13:38	Iron	40.9	ug/L	20.0
995499-005	C-MAR-S-177	SW6010B	NONE-digested	6/7/2011	13:38	Manganese	33.0	ug/L	11.1
995499-005	C-MAR-S-177	SW6010B	FLDFLT-digested	6/7/2011	13:38	Molybdenum	ND	ug/L	11.1
995499-005	C-MAR-S-177	SW6010B	FLDFLT-digested	6/7/2011	13:38	Selenium	ND	ug/L	11.1
995499-005	C-MAR-S-177	SW6020	FLDFLT-digested	6/7/2011	13:38	Arsenic	2.5	ug/L	1.0
995499-005	C-MAR-S-177	SW6020	NONE-digested	6/7/2011	13:38	Arsenic	3.2	ug/L	1.0
995499-005	C-MAR-S-177	SW6020	FLDFLT-digested	6/7/2011	13:38	Chromium	ND	ug/L	1.0
995499-005	C-MAR-S-177	SW6020	FLDFLT-digested	6/7/2011	13:38	Manganese	17.6	ug/L	10.0

800

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
995499-006	C-R22A-D-177	E120.1	NONE	6/7/2011	11:43	EC	939	umhos/cm	2.00
995499-006	C-R22A-D-177	E218.6	FLDFLT	6/7/2011	11:43	Chromium, hexavalent	ND	ug/L	0.20
995499-006	C-R22A-D-177	E300	NONE	6/7/2011	11:43	Nitrate as N	ND	mg/L	0.500
995499-006	C-R22A-D-177	SM2320B	NONE	6/7/2011	11:43	Alkalinity	114	mg/L	5.00
995499-006	C-R22A-D-177	SM2320B	NONE	6/7/2011	11:43	Bicarbonate	114	mg/L	5.00
995499-006	C-R22A-D-177	SM2320B	NONE	6/7/2011	11:43	Carbonate	ND	mg/L	5.00
995499-006	C-R22A-D-177	SM2540D	NONE	6/7/2011	11:43	Total Suspended Solids	ND	mg/L	2.50
995499-006	C-R22A-D-177	SM4500HB	NONE	6/7/2011	11:43	PH .	8.24 J	Hq	4.00
995499-006	C-R22A-D-177	SW6010B	NONE-digested	6/7/2011	11:43	Iron	33.0	ug/L	20.0
995499-006	C-R22A-D-177	SW6010B	FLDFLT-digested	6/7/2011	11:43	Iron	ND	ug/L	20.0
995499-006	C-R22A-D-177	SW6010B	NONE-digested	6/7/2011	11:43	Manganese	ND	ug/L	11.1
995499-006	C-R22A-D-177	SW6010B	FLDFLT-digested	6/7/2011	11:43	Molybdenum	ND	ug/L	11.1
995499-006	C-R22A-D-177	SW6010B	FLDFLT-digested		11:43	Selenium	ND	ug/L	11.1
995499-006	C-R22A-D-177	SW6020	FLDFLT-digested	6/7/2011	11:43	Arsenic	2.6	ug/L	1.0
995499-006	C-R22A-D-177	SW6020	NONE-digested	6/7/2011	11:43	Arsenic	2.5	ug/L	1.0
995499-006	C-R22A-D-177	SW6020	FLDFLT-digested	6/7/2011	11:43	Chromium	ND	ug/L	1.0
995499-006	C-R22A-D-177	SW6020	FLDFLT-digested		11:43	Manganese	ND	ug/L	10.0
995499-007	C-R22A-S-177	E120.1	NONE	6/7/2011	11:57	EC	957	umhos/cm	2.00
995499-007	C-R22A-S-177	E218.6	FLDFLT	6/7/2011	11:57	Chromium, hexavalent	ND	ug/L	0.20
995499-007	C-R22A-S-177	E300	NONE	6/7/2011	11:57	Nitrate as N	ND	mg/L	0.500
995499-007	C-R22A-S-177	SM2320B	NONE	6/7/2011	11:57	Alkalinity	126	mg/L	5.00
995499-007	C-R22A-S-177	SM2320B	NONE	6/7/2011	11:57	Bicarbonate	126	mg/L	5.00
995499-007	C-R22A-S-177	SM2320B	NONE	6/7/2011	11:57	Carbonate	ND	mg/L	5.00
995499-007	C-R22A-S-177	SM2540D	NONE	6/7/2011	11:57	Total Suspended Solids	ND	mg/L	2.50
995499-007	C-R22A-S-177	SM4500HB	NONE	6/7/2011	11:57	PH .	8.27 J	Нq	4.00
995499-007	C-R22A-S-177	SW6010B	NONE-digested	6/7/2011	11:57	Iron	22.9	ug/L	20.0
995499-007	C-R22A-S-177	SW6010B	FLDFLT-digested	6/7/2011	11:57	Iron	ND	ug/L	20.0
995499-007	C-R22A-S-177	SW6010B	NONE-digested	6/7/2011	11:57	Manganese	ND	ug/L	11.1
995499-007	C-R22A-S-177	SW6010B	FLDFLT-digested	6/7/2011	11:57	Molybdenum	ND	ug/L	11.1
995499-007	C-R22A-S-177	SW6010B	FLDFLT-digested	6/7/2011	11:57	Selenium	ND	ug/L	11.1
995499-007	C-R22A-S-177	SW6020	FLDFLT-digested	6/7/2011	11:57	Arsenic	2.8	ug/L	1.0
995499-007	C-R22A-S-177	SW6020	NONE-digested	6/7/2011	11:57	Arsenic	2.6	ug/L	1.0
995499-007	C-R22A-S-177	SW6020	FLDFLT-digested	6/7/2011	11:57	Chromium	ND	ug/L	1.0
995499-007	C-R22A-S-177	SW6020	FLDFLT-digested	6/7/2011	11:57	Manganese	ND	ug/L	10.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995499-008	C-R27-D-177	E120.1	NONE	6/7/2011	12:47	EC	943	umhos/cm	2.00
995499-008	C-R27-D-177	E218.6	FLDFLT	6/7/2011	12:47	Chromium, hexavalent	ND	ug/L	0.20
995499-008	C-R27-D-177	E300	NONE	6/7/2011	12:47	Nitrate as N	ND	mg/L	0.500
995499-008	C-R27-D-177	SM2320B	NONE	6/7/2011	12:47	Alkalinity	125	mg/L	5.00
995499-008	C-R27-D-177	SM2320B	NONE	6/7/2011	12:47	Bicarbonate	125	mg/L	5.00
995499-008	C-R27-D-177	SM2320B	NONE	6/7/2011	12:47	Carbonate	ND	mg/L	5.00
995499-008	C-R27-D-177	SM2540D	NONE	6/7/2011	12:47	Total Suspended Solids	ND	mg/L	2.50
995499-008	C-R27-D-177	SM4500HB	NONE	6/7/2011	12:47	PH	8,23 J	рH	4.00
995499-008	C-R27-D-177	SW6010B	NONE-digested	6/7/2011	12:47	Iron	20.6	ug/L	20.0
995499-008	C-R27-D-177	SW6010B	FLDFLT-digested	6/7/2011	12:47	Iron	ND	ug/L	20.0
995499-008	C-R27-D-177	SW6010B	NONE-digested	6/7/2011	12:47	Manganese	ND	ug/L	11.1
995499-008	C-R27-D-177	SW6010B	FLDFLT-digested	6/7/2011	12:47	Molybdenum	ND	ug/L	11.1
995499-008	C-R27-D-177	SW6010B	FLDFLT-digested	6/7/2011	12:47	Selenium	ND	ug/L	11.1
995499-008	C-R27-D-177	SW6020	FLDFLT-digested		12:47	Arsenic	2.2	ug/L	1.0
995499-008	C-R27-D-177	SW6020	NONE-digested	6/7/2011	12:47	Arsenic	2.5	ug/L	1.0
995499-008	C-R27-D-177	SW6020	FLDFLT-digested	6/7/2011	12:47	Chromium	ND	ug/L	1.0
995499-008	C-R27-D-177	SW6020	FLDFLT-digested	6/7/2011	12:47	Manganese	ND	ug/L	10.0
995499-009	C-R27-S-177	E120.1	NONE	6/7/2011	13:00	EC	947	umhos/cm	2,00
995499-009	C-R27-S-177	E218,6	FLDFLT	6/7/2011	13:00	Chromium, hexavalent	ND	ug/L	0.20
995499-009	C-R27-S-177	E300	NONE	6/7/2011	13:00	Nitrate as N	ND	mg/L	0.500
995499-009	C-R27-S-177	SM2320B	NONE	6/7/2011	13:00	Alkalinity	132	mg/L	5.00
995499-009	C-R27-S-177	SM2320B	NONE	6/7/2011	13:00	Bicarbonate	132	mg/L	5.00
995499-009	C-R27-S-177	SM2320B	NONE	6/7/2011	13:00	Carbonate	ND	mg/L	5.00
995499-009	C-R27-S-177	SM2540D	NONE	6/7/2011	13:00	Total Suspended Solids	ND	mg/L	2.50
995499-009	C-R27-S-177	SM4500HB	NONE	6/7/2011	13:00	PH	8.23 J	Нq	4.00
995499-009	C-R27-S-177	SW6010B	NONE-digested	6/7/2011	13:00	Iron	23.5	ug/L	20.0
995499-009	C-R27-S-177	SW6010B	FLDFLT-digested	6/7/2011	13:00	iron	ND	ug/L	20.0
995499-009	C-R27-S-177	SW6010B	NONE-digested	6/7/2011	13:00	Manganese	ND	ug/L	11.1
995499-009	C-R27-S-177	SW6010B	FLDFLT-digested	6/7/2011	13:00	Selenium	ND	ug/L	11.1
995499-009	C-R27-S-177	SW6020	FLDFLT-digested		13:00	Arsenic	2.8	ug/L	1.0
995499-009	C-R27-S-177	SW6020	NONE-digested	6/7/2011	13:00	Arsenic	2.5	ug/L	1.0
995499-009	C-R27-S-177	SW6020	FLDFLT-digested	6/7/2011	13:00	Chromium	ND	ug/L	1.0
995499-009	C-R27-S-177	SW6020	FLDFLT-digested	6/7/2011	13:00	Manganese	ND	ug/L	10.0
995499-009	C-R27-S-177	SW6020	FLDFLT-digested	6/7/2011	13:00	Molybdenum	ND	ug/L	10.0

)

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995499-010	C-TAZ-D-177	E120,1	NONE	6/7/2011	9:51	EC	958	umhos/cm	2.00
995499-010	C-TAZ-D-177	E218.6	FLDFLT	6/7/2011	9:51	Chromium, hexavalent	ND	ug/L	0.20
995499-010	C-TAZ-D-177	E300	NONE	6/7/2011	9:51	Nitrate as N	ND	mg/L	0.500
995499-010	C-TAZ-D-177	SM2320B	NONE	6/7/2011	9:51	Alkalinity	120	mg/L	5.00
995499-010	C-TAZ-D-177	SM2320B	NONE	6/7/2011	9:51	Bicarbonate	120	mg/L	5.00
995499-010	C-TAZ-D-177	SM2320B	NONE	6/7/2011	9:51	Carbonate	ND	mg/L	5.00
995499-010	C-TAZ-D-177	SM2540D	NONE	6/7/2011	9:51	Total Suspended Solids	ND	mg/L	2.50
995499-010	C-TAZ-D-177	SM4500HB	NONE	6/7/2011	9:51	PH .	8.26 J	рH	4.00
995499-010	C-TAZ-D-177	SW6010B	NONE-digested	6/7/2011	9:51	Iron	38.3	ug/L	20.0
995499-010	C-TAZ-D-177	SW6010B	FLDFLT-digested	6/7/2011	9:51	Iron	ND	ug/L	20.0
995499-010	C-TAZ-D-177	SW6010B	NONE-digested	6/7/2011	9:51	Manganese	ND	ug/L	11.1
995499-010	C-TAZ-D-177	SW6010B	FLDFLT-digested	6/7/2011	9:51	Selenium	ND	ug/L	11.1
995499-010	C-TAZ-D-177	SW6020	FLDFLT-digested		9:51	Arsenic	2.5	ug/L	1.0
995499-010	C-TAZ-D-177	SW6020	NONE-digested	6/7/2011	9:51	Arsenic	2.6	ug/L	1.0
995499-010	C-TAZ-D-177	SW6020	FLDFLT-digested	6/7/2011	9:51	Chromium	ND	ug/L	1.0
995499-010	C-TAZ-D-177	SW6020	FLDFLT-digested	6/7/2011	9:51	Manganese	ND	ug/L	10.0
995499-010	C-TAZ-D-177	SW6020	FLDFLT-digested	6/7/2011	9:51	Molybdenum	ND	ug/L	10.0
995499-011	C-TAZ-S-177	E120.1	NONE	6/7/2011	10:05	EC	955	umhos/cm	2.00
995499-011	C-TAZ-S-177	E218.6	FLDFLT	6/7/2011	10:05	Chromium, hexavalent	ND	ug/L	0.20
995499-011	C-TAZ-S-177	E300	NONE	6/7/2011	10:05	Nitrate as N	ND	mg/L	0.500
995499-011	C-TAZ-S-177	SM2320B	NONE	6/7/2011	10:05	Alkalinity	122	mg/L	5.00
995499-011	C-TAZ-S-177	SM2320B	NONE	6/7/2011	10:05	Bicarbonate	122	mg/L	5.00
995499-011	C-TAZ-S-177	SM2320B	NONE	6/7/2011	10:05	Carbonate	ND	mg/L	5.00
995499-011	C-TAZ-S-177	SM2540D	NONE	6/7/2011	10:05	Total Suspended Solids	ND	mg/L	2.50
995499-011	C-TAZ-S-177	SM4500HB	NONE	6/7/2011	10:05	PH	8.27 J	pН	4.00
995499-011	C-TAZ-S-177	SW6010B	FLDFLT-digested	6/7/2011	10:05	iron	ND	ug/L	20.0
995499-011	C-TAZ-S-177	SW6010B	NONE-digested	6/7/2011	10:05	Iron	ND	ug/L	20.0
995499-011	C-TAZ-S-177	SW6010B	NONE-digested	6/7/2011	10:05	Manganese	ND	ug/L	11.1
995499-011	C-TAZ-S-177	SW6010B	FLDFLT-digested	6/7/2011	10:05	Selenium	ND	ug/L	11.1
995499-011	C-TAZ-S-177	SW6020	NONE-digested	6/7/2011	10:05	Arsenic	2.6	ug/L	1.0
995499-011	C-TAZ-S-177	SW6020	FLDFLT-digested	6/7/2011	10:05	Arsenic	2.5	ug/L	1.0
995499-011	C-TAZ-S-177	SW6020	FLDFLT-digested	6/7/2011	10:05	Chromium	ND	ug/L	1.0
995499-011	C-TAZ-S-177	SW6020	FLDFLT-digested	6/7/2011	10:05	Manganese	ND	ug/L	10.0
995499-011	C-TAZ-S-177	SW6020	FLDFLT-digested	6/7/2011	10:05	Molybdenum	ND	ug/L	10.0

011

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995499-012	R63-177	E120.1	NONE	6/7/2011	11:17	EC	952	umhos/cm	2,00
995499-012	R63-177	E218.6	FLDFLT	6/7/2011	11:17	Chromium, hexavalent	ND	ug/L	0.20
995499-012	R63-177	E300	NONE	6/7/2011	11:17	Nitrate as N	ND	mg/L	0.500
995499-012	R63-177	SM2320B	NONE	6/7/2011	11:17	Alkalinity	120	mg/L	5.00
995499-012	R63-177	SM2320B	NONE	6/7/2011	11:17	Bicarbonate	120	mg/L	5.00
995499-012	R63-177	SM2320B	NONE	6/7/2011	11:17	Carbonate	ND	mg/L	5.00
995499-012	R63-177	SM2540D	NONE	6/7/2011	11:17	Total Suspended Solids	ND	mg/L	2.50
995499-012	R63-177	SM4500HB	NONE	6/7/2011	11:17	PH .	8.33 J	pH	4.00
995499-012	R63-177	SW6010B	NONE-digested	6/7/2011	11:17	Iron	89.0	ug/L	20.0
995499-012	R63-177	SW6010B	FLDFLT-digested	6/7/2011	11:17	Iron	ND	ug/L	20.0
995499-012	R63-177	SW6010B	NONE-digested	6/7/2011	11:17	Manganese	ND	ug/L	11.1
995499-012	R63-177	SW6010B	FLDFLT-digested	6/7/2011	11:17	Selenium	ND	ug/L	11.1
995499-012	R63-177	SW6020	FLDFLT-digested	6/7/2011	11:17	Arsenic	2.4	ug/L	1.0
995499-012	R63-177	SW6020	NONE-digested	6/7/2011	11:17	Arsenic	2.8	ug/L	1.0
995499-012	R63-177	SW6020	FLDFLT-digested	6/7/2011	11:17	Chromium	1.2	ug/L	1.0
995499-012	R63-177	SW6020	FLDFLT-digested		11:17	Manganese	ND	ug/L	10.0
995499-012	R63-177	SW6020	FLDFLT-digested	6/7/2011	11:17	Molybdenum	ND	ug/L	10.0
995499-013	SW1-177	E120.1	NONE	6/7/2011	8:10	EC	968	umhos/cm	2.00
995499-013	SW1-177	E218.6	FLDFLT	6/7/2011	8:10	Chromium, hexavalent	ND	ug/L	0.20
995499-013	SW1-177	SM4500HB	NONE	6/7/2011	8:10	PH	7.60 J	pН	4.00
995499-013	SW1-177	SW6020	FLDFLT-digested	6/7/2011	8:10	Chromium	ND	ug/L	1.0
995499-014	SW2-177	E120.1	NONE	6/7/2011	8:40	EC	960	umhos/cm	2.00
995499-014	SW2-177	E218.6	FLDFLT	6/7/2011	8:40	Chromium, hexavalent	ND	ug/L	0.20
995499-014	SW2-177	SM4500HB	NONE	6/7/2011	8:40	PH	7.81 J	ρH	4.00
995499-014	SW2-177	SW6020	FLDFLT-digested	6/7/2011	8:40	Chromium	ND	ug/L	1.0

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project P.O. Number: 405681.MP.02.RM Project Number: 405681.MP.02.RM Laboratory No. 995499

Page 1 of 38

Printed 7/12/2011

Samples Received on 6/7/2011 10:00:00 PM

Field ID	Lab ID	Collected	Matrix
C-BNS-D-177	995499-001	06/07/2011 12:23	Water
C-I-3-D-177	995499-002	06/07/2011 10:37	Water
C-I-3-S-177	995499-003	06/07/2011 10:53	Water
C-MAR-D-177	995499-004	06/07/2011 13:25	Water
C-MAR-S-177	995499-005	06/07/2011 13:38	Water
C-R22A-D-177	995499-006	06/07/2011 11:43	Water
C-R22A-S-177	995499-007	06/07/2011 11:57	Water
C-R27-D-177	995499-008	06/07/2011 12:47	Water
C-R27-S-177	995499-009	06/07/2011 13:00	Water
C-TAZ-D-177	995499-010	06/07/2011 09:51	Water
C-TAZ-S-177	995499-011	06/07/2011 10:05	Water
R63-177	995499-012	06/07/2011 11:17	Water
SW1-177	995499-013	06/07/2011 08:10	Water
SW2-177	995499-014	06/07/2011 08:40	Water

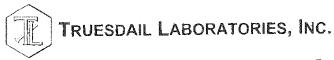
Anions By I.C EPA 300.0		Batch 06AN11F				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
995499-001 Nitrate as Nitrogen	mg/L	06/08/2011 16:37	1.00	0.0110	0.500	ND
995499-002 Nitrate as Nitrogen	mg/L	06/08/2011 16:48	1.00	0.0110	0.500	ND
995499-003 Nitrate as Nitrogen	mg/L	06/08/2011 16:58	1.00	0.0110	0.500	ND
995499-004 Nitrate as Nitrogen	mg/L	06/08/2011 17:08	1.00	0.0110	0.500	ND
995499-005 Nitrate as Nitrogen	mg/L	06/08/2011 13:51	5.00	0.0550	1.00	1.88
995499-006 Nitrate as Nitrogen	mg/L	06/08/2011 17:19	1.00	0.0110	0.500	ND
995499-007 Nitrate as Nitrogen	mg/L	06/08/2011 15:14	1.00	0.0110	0.500	ND
995499-008 Nitrate as Nitrogen	mg/L	06/08/2011 15:24	1.00	0.0110	0.500	ND
995499-009 Nitrate as Nitrogen	mg/L	06/08/2011 15:35	1.00	0.0110	0.500	ND
995499-010 Nitrate as Nitrogen	mg/L	06/08/2011 15:45	1.00	0.0110	0.500	ND
995499-011 Nitrate as Nitrogen	mg/L	06/08/2011 15:56	1.00	0.0110	0.500	ND

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 2 of 38 Project Number: 405681.MP.02.RM Printed 7/12/2011

995499-012 Nitrate as Nitroge	n	mg/L	06/08	/2011 16:06 1.00	0.0110	0.500 ND
Method Blank						
Parameter Nitrate as Nitrogen Duplicate	Unit mg/L	DF 1.00	Result ND			Lab ID = 995496-002
Parameter Nitrate as Nitrogen Lab Control Sample	Unit mg/L	DF 1.00	Result 1.01	Expected 0.978	RPD 3.42	Acceptance Range 0 - 20
Parameter Nitrate as Nitrogen Matrix Spike	Unit mg/L	DF 1.00	Result 3.99	Expected 4.00	Recovery 99.8	Acceptance Range 90 - 110 Lab ID = 995496-002
Parameter Nitrate as Nitrogen MRCCS - Secondary	Unit mg/L	DF 1.00	Result 5.15	Expected/Added 4.98(4.00)	Recovery 104.	Acceptance Range 85 - 115
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 3.98	Expected 4.00	Recovery 99.4	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2,98	Expected 3.00	Recovery 99.5	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.98	Expected 3.00	Recovery 99.5	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2,98	Expected 3.00	Recovery 99.4	Acceptance Range 90 - 110
Parameter Nitrate as Nitrogen	Unit mg/L	DF 1.00	Result 3.05	Expected 3.00	Recovery 102.	Acceptance Range 90 - 110


Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 3 of 38 Printed 7/12/2011

Alkalinity by SM 2320B		Batch 06ALK11B			6/10/201	1
Parameter	Unit	Analyzed	DF	MDL	RL	Result
995499-001 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	127
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	127
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-002 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	116
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	116
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-003 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	125
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	125
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-004 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	125
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	125
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-005 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	135
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	135
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-006 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	114
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	114
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-007 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	126
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	126
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-008 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	125
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	125
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-009 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	132
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	132
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-010 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	120.
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	120.
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0,153	5.00	ND
995499-011 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	122
Bicarbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	122
Carbonate (Calculated)	mg/L	06/10/2011	1.00	0.153	5.00	ND
995499-012 Alkalinity as CaCO3	mg/L	06/10/2011	1.00	1.68	5.00	120.

Client: E2 Consulting Eng	gineers, Inc	·=	ect Name: ect Number:	PG&E Topock I 405681.MP.02.	•	ct	Printed 7	age 4 of 38 /12/2011
995499-012 Bicarbonate (Cal	culated)	mg/L	06/10/	2011 1	00.1	0.153	5.00	120.
Carbonate (Calc	ulated)	mg/L	06/10/	2011 1	1.00	0.153	5.00	ND
Method Blank							·	
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result ND	·				
Duplicate		erica (f			٠.		Lab ID =	995498-002
Parameter Alkalinity as CaCO3 Lab Control Sample	Unit mg/L	DF 1.00	Result 136.	Expected 136	F	RPD 0.294	Accepta 0 - 20	ance Range
Parameter Alkalinity as CaCO3 Matrix Spike	Unit mg/L	DF 1.00	Result 95.0	Expected 100.	F	Recovery 95.0	90 - 110	ance Range) 995499-012
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 215	Expected/Adde 220.(100.)	ed f	Recovery 95.0	Accepta 75 - 125	ance Range

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 5 of 38 Printed 7/12/2011

Specific Conductivity -	EFM IZV.I			ch 06EC11D			6/10/201	
Parameter		Unit	Ar	nalyzed	DF	MDL	RL	Result
995499-001 Specific Conduc	ctivity	umhos/d	cm 06/	10/2011	1.00	0.0380	2.00	987
995499-002 Specific Conduc	ctivity	umhos/d	cm 06/	10/2011	1.00	0.0380	2.00	953
995499-003 Specific Conduc	ctivity	umhos/	cm 06/	10/2011	1.00	0.0380	2.00	952
995499-004 Specific Conduc	ctivity	umhos/	cm 06/	10/2011	1.00	0.0380	2.00	980.
995499-005 Specific Conduc	ctivity	umhos/d	cm 06/	10/2011	1.00	0.0380	2.00	970.
995499-006 Specific Conduc	ctivity	umhos/d	cm 06/	10/2011	1.00	0.0380	2.00	939
995499-007 Specific Conduc	ctivity	umhos/	cm 06/	10/2011	1.00	0.0380	2.00	957
995499-008 Specific Conduc	ctivity	umhos/	cm 06/	10/2011	1.00	0.0380	2.00	943
995499-009 Specific Condu	ctivity	umhos/e	cm 06/	10/2011	1.00	0.0380	2.00	947
995499-010 Specific Conduc	ctivity	umhos/	cm 06/	10/2011	1.00	0.0380	2.00	958
995499-011 Specific Condu	ctivity	umhos/	cm 06/	10/2011	1.00	0.0380	2.00	955
995499-012 Specific Condu	ctivity	umhos/e	cm 06/	10/2011	1.00	0.0380	2.00	952
Method Blank								
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	995499-00
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 954	Expected 953	F	RPD 0.105	Accepta 0 - 10	ance Rang
Duplicate							Lab ID =	995499-01
Parameter	Unit	DF	Resuit	Expected	F	RPD	Accepta	ance Rang
Specific Conductivity	umhos	1.00	950.	952		0.210	0 - 10	Ū
Lab Control Sample:		* -						
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang
Specific Conductivity	umhos	1.00	703	706		99.6	90 - 110	_
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang
Specific Conductivity	umhos	1.00	704	706		99.7	90 - 11	_
MRCCS - Secondary	/	4.						
Parameter	Unit	DF	Result	Expected	F	Recovery	Accept	ance Rang
Specific Conductivity	umhos	1.00	706	706		100.	90 - 11	-
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery		ance Rang
Specific Conductivity	umhos	1.00	960.	996		96.4	90 - 11	_

Report Continued

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project Page 6 of 38

Project Number: 405681.MP.02.RM

Printed 7/12/2011

MRCVS - Primary		254						
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 962	Expected 996	F	Recovery 96.6	Accepta 90 - 110	ance Range
Specific Conductivity - E	PA 120.1		Batch	06EC11E			6/10/201	1
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995499-013 Specific Conducti	vity	umhos/	cm 06/10)/2011	1.00	0.0380	2.00	968
995499-014 Specific Conduct	ivity	umhos/	cm 06/10)/2011	1.00	0.0380	2.00	960.
Method Blank								
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result ND					
Duplicate							Lab ID =	995499-014
Parameter Specific Conductivity Lab Control Sample	Unit umhos	DF 1.00	Result 960.	Expected 960.	F	RPD 0.00	Accepta 0 - 10	ance Range
Parameter Specific Conductivity MRCCS - Secondary	Unit umhos	DF 1.00	Result 702	Expected 706	F	Recovery 99.4	Accepta 90 - 110	ance Range
Parameter Specific Conductivity MRCVS - Primary	Unit umhos	DF 1.00	Result 704	Expected 706	F	Recovery 99.7	Accepta 90 - 11	ance Range 0
Parameter Specific Conductivity	Unit umhos	DF 1.00	Result 970.	Expected 996	F	Recovery 97.4	Accepta 90 - 11	ance Range 0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 7 of 38 Printed 7/12/2011

Metals by EPA 6010B, To	otal		Batch	060911A-Th				
Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result
995499-001 Iron		ug/L	06/09	/2011 12:48	1.11	1.49	20.0	51.8
Manganese		ug/L	06/09	/2011 12:48	1.11	3.58	11.1	ND
995499-002 Iron		ug/L	06/09	/2011 13:25	1.11	1.49	20.0	32.3
Manganese		ug/L	06/09	/2011 13:25	1.11	3.58	11.1	ND
995499-003 Iron		ug/L	06/09	/2011 13:47	1.11	1.49	20.0	89.5
Manganese		ug/L	06/09	/2011 13:47	1.11	3.58	11.1	ND
995499-004 iron		ug/L	06/09	/2011 13:53	1.11	1.49	20.0	650.
Manganese		ug/L	06/09	/2011 13:53	1.11	3.58	11.1	32.0
995499-005 Iron		ug/L	06/09	/2011 13:58	1.11	1.49	20.0	675.
Manganese		ug/L	06/09	/2011 13:58	1.11	3.58	11.1	33.0
995499-006 Iron		ug/L	06/09	/2011 14:04	1.11	1.49	20.0	33.0
Manganese		ug/L	06/09	/2011 14:04	1,11	3.58	11.1	ND
995499-007 Iron		ug/L	06/09	/2011 14:10	1.11	1.49	20.0	22.9
Manganese		ug/L	06/09	/2011 14:10	1.11	3.58	11.1	ND
995499-008 Iron		ug/L	06/09	/2011 14:16	1.11	1.49	20.0	20.6
Manganese		ug/L	06/09	/2011 14:16	1.11	3.58	11,1	ND
995499-009 Iron		ug/L	06/09	/2011 14:22	1.11	1.49	20.0	23.5
Manganese		ug/L	06/09	/2011 14:22	1.11	3.58	11.1	ND
995499-010 Iron		ug/L	06/09	/2011 14:28	1.11	1.49	20.0	38.3
Manganese		ug/L	06/09	/2011 14:28	1.11	3.58	11.1	ND
995499-012 Iron		ug/L	06/09	/2011 14:39	1.11	1.49	20.0	89.0
Manganese		ug/L	06/09	/2011 14:39	1.11	3.58	11.1	ND
Method Blank								
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate						4	Lab ID =	995499-00
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Rang
Iron	ug/L	1.11	54.2	51.8		4.53	0 - 20	·
Manganese	ug/L	1.11	ND	0.00		0	0 - 20	
Lab Control Sample							, ⁵ ,	. The section
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang
Iron	ug/L	1.00	2260	2000		113.	85 - 11	_
Manganese	ug/L	1.00	2100	2000		105.	85 - 118	5

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Number	PG&E Topock Pro 405681.MP.02.RM	-	Page 8 of 38 Printed 7/12/2011
Lab Control Sample D	Ouplicate					
Parameter Iron Manganese Matrix Spike	Unit ug/L ug/L	DF 1.00 1.00	Result 2280 2120	Expected 2000 2000	Recovery 114. 106.	Acceptance Range 85 - 115 85 - 115 Lab ID = 995499-001
Parameter Iron Manganese MRCCS - Secondary	Unit ug/L ug/L	DF 1.11 1.11	Result 2360 2230	Expected/Added 2270(2220) 2220(2220)	Recovery 104. 100.	Acceptance Range 75 - 125 75 - 125
Parameter Iron Manganese MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 5240 4960	Expected 5000 5000	Recovery 105. 99.3	Acceptance Range 90 - 110 90 - 110
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5440	Expected 5000	Recovery 109.	Acceptance Range 90 - 110
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5220	Expected 5000	Recovery 104.	Acceptance Range 90 - 110
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5420	Expected 5000	Recovery 108.	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 5010	Expected 5000	Recovery 100.	Acceptance Range 90 - 110
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 4920	Expected 5000	Recovery 98.5	Acceptance Range 90 - 110
Parameter Manganese Interference Check S	Unit ug/L tandard A	DF 1.00	Result 4950	Expected 5000	Recovery 99.1	Acceptance Range 90 - 110
Parameter Iron Interference Check S	Unit ug/L tandard A	DF 1.00	Result 2230	Expected 2000	Recovery 112.	Acceptance Range 80 - 120
Parameter Iron	Unit ug/L	DF 1.00	Result 2310	Expected 2000	Recovery 116.	Acceptance Range 80 - 120

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 10 of 38 Printed 7/12/2011

Metals by EPA 6010B, T				062011A-Th				
Parameter		Unit	Anai	yzed	DF	MDL	RL	Result
995499-011 Iron		ug/L	06/20	/2011 13:14 1	1.11	1.49	20.0	ND
Manganese		ug/L	06/20	/2011 13:14 1	1.11	3.58	11.1	ND
Method Blank	ters.							
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	995672-001
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Range
Iron	ug/L	22.2	86.9	85.9		1.16	0 - 20	J
Manganese	ug/L	22.2	ND	0.00		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	2300	2000		115.	85 - 11	•
Manganese	ug/L	1.00	2210	2000		110.	85 - 11	5
Matrix Spike							Lab ID =	995672-00
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accepta	ance Range
iron	ug/L	22.2	42800	44500(44400)		96.3	75 - 12	_
Manganese	ug/L	22.2	41000	44400(44400)		92.3	75 - 12	5
MRCCS - Secondary	1							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	5330	5000		106.	90 - 11	o
Manganese	ug/L	1.00	5120	5000		102.	90 - 110	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	5440	5000		109.	90 - 11	0
MRCVS - Primary								17.5
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
tron	ug/L	1.00	4680	5000		93.5	90 - 11	_
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Iron	ug/L	1.00	5190	5000		104.	90 - 11	_
MRCVS - Primary	-							er er
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Manganese	ug/L	1.00	5290	5000		106.	90 - 11	_


Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

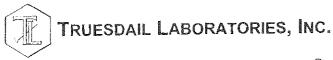
Project Number: 405681.MP.02.RM

Page 12 of 38 Printed 7/12/2011

Metals by EPA 6020A,	Total		Batch	070911A				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
995499-001 Arsenic		ug/L	07/09	/2011 14:35	4.44	0.391	1.0	2.7
995499-002 Arsenic		ug/L	07/09	/2011 14:41	4.44	0.391	1.0	2.6
995499-003 Arsenic		ug/L	07/09	/2011 16:01	4.44	0.391	1.0	2.6
995499-004 Arsenic		ug/L	07/09	/2011 16:08	4.44	0.391	1.0	2.9
995499-005 Arsenic		ug/L	07/09	/2011 16:15	4,44	0.391	1.0	3.2
995499-006 Arsenic		ug/L	07/09	/2011 16:21	4.44	0.391	1.0	2.5
995499-007 Arsenic		ug/L	07/09	/2011 16:28	4.44	0.391	1.0	2.6
995499-008 Arsenic		ug/L	07/09	/2011 16:34	4.44	0.391	1.0	2.5
995499-009 Arsenic		ug/L	07/09	/2011 16:41	4,44	0.391	1.0	2.5
995499-010 Arsenic		ug/L	07/09	/2011 16:47	4,44	0.391	1.0	2.6
995499-011 Arsenic		ug/L	07/09	/2011 17:13	4.44	0.391	1.0	2.6
995499-012 Arsenic		ug/L_	07/09	/2011 17:20	4.44	0.391	1.0	2.8
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Duplicate							Lab ID =	995499-00
Parameter	Unit	DF	Result Expected			RPD	Accepta	ance Rang
Arsenic	ug/L	4.44	2.66	2.61		1.94	0 - 20	_
Lab Control Sample	,							
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Arsenic	ug/L	5.00	115	100.		115	85 - 11	5
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Arsenic	ug/L	5.00	115.	100.		115.	85 - 11	5
Matrix Spike							Lab ID =	995499-00
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accept	ance Rang
Arsenic	ug/L	4.44	129.	114.(111)		114.	75 - 12	5
Matrix Spike Duplica	ate			;			Lab ID =	995499-00
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accept	ance Rang
Arsenic	ug/L	4.44	126.	114.(111)		111.	75 - 12	5
MRCCS - Secondar	гу.							**
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Rang
Arsenic	ug/L	1.00	51.9	50.0		104.	90 - 11	0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project


Project Number: 405681.MP.02.RM

Page 14 of 38 Printed 7/12/2011

Chrome VI by EPA 218.6			Batch	06CrH11F				
Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
995499-001 Chromium, Hexa	valent	ug/L	06/10	/2011 08:25	1.05	0.0210	0.20	ND
995499-002 Chromium, Hexa	valent	ug/L	06/10	/2011 08:46	1.05	0.0210	0.20	ND
995499-003 Chromium, Hexa	valent	ug/L	06/10	/2011 08:56	1.05	0.0210	0.20	ND
995499-004 Chromium, Hexa	valent	ug/L	06/10	06/10/2011 09:49		0.0210	0.20	ND
995499-005 Chromium, Hexa	valent	ug/L	06/10	/2011 10:21	1.05	0.0210	0.20	ND
995499-006 Chromium, Hexa	499-006 Chromium, Hexavalent ug/L		06/10	/2011 10:31	1.05	0.0210	0.20	ND
995499-007 Chromium, Hexa	valent	ug/L	06/10	/2011 11:13	1.05	0.0210	0.20	ND
95499-008 Chromium, Hexavalent ເ		ug/L	06/10	/2011 11:23	1.05	0.0210	0.20	ND
995499-009 Chromium, Hexa	valent	ug/L	06/10	/2011 11:33	1.05	0.0210	0.20	ND
995499-010 Chromium, Hexa	valent	ug/L	06/10	/2011 12:36	1.05	0.0210	0.20	ND
995499-011 Chromium, Hexa	ıvalent	ug/L	06/10	/2011 12:46	1.05	0.0210	0.20	ND
995499-012 Chromium, Hexa	valent	ug/L	06/10	/2011 13:18	1.05	0.0210	0.20	ND
995499-013 Chromium, Hexa	valent	ug/L	06/10	/2011 14:00	1.05	0.0210	0.20	ND
995499-014 Chromium, Hexa	valent	ug/L	06/10	/2011 14:10	1.05	0.0210	0.20	ND
Method Blank								-
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate							Lab ID =	995499-00
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.05	ND	0.00		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	4.97	5.00		99.3	90 - 11	0
Matrix Spike							Lab ID =	995499-00
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.06	1.14	1.06(1.06)		107.	90 - 11	0
Matrix Spike							Lab ID =	995499-00
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accept	ance Rang
Chromium, Hexavalent	ug/L	1.06	1.11	1.06(1.06)		105.	90 - 11	
Matrix Spike	٠.						Lab ID =	995499-00
Parameter	Unit	DF	Result	Expected/A	dded	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1,06	1.11	1.06(1.06)		104.	90 - 11	0

Client: E2 Consulting Eng	jineers, Inc.		oject Name: oject Number:	PG&E Topock Pro 405681.MP.02.RM	•	Page 15 of 38 Printed 7/12/2011
Matrix Spike						Lab ID = 995499-004
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.12	Expected/Added 1.06(1.06)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 995499-005
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.15	Expected/Added 1.06(1.06)	Recovery 108.	Acceptance Range 90 - 110 Lab ID = 995499-006
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.05	Expected/Added 1.06(1.06)	Recovery 99.4	Acceptance Range 90 - 110 Lab ID = 995499-007
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.15	Expected/Added 1.06(1.06)	Recovery 109.	Acceptance Range 90 - 110 Lab ID = 995499-008
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.11	Expected/Added 1.06(1.06)	Recovery 105.	Acceptance Range 90 - 110 Lab ID = 995499-009
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.14	Expected/Added 1.06(1.06)	Recovery 108.	Acceptance Range 90 - 110 Lab ID = 995499-010
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1,13	Expected/Added 1.06(1.06)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 995499-011
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.11	Expected/Added 1.06(1.06)	Recovery 105,	Acceptance Range 90 - 110 Lab ID = 995499-012
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.13	Expected/Added 1.06(1.06)	Recovery 107.	Acceptance Range 90 - 110 Lab ID = 995499-013
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.15	Expected/Added 1.06(1.06)	Recovery 108.	Acceptance Range 90 - 110 Lab ID = 995499-014
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1,13	Expected/Added 1.06(1.06)	Recovery 107.	Acceptance Range 90 - 110
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 4.95	Expected 5.00	Recovery 99.0	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 17 of 38

Project Number: 405681.MP.02.RM

Printed 7/12/2011

Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
995499-009 Arsenic		ug/L	06/10	/2011 13:56	4.44	0.391	1,0	2.8
Chromium		ug/L	06/10	/2011 13:56	4.44	0.0977	1.0	ND
Manganese		ug/L	06/10	/2011 13:56	4.44	0.169	10.0	ND
Molybdenum		ug/L	06/10	/2011 13:56	4.44	0.746	10.0	ND
995499-010 Arsenic		ug/L	ıg/L 06/10/2011 14:03		4.44	0.391	1.0	2.5
Chromium		ug/L	06/10	06/10/2011 14:03		0.0977	1.0	ND
Manganese		ug/L	06/10/2011 14:03		4.44	0.169	10.0	ND
Molybdenum		ug/L	06/10/2011 14:03		4.44	0.746	10.0	ND
995499-011 Chromium		ug/L	06/10	06/10/2011 14:09		0.0977	1.0	ND
Manganese		ug/L	06/10/2011 14:09		4.44	0.169	10.0	ND
Molybdenum		ug/L	06/10/2011 14:09		4.44	0.746	10.0	ND
995499-012 Arsenic		ug/L	06/10	/2011 14:16	4.44	0.391	1.0	2.4
Chromium		ug/L	06/10/2011 14:16		4.44	0.0977	1.0	1.2
Manganese		ug/L	06/10/2011 14:16		4.44	0.169	10.0	ND
Molybdenum		ug/L	06/10/2011 14:16		4.44	0.746	10.0	ND
995499-013 Chromium		ug/L	06/10	/2011 14:23	4.44	0.0977	1.0	ND
995499-014 Chromium		ug/L	06/10	/2011 14:29	4.44	0.0977	1.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Lab Control Sample								1.5
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang
Arsenic	ug/L	5.00	108.	100.		108.	85 - 11	õ
Chromium	ug/L	5.00	107.	100.		107.	85 - 118	
Manganese	ug/L	5.00	99.6	100.		99.6	85 - 11	
Molybdenum	ug/L	5.00	102.	100.		102.	85 - 118	5

Client: E2 Consulting En	gineers, Inc		oject Name: oject Number	PG&E Topock Pror: 405681.MP.02.RM		Page 18 of 38 Printed 7/12/2011
Lab Control Sample [Duplicate					
Parameter Arsenic Chromium	Unit ug/L ug/L	DF 5.00 5.00	Result 110. 109.	Expected 100. 100.	Recovery 110. 109.	Acceptance Range 85 - 115 85 - 115
Manganese Molybdenum Matrix Spike	ug/L ug/L	5.00 5.00	96.1 105.	100. 100.	96.1 105.	85 - 115 85 - 115 Lab ID ≃ 995390-010
Parameter Arsenic Chromium Manganese Molybdenum Matrix Spike Duplicat	Unit ug/L ug/L ug/L ug/L	DF 4.44 4.44 4.44 4.44	Result 112. 111 101. 118.	Expected/Added 111(111) 114.(111) 111(111) 111(111)	Recovery 101. 97.6 91.2 106.	Acceptance Range 75 - 125 75 - 125 75 - 125 75 - 125 Lab ID = 995390-010
Parameter Arsenic Chromium Manganese Molybdenum MRCCS - Secondary	Unit ug/L ug/L ug/L ug/L	DF 4.44 4.44 4.44 4.44	Result 119. 117. 103. 116.	Expected/Added 111(111) 114.(111) 111(111) 111(111)	Recovery 107. 103. 93.2 104.	Acceptance Range 75 - 125 75 - 125 75 - 125 75 - 125
Parameter Arsenic Chromium Manganese Molybdenum MRCVS - Primary	Unit ug/L ug/L ug/L ug/L	DF 1.00 1.00 1.00 1.00	Result 50.4 50.3 52.3 48.7	Expected 50.0 50.0 50.0 50.0	Recovery 101. 101. 105. 97.4	Acceptance Range 90 - 110 90 - 110 90 - 110 90 - 110
Parameter Arsenic MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.6	Expected 50.0	Recovery 95.3	Acceptance Range 90 - 110
Parameter Arsenic MRCVS - Primary	Unit ug/L	DF 1.00	Result 48.1	Expected 50.0	Recovery 96.2	Acceptance Range 90 - 110
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.6	Expected 50.0	Recovery 93.2	Acceptance Range 90 - 110
Parameter Chromium Manganese	Unit ug/L ug/L	DF 1.00 1.00	Result 47.5 48.5	Expected 50.0 50.0	Recovery 95.0 97.0	Acceptance Range 90 - 110 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 21 of 38

Printed 7/12/2011

Project Number: 405681.MP.02.RM

Parameter		Unit	Anal	yzed	DF	MDL	RL	Result
995499-001 Arsenic		ug/L	06/14	/2011 18:15	4.44	0.391	1.0	2.8
Chromium		ug/L	06/14	/2011 18:15	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 18:15	4.44	0.169	10.0	ND
995499-002 Arsenic		ug/L	06/14	/2011 18:21	4.44	0.391	1.0	2.5
Chromium		ug/L	06/14	/2011 18:21	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 18:21	4.44	0.169	10.0	ND
995499-003 Arsenic		ug/L	06/14	/2011 18:28	4.44	0.391	1.0	2.8
Chromium		ug/L	06/14	/2011 18:28	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 18:28	4.44	0.169	10.0	ND
995499-004 Arsenic		ug/L	06/14	/2011 18:35	4.44	0.391	1.0	2.4
Chromium		ug/L	06/14	/2011 18:35	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 18:35	4.44	0.169	10.0	16.3
995499-005 Arsenic		ug/L	06/14	/2011 18:41	4.44	0.391	1.0	2.5
Chromium		ug/L	06/14	/2011 18:41	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 18:41	4.44	0.169	10.0	17.6
995499-006 Arsenic		ug/L	06/14	/2011 18:48	4.44	0.391	1.0	2.6
Chromium		ug/L	06/14	/2011 18:48	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 18:48	4.44	0.169	10.0	ND
995499-007 Arsenic		ug/L	06/14	/2011 18:54	4.44	0.391	1.0	2.8
Chromium		ug/L	06/14	/2011 18:54	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 18:54	4.44	0.169	10.0	ND
995499-008 Arsenic		ug/L	06/14	/2011 19:01	4.44	0.391	1.0	2.2
Chromium		ug/L	06/14	/2011 19:01	4.44	0.0977	1.0	ND
Manganese		ug/L	06/14	/2011 19:01	4.44	0.169	10.0	ND
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	995494-0
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptance Rang	
Arsenic	ug/L	4.44	10.6	10.3		2.49	0 - 20	
Chromium	ug/L	4.44	1.54	1.45		6.08	0 - 20	
Manganese	ug/L	4.44	ND	0.00		0	0 - 20	

Client: E2 Consulting Eng	ineers, Inc.		oject Name: oject Number	PG&E Topock Pro : 405681.MP.02.RM	-	Page 22 of 38 Printed 7/12/2011
Lab Control Sample						
Parameter Arsenic	Unit ug/L	DF 5.00	Result 114.	Expected 100.	Recovery 114.	Acceptance Range 85 - 115
Chromium	ug/L	5.00 5.00	111. 99.2	100. 100.	111. 99.2	85 - 115
Manganese Lab Control Sample Di	ug/L uplicate	5.00	99.2	100.	99.2	85 - 115
Parameter Arsenic Chromium Manganese	Unit ug/L ug/L ug/L	DF 5.00 5.00 5.00	Result 108. 103. 92.1	Expected 100. 100. 100.	Recovery 108. 103. 92.1	Acceptance Range 85 - 115 85 - 115 85 - 115
Matrix Spike						Lab ID = 995494-001
Parameter Arsenic Chromium	Unit ug/L ug/L	DF 4.44 4.44	Result 127. 113.	Expected/Added 121.(111) 112.(111)	Recovery 105. 100.	Acceptance Range 75 - 125 75 - 125
Manganese MRCCS - Secondary	ug/L	4.44	110.	111(111)	99.5	75 - 125
Parameter Arsenic Chromium	Unit ug/L ug/L	DF 1.00 1.00	Result 52.3 51.4	Expected 50.0 50.0	Recovery 105. 103.	Acceptance Range 90 - 110 90 - 110
Manganese MRCVS - Primary	ug/L	1.00	54.3	50.0	108.	90 - 110
Parameter Arsenic MRCVS - Primary	Unit ug/L	DF 1.00	Result 47.5	Expected 50.0	Recovery 95.1	Acceptance Range 90 - 110
Parameter Arsenic	Unit ug/L	DF 1.00	Result 48.0	Expected 50.0	Recovery 96.1	Acceptance Range 90 - 110
MRCVS - Primary Parameter Arsenic	Unit ug/L	DF 1.00	Result 53.6	Expected 50.0	Recovery 107.	Acceptance Range 90 - 110
MRCVS - Primary		4.4				
Parameter Chromium MRCVS - Primary	Unit ug/L	DF 1.00	Result 46.0	Expected 50.0	Recovery 91.9	Acceptance Range 90 - 110
Parameter Chromium	Unit ug/L	DF 1.00	Result 45.5	Expected 50.0	Recovery 90.9	Acceptance Range 90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Printed 7/12/2011

Page 25 of 38

Parameter		Unit	Anal	lyzed D	F MDL	RL	Result
995499-011 Arsenic		ug/L	06/16	/2011 15:33 4.	44 0.391	1.0	2,5
Method Blank							
Parameter	Unit	DF	Result				
Arsenic	ug/ L	1.00	ND				
Duplicate						Lab ID =	995390-010
Parameter	Unit	DF	Result	Expected	RPD	Accept	ance Range
Arsenic	ug/L	4.44	ND	0.00	0	0 - 20	
Lab Control Sample	е						4. 4
Parameter	Unit	DF	Result	Expected	Recovery	Accept	ance Range
Arsenic	ug/L	5.00	111.	100.	111	85 - 11	5
Lab Control Sample	e Duplicate						
Parameter	Unit	DF	Result	Expected	Recovery	Accept	ance Range
Arsenic	ug/L	5.00	107.	100.	107.	85 - 11	5
Matrix Spike						Lab ID =	= 995390-010
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accept	ance Range
Arsenic	ug/L	4.44	112	111(111)	101.	75 - 125	
Matrix Spike Duplic	cate					Lab ID =	= 995390-010
Parameter	Unit	DF	Result	Expected/Adde	d Recovery	Accept	ance Range
Arsenic	ug/L	4.44	10 4 .	111(111)	93.6	75 - 12	5
MRCCS - Seconda	ury.						·
Parameter	Unit	DF	Result	Expected	Recovery	Accept	ance Range
Arsenic	ug/L	1.00	51.4	50.0	103.	90 - 12	5
MRCVS - Primary	est to see						
Parameter	Unit	DF	Result	Expected	Recovery	Accept	ance Range
Arsenic	ug/L	1.00	50.6	50.0	101.	90 - 11	0
MRCVS - Primary							1 11 11
Parameter	Unit	DF	Result	Expected	Recovery	Accept	ance Range
Arsenic	ug/L	1.00	48.2	50.0	96.5	90 - 11	0
MRCVS - Primary							
Parameter	Unit	DF	Result	Expected	Recovery	Accept	ance Range
Arsenic	ug/L	1.00	50.8	50.0	102.	90 - 11	0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 27 of 38 Printed 7/12/2011

Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995499-011 Iron		ug/L	06/20	/2011 13:52 1	1.11	1.49	20.0	ND
Selenium		ug/L	06/20	/2011 13:52 1	1.11	3.57	11.1	ND
Method Blank								
Parameter	Unit	DF	Resuit					
Iron	ug/L	1.00	ND					
Selenium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Duplicate							Lab ID =	995671-001
Parameter	Unit	DF	Result	Expected	RF	D	Accepta	ance Range
Iron	ug/L	1.11	307.	302	1	1.54	0 - 20	_
Selenium	ug/L	1.11	ND	0.00	()	0 - 20	
Manganese	ug/L	1.11	ND	0.00	()	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	Re	covery	Accepta	ance Range
Iron	ug/L	1.00	113.	100.		113.	85 - 11	5
Selenium	ug/L	1.00	100.	100.	1	100.	85 - 11	5
Manganese	ug/L	1.00	108.	100.		108.	85 - 11	5
Matrix Spike							Lab ID =	995671-001
Parameter	Unit	DF	Result	Expected/Adde	ed Re	ecovery	Accepta	ance Range
Iron	ug/L	1.11	2330	2520(2220)	9	91.5	75 - 12	5
Selenium	ug/L	1.11	1860	2220(2220)	3	33.9	75 - 12	5
Manganese	ug/L	1.11	2030	2220(2220)	9	91.3	75 - 12	5
MRCCS - Secondary								λ.
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	ance Range
!ron	ug/L	1.00	5330	5000		106.	90 - 110	
Selenium	ug/L	1.00	4820	5000	Ş	96.4	90 - 110	כ
Manganese	ug/L	1.00	5120	5000		102.	90 - 110	כ
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	ance Range
iron	ug/L	1.00	4680	5000	9	93.5	90 - 110)
MRCVS - Primary	:			٠.				
Parameter	Unit	DF	Result	Expected	Re	ecovery	Accepta	ance Range
Iron	ug/L	1.00	5440	5000		109.	90 - 11	_

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 30 of 38 Printed 7/12/2011

Metals by EPA 6010B, Di	issolved							
Parameter		Unit	Ana	yzed	DF	MDL	RL	Result
995499-001 Iron		ug/L	06/15	/2011 13:24	1.11	1.49	20.0	ND
Molybdenum		ug/L	06/15	/2011 13:24	1,11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 13:24	1.11	3.57	11.1	ND
995499-002 Iron		ug/L	06/15/2011 13:30		1,11	1.49	20.0	ND
Molybdenum		ug/L	06/15	/2011 13:30	1.11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 13:30	1.11	3.57	11.1	ND
995499-003 Iron		ug/L	06/15	/2011 13:36	1.11	1.49	20.0	ND
Molybdenum		ug/L	06/15	/2011 13:36	1.11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 13:36	1.11	3.57	11.1	ND
995499-004 Iron		ug/L	06/15	/2011 13:41	1.11	1.49	20.0	ND
Molybdenum		ug/L	06/15	/2011 13:41	1.11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 13:41	1,11	3.57	11.1	ND
995499-005 Iron		ug/L	06/15	/2011 14:05	1.11	1.49	20.0	40.9
Molybdenum		ug/L	06/15	/2011 14:05	1.11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 14:05	1.11	3.57	11.1	ND
995499-006 Iron		ug/L	06/15	/2011 14:39	1.11	1.49	20.0	ND
Molybdenum		ug/L	06/15	/2011 14:39	1.11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 14:39	1.11	3.57	11.1	ND
995499-007 Iron		ug/L	06/15	/2011 14:45	1.11	1.49	20.0	ND
Molybdenum		ug/L	06/15	/2011 14:45	1.11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 14:45	1,11	3.57	11.1	ND
995499-008 Iron		ug/L	06/15	/2011 14:50	1.11	1.49	20.0	ND
Molybdenum		ug/L	06/15	/2011 14:50	1,11	4.46	11.1	ND
Selenium		ug/L	06/15	/2011 14:50	1,11	3.57	11.1	ND
Method Blank								
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Selenium	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Duplicate							Lab ID =	995494-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
fron	ug/L	1.11	ND	0.00		0	0 - 20	_
Selenium	ug/L	1,11	ND	0.00		0	0 - 20	
Molybdenum	ug/L	1,11	ND	0.00		0	0 - 20	

Client: E2 Consulting Eng	gineers, Inc		oject Name: oject Number	oject 1	Page 31 of 38 Printed 7/12/2011		
Lab Control Sample							
Parameter Iron	Unit ug/L	DF 1.00	Result 115.	Expected 100.	Recovery 115.	Acceptance Range 85 - 115	
Selenium Molybdenum	ug/L ug/L	1.00 1.00	92.6 99.9	100. 100.	92.6 99.9	85 - 115 85 - 115	
Lab Control Sample D	_		/ -	. 50		30 112	
Parameter Iron Selenium Molybdenum	Unit ug/L ug/L ug/L	DF 1.00 1.00 1.00	Result 110. 91.1 98.2	Expected 100. 100. 100.	Recovery 110. 91.1 98.2	Acceptance Range 85 - 115 85 - 115 85 - 115	
Matrix Spike						Lab ID = 995494-001	
Parameter Iron	Unit ug/L	DF 1.11	Result 117.	Expected/Added 111(111)	Recovery 105.	Acceptance Range 75 - 125	
Selenium	ug/L	1.11	104.	111(111)	93.5	75 - 125	
Molybdenum MRCCS - Secondary	ug/L	1.11	115.	111(111)	104.	75 - 125	
Parameter Iron	Unit ug/L	DF 1.00	Result 5290	Expected 5000	Recovery 106.	Acceptance Range 90 - 110	
Selenium	ug/L	1.00	4810	5000	96.2	90 - 110	
Molybdenum MRCVS - Primary	ug/L	1.00	4770	5000	95.5	90 - 110	
Parameter Iron	Unit ug/L	DF 1.00	Result 5010	Expected 5000	Recovery 100.	Acceptance Range 90 - 110	
MRCVS - Primary							
Parameter Iron	Unit ug/L	DF 1.00	Result 5010	Expected 5000	Recovery 100.	Acceptance Range 90 - 110	
MRCVS - Primary							
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5000	Expected 5000	Recovery 100.	Acceptance Range 90 - 110	
Parameter Selenium MRCVS - Primary	Unit ug/L	DF 1.00	Result 4690	Expected 5000	Recovery 93.9	Acceptance Range 90 - 110	
Parameter Selenium	Unit ug/L	DF 1.00	Result 4720	Expected 5000	Recovery 94.5	Acceptance Range 90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 34 of 38 Printed 7/12/2011

Metals by EPA 6010B, Dis	ssolved		Batch	061511B-Th					
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result	
995499-009 Iron		ug/L	06/15	/2011 17:00	1.11	1.49	20.0	ND	
Selenium		ug/L	06/15	/2011 17:00	1.11	3.57	11.1 ND		
995499-010 Iron		ug/L	06/15	/2011 17:06	1.11	1.49	20.0	ND	
Selenium		ug/L	06/15	/2011 17:06	1.11	3.57	11.1	ND	
995499-012 Iron		ug/L	06/15	/2011 17:17	1.11	1.49	20.0	ND	
Selenium		ug/L	06/15	/2011 17:17	1,11	3.57	11.1	ND	
Method Blank									
Parameter	Unit	DF	Result						
Iron	ug/L	1.00	ND						
Selenium	ug/L	1.00	ND						
Duplicate							Lab ID =	995390-01	
Parameter	Unit	DF	Result	Expected	R	PD.	Accepta	ance Rang	
Iron	ug/L	1.11	29.2	29.3		0.342	0 - 20	J	
Selenium	ug/L	1.11	ND	0.00		0	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	R	Recovery	Accepta	ance Rang	
Iron	ug/L	1.00	102.	100.		102	85 - 11	5	
Selenium	ug/L	1.00	92.9	100.		92.9	85 - 11	5	
Matrix Spike							Lab ID =	995390-01	
Parameter	Unit	DF	Result	Expected/Add	ed R	Recovery	Accepta	ance Rang	
Iron	ug/L	1.11	135.	140.(111)		95.3	75 - 12	5	
Selenium	ug/L	1,11	110.	111(111)		98.9	75 - 12	5	
MRCCS - Secondary									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang	
Iron	ug/L	1.00	5280	5000		106.	90 - 110	D	
Selenium	ug/L	1,00	4730	5000		94.7	90 - 110	מ	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang	
Iron	ug/L	1.00	5190	5000		104.	90 - 11	D	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Rang	
Iron	ug/L	1.00	5290	5000		106.	90 - 110	0	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 36 of 38 Printed 7/12/2011

pH by SM 4500-H B			Batch	06PH11E						
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result		
995499-001 pH		рН	06/08	/2011 13:05	1.00	0.0250	4.00	7.99	٠,	
995499-002 pH		рΗ	06/08	/2011 13:10	1.00	0.0250	4.00	8.17	•	
995499-003 pH		рН	06/08	/2011 13:15	1.00	0.0250	4.00	8.17		
995499-004 pH		рΗ	06/08	/2011 13:17	1,00	0.0250	4.00	7.83		
995499-005 pH	9-005 pH pH				1.00	0.0250	4.00	7.80		
995499-006 pH		рН	06/08	/2011 13:23	1.00	0.0250	4.00	8.24		
995499-007 pH		рН	06/08	/2011 13:25	1.00	0.0250	4.00	8.27		
995499-008 pH		рН	06/08	/2011 13:27	1.00	0.0250	4.00	8.23		
995499-009 pH		pН	06/08	/2011 13:30	1.00	0.0250	4.00	8.23	J	
995499-010 pH		рН	06/08	/2011 13:32	1.00	0.0250	4.00	8.26	J	
995499-011 pH	9-011 pH pH				1.00	0.0250	4.00	8.27		
995499-012 pH		рН	06/08	/2011 13:37	1,00	0.0250	4.00	8.33	J	
995499-013 pH		рН	06/08	/2011 13:40	1.00	0.0250	4.00	7.60		
Duplicate		٠.			.,		Lab ID ≔	995499-013	i	
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	Acceptance Range		
pН	рН	1.00	7.59	7.60		0.132	0 - 20			
Lab Control Sample		4.						· ·		
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range	,	
рН	рН	1.00	7.01	7.00		100.		ס		
Lab Control Sample	ntrol Sample Duplicate									
Parameter	Unit	DF	Result	Expected	Recovery Acce			ance Range	÷	
pН	рН	1.00	7.03	7.00	100. 90 -		90 - 110	ס		
MRCVS - Primary										
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range	÷	
pН	рН	1.00	7.02	7.00		100.	90 - 110	כ		

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

et Page 37 of 38 Printed 7/12/2011

Project Number: 405681.MP.02.RM

Parameter		Unit	Ana	lyzed	DF	MDL	MDL RL Result 0.0250 4.00 7.81		
995499-014 pH		pН	06/08	/2011 13:52	1.00	0.0250			
Duplicate					Lab ID =	995499-014			
Parameter	Unit	DF	Result	Expected	ected RPD		Acceptance Range		
pН	pН	1.00	7.83	7.81		0.256	0 - 20		
Lab Control Sample									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range	
рН	pН	1.00	7.01	7.00		100.	90 - 110)	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range	
pН	pН	1.00	7.04	7.00		100.	90 - 110	<u>.</u>	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 38 of 38

Printed 7/12/2011

Parameter		Unit	Anal	lyzed	DF	MDL	RL	Result
995499-001 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-002 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-003 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-004 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	15.8
995499-005 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	18.8
995499-006 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-007 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-008 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-009 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-010 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-011 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
995499-012 Total Suspended	d Solids	mg/L	06/13	/2011	1.00	0.423	2.50	ND
Method Blank						•		
Parameter	Unit	DF	Result					
Total Suspended Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	995510-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Total Suspended Solids	mg/L	1.00	82.7	83.7		1.20	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Suspended Solids	mg/L	1.00	101	100.		101	90 - 110	כ
Lab Control Sample [Duplicate						1	1,14,5.
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Suspended Solids	mg/L	1.00	99.0	100.		99.0	90 - 110	ס

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Mona Nassimi

Manager, Analytical Services

TRUESDAIL LABORATORIES INC.

Total Suspended Solids by SM 2540 D

Calculations

Batch: 06TSS11D Date Calculated: 6/13/11

Dish Number	Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight,g	Weight Difference	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
X47	BLANK	1000	1.4291	1.4291	1.4291	0.0000	N٥	0.0000	0.0	2,5	ND	1
X50	995499-1	1000	1.4195	1,4197	1.4197	0,000	No	0.0002	0.2	2.5	ND	1
X51	995499-2	1000	1.4128	1.4131	1.4131	0.0000	No	0,0003	0.3	2.5	ND	1
X52	995499-3	1000	1.4100	1.4101	1.4101	0.0000	No	0.0001	0.1	2.5	ND	1
X53	995499-4	1000	1.4121	1.4279	1.4279	0.0000	No	0,0158	15.8	2,5	15.8	1
X54	995499-5	1000	1.4122	1.4310	1.431	0.0000	No	0.0188	18,8	2.5	18.8	1
X55	995499-6	1000	1.4130	1.4136	1.4136	0.0000	No	0.0006	0.6	2.5	ND	1
X56	995499-7	1000	1.4157	1.4166	1.4166	0.0000	No	0.0009	0.9	2.5	ND	1
X57	995499-8	1000	1,4111	1.4116	1.4116	0.0000	No	0.0005	0.5	2.5	ND	1
X58	995499-9	1000	1,4025	1.4027	1,4027	0,0000	N٥	0,0002	0.2	2.5	ND	1
X59	995499-10	1000	1.4160	1.4167	1.4167	0.0000	No	0.0007	0.7	2.5	ND	1
X60	995499-11	1000	1.4012	1.4015	1,4015	0,0000	No	0.0003	0.3	2.5	ND	1
X61	995499-12	1000	1.4059	1.4105	1.4105	0.0000	No	0.0046	4.6	2.5	4.6	1
X62	995510	300	1.4044	1.4295	1.4295	0.0000	No	0.0251	83.7	8.3	83.7	1
X63	995510D	300	1.4103	1,4351	1.4351	0.0000	No	0.0248	82.7	8.3	82.7	1
X64	995513-1	500	1.4159	1.4279	1,4279	0.0000	No	0.0120	24.0	5.0	24.0	1
X65	995514	1000	1.4140	1,4150	1.415	0,000,0	Nο	0.0010	1.0	2.5	DN	1
X66	995527	300	1.4050	1.4262	1.4262	0.0000	No	0.0212	70.7	8.3	70.7	1
X67	995533	1000	1.4189	1.4467	1.4467	0.0000	No	0,0278	27.8	2.5	27.8	1
X67	995534	50	1.4236	1.4633	1.4633	0.0000	No	0.0397	794.0	50.0	794.0	1
X69	995534D	50	1.4205	1.4600	1,46	0.0000	No	0.0395	790.0	50.0	790.0	1
X48	LCS-1	100	1.4160	1.4261	1.4261	0,0000	No	0.0101	101.0	25.0	101.0	11
X49	LCS-2	100	1.4150	1.4249	1,4249	0.0000	No	0.0099	99.0	25.0	99.0	1

Calculation as follows:

Non-Filterable residue (TSS), mg/L =
$$\left(\frac{A-B}{C}\right) \times 10^6$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.

ND = not detected (below the reporting limit)

Alkalinity by SM 2320B Calculations

Date of Analysis:	6/10/11
Start of Analysis:	
Date Sampled:	经产品的

OGALK11B Analytical Batch: Matrix: Water **Date Calculated:** 6/13/11

Lab ID	Sample pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	Titrant Volume to reach pH 4.5	Total mL Weat to reach pH 0.3 unit lower	Total Alkalinity as CaCO3	RL, ppm	Total Alkelinity Reported Value	HCO3 Alkalinity as CaCO, (Ppm)	CO3 Alkalinity as CaCO ₁ (ppm)	OH Alkalinity 23 CaCO ₃ (ppm)	Low Alkalinity se CaCO ₃
BLANK	6.98	50	0.02	2000年	0.0	0,04		0,8	5	ND	ND	ND	. ND	
995443-20	7.84	50	0.02		0.0	4.50		90.0	5	90.0	90,0	ND	ND	
995451-4	7.20	50	0.02		0.0	11.25		225,0	5	225.0	225,0	ND	ND	
995498-2	7.57	50	0.02	2320	0.0	6,80	26 (6 x (5))	136.0	5	136,0	136.0	ND	ND	
995499-1	8.15	50	0.02		0,0	6.35		127.0	5	127,0	127.0	סא	ND .	
995499-2	8.14	50	0.02	13.44	0.0	5,80		116,0	5	118,0	116.0	ND	ND	
995499-3	8.11	50	0.02	Transfer to	0.0	6,25		125.0	5	125,0	125.0	ND	ND .	
995499-4	7.82	5 0	0.02		0.0	6,25		125.0	5	125.0	125,0	OM	ND	
995499-5	7.78	50	0.02		0.0	6.75		135.0	6	135.0	135.0	ND	ND	
995499-6	8.18	50	0.02	1947	0.0	5.70		, 114.0	5	114.0 ,	114.0	· ND	ND	
995499-7	8.18	2019	0.02	lein	0,0	6,30		315.0. (2)	0185	315.70	315,0-, 12	r C ND	ND	
995499-8	8.16	28 5	0.02	20	0,0	6.25		2425 1251	0 13-5	34 2.5 12			ND	
995499-9	8.16	50	0.02	10 7.7	0,0	6.60		132.0	_ 5	132,0	132.0	ΦM	ND	
995489-10	8.18	50	0.02	10.784	0.0	6.00		120.0	5	120.0	120,0	ND	ND	
995499-11	8,19	50	0.02		0,0	6.10		122.0	5	122.0	122,0	ND	ND	
995499-12	8.24	50	0.02		0.0	6,00		120.0	5	120.0	120,0	. ND	ND	
995498-2 DUP	7.56	50	0.02		0.0	6.82		136,4	5	136.4	136,4	ND	ND	
995499-12MS	9.41	50	0.02	2.3	45,0	10.75		215,0	5	215.0	125.0	90	ND	
		1000												
										_				
			4.30											
pelar iganglagatara				新罗克斯										
LCS1	10,31	50	0.02	2.2	44.0	4.75		95.0	5	95.0	7.0	88	ND	
LCS2				2.54.75.70			100					NO		

Calculations as follows:

 $\left(\frac{A \times N \times 50000}{mL \ sample}\right)$

ND: Not Detected (below the reporting limit) Where:

LCS: Laboratory Control Standard

LCSD: Laboratory Control Standard Duplicate

MS: Matrix Spike

MSD: Matrix Spike Duplicate

T = Total Alkalinity, mg CaCO3/L

P = Phenoiphthatein Alkalinity, mg CaCO3/L

A = ml. standard acid used

N = normality of standard acid

Analyst Signature

as mg/L CaCO3

(2 x B - C) x N x 50000 mL sample

Where: B = mL titrent to first recorded pH

Low Alkalinity: =

C = total mL titrant to reach pH 0.3 unit lower

N = normality of standard acid

Reviewer Signature

Analyst Printed Name

Alk_10c6/13/11, by HT

Rec'd 06/07/11

Lab#: **995499**

995 Y 9 9

6/7/2011 2:29:22 PM

Page 1 OF 2

CHAIN OF CUSTODY RECORD CH2MHILL Container 3X250 250 Poly 500 ml 500 ml 500 mi 2x1 Liter 2x1 Liter 2x1 Liter 2x1 Liter 2x1 Liter Project Name PG&E Topock ml Poly Poly Poly Poly Poly Poly Poly Poly Location Topock NH4)2SO (NH4)2SO HNO3 HNO3. HNO3. 4°C 4°C Preservatives: 4/NH40H 4/NH4OH * Where provided w/3 Crb bottles please analyze 1 + hold 2 4°C 4°C 4°C Project Number 405681,MP.02,RM Project Manager Jay Piper Filtered: Field NA NA Field NA NA NA NA Field 2 2 2 2 Sample Manager Shawn Duffy Holding Time: 28 28 180 180 180 Metals (SW6010B/SW6020Adis) Field Filtered As,Mn,Fe,Se,Mo Metals (6020A) Field Filtered Chromium Task Order Field QC (E218.6 - river) Metals (6010B) Anions (E300.0) Nitrate Alkalinity (SM2320B) Project 2011-RMP-177 Number of Containers PH (SM4500HB) Conductance (E120.1) Turnaround Time 10 Days Cr6 (E218.6-river) Shipping Date: 6/7/2011 COC Number: 1 Field Filtered DATE TIME Matrix COMMENTS C-BNS-D-177 6/7/2011 12:23 Water Х X X X X 7 × X X C-I-3-D-177 6/7/2011 10:37 Water ¥ X × × X Х X × X C-I-3-S-177 6/7/2011 10:53 Water X × 7 × X X X YME X X C-MAR-0-177 6/7/2011 13:25 Water λ Х Х X Х χ X X X. C-MAR-S-177 6/7/2011 13:38 Water X X X × X X X Ä 1 18 C-MW-80-177 6/7/2011 10:27 Water Х Hold nii R TO SE C-MW-81-177 11:32 Water X 6/7/2011 * Water C-R22A-O-177 6/7/2011 11:43 16 Х Х Х Х X X Х X. X C-R22A-S-177 6/7/2011 11:57 Water Х X Х X X X X X X C-R27-D-177 12:47 6/7/2011 Water X X Х Х X × X X X C-R27-S-177 13:00 Water Duis 6/7/2011 X X X Х K х У X X C-TAZ-D-177 9:51 -10 6/7/2011 Water X X. A Х 8 Х X X X C-TAZ-S-177 10:05 Water 6/7/2011 X X ¥. X X X X X X R63-177 11:17 6/7/2011 Water X X X X X X X ¥ RMP-AB1-177 13:46 Water 6/7/2011 **Signatures** Date/Time Special Instructions **Shipping Details**

Approved by Sampled by

Remander by

Received by

Relinquished by

Received by

Method of Shipment: courier

On Ice: yes / no

Kafael Davila 6-7-1/16:00 Airbill No: afael Davila 6-7-1/ 22:00 Lab Name: Truesdail Laboratories, Inc.

6/7/11 22:00 Lab Phone: (714) 730-6239

ATTN:

Sample Custody

Report Copy to

June 7-9, 2011

Shawn Duffy (530) 229-3303

CH2MHILL

CHAIN OF CUSTODY RECORD

aa		<i>8</i>
) 77	677/2011 2:29:22 PM

Page 2 OF 2

CHZIVINILL							~ 1 1 1 1 1 1 1 1			D				# # W172011 2.23.22 FW	rage	
Project Name PG&E Topock		Co	ontainer:	3X250 mi Poly	250 Poly	500 ml Poly	500 ml Poly	500 ml Poly	2x1 Liter Paly	2x1 Liter Poly	2x1 Liter Poly	2x1 Liter Poly	2x1 Liter Poly			
Location Topock	2 088	Prese	rvatives:	4/NH40H,	(NH4)2SO 4/NH4OH,	HN03, 4°C	HNO3, 4°C	HNO3, 4°C	4°C	4°C	4°C	4°C	4°C	July 191		
Project Number 405681.MP.0: Project Manager Jay Piper	Z.13199		Filtered:	4°C Field	4°C NA	NA	Field	Field	NA	NA	NA	NA	NA	* Where provided w/3 Crb bottles		
Sample Manager Shawn Duffy		Holdi	ng Time:	28	28	180	180	180	2	2	2	2	2	please analyze		
Task Order Project 2011-RMP-177 Turnaround Time 10 Days Shipping Date: 6/7/2011 COC Number: 1	DATE	TłME	Matrix	Cr6 (E218.6 - river) Field Filtered	Field QC Cr6 (E218.6-river)	Metals (6010B) Total Fe	Metals (6020A) Field Filtered Chromium	Metals (SW6010B/SW6020Adis) Field Filtered As,Mn,Fe,Se,Mo	Specific Conductance (E120.1)	Anions (E300.0) Nitrate	PH (SM4500HB)	Alkalinity (SM2320B)	TSS (SM2540)	+ hold 2	Number of Containers	PH to- GOT OF
5W1-177	6/7/2011	8:10	Water	х			X		X		×				.8	5 Cm
SW2-177	6/7/2011	8:40	Water	Х			Ж		х		×				2	5 BU / Fa
		••••••												TOTAL NUMBER OF CONTAINERS	211	

For Sample Conditions

See Form Attached

Approved by	Signatures	Date/Time	Shipping Details	
Sampled by	K	1600	Method of Shipment: courier	
Relinquished by	1 W		On Ice: yes / no	
Received by	Kapul Davila		∂ Airbill No:	
Relinquished by	Rafael Javia		Lab Name: Truesdail Laboratorie	s, Inc.
Received by	Lerela	6/2/11 22:00	2 Lab Phone: (714) 730-6239	

Special Instructions:

June 7-9, 2011

Sample Custody

Report Copy to Shawn Duffy (530) 229-3303

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
06/08/11	995494-3	9.5	N/A	N/A	N/A	SB
1	1-4	J	`↓	J.	J.	1
06/08/4	995495-1	9.5	N/A	N/A	NA	SB.
	1 -2		1	ł		
	√ -3	4	4		\	J.
06/02/11	995496-1	9.5	NA	N/A	N/A	2B
1	-ス -3		ſ			
	-3					ŀ
	4			,		
4	J -5	4	<u> </u>	\	<u>\</u>	
06/08/11	995497-1	7.0	5.00	9.5	9:10	শ্রহ
06/08/11.	995498-1	7-0	5.00	9.5	9:15	SB
<u> </u>	1 -2	1	<u> </u>	<u> </u>	9:20	<u>_</u>
06/08/4	995499-1	9.5	A\64	N/K	N/A	$\mathcal{D}z$
<u> </u>	1 -2)			
	-3					
	- φ					
	-5					
	-6			· ·		
	-7					
	-8					
	-9					
	-L0					
	~-¥					
	-12					
	-13					
<u> </u>	1 -14		7	<u> </u>		1
06/09/11	995519-1	9.5	N/A	NA	N/W	<i>5</i> B
	1-2		<u> </u>			
	-3					
4	b -4	<u> </u>	J	+	·P	A.

Turbidity/pH Check

						Adjusted to
Sample Number		pН	Date	Analyst	Need Digest	pH<2 (Y/N)
995481	71	12	06/08/11	NM	yes	3010
995 480	Solid		k '			<u> </u>
49711-2	21	22			'NO	
49811-21					i	
491						
995499/144	1<1	22	4	1	Yes	3010
495226 (1)	41	42	W/03/11	KK	No	No
99551911-111	L1	22 72	6/09/11	Miss	Yes	No
995497(i-2)	1	72	6/10/11	ĒŚ	No	ysa) 10:00 a.m
995498(1-2)	21	72	1	1	İ	o T
185 995494-2	71	72				
995537	SoliA		6/10/11	MIL	Yes	2766
995586	7/	73	6/13/11	NM	1/3	yes @ 13.00,
09567111-2	21	22	dicti	aid	180	0.7
[12]	<u> </u>		CY, CY	Fayer	1/1	
6+3(251				v		
945667	71	22	1-11/		7es	yes 1000
495672	2	72	6/16/11	F. 3	No	yes a 1:00 pm
995691	21	72	6120/11	~ , ~	Yes	70-1007
995 692	1,	2 2	1	77 1	1 4 7	
995 720	 	1			 	
995-694	 				 	
995695		<u> </u>	<u> </u>	 	 	
995696/1-41	l	 			 	
700592 (55-72)		£2-	¥	4		- IML
700542 (55-72)		42	6/20/11	44	No	
	 		6/रंगा।			191
1195754	د/	72	612114	M.M.	Jes_	Jes Oper
995 727 (124)		12	G[22/11	ES_	NO	a 10:00 am
995749	Z1	42	<u> </u>		 	
750	ļ	 	ļ			
75/	<u> </u>	<u> </u>			<u> </u>	NI.Y
752		 			 	
753	V	I.V	V ,	<u></u>		
495763	<u> </u>	フス	0/20/11	<i>E</i> >	No	2 10:00 am
995773(789)	<u> </u>	1	11	<u> </u>	 	1
9957/1(1-3)		 				
995705(1-2)	121	c 2	6/27/11	M.M	Yes	
995-30611-71						
995 807/1.31	. V	1/				
095 810	71	22	W .	. <i>V</i>		
995820 (1-13	6	42	11/24/11	KK		
995871 (1-6		1	1		1,	
995812/1-1	11		V	V	TV	
495830 113	1 21	12	(1/27/11	ME	No	yes @ 310pm
			1717 11 1/2.	1/1.		1 1000 02 an
1 4448 380	1 4	2-2	(1000)		i	
199838(1,-4)		>2 >2	6/28/11	V		1000 229
4438381,-4) LI	72	1/28/11			Ves @ 829m
998381 -4 995840 (1-9) LI 2) LI 41	<u> </u>		K.		1850 82 m
998381-4 995840 (1-9 995863 (1)) LI	72	1/28/11	+	-	45 @ 82 mm 45 @ 830 am 40 @ 830 am

Sample Integrity & Analysis Discrepancy Form

CI	ient: <u>E 2</u>	Lab # <u>995 49</u>
Dε	te Delivered <u>06</u> / <u>0</u>	⊠Field Service □Client
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2.	Does Customer require an acknowledgement of the COC?	Yes INO PANA
3.	Are there any special requirements or notes on the COC?	□Yes □No □NA
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ĢĺNA
5.	Were all requested analyses understood and acceptable?	ØYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>/ ° C</u>	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles etc)?	⊠Yes □No □N/A
8.	Were sample custody seals intact?	□Yes □No ᡚ\vA
9.	Does the number of samples received agree with COC?	QYes ONO ONA
10.	Did sample labels correspond with the client ID's?	Yes DNo DNA
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: ATruesdall Client	Yes DNo DNA
12.	Were samples pH checked? pH = <u>SCC</u> C, C, C	√aYes □No □N/A
13.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	ØYes ONO ONA
14.	Have Project due dates been checked and accepted? Turn Around Time (TAT): RUSH RIST	Yes ONO ONA
15.	Sample Matrix:	d Water
16.	Comments:	
7.	Sample Check-In completed by Truesdall Log-In/Receiving:	Luda :

July 13, 2011

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

E2 Consulting Engineers, Inc. Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

REVISED CASE NARRATIVE PG&E TOPOCK 2011-RMP-177, SURFACEWATER

MONITORING PROJECT, TLI No.: 995519

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock 2011-RMP-177 surfacewater-monitoring project. A summary table for this sample delivery group is included in Section 2. Complete laboratory reports, quality control data, and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data are under Section 5.

The samples were received and delivered with the chain of custody on June 8, 2011, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Due to the late arrival of the samples, samples for pH analysis by SM 4500-H B were analyzed past the method specified holding time. Mr. Shawn Duffy approved the analysis.

Mr. Shawn Duffy requested that Total Arsenic and Manganese be added to the list of reported analytes for all samples.

No other violations or non-conformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

f__ Mona Nassimi

Manager, Analytical Services

Ali-Khus

K.R.P. Iyer

Quality Assurance/Quality Control Officer

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Event 2010-RMP-177 Cr (VI) by EPA 218.6, Surfacewater Samples Samples field filtered unless otherwise noted

Sample ID	Initial pH	pH adjustment needed?	Amount of additional buffer needed	Final pH	Comments
C-CON-D-177	9.50	No			
C-CON-S-177	9.50	No			
C-NR1-D-177	9.50	No			
C-NR1-S-177	9.50	No			
C-NR3-D-177	9.50	No			
C-NR3-S-177	9.50	No			
C-NR4-D-177	9.50	No			
C-NR4-S-177	9.50	No			
R-19-177	9.50	No			
R-28-177	9.50	No			
RRB-177	9.50	No			

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Event 2010-RMP-177 Cr by SW 6020, Surfacewater Samples Samples field filtered unless otherwise noted

Sample ID	Initial pH	pH adjustment needed?	Amount of additional acid needed	Final pH	Comments
C-CON-D-177	2.00	No			
C-CON-S-177	2.00	No			
C-NR1-D-177	2.00	No	The second secon		
C-NR1-S-177	2.00	No			
C-NR3-D-177	2.00	No			
C-NR3-S-177	2.00	No			
C-NR4-D-177	2,00	No			
C-NR4-S-177	2.00	No			
R-19-177	2.00	No			
R-28-177	2.00	No			
RRB-177	2.00	No			

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 995519 Date Received: June 8, 2011

Client: E2 Consulting Engineers, Inc. 155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project Project No.: 405681.MP.02.RM P.O. No.: 405681.MP.02.RM

Analytical Results Summary

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995519-001	C-CON-D-177	E120.1	NONE	6/8/2011	9:20	EC	948	umhos/cm	2.00
995519-001	C-CON-D-177	E218.6	FLDFLT	6/8/2011	9:20	Chromium, hexavalent	ND	ug/L	0.20
995519-001	C-CON-D-177	E300	NONE	6/8/2011	9:20	Nitrate as N	ND	mg/L	0.500
995519-001	C-CON-D-177	SM2320B	NONE	6/8/2011	9:20	Alkalinity	120	mg/L	5.00
995519-001	C-CON-D-177	SM2320B	NONE	6/8/2011	9:20	Bicarbonate	120	mg/L	5.00
995519-001	C-CON-D-177	SM2320B	NONE	6/8/2011	9:20	Carbonate	ND	mg/L	5.00
995519-001	C-CON-D-177	SM2540D	NONE	6/8/2011	9:20	Total Suspended Solids	ND	mg/L	2.50
995519-001	C-CON-D-177	SM4500HB	NONE	6/8/2011	9:20	PH .	7.91 J	рH	4.00
995519-001	C-CON-D-177	SW6010B	NONE-digested	6/8/2011	9:20	Iron	24.7	ug/L	20.0
995519-001	C-CON-D-177	SW6010B	FLDFLT-digested	6/8/2011	9:20	Iron	ND	ug/L	20.0
995519-001	C-CON-D-177	SW6010B	NONE-digested	6/8/2011	9:20	Manganese	ND	ug/L	11.1
995519-001	C-CON-D-177	SW6010B	FLDFLT-digested	6/8/2011	9:20	Selenium	ND	ug/L	11.1
995519-001	C-CON-D-177	SW6020	FLDFLT-digested	6/8/2011	9:20	Arsenic	2.4	ug/L	1.0
995519-001	C-CON-D-177	SW6020	NONE-digested	6/8/2011	9:20	Arsenic	2.4	ug/L	1.0
995519-001	C-CON-D-177	SW6020	FLDFLT-digested	6/8/2011	9:20	Chromium	ND	ug/L	1.0
995519-001	C-CON-D-177	SW6020	FLDFLT-digested	6/8/2011	9:20	Manganese	ND	ug/L	10.0
995519-001	C-CON-D-177	SW6020	FLDFLT-digested	6/8/2011	9:20	Molybdenum	ND	ug/L	10.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995519-002	C-CON-S-177	E120.1	NONE	6/8/2011	9:36	EC	940	umhos/cm	2.00
995519-002	C-CON-S-177	E218.6	FLDFLT	6/8/2011	9:36	Chromium, hexavalent	ND	ug/L	0.20
995519-002	C-CON-S-177	E300	NONE	6/8/2011	9:36	Nitrate as N	ND	mg/L	0.500
995519-002	C-CON-S-177	SM2320B	NONE	6/8/2011	9:36	Alkalinity	123	mg/L	5,00
995519-002	C-CON-S-177	SM2320B	NONE	6/8/2011	9:36	Bicarbonate	123	mg/L	5.00
995519-002	C-CON-S-177	SM2320B	NONE	6/8/2011	9:36	Carbonate	ND	mg/L	5.00
995519-002	C-CON-S-177	SM2540D	NONE	6/8/2011	9:36	Total Suspended Solids	ND	mg/L	2.50
995519-002	C-CON-S-177	SM4500HB	NONE	6/8/2011	9:36	PH	8.05 J	pН	4.00
995519-002	C-CON-S-177	SW6010B	NONE-digested	6/8/2011	9:36	Iron	25.8	ug/L	20.0
995519-002	C-CON-S-177	SW6010B	FLDFLT-digested	6/8/2011	9:36	Iron	ND	ug/L	20.0
995519-002	C-CON-S-177	SW6010B	NONE-digested	6/8/2011	9:36	Manganese	ND	ug/L	11.1
995519-002	C-CON-S-177	SW6010B	FLDFLT-digested	6/8/2011	9:36	Selenium	ND	ug/L	11.1
995519-002	C-CON-S-177	SW6020	FLDFLT-digested	6/8/2011	9:36	Arsenic	2.5	ug/L	1.0
995519-002	C-CON-S-177	SW6020	NONE-digested	6/8/2011	9:36	Arsenic	2.2	ug/L	1.0
995519-002	C-CON-S-177	SW6020	FLDFLT-digested	6/8/2011	9:36	Chromium	ND	ug/L	1.0
995519-002	C-CON-S-177	SW6020	FLDFLT-digested	6/8/2011	9:36	Manganese	ND	ug/L	10.0
995519-002	C-CON-S-177	SW6020	FLDFLT-digested	6/8/2011	9:36	Molybdenum	ND	ug/L	10.0
995519-003	C-NR1-D-177	E120.1	NONE	6/8/2011	10:06	EC	954	umhos/cm	2.00
995519-003	C-NR1-D-177	E218.6	FLDFLT	6/8/2011	10:06	Chromium, hexavalent	ND	ug/L	0.20
995519-003	C-NR1-D-177	E300	NONE	6/8/2011	10:06	Nitrate as N	ND	mg/L	0.500
995519-003	C-NR1-D-177	SM2320B	NONE	6/8/2011	10:06	Alkalinity	115	mg/L	5.00
995519-003	C-NR1-D-177	SM2320B	NONE	6/8/2011	10:06	Bicarbonate	115	mg/L	5.00
995519-003	C-NR1-D-177	SM2320B	NONE	6/8/2011	10:06	Carbonate	ND	mg/L	5.00
995519-003	C-NR1-D-177	SM2540D	NONE	6/8/2011	10:06	Total Suspended Solids	ND	mg/L	2.500
995519-003	C-NR1-D-177	SM4500HB	NONE	6/8/2011	10:06	PH	8.12 J	pН	4.00
995519-003	C-NR1-D-177	SW6010B	NONE-digested	6/8/2011	10:06	Iron	38.7	ug/L	20.0
995519-003	C-NR1-D-177	SW6010B	FLDFLT-digested		10:06	Iron	ND	ug/L	20.0
995519-003	C-NR1-D-177	SW6010B	NONE-digested	6/8/2011	10:06	Manganese	ND	ug/L	11.1
995519-003	C-NR1-D-177	SW6010B	FLDFLT-digested		10:06	Selenium	ND	ug/L	11.1
995519-003	C-NR1-D-177	SW6020	FLDFLT-digested		10:06	Arsenic	2.3	ug/L	1.0
995519-003	C-NR1-D-177	SW6020	NONE-digested	6/8/2011	10:06	Arsenic	2.7	ug/L	1.0
995519-003	C-NR1-D-177	SW6020	FLDFLT-digested		10:06	Chromium	ND	ug/L	1.0
995519-003	C-NR1-D-177	SW6020	FLDFLT-digested		10:06	Manganese	ND	ug/L	10,0
995519-003	C-NR1-D-177	SW6020	FLDFLT-digested	6/8/2011	10:06	Molybdenum	ND	ug/L	10.0

07

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995519-004	C-NR1-S-177	E120.1	NONE	6/8/2011	10:20	EC	944	umhos/cm	2,00
995519-004	C-NR1-S-177	E218.6	FLDFLT	6/8/2011	10:20	Chromium, hexavalent	ND	ug/L	0.20
995519-004	C-NR1-S-177	E300	NONE	6/8/2011	10:20	Nitrate as N	ND	mg/L	0.500
995519-004	C-NR1-S-177	SM2320B	NONE	6/8/2011	10:20	Alkalinity	108	mg/L	5.00
995519-004	C-NR1-S-177	SM2320B	NONE	6/8/2011	10:20	Bicarbonate	108	mg/L	5.00
995519-004	C-NR1-S-177	SM2320B	NONE	6/8/2011	10:20	Carbonate	ND	mg/L	5.00
995519-004	C-NR1-S-177	SM2540D	NONE	6/8/2011	10:20	Total Suspended Solids	ND	mg/L	2.50
995519-004	C-NR1-S-177	SM4500HB	NONE	6/8/2011	10:20	PH .	8.14 J	рH	4.00
995519-004	C-NR1-S-177	SW6010B	NONE-digested	6/8/2011	10:20	Iron	24.0	ug/L	20.0
995519-004	C-NR1-S-177	SW6010B	FLDFLT-digested	6/8/2011	10:20	Iron	ND	ug/L	20.0
995519-004	C-NR1-S-177	SW6010B	NONE-digested	6/8/2011	10:20	Manganese	13.2	ug/L	11.1
995519-004	C-NR1-S-177	SW6010B	FLDFLT-digested	6/8/2011	10:20	Selenium	ND	ug/L	11.1
995519-004	C-NR1-S-177	SW6020	FLDFLT-digested	6/8/2011	10:20	Arsenic	2.0	ug/L	1.0
995519-004	C-NR1-S-177	SW6020	NONE-digested	6/8/2011	10:20	Arsenic	2.4	ug/L	1.0
995519-004	C-NR1-S-177	SW6020	FLDFLT-digested	6/8/2011	10:20	Chromium	ND	ug/L	1.0
995519-004	C-NR1-S-177	SW6020	FLDFLT-digested	6/8/2011	10:20	Manganese	ND	ug/L	10.0
995519-004	C-NR1-S-177	SW6020	FLDFLT-digested	6/8/2011	10:20	Molybdenum	ND	ug/L	10.0
995519-005	C-NR3-D-177	E120.1	NONÉ	6/8/2011	10:49	EC	950	umhos/cm	2.00
995519-005	C-NR3-D-177	E218.6	FLDFLT	6/8/2011	10:49	Chromium, hexavalent	ND	ug/L	0.20
995519-005	C-NR3-D-177	E300	NONE	6/8/2011	10:49	Nitrate as N	ND	mg/L	0.500
995519-005	C-NR3-D-177	SM2320B	NONE	6/8/2011	10:49	Alkalinity	124	mg/L	5.00
995519-005	C-NR3-D-177	SM2320B	NONE	6/8/2011	10:49	Bicarbonate	124	mg/L	5.00
995519-005	C-NR3-D-177	SM2320B	NONE	6/8/2011	10:49	Carbonate	ND	mg/L	5.00
995519-005	C-NR3-D-177	SM2540D	NONE	6/8/2011	10:49	Total Suspended Solids	ND	mg/L	2.50
995519-005	C-NR3-D-177	SM4500HB	NONE	6/8/2011	10:49	PH	8.13 J	pН	4.00
995519-005	C-NR3-D-177	SW6010B	NONE-digested	6/8/2011	10:49	iron	20.8	ug/L	20.0
995519-005	C-NR3-D-177	SW6010B	FLDFLT-digested	6/8/2011	10:49	Iron	ND	ug/L	20.0
995519-005	C-NR3-D-177	SW6010B	NONE-digested	6/8/2011	10:49	Manganese	ND	ug/L	11.1
995519-005	C-NR3-D-177	SW6010B	FLDFLT-digested	6/8/2011	10:49	Selenium	ND	ug/L	11.1
995519-005	C-NR3-D-177	SW6020	FLDFLT-digested	6/8/2011	10:49	Arsenic	2.2	ug/L	1.0
995519-005	C-NR3-D-177	SW6020	NONE-digested	6/8/2011	10:49	Arsenic	2.5	ug/L	1.0
995519-005	C-NR3-D-177	SW6020	FLDFLT-digested	6/8/2011	10:49	Chromium	ND	ug/L	1.0
995519-005	C-NR3-D-177	SW6020	FLDFLT-digested	6/8/2011	10:49	Manganese	ND	ug/L	10.0
995519-005	C-NR3-D-177	SW6020	FLDFLT-digested	6/8/2011	10:49	Molybdenum	ND	ug/L	10.0

800

I ob Somnio ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
Lab Sample ID	rieid iD	Method	wethou	Sample Date	Time			Olite	
995519-006	C-NR3-S-177	E120.1	NONE	6/8/2011	11:01	EC	948	umhos/cm	2.00
995519-006	C-NR3-S-177	E218.6	FLDFLT	6/8/2011	11:01	Chromium, hexavalent	ND	ug/L	0.20
995519-006	C-NR3-S-177	E300	NONE	6/8/2011	11:01	Nitrate as N	ND	mg/L	0.500
995519-006	C-NR3-S-177	SM2320B	NONE	6/8/2011	11:01	Alkalinity	135	mg/L	5.00
995519-006	C-NR3-S-177	SM2320B	NONE	6/8/2011	11:01	Bicarbonate	135	mg/L	5.00
995519-006	C-NR3-S-177	SM2320B	NONE	6/8/2011	11:01	Carbonate	ND	mg/L	5.00
995519-006	C-NR3-S-177	SM2540D	NONE	6/8/2011	11:01	Total Suspended Solids	ND	mg/L	2.50
995519-006	C-NR3-S-177	SM4500HB	NONE	6/8/2011	11:01	PH	8.11 J	pН	4.00
995519-006	C-NR3-S-177	SW6010B	NONE-digested	6/8/2011	11:01	Iron	ND	ug/L	20.0
995519-006	C-NR3-S-177	SW6010B	FLDFLT-digested	6/8/2011	11:01	Iron	ND	ug/L	20.0
995519-006	C-NR3-S-177	SW6010B	NONE-digested	6/8/2011	11:01	Manganese	ND	ug/L	11,1
995519-006	C-NR3-S-177	SW6010B	FLDFLT-digested	6/8/2011	11:01	Selenium	ND	ug/L	11.1
995519-006	C-NR3-S-177	SW6020	FLDFLT-digested	6/8/2011	11:01	Arsenic	2.3	ug/L	1.0
995519-006	C-NR3-S-177	SW6020	NONE-digested	6/8/2011	11:01	Arsenic	2.5	ug/L	1.0
995519-006	C-NR3-S-177	SW6020	FLDFLT-digested	6/8/2011	11:01	Chromium	NĎ	ug/L	1.0
995519-006	C-NR3-S-177	SW6020	FLDFLT-digested	6/8/2011	11:01	Manganese	ND	ug/L	10.0
995519-006	C-NR3-S-177	SW6020	FLDFLT-digested	6/8/2011	11:01	Molybdenum	ND	ug/L	10.0
995519-007	C-NR4-D-177	E120.1	NONE	6/8/2011	11:32	EC	951	umhos/cm	2.00
995519-007	C-NR4-D-177	E218.6	FLDFLT	6/8/2011	11:32	Chromium, hexavalent	ND	ug/L	0.20
995519-007	C-NR4-D-177	E300	NONE	6/8/2011	11:32	Nitrate as N	ND	mg/L	0.500
995519-007	C-NR4-D-177	SM2320B	NONE	6/8/2011	11:32	Alkalinity	116	mg/L	5.00
995519-007	C-NR4-D-177	SM2320B	NONE	6/8/2011	11:32	Bicarbonate	116	mg/L	5.00
995519-007	C-NR4-D-177	SM2320B	NONE	6/8/2011	11:32	Carbonate	ND	mg/L	5.00
995519-007	C-NR4-D-177	SM2540D	NONE	6/8/2011	11:32	Total Suspended Solids	ND	mg/L	2.50
995519-007	C-NR4-D-177	SM4500HB	NONE	6/8/2011	11:32	PH	8.12 J	ρН	4.00
995519-007	C-NR4-D-177	SW6010B	NONE-digested	6/8/2011	11:32	Iron	23.3	ug/L	20.0
995519-007	C-NR4-D-177	SW6010B	FLDFLT-digested	6/8/2011	11:32	Iron	ND	ug/L	20.0
995519-007	C-NR4-D-177	SW6010B	NONE-digested	6/8/2011	11:32	Manganese	ND	ug/L	11,1
995519-007	C-NR4-D-177	SW6010B	FLDFLT-digested	6/8/2011	11:32	Selenium	ND	ug/L	11.1
995519-007	C-NR4-D-177	SW6020	FLDFLT-digested	6/8/2011	11:32	Arsenic	2.2	ug/L	1.0
995519-007	C-NR4-D-177	SW6020	NONE-digested	6/8/2011	11:32	Arsenic	2.4	ug/L	1.0
995519-007	C-NR4-D-177	SW6020	FLDFLT-digested	6/8/2011	11:32	Chromium	ND	ug/L	1.0
995519-007	C-NR4-D-177	SW6020	FLDFLT-digested	6/8/2011	11:32	Manganese	ND	ug/L	10.0
995519-007	C-NR4-D-177	SW6020	FLDFLT-digested	6/8/2011	11:32	Molybdenum	ND	ug/L	10.0

SOCI

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995519-008	C-NR4-S-177	E120.1	NONE	6/8/2011	11:47	EC	953	umhos/cm	2.00
995519-008	C-NR4-S-177	E218.6	FLDFLT	6/8/2011	11:47	Chromium, hexavalent	ND	ug/L	0.20
995519-008	C-NR4-S-177	E300	NONE	6/8/2011	11:47	Nitrate as N	ND	mg/L	0.500
995519-008	C-NR4-S-177	SM2320B	NONE	6/8/2011	11:47	Alkalinity	116	mg/L	5.00
995519-008	C-NR4-S-177	SM2320B	NONE	6/8/2011	11:47	Bicarbonate	116	mg/L	5.00
995519-008	C-NR4-S-177	SM2320B	NONE	6/8/2011	11:47	Carbonate	ND	mg/L	5.00
995519-008	C-NR4-S-177	SM2540D	NONE	6/8/2011	11:47	Total Suspended Solids	ND	mg/L	2.50
995519-008	C-NR4-S-177	SM4500HB	NONE	6/8/2011	11:47	PH .	8.07 J	рH	4.00
995519-008	C-NR4-S-177	SW6010B	NONE-digested	6/8/2011	11:47	Iron	ND	ug/L	20.0
995519-008	C-NR4-S-177	SW6010B	FLDFLT-digested	6/8/2011	11:47	Iron	ND	ug/L	20.0
995519-008	C-NR4-S-177	SW6010B	NONE-digested	6/8/2011	11:47	Manganese	ND	ug/L	11.1
995519-008	C-NR4-S-177	SW6010B	FLDFLT-digested	6/8/2011	11:47	Selenium	ND	ug/L	11.1
995519-008	C-NR4-S-177	SW6020	FLDFLT-digested	6/8/2011	11:47	Arsenic	2.2	ug/L	1.0
995519-008	C-NR4-S-177	SW6020	NONE-digested	6/8/2011	11:47	Arsenic	2.6	ug/L	1.0
995519-008	C-NR4-S-177	SW6020	FLDFLT-digested	6/8/2011	11:47	Chromium	ND	ug/L	1.0
995519-008	C-NR4-S-177	SW6020	FLDFLT-digested		11:47	Manganese	ND	ug/L	10.0
995519-008	C-NR4-S-177	SW6020	FLDFLT-digested		11:47	Molybdenum	ND	ug/L	10.0
995519-009	R-19-177	E120.1	NONĚ	6/8/2011	8:30	EC	942	umhos/cm	2.00
995519-009	R-19-177	E218.6	FLDFLT	6/8/2011	8:30	Chromium, hexavalent	ND	ug/L	0.20
995519-009	R-19-177	E300	NONE	6/8/2011	8:30	Nitrate as N	ND	mg/L	0.500
995519-009	R-19-177	SM2320B	NONE	6/8/2011	8:30	Alkalinity	114	mg/L	5.00
995519-009	R-19-177	SM2320B	NONE	6/8/2011	8:30	Bicarbonate	114	mg/L	5.00
995519-009	R-19-177	SM2320B	NONE	6/8/2011	8:30	Carbonate	ND	mg/L	5.00
995519-009	R-19-177	SM2540D	NONE	6/8/2011	8:30	Total Suspended Solids	ND	mg/L	2,50
995519-009	R-19-177	SM4500HB	NONE	6/8/2011	8:30	PH .	8.25 J	рH	4.00
995519-009	R-19-177	SW6010B	NONE-digested	6/8/2011	8:30	Iron	22.4	ug/L	20.0
995519-009	R-19-177	SW6010B	FLDFLT-digested	6/8/2011	8:30	Iron	ND	ug/L	20.0
995519-009	R-19-177	SW6010B	NONE-digested	6/8/2011	8:30	Manganese	ND	ug/L	11.1
995519-009	R-19-177	SW6010B	FLDFLT-digested		8:30	Selenium	ND	ug/L	11.1
995519-009	R-19-177	SW6020	FLDFLT-digested		8:30	Arsenic	2.4	ug/L	1.0
995519-009	R-19-177	SW6020	NONE-digested	6/8/2011	8:30	Arsenic	2.4	ug/L	1.0
995519-009	R-19-177	SW6020	FLDFLT-digested		8:30	Chromium	ND	ug/L	1.0
995519-009	R-19-177	SW6020	FLDFLT-digested		8:30	Manganese	ND	ug/L	10.0
995519-009	R-19-177	SW6020	FLDFLT-digested		8:30	Molybdenum	ND	ug/L	10.0

010

		Analysis	Extraction		Sample				
Lab Sample ID	Field ID	Method	Method	Sample Date	Time	Parameter	Result	Units	RL
995519-010	R-28-177	E120.1	NONE	6/8/2011	8:11	EC	947	umhos/cm	2.00
995519-010	R-28-177	E218.6	FLDFLT	6/8/2011	8:11	Chromium, hexavalent	ND	ug/L	0.20
995519-010	R-28-177	E300	NONE	6/8/2011	8:11	Nitrate as N	ND	mg/L	0.500
995519-010	R-28-177	SM2320B	NONE	6/8/2011	8:11	Alkalinity	116	mg/L	5.00
995519-010	R-28-177	SM2320B	NONE	6/8/2011	8:11	Bicarbonate	116	mg/L	5.00
995519-010	R-28-177	SM2320B	NONE	6/8/2011	8:11	Carbonate	ND	mg/L	5.00
995519-010	R-28-177	SM2540D	NONE	6/8/2011	8:11	Total Suspended Solids	ND	mg/L	2.50
995519-010	R-28-177	SM4500HB	NONE	6/8/2011	8:11	PH	8.26 J	ρH	4.00
995519-010	R-28-177	SW6010B	NONE-digested	6/8/2011	8:11	!ron	24.3	ug/L	20.0
995519-010	R-28-177	SW6010B	FLDFLT-digested	6/8/2011	8:11	Iron	ND	ug/L	20.0
995519-010	R-28-177	SW6010B	NONE-digested	6/8/2011	8:11	Manganese	ND	ug/L	11.1
995519-010	R-28-177	SW6010B	FLDFLT-digested	6/8/2011	8:11	Selenium	ND	ug/L	11.1
995519-010	R-28-177	SW6020	FLDFLT-digested	6/8/2011	8:11	Arsenic	2.1	ug/L	1.0
995519-010	R-28-177	SW6020	NONE-digested	6/8/2011	8:11	Arsenic	2.4	ug/L	1.0
995519-010	R-28-177	SW6020	FLDFLT-digested	6/8/2011	8:11	Chromium	ND	ug/L	1.0
995519-010	R-28-177	SW6020	FLDFLT-digested	6/8/2011	8:11	Manganese	ND	ug/L	10.0
995519-010	R-28-177	SW6020	FLDFLT-digested	6/8/2011	8:11	Molybdenum	ND	ug/L	10.0

Lab Sample ID	Field ID	Analysis Method	Extraction Method	Sample Date	Sample Time	Parameter	Result	Units	RL
995519-011	RRB-177	E120.1	NONE	6/8/2011	8:56	EC	947	umhos/cm	2.00
995519-011	RRB-177	E218.6	FLDFLT	6/8/2011	8:56	Chromium, hexavalent	ND	ug/L	0.20
995519-011	RRB-177	E300	NONE	6/8/2011	8:56	Nitrate as N	ND	mg/L	0.500
995519-011	RRB-177	SM2320B	NONE	6/8/2011	8:56	Alkalinity	115	mg/L	5.00
995519-011	RRB-177	SM2320B	NONE	6/8/2011	8:56	Bicarbonate	115	mg/L	5.00
995519-011	RRB-177	SM2320B	NONE	6/8/2011	8:56	Carbonate	ND	mg/L	5.00
995519-011	RRB-177	SM2540D	NONE	6/8/2011	8:56	Total Suspended Solids	ND	mg/L	2.50
995519-011	RRB-177	SM4500HB	NONE	6/8/2011	8:56	PH	8.17 J	рH	4.00
995519-011	RRB-177	SW6010B	NONE-digested	6/8/2011	8:56	Iron	42.2	ug/L	20.0
995519-011	RRB-177	SW6010B	FLDFLT-digested	6/8/2011	8:56	Iron	ND	ug/L	20.0
995519-011	RRB-177	SW6010B	NONE-digested	6/8/2011	8:56	Manganese	ND	ug/L	11.1
995519-011	RRB-177	SW6010B	FLDFLT-digested	6/8/2011	8:56	Selenium	ND	ug/L	11.1
995519-011	RRB-177	SW6020	FLDFLT-digested	6/8/2011	8:56	Arsenic	2.7	ug/L	1.0
995519-011	RRB-177	SW6020	NONE-digested	6/8/2011	8:56	Arsenic	2.3	ug/L	1.0
995519-011	RRB-177	SW6020	FLDFLT-digested	6/8/2011	8:56	Chromium	ND	ug/L	1.0
995519-011	RRB-177	SW6020	FLDFLT-digested		8:56	Manganese	ND	ug/L	10.0
995519-011	RRB-177	SW6020	FLDFLT-digested	6/8/2011	8:56	Molybdenum	ND	ug/L	10.0

ND: Non Detected (below reporting limit)

mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Result above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

TRUESDAIL LABORATORIES, INC.

Excellence in Independent Testing

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: E2 Consulting Engineers, Inc.

155 Grand Avenue, Suite 800

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project P.O. Number: 405681.MP.02.RM Project Number: 405681.MP.02.RM Laboratory No. 995519

Printed 7/12/2011

Page 1 of 24

Samples Received on 6/8/2011 9:30:00 PM

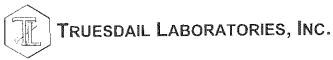
Field ID	Lab ID	Collected	Matrix
C-CON-D-177	995519-001	06/08/2011 09:20	Water
C-CON-S-177	995519-002	06/08/2011 09:36	Water
C-NR1-D-177	995519-003	06/08/2011 10:06	Water
C-NR1-S-177	995519-004	06/08/2011 10:20	Water
C-NR3-D-177	995519-005	06/08/2011 10:49	Water
C-NR3-S-177	995519-006	06/08/2011 11:01	Water
C-NR4-D-177	995519-007	06/08/2011 11:32	Water
C-NR4-S-177	995519-008	06/08/2011 11:47	Water
R-19-177	995519-009	06/08/2011 08:30	Water
R-28-177	995519-010	06/08/2011 08:11	Water
RRB-177	995519-011	06/08/2011 08:56	Water

Anions By I.C EPA 300.0		Batch 06AN11G				
Parameter	Unit	Analyzed	DF	MDL	RL	Result
995519-001 Nitrate as Nitrogen	mg/L	06/09/2011 11:22	1.00	0.0110	0.500	ND
995519-002 Nitrate as Nitrogen	mg/L	06/09/2011 11:53	1.00	0.0110	0.500	ND
995519-003 Nitrate as Nitrogen	mg/L	06/09/2011 12:04	1.00	0.0110	0.500	ND
995519-004 Nitrate as Nitrogen	mg/L	06/09/2011 12:14	1.00	0.0110	0.500	ND
995519-005 Nitrate as Nitrogen	mg/L	06/09/2011 12:25	1.00	0.0110	0.500	ND
995519-006 Nitrate as Nitrogen	mg/L	06/09/2011 12:35	1.00	0.0110	0.500	ND
995519-007 Nitrate as Nitrogen	mg/L	06/09/2011 13:06	1.00	0.0110	0.500	ND
995519-008 Nitrate as Nitrogen	mg/L	06/09/2011 13:17	1.00	0.0110	0.500	ND
995519-009 Nitrate as Nitrogen	mg/L	06/09/2011 13:27	1.00	0.0110	0.500	ND
995519-010 Nitrate as Nitrogen	mg/L	06/09/2011 13:38	1.00	0.0110	0.500	ND
995519-011 Nitrate as Nitrogen	mg/L	06/09/2011 13:48	1.00	0.0110	0.500	ND

Client: E2 Consulting Eng	Client: E2 Consulting Engineers, Inc.		Project Name: Project Number:	PG&E Topock Project 405681.MP.02.RM		Page 2 of 24 Printed 7/12/2011	
Method Blank							
Parameter Nitrate as Nitrogen Duplicate	Unit mg/L	DF 1.00	Result ND			Lab ID = 995519-001	
Parameter Nitrate as Nitrogen Lab Control Sample	Unit mg/L	DF 1.00	Result ND	Expected 0.428	RPD 0	Acceptance Range 0 - 20	
Parameter Nitrate as Nitrogen Matrix Spike	Unit mg/L	DF 1.00	Result 3.97	Expected 4.00	Recovery 99.3	Acceptance Range 90 - 110 Lab ID = 995519-001	
Parameter Nitrate as Nitrogen MRCCS - Secondary	Unit mg/L	DF 1.00	Result 2.53	Expected/Added 2.43(2.00)	Recovery 105.	Acceptance Range 85 - 115	
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 3.97	Expected 4.00	Recovery 99.2	Acceptance Range 90 - 110	
Parameter Nitrate as Nitrogen MRCVS - Primary	Unit mg/L	DF 1.00	Result 2.98	Expected 3.00	Recovery 99.3	Acceptance Range 90 - 110	
Parameter Nitrate as Nitrogen	Unit mg/L	DF 1.00	Result 2.99	Expected 3.00	Recovery 99.6	Acceptance Range 90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project


Project Number: 405681.MP.02.RM

Page 3 of 24 Printed 7/12/2011

Parameter	Unit	Analyzed	DF	MDL	RL	Result
995519-001 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	120.
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	120.
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
995519-002 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	123
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	123
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
995519-003 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	115
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	115
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
995519-004 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	108
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	108
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5,00	ND
995519-005 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	124
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	124
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
95519-006 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	135
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	135
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
95519-007 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	116
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	116
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
995519-008 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	116
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	116
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
995519-009 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	114
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	114
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
95519-010 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	116
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	116
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND
995519-011 Alkalinity as CaCO3	mg/L	06/13/2011	1.00	1.68	5.00	115
Bicarbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	115
Carbonate (Calculated)	mg/L	06/13/2011	1.00	0.153	5.00	ND

Client: E2 Consulting En	Client: E2 Consulting Engineers, Inc		roject Name: roject Number:	Page 4 of 24 Printed 7/12/2011		
Method Blank						
Parameter Alkalinity as CaCO3 Duplicate	Unit mg/L	DF 1.00	Result ND			Lab ID = 995519-005
Parameter Alkalinity as CaCO3 Lab Control Sample	Unit mg/L	DF 1.00	Result 125	Expected 124	RPD 0.803	Acceptance Range 0 - 20
Parameter Alkalinity as CaCO3 Matrix Spike	Unit mg/L	DF 1.00	Result 95.0	Expected 100.	Recovery 95.0	Acceptance Range 90 - 110 Lab ID = 995519-011
Parameter Alkalinity as CaCO3	Unit mg/L	DF 1.00	Result 216	Expected/Added 215(100.)	Recovery 101	Acceptance Range 125 - 125

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 5 of 24 Printed 7/12/2011

Specific Conductivity - El	PA 120.1		Batch	06EC11F			6/13/2011	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995519-001 Specific Conductiv	vity	umhos/ci	m 06/13	/2011	1,00	0.0380	2.00	948
995519-002 Specific Conductiv	vity	umhos/ci	m 06/13	/2011	1.00	0.0380	2.00	940.
995519-003 Specific Conductiv	vity	umhos/ci	m 06/13	/2011	1.00	0.0380	2.00	954
995519-004 Specific Conductiv	vity	umhos/c	m 06/13	06/13/2011		0.0380	2.00	944
995519-005 Specific Conductiv	vity	umhos/c	m 06/13	/2011	1.00	0.0380	2.00	950.
995519-006 Specific Conductiv	995519-006 Specific Conductivity		m 06/13	/2011	1.00	0.0380	2.00	948
995519-007 Specific Conductiv	vity	umhos/c	m 06/13	3/2011	1.00	0.0380	2.00	951
995519-008 Specific Conductiv	vity	umhos/c	m 06/13	3/2011	1.00	0.0380	2.00	953
995519-009 Specific Conductivity		umhos/c	m 06/13	3/2011	1.00	0.0380	2.00	942
995519-010 Specific Conductiv	vity	umhos/c	m 06/13	3/2011	1.00	0.0380	2.00	947
995519-011 Specific Conductiv	vity	umhos/c	m 06/13	3/2011	1.00	0.0380	2.00	947
Method Blank		,						
Parameter	Unit	DF	Result					
Specific Conductivity	umhos	1.00	ND					
Duplicate							Lab ID =	995519-010
Parameter	Unit	DF	Result	Expected	F	RPD	Acceptance Range	
Specific Conductivity	umhos	1.00	948	947		0.106	0 - 10	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	nce Range
Specific Conductivity	umhos	1.00	710.	706		100.	90 - 110)
Lab Control Sample Du	ıplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ince Range
Specific Conductivity	umhos	1.00	711	706		101.	90 - 110)
MRCCS - Secondary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Specific Conductivity	umhos	1.00	706	706		100.	90 - 110)
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Specific Conductivity	umhos	1.00	956	996		96.0	90 - 110)

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 6 of 24 Printed 7/12/2011

Metals by EPA 6010B, To	ital		Batch	061611B-Th				
Parameter		Unit	Ana	yzed	DF	MDL	RL	Result
995519-001 Iron		ug/L	06/16	/2011 17:44	1.11	1.49	20.0	24.7
Manganese		ug/L	06/16	/2011 17:44	1.11	3.58	11.1	ND
995519-002 Iron		ug/L	06/16	/2011 18:26	1.11	1.49	20.0	25.8
Manganese		ug/L	06/16	/2011 18:26	1.11	3.58	11.1	ND
995519-003 Iron		ug/L	06/16	/2011 18:32	1.11	1.49	20.0	38.7
Manganese		ug/L	06/16	/2011 18:32	1,11	3.58	11.1	ND
995519-004 Iron		ug/L	06/16	/2011 18:38	1.11	1.49	20.0	24.0
Manganese		ug/L	06/16	/2011 18:38	1.11	3.58	11.1	13.2
995519-005 Iron		ug/L	06/16	/2011 18:44	1.11	1.49	20.0	20.8
Manganese		ug/L	06/16	/2011 18: 44	1.11	3.58	11.1	ND
995519-006 Iron		ug/L	06/16	/2011 18:49	1.11	1.49	20.0	ND
Manganese		ug/L	06/16/2011 18:49		1.11	3.58	11.1	ND
995519-007 Iron		ug/L	06/16	/2011 18:55	1.11	1.49	20.0	23.3
Manganese		ug/L	06/16	/2011 18:55	1.11	3.58	11.1	ND
995519-008 iron		ug/L	06/16/2011 19:01		1.11	1.49	20.0	ND
Manganese		ug/L	06/16/2011 19:01		1.11	3.58	11.1	ND
995519-009 Iron		ug/L	06/16/2011 19:07		1.11	1.49	20.0	22.4
Manganese		ug/L	06/16/2011 19:07		1.11	3.58	11.1	ND
995519-010 Iron		ug/L	06/16	/2011 19:13	1.11	1.49	20.0	24.3
Manganese		ug/L	06/16	/2011 19:13	1.11	3.58	11.1	ND
995519-011 Iron		ug/L	06/16	/2011 19:38	1.11	1.49	20.0	42.2
Manganese		ug/L	06/16	/2011 19:38	1.11	3.58	11.1	ND
Method Blank								
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Manganese	ug/L	1,00	ND					
Duplicate							Lab ID =	995519-00
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Rang
Iron	ug/L	1.11	26.1	24.7		5.51	0 - 20	_
Manganese	ug/L	1,11	ND	0.00		0	0 - 20	
Lab Control Sample							, wh	
Parameter	Unit	DF	Result	Expected	F	Recovery		ance Rang
Iron	ug/L	1.00	2140	2000		107.	85 - 11	_
Manganese	ug/L	1.00	2130	2000		106.	85 - 11	5

Client: E2 Consulting En	gineers, Inc		oject Name: oject Number	PG&E Topock Pro 405681.MP.02.RM	-	Page 7 of 24 Printed 7/12/2011	
Lab Control Sample D	uplicate						
Parameter Iron Manganese Matrix Spike	Unit ug/L ug/L	DF 1.00 1.00	Result 2290 2150	Expected 2000 2000	Recovery 115. 107.	Acceptance Range 85 - 115 85 - 115 Lab ID = 995519-001	
Parameter Iron Manganese Matrix Spike Duplicate	Unit ug/L ug/L	DF 1.11 1.11	Result 2500 2470	Expected/Added 2240(2220) 2220(2220)	Recovery 112. 111.	Acceptance Range 75 - 125 75 - 125 Lab ID = 995519-001	
Parameter Iron Manganese MRCCS - Secondary	Unit ug/L ug/L	DF 1.11 1,11	Result 2500 2480	Expected/Added 2240(2220) 2220(2220)	Recovery 112. 112.	Acceptance Range 75 - 125 75 - 125	
Parameter Iron Manganese MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 5120 5020	Expected 5000 5000	Recovery 102. 100.	Acceptance Range 90 - 110 90 - 110	
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5320	Expected 5000	Recovery 106.	Acceptance Range 90 - 110	
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5220	Expected 5000	Recovery 104.	Acceptance Range 90 - 110	
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5340	Expected 5000	Recovery 107.	Acceptance Range 90 - 110	
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 5150	Expected 5000	Recovery 103,	Acceptance Range 90 - 110	
Parameter Manganese MRCVS - Primary	Unit ug/L	DF 1.00	Result 5200	Expected 5000	Recovery 104.	Acceptance Range 90 - 110	
Parameter Manganese	Unit ug/L	DF 1.00	Result 5190	Expected 5000	Recovery 104.	Acceptance Range 90 - 110	

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 9 of 24 Printed 7/12/2011

Project Number: 405681.MP.02.RM

Parameter		Unit	Anal	yzed D	F	MDL	RL	Result
995519-001 Arsenic		ug/L	07/09	/2011 19:04 4.	44	0.391	1.0	2.4
995519-002 Arsenic		ug/L	07/09	/2011 19:11 4.4	44	0.391	1.0	2.2
995519-003 Arsenic		ug/L	07/09	/2011 19:56 4.4	44	0.391	1.0	2.7
995519-004 Arsenic		ug/L	07/09	/2011 20:03 4.	44	0.391	1.0	2.4
995519-005 Arsenic		ug/L	07/09	/2011 20:09 4.4	44	0.391	1.0	2.5
995519-006 Arsenic		ug/L	07/09	/2011 20:16 4.	44	0.391	1.0	2.5
995519-007 Arsenic	995519-007 Arsenic		07/09	/2011 20:22 4.4	44	0.391	1.0	2.4
995519-008 Arsenic		ug/L	07/09	/2011 20:29 4	44	0.391	1.0	2.6
995519-009 Arsenic		ug/L	07/09	/2011 20:36 4.	44	0.391	1.0	2.4
995519-010 Arsenic		ug/L	07/09	/2011 20:42 4.	44	0.391	1.0	2.4
995519-011 Arsenic		ug/L	07/09	/2011 20:49 4.	44	0.391	1.0	2.3
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Duplicate							Lab ID =	995519-002
Parameter	Unit	DF	Result Expected RPD		Accepta	ance Range		
Arsenic	ug/L	4.44	2.22	2.26		1.70	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected	R	ecovery	Acceptance Range	
Arsenic	ug/L	5.00	112.	100.		112.	85 - 11:	5
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected	R	ecovery	Accepta	ance Range
Arsenic	ug/L	5.00	116.	100.		116.	85 - 11:	5
Matrix Spike							Lab ID =	995519-002
Parameter	Unit	DF	Result	Expected/Added	d R	lecovery	Accepta	ance Range
Arsenic	ug/L	4.44	133.	113.(111)		118.	75 - 12	5
MRCCS - Secondar	y [.]							
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	ance Range
Arsenic	ug/L	1.00	50.2	50.0		100,	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected	R	lecovery	Accepta	ance Range
Arsenic	ug/L	1.00	48.8	50.0		97.5	90 - 11	0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Project Number: 405681.MP.02.RM

Page 11 of 24 Printed 7/12/2011

Chrome VI by EPA 218.6			Batch	06CrH11G				
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995519-001 Chromium, Hexa	avalent	ug/L	06/13	/2011 13:42	1.05	0.0210	0.20	ND
995519-002 Chromium, Hexa	avalent	ug/L	06/13	/2011 14:03	1.05	0.0210	0.20	ND
995519-003 Chromium, Hex	avalent	ug/L	06/13	/2011 14:13	1.05	0.0210	0.20	ND
995519-004 Chromium, Hex	avalent	ug/L	06/13	/2011 14:55	1.05	0.0210	0.20	ND
995519-005 Chromium, Hex	avalent	ug/L	06/13	/2011 15:26	1.05	0.0210	0.20	ND
995519-006 Chromium, Hex	avalent	ug/L	06/13	/2011 15:36	1.05	0.0210	0.20	ND
95519-007 Chromium, Hexavalent		ug/L	06/13	/2011 16:29	1.05	0.0210	0.20	ND
995519-008 Chromium, Hex	avalent	ug/L	06/13	/2011 16:39	1.05	0.0210	0.20	ND
995519-009 Chromium, Hex	avalent	ug/L	06/13	/2011 16:50	1.05	0.0210	0,20	ND
995519-010 Chromium, Hex	avalent	ug/L	06/13	/2011 17:52	1.05	0.0210	0.20	ND
995519-011 Chromium, Hex	avalent	ug/L	06/13	/2011 18:03	1.05	0.0210	0.20	ND
Method Blank	2, 144							
Parameter	Unit	DF	Result					
Chromium, Hexavalent	ug/L	1.00	ND					
Duplicate					Lab ID =	995519-00		
Parameter	Unit	DF	Result	Expected		RPD	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.05	ND	0.00		0	0 - 20	
Lab Control Sample								
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.00	4.92	5.00		98.5	90 - 110	כ
Matrix Spike							Lab ID =	995519-00
Parameter	Unit	DF	Result	Expected/Ad	ded	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.06	1.14	1.06(1.06)		107.	90 - 110	כ
Matrix Spike	• •						Lab ID =	995519-00
Parameter	Unit	DF	Result	Expected/Ad	ded	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.06	1.14	1.06(1.06)		108.	90 - 110	כ
Matrix Spike	\$						Lab ID =	995519-00
Parameter	Unit	DF	Result	Expected/Ad	ded	Recovery	Accepta	ance Rang
Chromium, Hexavalent	ug/L	1.06	1.12	1.06(1.06)		106.	90 - 110	כ
Matrix Spike							Lab ID =	995519-0
Parameter	Unit	DF	Result	Expected/Ad	ded	Recovery	Accepta	ance Ran
Chromium, Hexavalent	ug/L	1.06	1.10	1.06(1.06)		104.	90 - 110)

Client: E2 Consulting Engi	neers, Inc		oject Name: oject Number	PG&E Topock Pro : 405681.MP.02.RM	•	Page 12 of 24 Printed 7/12/2011		
Matrix Spike						Lab ID = 995519-005		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.10	Expected/Added 1.06(1.06)	Recovery 104.	Acceptance Range 90 - 110 Lab ID = 995519-006		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.13	Expected/Added 1.06(1.06)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 995519-007		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.08	Expected/Added 1.06(1.06)	Recovery 102.	Acceptance Range 90 - 110 Lab ID = 995519-008		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.12	Expected/Added 1.06(1.06)	Recovery 106.	Acceptance Range 90 - 110 Lab ID = 995519-009		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.09	Expected/Added 1.06(1.06)	Recovery 103.	Acceptance Range 90 - 110 Lab ID = 995519-010		
Parameter Chromium, Hexavalent Matrix Spike	Unit ug/L	DF 1.06	Result 1.10	Expected/Added 1.06(1.06)	Recovery 103.	Acceptance Range 90 - 110 Lab ID = 995519-011		
Parameter Chromium, Hexavalent MRCCS - Secondary	Unit ug/L	DF 1.06	Result 1.10	Expected/Added 1.06(1.06)	Recovery 104.	Acceptance Range 90 - 110		
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 5.02	Expected 5.00	Recovery 100.	Acceptance Range 90 - 110		
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.65	Expected 10.0	Recovery 96.5	Acceptance Range 95 - 105		
Parameter Chromium, Hexavalent MRCVS - Primary	Unit ug/L	DF 1.00	Result 9.84	Expected 10.0	Recovery 98.4	Acceptance Range 95 - 105		
Parameter Chromium, Hexavalent	Unit ug/L	DF 1.00	Result 10.0	Expected 10.0	Recovery 100.	Acceptance Range 95 - 105		

Client: E2 Consulting Engineers, Inc. Project Name: PG&E Topock Project

> Project Number: 405681,MP.02.RM Printed 7/12/2011

Parameter	Unit	Analyzed	DF	MDL	RL	Result
995519-001 Arsenic	ug/L	06/16/2011 22:00	4.44	0.391	1.0	2.4
Chromium	ug/L	06/16/2011 22:00	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 22:00	4.44	0.169	10.0	ND
Molybdenum	ug/L	06/16/2011 22:00	4.44	0.746	10.0	ND
995519-002 Arsenic	ug/L	06/16/2011 22:46	4.44	0.391	1.0	2.5
Chromium	ug/L	06/16/2011 22:46	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 22:46	4.44	0.169	10.0	ND
Molybdenum	ug/L	06/16/2011 22:46	4.44	0.746	10.0	ND
995519-003 Arsenic	ug/L	06/16/2011 22:53	4.44	0.391	1.0	2.3
Chromium	ug/L	06/16/2011 22:53	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 22:53	4.44	0.169	10.0	ND
Molybdenum	ug/L	06/16/2011 22:53	4.44	0.746	10.0	ND
995519-004 Arsenic	ug/L	06/16/2011 23:00	4.44	0.391	1.0	2.0
Chromium	ug/L	06/16/2011 23:00	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 23:00	4.44	0.169	10.0	ND
Molybdenum	ug/L	06/16/2011 23:00	4.44	0.746	10.0	ND
995519-005 Arsenic	ug/L	06/16/2011 23:06	4.44	0.391	1.0	2.2
Chromium	ug/L	06/16/2011 23:06	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 23:06	4.44	0.169	10.0	ND
Molybdenum	ug/L	06/16/2011 23:06	4.44	0.746	10.0	ND
995519-006 Arsenic	ug/L	06/16/2011 23:13	4.44	0.391	1.0	2.3
Chromium	ug/L	06/16/2011 23:13	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 23:13	4.44	0.169	10.0	ND
Molybdenum	ug/L	06/16/2011 23:13	4.44	0.746	10.0	ND
995519-007 Arsenic	ug/L	06/16/2011 23:19	4.44	0.391	1.0	2.2
Chromium	ug/L	06/16/2011 23:19	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 23:19	4.44	0.169	10.0	ND
Molybdenum	ug/L	06/16/2011 23:19	4.44	0.746	10.0	ND
995519-008 Arsenic	ug/L	06/16/2011 23:26	4.44	0.391	1.0	2.2
Chromium	ug/L	06/16/2011 23:26	4.44	0.0977	1.0	ND
Manganese	ug/L	06/16/2011 23:26	4.44	0.169	10.0	ND
Molybdenum	-	06/16/2011 23:26	4.44	0.746	10.0	ND
995519-009 Arsenic	ug/L	06/16/2011 23:33	4.44	0.391	1.0	2.4
Chromium	ug/L	06/16/2011 23:33	4.44	0.0977	1.0	ND

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

032

Page 13 of 24

Client: E2 Consulting En	Project Name: Project Number	Page 14 of 24 Printed 7/12/2011						
995519-009 Manganese		ug/L	06/16/	2011 23:33 4	.44 0.169	10.0	ND	
Molybdenum		ug/L	06/16/	2011 23:33 4	.44 0.746	10.0	ND	
995519-010 Arsenic		ug/L	06/16/	2011 23:39 4	.44 0.391	1.0	2.1	
Chromium		ug/L	06/16/	2011 23:39 4	.44 0.0977	1.0	ND	
Manganese		ug/L	06/16/	2011 23:39 4	.44 0.169	10.0	ND	
Molybdenum		ug/L	06/16/2011 23:39		.44 0.746	10.0	ND	
995519-011 Chromium		ug/L	06/17/2011 00:30		.44 0.0977	1.0	ND	
Manganese		ug/L	06/17/2011 00:30 4		.44 0.169	10.0	ND	
Molybdenum		ug/L	06/17/	/20 <u>11</u> 00:304	.44 0.746	10.0	ND	
Method Blank								
Parameter	Unit	DF	Result					
Arsenic	u g/L	1.00	ND					
Chromium	ug/L	1.00	ND					
Manganese	ug/L	1.00	ND					
Molybdenum	ug/L	1.00	ND					
Duplicate						Lab ID =	995519-001	
Parameter	Unit	DF	Result	Expected	RPD	Accepta	nce Range	
Arsenic	ug/L	4.44	2.38	2.36	0.928	0 - 20		
Chromium	ug/L	4.44	ND	0.00	0	0 - 20		
Manganese	ug/L	4.44	ND	0.00	0	0 - 20		
Molybdenum	ug/L	4.44	ND	0.00	0	0 - 20		
Lab Control Sample							*. *	
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range		
Arsenic	ug/L	5.00		100.	92.9	85 - 115		
Chromium	ug/L	5.00		100.	92.8	85 - 115		
Manganese	ug/L	5.00		100.	86.8	85 - 115		
Molybdenum	ug/L	5.00	87.2	100.	87.2	85 - 115		
Matrix Spike						Lab ID =	995519-001	
Parameter	Unit	DF	Result	Expected/Adde	-	-	Acceptance Range	
Arsenic	ug/L	4.44		113.(111)	94.4		75 - 125	
Chromium	ug/L	4.44		111(111)	90.1	75 - 125		
Manganese	ug/L	4.44		111(111)	84.4	75 - 125		
Molybdenum	ug/L	4.44	101.	111(111)	91.1	75 - 125	i	

Client: E2 Consulting Engineers, Inc.			oject Name: oject Numbe	Page 15 of 24 Printed 7/12/2011		
Matrix Spike Duplica	te					Lab ID = 995519-001
Parameter Arsenic	Unit ug/L	DF 4.44	Result 98.4	Expected/Added 113.(111)	Recovery 86.5	Acceptance Range 75 - 125
Chromium	ug/L	4.44	90.7	111(111)	81.7	75 - 125
Manganese	ug/L	4.44	84.6	111(111)	76.2	75 - 125
Molybdenum	ug/L	4.44	95.7	111(111)	86.2	75 - 125
MRCCS - Secondary	,					
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	49.7	50.0	99.4	90 - 110
Chromium	ug/L	1.00	49.2	50.0	98.4	90 - 110
Manganese	ug/L	1.00	52.1	50.0	104.	90 - 110
Molybdenum	ug/L	1.00	46.7	50.0	93.4	90 - 110
MRCVS - Primary						2.20
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	49.4	50.0	98.7	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	49.8	50.0	99.6	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	49.1	50.0	98.1	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Arsenic	ug/L	1.00	49.4	50.0	98.8	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	48.7	50.0	97.5	90 - 110
MRCVS - Primary						
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	49.8	50.0	99.6	90 - 110
MRCVS - Primary						$\mathcal{A}^{\mathcal{H}}$. $\mathcal{A}^{\mathcal{H}}$
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	48.9	50.0	97.9	90 - 110
MRCVS - Primary						A Commence of the Commence of
Parameter	Unit	DF	Result	Expected	Recovery	Acceptance Range
Chromium	ug/L	1.00	48.6	50.0	97.1	90 - 110

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 19 of 24

Project Number: 405681.MP.02.RM

Printed 7/12/2011

Parameter		Unit	Anai	lyzed [DF_	MDL	RL	Result
995519-011 Arsenic		ug/L	06/22	/2011 01:30 4	.44	0.391	1.0	2.7
Method Blank				.,				
Parameter	Unit	DF	Result					
Arsenic	ug/L	1.00	ND					
Duplicate							Lab ID =	995519-001
Parameter	Unit	DF	Result	Expected	I	RPD	Accepta	ance Range
Arsenic	ug/L	4.44	2.76	2.71		1.65	0 - 20	
Lab Control Sample)							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Arsenic	ug/L	5.00	106.	100.		106.	85 - 11	5
Lab Control Sample	Duplicate							
Parameter	Unit	DF	Result	Expected		Recovery	Accepta	ance Range
Arsenic	ug/L	5.00	102.	100.		102.	85 - 11	5
Matrix Spike							Lab ID =	995519-001
Parameter	Unit	DF	Result	Expected/Adde	d	Recovery		ance Range
Arsenic	ug/L	4.44	112.	114.(111)		98.5	75 - 12	5
Matrix Spike Duplic	ate						Lab ID =	995519-001
Parameter	Unit	DF	Result	Expected/Adde	ed	Recovery	Accept	ance Range
Arsenic	ug/L	4.44	107.	114.(111)		94.3	75 - 12	5
MRCCS - Secondar	гу						**	
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Arsenic	ug/L	1.00	50.6	50.0		101.	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Arsenic	ug/L	1.00	50.2	50.0		100.	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Arsenic	ug/L	1.00	49.6	50.0		99.2	90 - 11	0
MRCVS - Primary								
Parameter	Unit	DF	Result	Expected		Recovery	Accept	ance Range
Arsenic	ug/L	1.00	49.1	50.0		98.3	90 - 11	0

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Printed 7/12/2011

Page 21 of 24

Project Number: 405681.MP.02.RM

Parameter		Unit	Ana	yzed	DF	MDL	RL	Result
995519-001 Iron		ug/L	06/17	/2011 09:39	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 09:39	1.11	3.57	11.1	ND
995519-002 Iron		ug/L	06/17	/2011 10:14	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:14	1,11	3.57	11.1	ND
995519-003 Iron		ug/L	06/17	/2011 10:20	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:20	1.11	3.57	11.1	ND
995519-004 Iron		ug/L	06/17	/2011 10:26	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:26	1,11	3.57	11.1	ND
995519-005 Iron		ug/L	06/17	/2011 10:31	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:31	1.11	3.57	11.1	ND
995519-006 Iron		ug/L	06/17	/2011 10:37	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:37	1,11	3.57	11.1	ND
995519-007 Iron		ug/L	06/17	/2011 10:43	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:43	1.11	3.57	11.1	ND
995519-008 Iron		ug/L	06/17	/2011 10:49	1,11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:49	1.11	3.57	11.1	ND
995519-009 Iron		ug/L	06/17	/2011 10:55	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 10:55	1.11	3.57	11.1	ND
995519-010 iron		ug/L	06/17	/2011 11:01	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	/2011 11:01	1.11	3.57	11.1	ND
995519-011 Iron		ug/L	06/17	/2011 11:07	1.11	1.49	20.0	ND
Selenium		ug/L	06/17	//2011 11:07	1.11	3.57_	11.1	ND
Method Blank								: 24
Parameter	Unit	DF	Result					
Iron	ug/L	1.00	ND					
Selenium	ug/L	1.00	ND					
Duplicate							Lab ID =	995519-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	ance Range
Iron	ug/L	1.11	ND	0.00		0	0 - 20	
Selenium	ug/L	1.11	ND	0.00		0	0 - 20	
Lab Control Sample							2.12	. 3
Parameter	Unit	DF	Result	Expected	F	Recovery	Accept	ance Range
Iron	ug/L	1,00	104.	100.		104.	85 - 11	5
Selenium	ug/L	1.00	87.6	100.		87.6	85 - 11	5

Client: E2 Consulting En	gineers, Inc.		oject Name: oject Numbe	PG&E Topock Pror: 405681,MP.02,RM		Page 22 of 24 Printed 7/12/2011
Lab Control Sample [Duplicate					
Parameter Iron Selenium Matrix Spike	Unit ug/L ug/L	DF 1.00 1.00	Result 104. 87.6	Expected 100. 100.	Recovery 104. 87.6	Acceptance Range 85 - 115 85 - 115 Lab ID = 995519-001
Parameter Iron Selenium MRCCS - Secondary	Unit ug/L ug/L	DF 1.11 1.11	Result 115. 96.1	Expected/Added 111(111) 111(111)	Recovery 104. 86.6	Acceptance Range 75 - 125 75 - 125
Parameter Iron Selenium MRCVS - Primary	Unit ug/L ug/L	DF 1.00 1.00	Result 5420 4980	Expected 5000 5000	Recovery 108. 99.7	Acceptance Range 90 - 110 90 - 110
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5260	Expected 5000	Recovery 105.	Acceptance Range 90 - 110
Parameter Iron MRCVS - Primary	Unit ug/L	DF 1.00	Result 5430	Expected 5000	Recovery 109.	Acceptance Range 90 - 110
Parameter Selenium MRCVS - Primary	Unit ug/L	DF 1.00	Result 5060	Expected 5000	Recovery 101.	Acceptance Range 90 - 110
Parameter Selenium Interference Check S	Unit ug/L tandard A	DF 1.00	Result 5120	Expected 5000	Recovery 102.	Acceptance Range 90 - 110
Parameter Iron Interference Check S	Unit ug/L tandard A	DF 1.00	Result 2240	Expected 2000	Recovery 112.	Acceptance Range 80 - 120
Parameter Iron Interference Check S	Unit ug/L tandard A	DF 1.00	Result 2250	Expected 2000	Recovery 113.	Acceptance Range 80 - 120
Parameter Selenium Interference Check S	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range
Parameter Selenium	Unit ug/L	DF 1.00	Result ND	Expected 0.00	Recovery	Acceptance Range

Client: E2 Consulting Eng	gineers, Inc.		oject Name: oject Number:	PG&E Topod 405681.MP.0	•	et	P Printed 7	age 23 of 2 /12/2011	4
Interference Check St	andard AB								
Parameter	Unit	DF	Result	Expected	R	tecovery	Accepta	ince Range	
Iron	ug/L	1.00	2220	2000		111.	80 - 120)	
Interference Check St	andard AB								
Parameter	Unit	DF	Result	Expected	R	ecovery	•	ince Range	
iron	ug/L	1.00	2330	2000		116.	80 - 120)	
Interference Check St									
Parameter	Unit	DF	Result	Expected	F	lecovery	Accepta	ince Range	
Selenium	ug/L	1.00	ND	0.00					
Interference Check St		55	ъ "	.	_			_	
Parameter Selenium	Unit ug/L	DF 1.00	Result ND	Expected 0.00	۲	Recovery	Accepta	ince Range	
	09/2	1.00							=
pH by SM 4500-H B			Batch	06PH11G					
Parameter		Unit	Analy	zed	DF	MDL	RL	Result	
995519-001 pH		pН	06/09/2	2011 13:00	1.00	0.0250	4.00	7.91	J
995519-002 pH		ρН	06/09/2	2011 13:05	1.00	0.0250	4.00	8.05	J
995519-003 pH		рH	06/09/2	2011 13:07	1.00	0.0250	4.00	8.12	J
995519-004 pH		pН	06/09/2	2011 13:10	1.00	0.0250	4.00	8.14	J
995519-005 pH		рН	06/09/2	2011 13:12	1.00	0.0250	4.00	8.13	J
995519-006 pH		pΗ	06/09/2	2011 13:15	1.00	0.0250	4.00	8.11	J
995519-007 pH		μΗ	06/09/2	2011 13:17	1.00	0.0250	4.00	8.12	J
995519-008 pH		рН	06/09/2	2011 13:20	1.00	0.0250	4.00	8.07	J
995519-009 pH		pΗ	06/09/2	2011 13:22	1.00	0.0250	4.00	8.25	J
995519-010 pH		pΗ		2011 13:25	1.00	0.0250	4.00	8.26	J
995519-011 pH		рН	06/09/2	2011 13:32	1,00	0.0250	4.00	8.17	_ J
Duplicate							Lab ID =	995519-010	ļ
Parameter	Unit	DF	Result	Expected	F	RPD	-	ance Range	•
рН	рН	1.00	8.26	8.26		0.00	0 - 20		
Lab Control Sample							* .		
Parameter	Unit	DF	Result	Expected	F	Recovery	-	ance Range	;
pH	рΗ	1.00	6.99	7.00		99.8	90 - 110)	
MRCVS - Primary									
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range	:
pH	рН	1.00	7.02	7.00		100.	90 - 110	J	=

Client: E2 Consulting Engineers, Inc.

Project Name: PG&E Topock Project

Page 24 of 24

Project Number: 405681.MP.02.RM

Printed 7/12/2011

Total Suspended Solids	by SM 25	40 D	Batch	06TSS1E			6/14/201	
Parameter		Unit	Ana	lyzed	DF	MDL	RL	Result
995519-001 Total Suspender	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-002 Total Suspender	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-003 Total Suspended	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-004 Total Suspended	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-005 Total Suspended	d Solids	mg/L	06/14	/2011	1.00	0.423	2,50	ND
995519-006 Total Suspender	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-007 Total Suspended	d Solids	mg/L	06/14	/2011	1.00	0.423	2,50	ND
995519-008 Total Suspended	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-009 Total Suspender	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-010 Total Suspender	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
995519-011 Total Suspender	d Solids	mg/L	06/14	/2011	1.00	0.423	2.50	ND
Method Blank								
Parameter	Unit	DF	Result					
Total Suspended Solids	mg/L	1.00	ND					
Duplicate							Lab ID =	995566-001
Parameter	Unit	DF	Result	Expected	F	RPD	Accepta	nce Range
Total Suspended Solids	mg/L	1.00	48.7	49.7		2.03	0 - 5	
Lab Control Sample								1424
Parameter	Unit	DF	Result	Expected	F	Recovery	Accepta	ance Range
Total Suspended Solids	mg/L	1.00	101	100.		101	90 - 110)
Lab Control Sample [Duplicate							
Parameter	Unit	DF	Result	Expected	F	Recovery	•	ance Range
Total Suspended Solids	mg/L	1.00	98.0	100.		98.0	90 - 110	J

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

tor Mona Nassimi

Manager, Analytical Services

TRUESDAIL LABORATORIES INC.

Total Suspended Solids by SM 2540 D

Calculations

 Batch:
 06TSS11E

 Date Calculated:
 6/14/11

Dish Number	Laboratory Number	Sample volume, ml	Initial weight,g	1st Final weight,g	2nd Final weight _i g	Weight Difference	Exceeds 0.5mg? Yes/No	Residue weight,g	Filterable residue, ppm	RL, ppm	Reported Value, ppm	DF
X70	BLK	1000	1.4069	1.4069	1.4069	0.0000	No	0.0000	0.0	2.5	ND	1
X73	995519-1	1000	1.4125	1.4126	1.4126	0.0000	No	0.0001	0.1	2.5	ND	1
X74	995519-2	1000	1.3949	1.3952	1.3952	0.0000	No	0.0003	0.3	2.5	ND	1
X75	995519-3	1000	1.4152	1.4165	1.4165	0,0000	Nο	0.0013	1.3	2.5	ND	1
X76	995519-4	1000	1.4163	1.4165	1.4165	0.0000	No	0.0002	0.2	2.5	ND	1
X77	995519-5	1000	1.4165	1.4165	1.4165	0.0000	No	0.0000	0.0	2.5	ND	1
X78	995519-6	1000	1,4039	1.4039	1.4039	0.0000	No	0.0000	0.0	2,5	ND	1
X79	995519-7	1000	1.4052	1.4053	1.4053	0.0000	No	0.0001	0.1	2.5	ND	1
X80	995519-8	1000	1.4118	1.4119	1.4119	0.0000	N٥	0.0001	0.1	2,5	ND	1
X81	995519-9	1000	1,4051	1.4052	1.4052	0.0000	Nο	0.0001	0.1	2.5	ND	1
X82	995519-10	1000	1.4156	1.4157	1.4157	0.0000	No	0.0001	0.1	2.5	ND	1
X83	995519-11	1000	1.4196	1.4197	1.4197	0.0000	No	0.0001	0.1	2.5	ND	1
X84	995536	1000	1.4180	1.4181	1.4181	0.0000	No	0,0001	0,1	2.5	ND	1
X85	995566	300	1.4164	1.4313	1.4313	0.0000	No	0.0149	49.7	8.3	49.7	1
X86	995566D	300	1.4094	1.4240	1.424	0.0000	No	0.0146	48.7	8.3	48.7	1
X87	995569	500	1.4222	1.4393	1.4393	0.0000	Nο	0.0171	34,2	5.0	34.2	1
X88	995569D	500	1.4069	1.4239	1.4239	0.0000	No	0.0170	34.0	5,0	34,0	11
X71	LCS-1	100	1,4132	1.4233	1.4233	0.0000	No	0.0101	101.0	25,0	101.0	1
X72	LCS-2	100	1.4135	1.4233	1.4233	0.0000	No	0,0098	98,0	25.0	98.0	11

Calculation as follows:

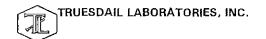
Non-Filterable residue (TSS), mg/L =
$$\left(\frac{A-B}{C}\right) x \cdot 1 \cdot 0^6$$

Where: A = weight of dish + residue in grams.

B = weight of dish in grams.

C = mL of sample filtered.

RL= reporting limit.


ND = not detected (below the reporting limit)

Analyst Printed Name

Analysi Signature

Reviewer Printed Name

Reviewer Signature

Alkalinity by SM 2320B Calculations

Date of Analysis:	6/13/11
Date Sampled:	

E2-Sean

Analytical Batch: 06 ALK11C Matrix: Water Date Calculated: 6/13/11

Lab ID	Sample pH	Sample Volume (ml)	N of HCL	Titrant Volume to reach pH 8.3	P Alkalinity as CaCO3	Titrant Volume to reach pH 4.5	Total mL titrant to reach pH 0.3 unit lower	Total Alkalinity as CaCO3	RL, Ppm	Total Alkatinity Reported Value	HCO3 Alkafinity as CaCO ₃ (PPm)	CO3 Alkalinity as CaCO ₃ (ppm)	OH Alkalinity as CaCO ₃ (ppm)	Low Alkalinity as CaCO ₃ (<20ppm)
BLANK	7.10	50	0.02		0.0	0.05		0.9	5	ND	ND	ND	ND	
995519-1	8.17	50	0.02		0.0	6.00		120.0	. 5	120.0	120.0	ND	ND	
995519-2	8 13	50	0.02		0.0	6 15		123.0	5	123.0	123.0	ND	ND	
995519-3	8.14	50	0.02		0.0	5.75		115.0	5	115.0	115.0	DN	ND	
995519-4	8 16	50	0.02		0.0	5.40		108.0	5	108.0	108.0	ND	ND	
995519-5	8.15	50	0.02		0.0	6 20		124.0	5	124.0	124.0	ND	ND	
995519-6	8 09	50	0.02		0.0	6.75		135.0	5	135.0	135.0	ND	ND	
995519-7	8.13	50	0.02		0.0	5.80		116.0	5	116.0	116.0	ND	ND	
995519-8	8.07	50	0.02		0,0	5.80		116.0	5	116.0	116.0	ND	ND	
995519-9	8 21	50	0.02		0.0	5.70		114.0	5	114.0	114.0	ND	ND ND	
995519-10	8.22	50	0.02		0,0	5.80		116.0	5	116.0	116.0	ND	ND	
995519-11	8.13	50	0 02		0.0	5.75		115.0	5	115.0	115.0	ND	ND	
995570-1	7.91	50	0.02		0.0	4.40		88.0	5	88.0	88.0	ND ND	ND	
995570-2	8.07	50	0.02		0.0	4.40		88.0	5	88.0	88.0	ND	ND	
995519-5DUP	8 16	50	0.02		0.0	6.25	7.45 F 2007	125.0	5	125.0	125.0	ND	ND	
995519-11 MS	9 42	_50_	0.02	2.5	50.0	10.80		216.0	5	216.0	116.0	100	ND	
			17413						***************************************					
							Signal Ave							
		7757 174												
			75.50			gweden.								
			1000											
LCS1	10.30	50	0.02	2.2	44.0	4.75		95.0	5	95,0	7.0	88	ND	
LCS2												ND		

Calculations as follows:

ND: Not Detected (below the reporting limit)

LCS: Laboratory Control Standard

LCSD: Laboratory Control Standard Duplicate

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Analyst Printed Name

Where:

T = Total Alkalinity, mg CaCO3/L

P = Phenolphthalein Alkalinity, mg CaCO3/L

A = mL standard acid used

N = normality of standard acid

Analyst Signature

Low Alkalinity: = as mg/L CaCO3

Where:

Reviewer Printed Name

(2 x B - C) x N x 50000 mL sample

B = mL titrant to first recorded pH

C = total mL titrant to reach pH 0.3 unit lower

N = normality of standard acid

Reviewer Signature

995519 Rec'd 06/08/11 s146995519

	CH2MHILL		T				(CHAIN	OF C	USTO	DY RE	ECOR	D		6/8/2011 1:59:49 PM	Page	1 OF 1
	Project Name PG&E Torock	VIII		ontainer	3X250	250 Poly		500 ml		2x1 Liter	2x1 Liter :	2x1 Liter	2x1 Liter			T	
	Location Topock	CANADA PARA PARA PARA PARA PARA PARA PARA P		g) a a a a canada a ta a c	ml Poly	(NH4)2SO	Poly HNO3,	Poly HNO3,	Poly HNO3	Poly 4°C	Poly 4°C	Poly 4°C	Poly 4°C	Poly 4°C			
ł	Project Number 405681.MP.02	2.RM	Prese	ervatives:		4/NH4OH, 4°C	4°C	4°C	4°C	40	70	70	70	40	* Where provided		
- 1	Project Manager Jay Piper			Filtered:		NA NA	NA	Field	Field	NA	NA	NA	NA	N A	11/2 Cab bottles		
	Sample Manager Shawn Duffy		Hold	ling Time:		28	180	180	180	2	2	2	2	2	69/5 C. 64/45		
	Sample Manager Shawn Duffy Task Order Project 2011-RMP-177 Turnaround Time 10 Days Shipping Date: 6/3/2011 COC Number: TLI_RMP177	DATE	TIME		Cr6 (E218.6 - river) Field Filtered	Field QC Cr6 (E218.6-river)	Metals (6010B) Total Fe	Metals (6020A) Field Filtered Chromíum	Metals (SW6010B/SW6020Adis) Field Filtered As,Mn,Fe,Se,Mo	Specific Conductance (E120.1)	Anions (E300.0) Nitrate			TSS (SM263))	* where provided 11/3 Crb bottles please analyze 1 + hold 2 ample Condition Form Attached	Number of Containers	For the Governments
1	C-CON-D-177	6/8/2011	9:20	Water	Х		Х	X	x	Ж	x	ж	X	义		18	7
	C-CON-S-177	6/8/2011	9:36	Water	х	-	Ж	Х	ж	Ж	х	×	X	Ж		38	7 11-0
	C-MW-82-177	6/8/2011	9:50	Water		×			-							12.0	Hold
100000	C-MW-83-177	6/8/2011	10:35	Water		х										Ą	Hold
3	C-NR1-D-177	6/8/2011	10:06	Water	×		×	×	x	'A'	Ж	ж	x	х		18	7)
Υſ	C-NR1-S-177	6/8/2011	10:20	Water	Х		Х	×	×	Х	×	×	Х	ж		38	7/
5	C-NR3-D-177	6/8/2011	10:49	Water	х		Х	X	х	Ж	×	Х	X	x		28	フト
L	C-NR3-S-177	6/8/2011	11:01	Water	X		Х	х	X	Х	х	ж	X	X.		28	7064
7	C-NR4-D-177	6/8/2011	11:32	Water	Ж		Х	×	ж	х	х	х	×	х		16	7714
χĪ	C-NR4-S-177	6/8/2011	11:47	Water	Х		X	х	ж	х	х	х	×	х		18	7 8
9	R-19-177	6/8/2011	8:30	Water	Х		Х	x	×	X	х	х	X	ж		16	7 1
Û	R-28-177	6/8/2011	8:11	Water	×		Х	X	Х	Х	Х	Х	X	Х		16	7 /
2000	RMP-AB2-177	6/8/2011	11:57	Water		Х											14019
7	RB-177	6/8/2011	8:56	Water	х		Х	Х	х	х	X	Х	Х	Х		16	7 pu-
Ī												······································			TOTAL NUMBER OF CONTAINERS	178	, , , , , , , , , , , , , , , , , , , ,
(Approved by Sampled by Clinquished by Received by Relinquished by	Davila	6/8	Date [5-8-1, 153] D 15:3	j.	od of Sh e: yes No:		Feci	X	×			ATTN: le Custo:	Special Instructions: June 7-9, 2011 iy Report Copy to Shawn Duffy	80	per

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
06/08/11	995494-3	9.5	N/A	N/A	N/A	SB
1	1-4	J	—	4	1	1
06/08/4	995495-1	9.5	N/A	NA	N/A	SB
	1 -2		ŀ	ł.		
	↓ -3	-14V	4	b	4	4
06/08/11	995496-1	9.5	NA	NA	N/A	SB
1	トース					
	-ス -3					
	-4			`		
4	6 -5	F	4	~\	J	
aclosia	995497-1	7.0	5.00	9.5	9:10	SI L
06/08/11	995498-1	7-0	5.00	95	9:15	SB
<u> </u>	1 -2	J	<u></u>	V	9:20	لد
06 08 u	995499-1	9.5	A\14	2/4	N/A	$\mathcal{D}z$
	1 -2	l			[
	- 3					
	-ψ					
	-5					
	-6			·		
	,-7					
	-8					
	- 9					
	to					
	4					
	-12					
	-13					
*	<u>b</u> -14	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
06/05/4	995519-1	9.5	2/4	4/0	A/L,	573
	<u>-2</u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
7	<u>b-4</u>	1	<u></u>	<u>+</u>	·P	4

Hexavalent Chromium Method EPA 218.6 and SW 7199 Sample pH Log

Date	Lab Number	Initial pH	Buffer Added (mL)	Final pH	Time Buffered	Initials
06/09/11	935519-5	9.5	NA	1/4	NA	SB
	1 -6	ì		<u> </u>		
	-7					
	-8					
	-9					
	(0					
*	¥ -4	4	4	J.	<u> </u>	4
			· · · · · · · · · · · · · · · · · · ·			
	·					
				,		
					,	
<u></u>	<u> </u>					

Turbidity/pH Check

Sample Number	Turbidity	⊨pH	Date	Analyst	Need Digest	Adjusted to pH<2 (Y/N)
995481	71	72	06/08/11	NI	Yes	300
995 480	Solid	:	1 1 1			1
4974-2	21	29	7		· NO	
49811-21					1	
791	t					_
995490/1-14	21	42	4		Yes	3010
995226 (1)	21	<u></u>	4/03/11	VX-	No	No
99551911-11	Z 1		6/09/11	21:11	yes	No
995497(1-2)	21	72	01011	ES	No	ys a) 10:000.m
99(496(1-2)	7	72	10/10/11		t t	9000
4, 995494-2	Z 1	72				
795537	Solid		6/10/11	Mill	1/20	-
995586	71	73		N M	yes	111C 12 700
75567111-2	21		6/13/11	_ p 19	1/3	yes @ 13.00
(12/1	1	<u> </u>	HELLI	* Mer	/XE)	
6+3(1-51			 	· •		
095667		22	 			1123 / 11
	71	<u> </u>	$-\frac{1}{\sqrt{16}}$		No >	123010 on
995632	 	77	10/14/11	E)		yod in por
995691	2 /	2 2	6120/11	MIM	Yes	
995 692		122			ļ	
995720		 	<u> </u>		 	
995-694	ļļ		<u> </u>		ļ .	
995695		ļ	l		 	
995696/1-41	4	<i>V</i>	<u> </u>		<u> </u>	
700592 (55-72)			6/20/11		<u> </u>	
200543 (55-72)	 	12-	6/20/11	/44	No	10 19 V
195754	£ (122	6/2/14	M.M.	yes_	Jes 610.
995 727 (124)		72	6/22/11	ES_	No	alb:wan
995749	Z1	-2	ļ	·	1	
750						
751			<u> </u>			***
752						
フレカ	V	V	<u> </u>	<u> </u>		
495763	4	フス	10/23/11	ES	NO	210:Wam
995773(789)		1	1			
995 781 (1-3)					م ا	
99530511-21	41	c 2	6/25/11	pr.M	Yes_	
995-80611-71]				
995 807/1-31		11/				
005 810	21	22		<u> </u>	iV	-
995820 (1-13	<u> </u>	42	11/24/11	Us	1105	
995371 (1-6	1	1	1 1			
ad 5x12 (1-2)	11			V		
プイクの(ル ロイン)	121	12	(1/27/11	MR	No	yes@ 310pm
905830 11-3	1 41			: V	 	11:100000
495830 (1.3)		>2	10/25/11	1/4	1	1 VOI W V Z VIN
995830 (13)		2	10/28/11	V		Vera 82°an
995830 (1-3) 995838(1-4) 995840 (1-3	21	2 2 2 2	(1/28/il	K.		Ves @ 82 m
995830 (1-3) 995838(1-14) 995840 (1-3) 995843 (1-3)) <u>[</u>	2	(128/11 (128/11 (129/11	K.		100 8 30 am

Sample Integrity & Analysis Discrepancy Form

CI	ient: <u>ヒン</u>	Lab # 9955/
Da	te Delivered:ऐ6/07/11 Time: 3/-30 By: □Mail Æ	Field Service □Clien
1.	Was a Chain of Custody received and signed?	ØYes □No □N/A
2 .	Does Customer require an acknowledgement of the COC?	□Yes □No ÆN/A
3.	Are there any special requirements or notes on the COC?	□Yes □No ZÍN/A
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No pIN/A
5 .	Were all requested analyses understood and acceptable?	ØYes □No □N/A
6.	Were samples received in a chilled condition? Temperature (if yes)? C	ØYes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc.)? Were sample custody seals intact?	AYes DNo DNA
8.	Were sample custody seals intact?	Yes ONO XINA
9.	Does the number of samples received agree with COC?	Ves □No. □NA
10.	Did sample labels correspond with the client ID's?	ØYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: ATruesdall Client	Pryes ONo ONA
2.	Were samples pH checked? pH = Set C. O. C	⊘PYes □No □N/A
3.	Were all analyses within holding time at time of receipt? If not, notify Project Manager.	√ Yes □No □N/A
4.	Have Project due dates been checked and accepted? Turn Around Time (TAT): □ RUSH □ Std	ØYes □No □N/A
5.	Sample Matrix: DLiquid Drinking Water DGround V	* / / /
j.	Comments:	
	Sample Check-In completed by Truesdai! Log-In/Receiving:	Luda

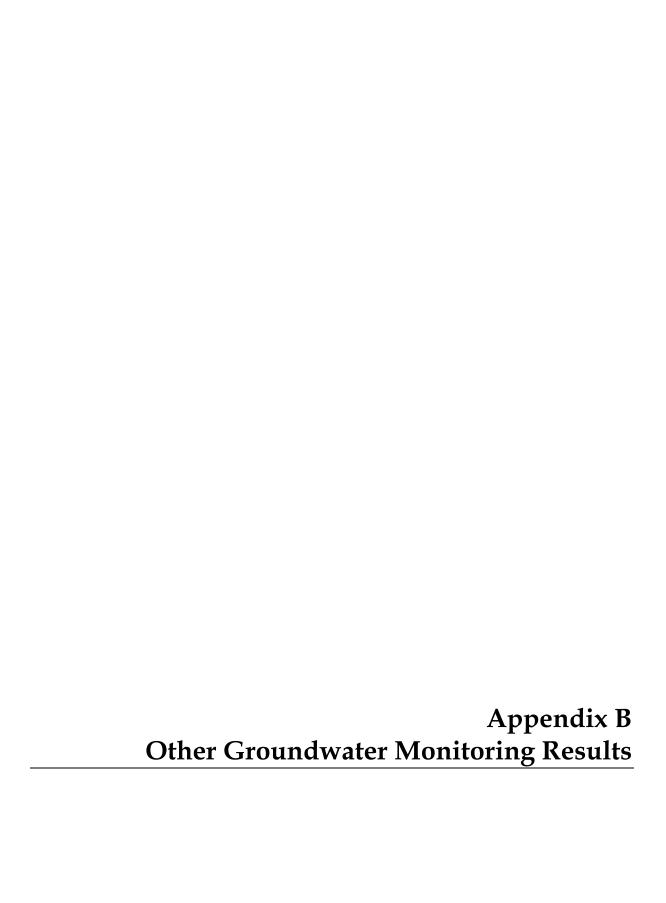


Table B-1
Arsenic Results in Monitoring Wells, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date		Dissolved Arsenic (μg/L)	
MW-10	SA	07-Dec-10		7.2	
		07-Dec-10	FD	6.9	
MW-12	SA	06-Apr-10		63.0	
		06-Apr-10	FD	63.0	
		06-May-10		64.2	
		06-May-10	FD	66.9	
		30-Sep-10		53.4	
		30-Sep-10	FD	55.4	
		16-Dec-10		53.0	
		10-Feb-11		48.0	
		06-May-11		49.0	
MW-13	SA	07-Dec-10		1.9	
MW-16	SA	10-Dec-10		9.7	
		02-May-11		10.0	
MW-17	SA	14-Dec-10		1.2	
		03-May-11		1.3	
MW-20-130 ¹	DA	10-Feb-11		4.9	
		06-May-11		5.1	
MW-22	SA	07-Dec-10		12.0	
		03-May-11		12.0	
MW-23-060	BR-S	14-Dec-10		3.0	
		04-May-11		2.5	
MW-23-080	BR-S	14-Dec-10		2.6	
		04-May-11		3.3	
		04-May-11	FD	3.4	
MW-25	SA	07-Dec-10		1.5	
MW-26	SA	15-Dec-10		1.7	
		05-May-11		1.4	
MW-27-20	SA	07-Dec-10		2.9	
MW-27-60	MA	07-Dec-10		7.1	
MW-27-85	DA	29-Apr-10		5.6	
-		01-Oct-10		1.8	
		07-Dec-10		1.4	
		08-Feb-11		1.3	
		08-Feb-11	FD	1.3	
		28-Apr-11		1.4	
		28-Apr-11	FD	1.4	

Table B-1
Arsenic Results in Monitoring Wells, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date		Dissolved Arsenic (μg/L)	
MW-28-25	SA	08-Dec-10		1.7	
		02-May-11		2.0	
MW-28-90	DA	29-Apr-10		2.8	
		28-Sep-10		2.3	
		08-Dec-10		1.8	
		08-Feb-11		1.7	
		02-May-11		2.0	
MW-29	SA	14-Dec-10		21.0	
		29-Apr-11		9.0	
MW-30-30	SA	07-Dec-10		1.6	
MW-30-50	MA	07-Dec-10		9.7	
MW-31-60	SA	15-Dec-10		1.1	
MW-31-135	DA	15-Dec-10		3.7	
MW-32-20	SA	08-Dec-10		2.6	
MW-32-35	SA	09-Dec-10		22.0	
		02-May-11		26.0	
MW-33-40	SA	30-Apr-10		20.3	
		28-Sep-10		19.4	
		10-Dec-10		11.0	
		09-Feb-11		12.0	
		02-May-11		19.0	
MW-33-90	MA	10-Dec-10		1.3	
MW-34-55	MA	07-Dec-10		2.5	
MW-34-80	DA	29-Apr-10		2.2	
		01-Oct-10		1.5	
		07-Dec-10		1.3	
		07-Feb-11		1.3	
		07-Feb-11	FD	1.2	
		28-Apr-11		1.4	
MW-34-100	DA	29-Apr-10		2.2	
		29-Apr-10	FD	3.4	
		01-Oct-10		1.7	
		01-Oct-10	FD	1.7	
		09-Nov-10		1.6	
		08-Dec-10		1.3	
			FD	1.3	
		11-Jan-11		1.2	

Table B-1
Arsenic Results in Monitoring Wells, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Dissolved Arsenic (μg/L)
MW-34-100	DA	07-Feb-11	1.5
		28-Apr-11	1.4
		28-Apr-11 _{FD}	1.3
MW-35-135	DA	14-Dec-10	0.9
MW-36-20	SA	07-Dec-10	1.9
MW-36-40	SA	07-Dec-10	4.7
MW-36-50	MA	08-Dec-10	3.6
MW-36-70	MA	07-Dec-10	7.1
MW-36-90	DA	08-Dec-10	17.0
		08-Dec-10 _{FD}	18.0
		02-May-11	19.0
MW-36-100	DA	15-Dec-10	5.1
		03-May-11	6.3
MW-37S	MA	10-Dec-10	1.7
MW-39-50	MA	08-Dec-10	8.6
MW-39-60	MA	09-Dec-10	6.0
MW-39-100	DA	14-Dec-10	2.2
MW-40D	DA	15-Dec-10	4.2
		05-May-11	4.3
MW-41D	DA	08-Dec-10	2.4
MW-41M	DA	08-Dec-10	2.0
MW-41S	SA	08-Dec-10	2.0
		08-Dec-10 _{FD}	1.9
MW-42-30	SA	06-Dec-10	2.2
MW-42-55	MA	29-Apr-10	14.2
		27-Sep-10	12.5
		06-Dec-10	12.0
		07-Feb-11	12.0
		29-Apr-11	13.0
MW-42-65	MA	29-Apr-10	3.3
		27-Sep-10	3.0
		06-Dec-10	1.8
		07-Feb-11	1.9
		29-Apr-11	2.2
MW-43-25	SA	09-Dec-10	19.0
		29-Apr-11	20.0

Table B-1
Arsenic Results in Monitoring Wells, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date		Dissolved Arsenic (µg/L)	
MW-43-75	DA	09-Dec-10		11.0	
MW-43-90	DA	09-Dec-10		3.7	
		29-Apr-11		3.3	
MW-44-70	MA	09-Dec-10		3.1	
		03-May-11		3.3	
MW-44-115	DA	09-Dec-10		5.1	
		09-Dec-10	FD	5.0	
		03-May-11		5.6	
MW-44-125	DA	09-Dec-10		4.0	
		09-Dec-10	FD	3.8	
		03-May-11		3.7	
		03-May-11	FD	3.4	
MW-45-095a	DA	14-Dec-10		3.6	
MW-47-55	SA	13-Dec-10		1.1	
		13-Dec-10	FD	1.2	
MW-49-135	DA	13-Dec-10		1.6	
MW-51	MA	16-Dec-10		3.9	
		06-May-11		3.9	
MW-52D	DA	09-Dec-10		3.3	
		03-May-11		3.3	
MW-52M	DA	09-Dec-10		1.3	
		03-May-11		1.2	
MW-52S	MA	09-Dec-10		0.35	
		03-May-11		0.5	
MW-53D	DA	09-Dec-10		2.9	
		03-May-11		3.2 J	
MW-53M	DA	10-Dec-10		1.0	
		03-May-11		0.96	
MW-54-85	DA	05-May-11		ND (5.0)	
MW-54-140	DA	05-May-11		ND (5.0)	
MW-54-195	DA	05-May-11		ND (5.0) J	
		05-May-11	FD	ND (5.0) J	
MW-57-070	BR	15-Dec-10		1.4	
		15-Dec-10	FD	1.5	
MW-57-185	BR-D	09-Dec-10		11.0	
		03-May-11		12.0	

Table B-1
Arsenic Results in Monitoring Wells, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Dissolved Arsenic (μg/L)
MW-58BR-LWR	BR	16-Sep-10	3.2
		07-Oct-10	3.2
MW-58BR-LWR-160	BR	10-Feb-11	1.6
		04-Apr-11	1.6
MW-58BR-UPR	BR	14-Sep-10	5.9
		06-Oct-10	5.6
MW-58BR-UPR-160	BR	01-Feb-11	1.9
		18-Mar-11	1.8
MW-59-100	SA	16-Dec-10	2.1
		06-May-11	2.0
MW-60-125	BR-S	16-Dec-10	1.4
		16-Dec-10 _F	_{-D} 1.5
		05-May-11	1.8
MW-61-110	BR-S	15-Dec-10	3.2
		05-May-11	3.4
MW-62-065	BR-S	15-Dec-10	0.99
MW-62-110	BR-M	04-May-10	12.0
		29-Sep-10	19.5
		16-Dec-10	14.0
		09-Feb-11	14.0
		05-May-11	14.0
MW-62-190	BR-D	04-May-10	9.4
		29-Sep-10	9.5
		16-Dec-10	8.1
		09-Feb-11	8.0
		05-May-11	6.5
MW-63-065	BR-S	06-Dec-10	1.6
		03-May-11	1.6
MW-64-150	BR-S	04-May-10	12.9
		25-Aug-10	10.4
		29-Sep-10	8.2
MW-64-205	BR-D	04-May-10	8.5
		25-Aug-10	6.3
		29-Sep-10	6.6
MW-64-260	BR-D	04-May-10	5.2
		25-Aug-10	3.4
		29-Sep-10	2.6

Table B-1
Arsenic Results in Monitoring Wells, April 2010 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

Well ID	Aquifer Zone	Sample Date	Dissolved Arsenic (µg/L)	
MW-64BR ²	BR	20-Dec-10	5.3	
MW-64BR-LWR-150	BR	24-Feb-11	4.5	
		20-Apr-11	3.9	
MW-64BR-UPR-150	BR	26-Jan-11	2.8	
		12-Apr-11	3.1	
OW-3D	DA	08-Dec-10	2.6	

NOTES:

μg/L = micrograms per liter FD = field duplicate

As a results of a series of storm events in January 2010 the MW-58 cluster (MW-58-115 and MW-58-205) was inundated with flood water. This floodwater destroyed the Flexible Liner Underground Technologies™ well liner that allowed discrete sampling at the 115 feet below ground surface (bgs) and 205 feet bgs depth intervals and was consequently removed from the borehole. The MW-58 bedrock well cluster is now an open borehole. In September 2010 a packer system was installed in the borehole at about 115 ft bgs that divided the open borehole into upper (UPR) and lower (LWR) intervals. In January 2011 the packer was moved to a new location at about 160 ft bgs. Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011 (CH2M HILL, 2010b).

In accordance with DTSC direction, the Flexible Liner Underground Technologies (FLUTe) multi-level monitoring system, which allowed discrete sampling at the 150, 205 and 260 ft bgs depth intervals, was removed from the MW-64BR borehole in December 2010. Following removal of the FLUTe system, the open borehole was developed and a sample of the open borehole was collected on December 20, 2010. At the direction of DTSC, a packer system was installed in January 2011 at about 150 ft bgs. Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011 (CH2M HILL, 2010b).

The California primary drinking water standards Maximum Contaminant Level (MCL) for Arsenic is 10 ug/L. The background level for Arsenic at the site is 24.3 ug/L.

Wells are assigned to separate Aquifer zones for results reporting:

SA: shallow interval of Alluvial Aquifer MA: mid-depth interval of Alluvial Aquifer DA: deep interval of Alluvial Aquifer PA: perched aquifer (unsaturated zone)

BR: well completed in bedrock (Miocene Conglomerate or pre-Tertiary crystalline rock)

BR-S: well completed in shallowest portion of BR BR-M: well completed in middle portion of BR BR-D: well completed in deeper portion of BR

¹ Data collected February 2011 due to field logistical issues.

One-time sample collected from an open borehole.

Table B-2
Analytical Results for Packer Wells, Second Quarter 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

			MW-58BR-LWR-160	MW-64BR-UPR-150	MW-64BR-LWR-150
Analyte	Method	Units	04/4/2011	04/12/2011	04/20/2011
Anions					
Chloride	300	mg/L	2,900	3,500	5,500
Nitrate (as nitrogen)	300	mg/L	1.1	3.4	ND (2.5)
General Chemistry					
Total dissolved solids	SM2540C	mg/L	5,600	7,800	9,600
Metals					
Arsenic, dissolved	6020A	μg/L	1.6	3.1	3.9
Chromium, Hexavalent	218.6	μg/L	100	130	2.1
Chromium, total dissolved	6010B/6020A	μg/L	110	140	3.2
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,1,1-Trichloroethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,1,2,2-Tetrachloroethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,1,2-Trichloroethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,1,2-Trichlorotrifluoroethane (Freon 113) 8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloropropene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,2,3-Trichlorobenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,2,3-Trichloropropane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,2,4-Trichlorobenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,2,4-Trimethylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0) J
1,2-Dibromo-3-chloropropane	8260	μg/L	ND (2.0)	ND (2.0)	ND (2.0)
1,2-Dibromoethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichlorobenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichloroethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichloropropane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,3,5-Trimethylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,3-Dichlorobenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,3-Dichloropropane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dichlorobenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
2,2-Dichloropropane	8260	μg/L	ND (1.0) J	ND (1.0) J	ND (1.0) J
2-Chlorotoluene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
4-Isopropyltoluene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Acetone	8260	μg/L	ND (10) J	ND (10) J	15.0 J
Acrolein	8260	μg/L	ND (20) J	ND (20) J	ND (20) J
Acrylonitrile	8260	μg/L	ND (20)	ND (20) J	ND (20)

Table B-2
Analytical Results for Packer Wells, Second Quarter 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

			MW-58BR-LWR-160	MW-64BR-UPR-150	MW-64BR-LWR-156
Analyte	Method	Units	04/4/2011	04/12/2011	04/20/2011
Volatile Organic Compounds					
Benzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Bromobenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Bromochloromethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Bromodichloromethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Bromoform	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Bromomethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Carbon disulfide	8260	μg/L	ND (1.0)	1.1	ND (1.0)
Carbon tetrachloride	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Chlorobenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Chloroethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Chloroform	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Chloromethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
cis-1,2-Dichloroethene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
cis-1,3-Dichloropropene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Dibromochloromethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Dibromomethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Dichlorodifluoromethane	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Ethylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Hexachlorobutadiene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
sopropylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
m,p-Xylenes	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Methyl ethyl ketone	8260	μg/L	ND (10) J	ND (10) J	ND (10) J
Methyl isobutyl ketone	8260	μg/L	ND (10)	ND (10)	ND (10)
Methyl tert-butyl ether (MTBE)	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Methylene chloride	8260	μg/L	ND (5.0)	ND (5.0)	ND (5.0)
Naphthalene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
N-Butylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
N-Propylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
o-Xylene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
o-Chlorotoluene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
sec-Butylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Styrene	8260	μg/L	ND (1.0) J	ND (1.0) J	ND (1.0) J
tert-Butylbenzene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Toluene	8260	μg/L	ND (2.5)	58.0 J	14.0
trans-1,2-Dichloroethene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)

Table B-2

Analytical Results for Packer Wells, Second Quarter 2011

Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report

PG&E Topock Compressor Station, Needles, California

			MW-58BR-LWR-160	MW-64BR-UPR-150	MW-64BR-LWR-150
Analyte	Method	Units	04/4/2011	04/12/2011	04/20/2011
Volatile Organic Compounds					
trans-1,3-Dichloropropene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Trichloroethene	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Trichlorofluoromethane (Freon 11)	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl chloride	8260	μg/L	ND (1.0)	ND (1.0)	ND (1.0)
Xylenes, total	8260	μg/L	ND (2.0)	ND (2.0)	ND (2.0)

NOTES:

ND not detected at listed reporting limit

ug/L micrograms per liter mg/L milligrams per liter

J concentration or RL estimated by laboratory or data validation

As a results of a series of storm events in January 2010 the MW-58 cluster (MW-58-115 and MW-58-205) was inundated with flood water. This floodwater destroyed the Flexible Liner Underground Technologies™ well liner that allowed discrete sampling at the 115 feet below ground surface (bgs) and 205 feet bgs depth intervals and was consequently removed from the borehole. The MW-58 bedrock well cluster is now an open borehole with a packer system installed. In September 2010 a packer system was installed in the borehole at about 115 ft bgs that divided the open borehole into upper (UPR) and lower (LWR) intervals. In January 2011 the packer was moved to a new location at about 160 ft bgs. Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011 (CH2M HILL, 2010b).

In accordance with DTSC direction, the Flexible Liner Underground Technologies (FLUTe) multi-level monitoring system, which allowed discrete sampling at the 150, 205 and 260 ft bgs depth intervals, was removed from the MW-64BR borehole in December 2010. Following removal of the FLUTe system, the open borehole was developed and a sample of the open borehole was collected on December 20, 2010. At the direction of DTSC, a packer system was installed in January 2011 at about 150 ft bgs. Monitoring continues at this well as part of the East Ravine Investigation as of June 2011. Results will be reported under separate cover in late 2011 (CH2M HILL, 2010b).

Table B-3 Background Metals, Second Quarter 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report PG&E Topock Compressor Station, Needles, California

			Metals in μg/L														General Metals in mg/L							
	California MCL:	6	10	200	1,000	4	5	NE	50	1,000*	15	2	NE	100	50	100*	2	NE	5,000*	NE	NE	0.3*	NE	0.05*
Well ID	Sample Date	Antimony	Arsenic	Aluminum	Barium	Beryllium	Cadmium	Cobalt	Chromium	Copper	Lead	Mercury	Molybdenum	n Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Boron	Calcium	Iron	Magnesium	Manganese
MW-16	05/02/2011	ND (10)	10.0	ND (50)	30.0	ND (1.0)	ND (3.0)	ND (3.0)	10.6	ND (5.0)	ND (10)	ND (0.2)	13.0	ND (5.0)	1.6	ND (3.0)	ND (0.5)	35.0	ND (10)	0.31	0.028	0.03	5.0	ND (0.01)
MW-17	05/03/2011	ND (10)	1.3	ND (50)	25.0	ND (1.0)	ND (3.0)	ND (3.0)	15.9	ND (5.0)	ND (10)	ND (0.2)	15.0	ND (5.0)	11.0	ND (3.0)	ND (0.5)	4.9	21.0	0.23	0.089	ND (0.02)	12.0	ND (0.01)

Notes:

μg/L micrograms per liter

mg/L milligrams per liter

not detected at listed reporting limit field duplicate sample NĎ

FD

NE not established

Secondary USEPA MCL

J= concentration or reporting limit estimated by laboratory or data validation

The maximum contaminant levels (MCLs) listed are the California primary drinking water standards, except where noted.

All results are dissolved metals from field-filtered samples.

Metals analyzed by Methods SW6010B or SW6020A or SW7470A.

Page 1 of 1

Appendix C Groundwater Monitoring Data for GMP and Interim Measures Monitoring Wells

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Commis	Total Dissolved							Alkalinity		Diss	olved Metals	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	,	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring V	Vells													
MW-20-70	10-Mar-05	1940	-7.1	-59.0	740	378	9.98	ND (1.0)	81.7	198	55.4	9.89	431	0.412
	15-Jun-05	1980	-7.0	-60.0	749	388	9.79	ND (1.0)	73.8	189	55.4	10.5	433	0.414
	15-Jun-05 FD	2050	-8.3	-57.0	760	392	9.81	ND (1.0)	71.3	204	60.7	11.4	468	0.445
	11-Oct-05	1950	-7.2	-57.0	737	359	9.48	0.641	69.9	198	49.9	14.6	323	0.402
	15-Dec-05	1830	-7.1	-49.0	645	326	9.90	ND (1.0)	77.8	138	42.3	14.5	267	0.441
	10-Mar-06	1940	-7.2	-54.0	679	358	10.5	ND (0.5)	82.2	161	48.6	9.22	424	0.427
	05-May-06	1750	-8.2	-55.9	696	376	9.86	0.574	74.5	162	49.2	9.55	461	0.476
	03-Oct-06	1890	-8.1	-60.4	677	357	13.0	ND (5.0)	85.0	158	47.6	9.82	472	0.535
	03-Oct-06 FD	1840	-8.1	-60.5	669	352	12.9	ND (5.0)	80.0	154	45.9	9.51	466	0.515
	13-Dec-06	1910	-7.6	-61.2	678	352	12.7	0.699	77.5	149	44.3	9.09	458	0.459
	14-Mar-07	1740	-8.5	-64.3	689	358	13.7	0.641	80.0	139	42.2	8.83	451	0.503
	03-May-07	1750	-8.4	-66.7	697	344	25.1	ND (1.0)	77.5	139	41.2	8.65	390	0.477
	11-Oct-07	1820	-8.2	-63.9	699	367	15.6	ND (1.0)	80.0	130	39.1	11.0	600	0.54
	12-Mar-08	1790	-7.6	-65.2	695	360	22.1	ND (1.0)	77.0	139	41.2	10.7	403	0.51
	07-Oct-08	1900	-8.5	-64.4	650	360	15.0	0.61	83.0	136	37.9	10.5	400	0.608
	12-Mar-09	1900	-7.74	-60.8	670	330	17.0	ND (1.0)	79.0	128	40.2	9.95	496	0.549
	25-Sep-09	1700	-8.7	-66.4	700	310	16.0	ND (2.5)	74.0	130	33.0	9.70	390	0.42
	16-Dec-10	1700	-7.5	-62.3	680	320	16.0	0.51	79.0	130	33.0	12.0	400	0.51
MW-20-100 a	10-Mar-05	2490	-5.2	-49.0	466	511	9.98	ND (1.0)	84.2	133	19.8	8.98	712	0.859
	15-Jun-05	2500	-4.7	-46.0	921	506	9.02	ND (1.0)	84.0	137	21.3	9.06	592	0.713
	11-Oct-05	2400	-5.3	-48.0	887	484	8.87	0.731	82.3	170	23.7	15.2	500	0.718
	15-Dec-05	2340	-5.4	-40.0	813	404	9.65	ND (1.0)	82.7	136	21.4	14.8	406	0.709
	10-Mar-06	2500	-5.6	-50.3	861	475	9.94	ND (0.5)	92.5	171	27.0	7.75	597	0.803
	05-May-06	2260	-5.1	-46.4	927	522	9.99	ND (1.0)	82.5	193	32.0	10.8	577	0.716

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Comple	Total Dissolved							Alkalinity		Diss	olved Metals	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	(total)		Magnesium	Potassium	Sodium	Boron
Monitoring V	Vells													
MW-20-100 a	03-Oct-06	2320	-5.8	-51.5	863	456	13.4	ND (5.0)	90.0	202	34.4	10.9 J	568	0.874
	13-Dec-06	1960	-6.2	-54.4	861	459	12.3	0.83	97.5	205	32.2	11.4	579	0.889
	13-Dec-06 FD	2200	-6.2	-54.5	874	457	12.2	0.851	92.5	205	32.2	9.55	575	0.881
	14-Mar-07	2180	-6.8	-57.8	847	477	14.2	0.785	87.5	194	31.7	9.90	521	0.715
	03-May-07	2300	-7.3	-59.2	879	493	23.2	ND (1.0)	87.5	209	36.0	12.0 J	559	0.699
	03-May-07 FD	2330	-6.7	-59.3	888	484	19.7	ND (1.0)	87.5	208	34.6	9.63 J	532	0.686
	10-Oct-07	2160	-7.2	-57.2	858	468	3.25	ND (1.0)	92.0	190	32.0	15.0	560	0.81
	12-Mar-08	2470	-6.9	-58.3	827	442	19.2	ND (1.0)	870	218	35.4	11.9	469	0.702
	08-Oct-08	2200	-7.9	-60.2	760	420	16.0	ND (1.0)	90.0	215	36.8	10.3	453	0.669
	13-Mar-09	2200	-7.08	-58.2	770	420	16.0	ND (1.0)	97.0	213	36.4	11.6	543	0.89
	25-Sep-09	2000	-7.67	-62.8	750	400	16.0	ND (2.5)	89.0	200	30.0	12.0	430	0.70
	10-Feb-11	1800	-7.0	-58.8	610	380	15.0	0.57	120	180	28.0	14.0	400	0.81
MW-20-130 a	09-Mar-05	5520	-5.8	-56.0	3120	1080	10.9	ND (1.0)	68.9	219	12.1	24.7	2250	1.90
	09-Mar-05 FD	6200	-5.4	-51.0	3080	1080	10.9	ND (1.0)	68.9	231	12.8	25.4	2390	1.99
	15-Jun-05	7790	-5.0	-48.0	3410	1230	11.1	ND (1.0)	68.7	352	23.2	31.3	2980	2.75
	07-Oct-05	7330	-5.0	-47.0	3010	1210	10.9	1.04 J	72.4	349	13.9	38.4	2070	2.41
	16-Dec-05	7860	-5.8	-43.0	3260	1000	10.7	ND (2.5)	63.2	324	16.3	44.4	1780	1.98
	10-Mar-06	8610	-5.5	-48.8	3370	1250	10.6	ND (0.5)	74.5	312	18.9	27.7	2730	2.03
	05-May-06	7700	-5.3	-47.2	3900	1280	8.95	ND (1.0)	69.2	349	20.3	27.7	2810	2.40
	18-Oct-06	8450	-6.3	-51.4	3680	1100	11.5	ND (5.0)	70.0	358	20.9	28.0	2870	2.28
	13-Dec-06	7890	-6.0	-54.9	3970	1250	10.6	0.896	72.5	335	19.7	27.6	2900	2.31
	13-Dec-06 FD	8250	-5.9	-54.4	3950	1260	10.5	1.09	72.5	328	19.1	27.3	2830	2.24
	08-Mar-07	8450	-6.5	-57.7	3930	1240	11.3	1.08	70.0	353	21.3	27.0	2760	2.24
	08-Mar-07 FD	8510	-6.6	-57.4	3900	1210	11.3	1.06	72.5	351	21.3	26.8	2750	2.19

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Commis	Total Dissolved							Alkalinity		Diss	olved Metal	S	
Location	oup.o	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	(total)	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring	ı Wells													
	a 03-May-07	8150	-7.7	-60.0	4020	1310	9.80 J	ND (1.0)	75.0	338	22.5	27.8	2550	2.49
	03-May-07 FD	8100	-6.9	-60.1	3950	1290	20.4 J	ND (1.0)	72.5	338	21.9	27.3	2550	2.47
	05-Oct-07	7980	-7.0	-57.5	3670	1070	11.6	ND (1.0)	77.0	310	19.0	31.0	2900	2.40
	12-Mar-08	8460	-6.2	-58.7	3690	1220	14.3	ND (1.0)	75.0	342	23.4	47.0	2260	2.07
	08-Oct-08	7800	-7.3	-59.6	3500	1200	12.0	ND (2.5)	81.0	329	22.0	40.1	1990	2.23
	13-Mar-09	8100	-6.58	-56.4	3600	1100	11.0	ND (2.5)	79.0	350	22.7	41.4	2550	2.16
	25-Sep-09	6500	-7.59	-61.7	3500	1100	13.0	ND (2.5)	76.0	280	17.0	33.0	2400	2.00
	10-Feb-11	5900	-6.6	-59.0	3100	1100	13.0	1.00	80.0	310	18.0	50.0	2100	2.20
MW-25	09-Mar-05	877	-8.4	-62.0	247	169	3.64	ND (0.5)	158	77.6	16.1	6.24	211	0.441
	14-Jun-05	942	-8.6	-61.0	289	183	3.89	ND (0.5)	137	93.5	20.0	8.91	253	0.464
	14-Jun-05 FD	980	-7.2	-59.0	294	185	3.94	ND (0.5)	137	100	20.9	9.06	268	0.475
	04-Oct-05	950	-8.2	-68.0	252	171	3.77	ND (0.5)	141	83.3	14.9	9.93	164	0.362
	04-Oct-05 FD	910	-8.3	-60.0	251	171	3.75	ND (0.5)	146	94.6	15.3	10.2	185	0.371
	14-Dec-05	838	-8.4	-55.0	224	158	3.74	ND (0.5)	153	75.5	14.5	9.80	143	0.396
	14-Dec-05 FD	896	-8.4	-50.0	219	155	3.75	ND (0.5)	156	73.0	14.1	9.71	151	0.382
	09-Mar-06	910	-8.4	-64.1	245	164	3.83	ND (0.5)	170	76.4	15.6	6.97	210	0.39
	03-May-06	907	-9.0	-59.4	272	172	3.95	ND (0.5)	150	78.0	17.3	7.38	222	0.418
	03-May-06 FD	924	-9.0	-61.0	274	173	3.94	ND (0.5)	155	79.7	17.8	7.53	245	0.431
	03-Oct-06	892	-8.9	-62.7	222	158	4.09	ND (0.5)	163	73.3	15.0	7.25	206	0.466
	06-Mar-07	843	-9.0	-66.9	221	164	3.95	ND (0.5)	160	72.9	14.4	6.85	203	0.459
	02-Oct-07	796	-9.0	-65.8	189	155	4.58	ND (1.0)	180	66.0	14.0	7.90	200	0.49
	02-Oct-07 FD	758	-9.0	-65.7	195	157	4.40	ND (1.0)	190	63.0	13.0	7.70	220	0.46
	07-Oct-08	740	-9.9	-68.5	170	150	4.30	ND (0.5)	200	59.2	12.9	9.89	143	0.559
	07-Oct-08 FD	730	-10.1	-69.1	170	150	4.40	ND (0.5)	210	58.4	12.9	10.2	144	0.559

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Commis	Total Dissolved							Alkalinity		Diss	olved Metal	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	(total)	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring \	Wells													
MW-25	21-Sep-09	660	-8.91	-69.9	180	130	4.30	ND (0.5)	200	64.0	12.0	7.20	180	0.46
	21-Sep-09 FD	650	-8.87	-69.5	180	130	4.30	ND (0.5)	200	64.0	12.0	7.90	190	0.47
	07-Dec-10	780	-9.4	-68.9	220	120	4.80	ND (1.0)	180	74.0	15.0	10.0	180	0.43
MW-26	08-Mar-05	1840	-8.8	-70.0	756	370	4.48	ND (0.5)	98.7	166	41.6	10.7	439	0.557
	08-Mar-05 FD	1800	-8.7	-70.0	708	338	4.45	ND (0.5)	96.1	166	40.9	11.4	438	0.559
	13-Jun-05	2130	-8.2	-65.0	847	371	4.90	ND (0.5)	103	178	44.6	14.0	511	0.663
	04-Oct-05	2120	-7.8	-68.0	779	372	4.88	0.601	109	166	40.4	19.8	352	0.526
	12-Dec-05	2610	-8.5	-55.0	788	372	4.88	0.546	99.7	162	39.9	20.3	349	0.613
	08-Mar-06	2070	-8.6	-60.4	772	324	4.90	ND (0.5)	121	155	38.1	11.7	434 J	0.621
	01-May-06	2130	-8.9	-62.7	927	382	4.87	ND (0.5)	121	165	42.0	12.8	555	0.723
	03-Oct-06	2220	-8.8	-63.0	894	370	6.22	ND (2.5)	105	170	43.9	12.8	510	0.692
	12-Mar-07	2280	-9.0	-67.0	917	387	6.02	0.646	90.0	163	41.6	12.9	621	0.622
	02-Oct-07	2180	-8.6	-66.3	945	391	7.84	ND (1.0)	100	170	42.0	15.0	620	0.66
	12-Mar-08	2500	-8.1	-67.2	908	398	10.7 J	ND (1.0)	103	176	44.1 J	16.2 J	498	0.589
	12-Mar-08 FD	2420	-8.9	-68.2	905	398	7.61 J	ND (1.0)	102	160	32.8 J	12.7 J	462	0.601
	08-Oct-08	2400	-8.7	-66.5	930	440	10.0	ND (1.0)	110	183	45.8	14.6	555	0.591
	10-Mar-09	2300	-8.41	-65.3	870	440 J	9.80	1.40	100	172	47.9	14.8	585	0.604
	10-Mar-09 FD	2300	-8.68	-65.8	860	440 J	9.70	1.50	100	174	46.2	15.6	631	0.65
	22-Sep-09	2200	-9.04	-68.3	870	450	10.0	ND (1.0)	100	170	39.0	14.0	550	0.59
	15-Dec-10				900	480	12.0		100	180	40.0		560	
MW-27-20	08-Mar-05	1250	-12	-102.0	190	432	ND (0.5)	ND (0.5)	215	137	56.6	4.89	195	ND (0.2)
	18-Jul-05		-11.9	-98.0	81.9	228	ND (0.5)	ND (0.5)	160	96.1	30.1	4.27	94.8	ND (0.2)
	05-Oct-05	742	-11.8	-102.0	91.1	252	ND (0.5)	ND (0.5)	175	88.6	31.4	5.48	81.0	ND (0.2)
	14-Dec-05	1020	-11.7	-91.0	118	347	ND (0.5)	ND (0.5)	216	116	41.8	6.96	116	ND (0.2)

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Commis	Total Dissolved							Alkalinity		Diss	olved Metal	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	(total)	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring \	Wells													
MW-27-20	06-Mar-06	664	-12.1	-90.9	89.7	231	ND (0.2)	ND (0.2)	385	89.1	28.8	4.90	103	ND (0.2)
	14-Jun-06	730	-12	-89.8	98.3	272	ND (0.5)	ND (0.5)	195	91.1	28.5	2.79 J	96.9	ND (0.2)
	03-Oct-06	600	-13.1	-96.6	90.8	261	ND (0.5)	ND (0.5)	160	102	34.5	6.45	113	ND (0.2)
	02-Oct-07	802	-12.5	-96.3	102	320	ND (1.0)	ND (1.0)	170	97.0	34.0	5.30	150	0.22
	03-Oct-08				94.0	240	ND (0.5)			87.9	29.5		110	
	01-Oct-09				88.0	230	ND (0.5)		130	84.0	25.0		87.0	
	07-Dec-10				86.0	220	ND (0.5)		200	87.0	29.0		93.0	
MW-28-25	10-Mar-05	880	-12.2	-95.0	112	302	ND (0.5)	ND (0.5)	204	129	36.3	3.50	122	ND (0.2)
	15-Jun-05	974	-11.6	-91.0	108	359	ND (0.5)	ND (0.5)	221	133	38.9	6.54	117	ND (0.2)
	06-Oct-05	884	-11.7	-95.0	99.8	300	ND (0.5)	ND (0.5)	197	123	37.0	6.61	88.7	ND (0.2)
	16-Dec-05	1010	-11.4	-90.0	128	348	ND (0.5)	ND (0.5)	212	134	41.5	6.46	107	ND (0.2)
	09-Mar-06	746	-11.5	-93.9	84.4	225	ND (0.5)	ND (0.5)	244	98.5	27.5	4.15 J	88.5	ND (0.2)
	05-May-06	741	-11.4	-90.3	110	302	ND (0.5)	ND (0.5)	216	117	35.7	5.77	118	ND (0.2)
	11-Oct-06	1050	-12.2	-95.0	86.3	247	ND (0.5)	ND (0.5)	225	133	40.8	5.47	132	ND (0.2)
	04-Oct-07	812	-12.1	-98.7	110	307	ND (1.0)	ND (1.0)	230	120	37.0 J	4.80	150	0.26 J
	08-Oct-08				100	280	ND (0.5)		220	109	34.7		102	
	24-Sep-09				94.0	240	ND (0.5)		200	100	27.0		100 J	
	08-Dec-10				90.0	230	ND (0.5)		190	110	31.0		95.0	
MW-30-30	10-Mar-05	38800	-9.8	-79.0	16000	4270	ND (5.0)	7.91	421	1590	1600	95.4	13600	4.97
	07-Oct-05	36400	-8.5	-75.0	17600	4000	ND (0.5)	ND (10)	521	1020	842	93.6	7650	5.20
	15-Dec-05	35700	-8.7	-59.0	19700	4070	ND (1.0)	3.13	504	1060	894	110	8540	6.14
	13-Mar-06	39700 J	-8.8	-70.5	18600	4530	ND (0.5)	ND (50)	650	1050	892	77.2	11300	4.62
	02-May-06	32400	-10.3	-70.7	15400	3300	ND (0.5)	ND (5.0)	756	882	828	59.4	10300	3.95
	10-Oct-06	29400	-9.4	-68.7	17800	4400	ND (2.5)	ND (2.5)	550	729	653	55.0	10200	4.32

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Comer-1-	Total Dissolved							Alkalinity		Diss	olved Metals	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	•	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring \	Wells													
MW-30-30	08-Oct-07	27400	-9.0	-73.9	13700	3370	ND (1.0)	3.88	800	650	540	56.0	9600	4.50
	24-Sep-09				5800	1700	ND (5.0)		550	280	220		3800	
	07-Dec-10				7200	1900	ND (1.0)		790	390	290		4800	
MW-30-50	10-Mar-05	6470 J	-8.3	-68.0	4660	672	ND (0.5)	1.03	324	335	107	16.5	2040	1.15
	07-Oct-05	6860	-9.4	-79.0	3060	857	ND (0.5)	0.899 J	252	438	101	37.0	1780	1.27
	16-Dec-05	5850	-10.5	-65.0	2360	578	ND (0.5)	0.645	212	265	77.9	32.9	1260	1.19
	09-Mar-06	5380	-9.8	-83.5	2420	651	ND (0.5)	ND (0.5)	275	226	66.2	14.6	1640	1.18
	02-May-06	5420	-10.4	-73.6	2380	612	ND (0.5)	3.41	261	243	70.3	16.4	1750	1.22
	11-Oct-06	4170	-10.7	-82.2	1980	468	ND (0.5)	ND (0.5)	290	171	48.5	14.0	1370	1.11
	11-Oct-06 FD	3930	-11	-82.6	1810	462	ND (0.5)	ND (0.5)	298	163	46.1	14.1	1340	1.08
	24-Sep-09								220	19.0	4.80		270	
	07-Dec-10		-12.2	-97.5	140	220	ND (0.5)		200	15.0	4.20		260	
MW-31-60	09-Mar-05	1540	-8.6	-63.0	649	210	4.94	ND (0.5)	76.6	108	17.3	5.97	424	0.401
	13-Jun-05	1660	-8.2	-65.0	745	207	4.12	ND (0.5)	70.0	121	18.9	6.57	403	0.388
	06-Oct-05	1660	-8.6	-65.0	691	206	4.01	ND (0.5)	77.3	109	16.5	9.75	308	0.462
	13-Dec-05	1620	-8.7	-54.0	669	199	4.14	ND (0.5)	73.0	87.0	15.4	9.32	275	0.359
	15-Mar-06	1560 J	-8.6	-65.6	661	191	4.37	ND (0.5)	89.3	106	17.5	7.30	403	0.393
	15-Mar-06 FD	1640 J	-8.6	-64.9	662	192	4.34	ND (0.5)	81.9	101	16.8	6.94	391	0.383
	01-May-06	1630	-9.6	-63.2	691	209	4.58	ND (0.5)	79.6	118	20.1	7.78	467	0.449
	05-Oct-06	1620	-9.4	-66.3	687	205	5.00	ND (0.5)	80.0	113	20.6	9.60 J	325	0.464
	12-Mar-07	1750	-9.3	-69.0	757	222	4.93	ND (0.5)	72.5	116	20.3	6.05	454	0.402 J
	04-Oct-07	1720	-9.4	-69.6	799	208	5.15	ND (1.0)	80.0	150	26.0	7.30	580	0.64
	06-Oct-08	2000	-10.2	-72.2	810	240	4.20	ND (1.0)	81.0	150	26.0	9.39	460	0.399
	21-Sep-09	1800	-9.23	-72.1	870	220	3.70	ND (1.0)	75.0	160	26.0	9.60	480	0.43

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Commis	Total Dissolved							Alkalinity		Diss	olved Metal	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	(total)	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring \	Wells													
MW-31-60	15-Dec-10	2000	-9.0	-69.3	840	210	3.50	ND (0.5)	78.0	170	27.0	12.0	440	0.43
MW-32-20	09-Mar-05	12500	-7.2	-65.0	6930	1660	ND (0.5)	3.51	123	838	302	36.9	4000	2.76
	17-Jun-05	10200	-9.0	-67.0	4810	690	ND (0.5)	ND (2.5)	676	566	231	23.3	2620	1.75
	04-Oct-05	28800	-7.8	-65.0	14200	2420	ND (5.0)	6.19	733	1380 J	613 J	91.1 J	5400 J	4.75 J
	16-Dec-05	24600	-7.8	-61.0	12200	2140	ND (1.0)	3.48	861	1470	552	90.4	4950	4.16
	10-Mar-06	20900	-8.3	-65.5	10600	1970	ND (0.5)	ND (0.5)	432	1350	530	56.1	6440	3.54
	04-May-06	16900	-8.1	-64.9	9430	1380	ND (0.5)	2.35	218	937	445	46.0	4780	2.87
	02-Oct-06	46200 J	-8.6	-67.1	20200	3190	ND (2.5)	7.30	660	1870	1070	87.0	11300	6.34
	11-Dec-06	37900	-8.0	-67.0	17900	3020	ND (5.0)	7.67	825	1530	785	81.7	8420	4.98
	06-Mar-07	27600	-8.7	-72.7	16200	2210	0.925	5.93	765	1460	635	64.4	7110	3.92
	30-Apr-07	17700	-9.6	-78.1	9820	1310	ND (0.2)	3.78	770	965	484	51.4	5520	3.02
	01-Oct-07	37200	-8.3	-70.1	20600	3160	ND (1.0)	6.44	700	1800	1100	93.0	9900	5.70
	10-Mar-08	26000	-9.4	-72.6	15800	2280	ND (1.0)	5.66	800	1190	710	67.4	11600	2.31
	03-Oct-08				21000	3500	ND (5.0)		640	1700	1080		9550	
	10-Mar-09	29000	-8.91	-70.5	15000	2100 J	ND (5.0)	15.0	750	1620	970	96.6	7020	3.53
	22-Sep-09				20000	3600	ND (5.0)		730	1800	740		9300	
	08-Dec-10				17000	4100	ND (5.0)		830	1600	720		11000	
MW-32-35	09-Mar-05	3560	-8.2	-68.0	1770	465	ND (0.5)	0.845	260	312	85.5	13.0	944	1.07
	17-Jun-05	7550	-9.5	-72.0	3520	787	ND (0.5)	ND (2.5)	223	506	120	14.8	2110	1.18
	04-Oct-05	8340	-8.3	-70.0	3840	765	ND (0.5)	ND (5.0)	208	567	134	29.3	1530	1.26
	16-Dec-05	7660	-8.8	-63.0	3510	710	ND (1.0)	1.02	219	606	128	30.0	1580	1.25
	10-Mar-06	9230	-8.6	-74.0	4210	1010	ND (0.5)	ND (0.5)	234	654	129	19.2	2360	1.13
	04-May-06	9840	-9.1	-67.8	4960	1130	ND (0.5)	ND (0.5)	218	693	148	19.5	2800	1.38
	02-Oct-06	11200	-9.4	-71.4	5430	1050	ND (2.5)	ND (2.5)	290	839	165	23.9	3260	1.48

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	0	Total Dissolved							Alkalinity		Diss	olved Metal	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	(total)	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring \	Wells													
MW-32-35	11-Dec-06	10400	-9.0	-70.4	5090	1000	ND (0.5)	1.90	338	845	173	22.5	2620	1.43
	06-Mar-07	12600	-10.2	-75.4	6070	1200	ND (0.5)	2.65	360	1080	209	23.5	2910	1.35
	30-Apr-07	12100	-9.9	-78.7	6610	1280	ND (0.2)	2.60	475	1250	273	26.2	3280	1.35
	01-Oct-07	13700	-8.9	-72.7	6830	1120	ND (1.0)	2.62	490	1000	390	29.0	4000	1.70
	03-Oct-08	15000	-9.8	-73.1	7600	1300	ND (2.5)	3.10	550	829	150	52.3	3490	1.49
	22-Sep-09	13000	-9.32	-75.2	6900	1400	ND (2.5)	2.80	530	880	400	53.0	3100	1.70
	09-Dec-10	11000	-10.2	-84.2	5500	1600	ND (2.5)	ND (2.5)	590	750	390 J	51.0 J	3000	1.70 J
MW-34-55	10-Mar-05	6230	-10.8	-82.0	2620	739	ND (0.5)	0.654	240	366	71.3	29.1	1900	1.19
	15-Jul-05		-10.3	-84.0	2250	607	ND (0.5)	ND (0.5)	242	247	52.0	16.5	1420	1.02
	05-Oct-05	5150	-10.6	-88.0	2170	619	ND (0.5)	ND (0.5)	232	272	59.1	25.8	1230	1.20
	14-Dec-05	5100	-10.8	-74.0	2150	552	ND (0.5)	0.588	236	217	45.0	27.2	965	0.937
	08-Mar-06	4850	-10.8	-86.8	2080	593	ND (0.5)	ND (0.5)	272	256	54.2	13.5	1640	0.956
	03-May-06	4320	-11.5	-84.3	2070	500	ND (0.5)	ND (0.5)	302	198	44.8	11.1	1360	0.846
	04-Oct-06	1680 J	-12.2	-94.8	443	230	ND (0.5)	ND (0.5)	368	37.6	8.08	4.59	536	0.54
	03-Oct-07	730	-11.3	-96.6	109	266	ND (1.0)	ND (1.0)	190	15.0	3.30	3.30	290	0.26
	07-Oct-08	700	-13	-100.0	100	250	ND (0.5)		170	72.4	16.9	5.26	192	0.248
	30-Sep-09	700	-12.3	-101.0					160	77.0	17.0	4.40	120	0.15
	07-Dec-10	590	-12.1	-98.8	87.0	230	ND (0.5)	ND (0.5)	140	81.0	19.0	5.10	100	0.10
MW-34-80	08-Mar-05	6940	-10.4	-83.0	4180	1040	ND (0.5)	1.01	304	439	68.1	28.0	2750	1.65
	15-Mar-05	8980			3920	ND (5.0)	ND (1.0)		288	445	65.7	29.7	2990	
	30-Jun-05	7840	-8.4	-82.0	3910	979	ND (0.5)	ND (0.5)	302	497	76.5	27.7	2670	1.66
	05-Oct-05	10200	-10.1	-85.0	3880	1060	ND (0.5)	ND (0.5)	302	429	72.5	47.4	1660	1.57
	14-Dec-05	8800	-10.2	-71.0	3700	880	ND (0.5)	0.854	297	432	68.3	54.9	1710	1.54
	09-Mar-06	7830	-9.9	-86.8	3520	986	ND (0.5)	ND (0.5)	313	383	65.8	24.0	2420	1.49

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	Comple	Total Dissolved				_	_		Alkalinity		Diss	olved Metal	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	(total)	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring \	Wells													
MW-34-80	03-May-06	7950	-11.7	-77.6	3700	921	ND (0.5)	ND (0.5)	297	425	70.3	23.9	2480	1.38
	04-Oct-06	7080	-11.3	-81.8	3210	786	ND (0.5)	0.737	268	341	65.4	21.1	2170	1.31
	12-Dec-06	6510	-10.5	-80.9	3190	789	ND (0.5)	0.742	288	298	62.9	18.9	2040	1.26
	05-Mar-07	6360 J	-11.5	-85.8	3300	783	ND (0.5)	0.72	205	315	68.3	19.4	2020	1.29
	30-Apr-07	6390	-11.5	-88.9	3320 J	889 J	ND (0.2)	ND (1.0)	245	282	57.0	18.6	2080	1.33
	03-Oct-07	5490	-11.3	-87.8	2630	696	ND (1.0)	ND (1.0)	240	220	53.0	21.0	2000	1.20
	13-Dec-07	5420	-10.9	-88.6	2380	698	ND (1.0)	ND (1.0)	264	193	49.1	25.4	1450	1.09
	12-Mar-08	5500	-11.4	-87.3	2510	739	ND (1.0)	ND (1.0)	238	237	52.6	19.2	2030	1.14
	06-May-08	5820	-11.4	-87.3	2460	753	ND (0.2)	0.525	216	230	49.0	30.0	1600	1.20
	07-Oct-08	5300	-11.8	-87.6	2400	720	ND (2.0)	ND (2.0)	250	223	46.3	22.0	1220	0.765
	10-Dec-08	5300	-11	-93.1	2190	698	ND (1.0)	ND (1.0)	253	147	45.2	20.6	3880	1.11
	10-Mar-09	5100	-10.9	-84.8	2300	700 J	ND (2.5)	ND (2.5)	240	219	46.3	22.2	1480	1.08
	30-Apr-09	5830	-11.5	-85.8	2340	768	ND (1.0)	ND (1.0)	237	219	50.0	24.6	1510	1.11
	30-Sep-09	4000	-10.8	-88.9	2300	710	ND (1.0)	ND (1.0)	230	240	46.0	22.0	1500	0.98
	09-Dec-09	4580	-11.9	-89.1	2200	690	ND (1.0)	ND (1.0)	230					
	10-Mar-10	4900	-12.1	-91.6	2100	660	ND (1.0)	ND (1.0)	240	220 J	41.0	28.0	1400 J	0.93
	07-Dec-10	4600	-11.1	-87.3	2300	700	ND (1.0)	ND (1.0)	220	240	47.0	24.0	1300	1.00
MW-34-100	14-Mar-05	10800			5010	1210	ND (1.0)		175	221	17.4	34.1	3600	
	21-Jun-05	11300	-9.7	-75.0	5350	1270	1.05	ND (0.5)	179	229	17.4	27.1	3510	2.22
	21-Jun-05 FD	10900 J	-9.5	-77.0	4920	1180	1.03	ND (0.5)	179	243	18.2	32.1	3740	2.36
	05-Oct-05	10400	-9.9	-83.0	4530	1150	1.20	ND (0.5)	172	171	13.8	55.2	2450	2.57
	05-Oct-05 FD	10400	-9.9	-83.0	4680	1200	1.21	ND (0.5)	172	228	14.1	50.9	2730	2.57
	14-Dec-05									226	14.9	62.9	2530	2.32
	14-Dec-05 FD									220	15.1	64.2	2530	2.40

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	0	Total Dissolved							Alkalinity		Diss	olved Metal	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	•	Calcium	Magnesium	Potassium	Sodium	Boron
Monitoring '	Wells													
MW-34-100	08-Mar-06	10000	-11.4	-75.5 J	4720	1180	1.39		152	179	12.1	32.5	3580	2.41
	08-Mar-06 FD	10100	-10.1	-102 J	4920	1220	1.39		159	182	11.9	36.5	3530	2.46
	30-Apr-07	10600	-10.9	-80.7	5920	1040	1.38		123	186	12.0	31.5	3840	2.39
	30-Apr-07 FD	11900	-11.2	-82.1	5880	1050	1.37		123	189	12.0	32.1	3920	2.40
	03-Oct-07	10700	-10.2	-78.2	5350	970	1.19	ND (1.0)	120	170	11.0	44.0	4300	2.50
	03-Oct-07 FD	10500	-10.6	-78.4	5360	953	1.03	ND (1.0)	120	160	10.0	43.0	4300	2.40
	07-Oct-08	11000	-10.9	-80.8	5400	1200	ND (2.5)	ND (2.5)	140	158	10.6	54.5	2970 J	2.35
	07-Oct-08 FD	11000	-11	-81.3	5600	1200	ND (2.5)	ND (2.5)	140	184	11.5	56.7	3880 J	2.59
	30-Sep-09				5500	1300	ND (5.0)		170	200	11.0	73.0	3800	2.30
	30-Sep-09 FD				5600	1300	ND (5.0)		170					
	17-Nov-09	11000	-10.5	-82.4				ND (1.0)						
	08-Dec-10	10000	-9.8	-79.5	5800	1300	ND (2.5)	ND (2.5)	140 J	190	9.60	52.0 J	4100	2.60
	08-Dec-10 FD	9900	-10	-80.4	5700	1200	ND (1.0)	ND (1.0)	89.0 J	180	9.80	60.0 J	4000	2.50
MW-50-200	10-Feb-11				6900	1000	6.40		39.0	590	32.0	75.0	4100	
	10-Feb-11 FD				7000	1100	6.10		39.0	570	31.0	73.0	4000	
PGE-8 a	10-Feb-11				6100	2000	ND (2.5)		53.0	870	20.0	96.0 J	3800	
Surface Wat	er Stations													
R-27	07-Mar-05	669	-12.3	-102.0	92.7	244	ND (0.5)	ND (0.5)	136	82.8	31.3	4.72	108	ND (0.2)
	14-Jun-05	686	-11.4	-92.0	90.9	266	ND (0.5)	ND (0.5)	127	81.9	29.8	6.04	98.9	ND (0.2)
	05-Oct-05	678	-11.6	-94.0	85.1	255	ND (0.5)	ND (0.5)	130	101	36.2	6.56	91.2	ND (0.2)
	16-Dec-05	718	-11.7	-87.0	87.9	253	ND (0.5)	ND (0.5)	126	85.5	29.5	5.99	75.6	ND (0.2)
	06-Mar-06	656	-11.8	-92.1	90.6	268	ND (0.5)	ND (0.5)	144	83.5	29.4	5.44 J	101	ND (0.2)
	03-May-06	567	-12.8	-93.9	93.1	267	ND (0.5)	ND (0.5)	139	87.0	31.1	3.12 J	106	ND (0.2)
	04-Oct-06	752 J	-12.2	-94.9	91.5	261	ND (0.5)	ND (0.5)	128	82.9	31.5	6.24 J	98.1	ND (0.2)
		•								•				

\\Zinfande\\Proj\\PacificGasElectricCo\TopockProgram\Database\Tuesdai\PMR\Topock_PMR-GMP2011.mdb\rpt_tableB-2_ChemicalPerformance pkumar2 08/10/2011 12:49:21

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

	0	Total Dissolved							Alkalinity		Diss	olved Metals	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide	•	Calcium	Magnesium	Potassium	Sodium	Boron
Surface Wat	er Stations													
R-27	20-Dec-06	680	-12.7	-98.1	94.5	266	ND (0.5)	ND (0.5)	138	83.2	30.9	3.64	106	ND (0.2)
	13-Mar-07	750 J	-13	-99.5	96.5	267	0.537	ND (0.5)	130	86.9	31.3	4.73	106	ND (0.2)
	08-May-07	715 J	-12.9	-104.0	92.6	269	ND (0.5)	ND (0.5)	143	84.3	29.8	5.55	100	ND (0.2)
	11-Sep-07	650	-12.5	-101.0	89.4	253	0.336	ND (0.2)	132	74.2	28.9	5.47	86.5	ND (0.2)
	05-Dec-07		-11.7	-99.0	94.7	256	ND (1.0)	ND (0.2)	137	89.8	31.7	6.60	93.4	0.157
	02-Apr-08				93.0	267	ND (1.0)	ND (1.0)	136	80.2	30.7	5.50	106	0.432
	17-Jun-08	682	-13	-101.0	91.6	254	ND (1.0)	ND (1.0)	134	76.2	31.8	6.69	89.7	ND (0.2)
R-28	08-Mar-05	651	-12.5	-102.0	90.4	231	ND (13)	ND (0.5)	132	83.7	31.4	5.02	107	ND (0.2)
	14-Jun-05	680	-11.6	-95.0	91.2	268	ND (0.5)	ND (0.5)	127	78.5	28.5	5.08	94.5	ND (0.2)
	05-Oct-05	672	-11.6	-94.0	85.5	255	ND (0.5)	ND (0.5)	122	85.7	30.4	6.30	77.0	ND (0.2)
	16-Dec-05	710	-11.5	-83.0	88.1	254	ND (0.5)	ND (0.5)	126	87.2	29.8	6.11	76.8	ND (0.2)
	06-Mar-06	675	-12.3	-93.4	91.0	270	ND (0.5)	ND (0.5)	146	76.6	26.6	5.22 J	91.5	ND (0.2)
	03-May-06	586	-13	-92.1	93.4	270	ND (0.5)	ND (0.5)	136	88.1	31.4	4.04 J	107	ND (0.2)
	04-Oct-06	644 J	-12.6	-95.3	90.9	259	ND (0.5)	ND (0.5)	133	84.2	32.1	6.17 J	96.5	ND (0.2)
	20-Dec-06	615	-12.4	-99.6	93.3	262	ND (0.5)	ND (0.5)	143	85.7	32.0	4.66	108	ND (0.2)
	14-Mar-07	710	-12.8	-100.0	96.7	268	0.534	ND (0.5)	133	87.9	31.0	5.71	105	ND (0.2)
	09-May-07	690	-13	-102.0	95.8	271	ND (0.5)	ND (0.5)	143	86.1	30.5	5.92	103	ND (0.2)
	12-Sep-07	682	-12.4	-99.4	106	296	0.372	ND (0.2)	122	73.8	29.9	6.36	89.2	ND (0.2)
	06-Dec-07	j	-11.7	-98.6	96.5	258	0.345	ND (0.2)	139	75.7	30.4	6.62	79.4	ND (0.2)
	02-Apr-08				92.5	309	ND (1.0)	ND (1.0)	137	84.7	31.4	5.58	108	0.467
	18-Jun-08	672	-13.2	-102.0	89.4	248	ND (1.0)	ND (1.0)	132	43.3	31.1	6.95	93.9	ND (0.2)
	17-Sep-08	640			91.4	256	ND (0.5)	ND (0.5)	132	83.4	31.2	6.48	78.0	ND (0.2)
	04-Dec-08	649	-11.9	-97.0	97.4	260	ND (1.0)	ND (1.0)	135	81.7	30.0	5.95	114	0.262
	21-Jan-09	652	-12	-96.7	91.5	253	ND (0.5)	ND (0.5)	134	79.2	27.8	6.01	91.7	ND (0.2)

Table C-1
Chemical Performance Monitoring Analytical Results, March 2005 through June 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

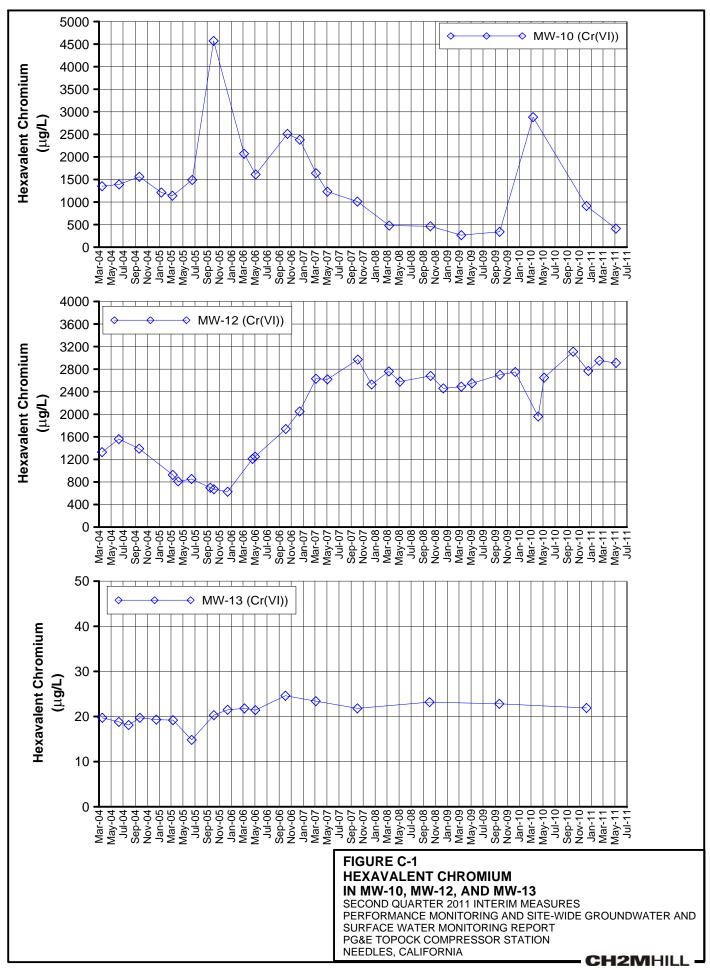
	0	Total Dissolved							Alkalinity		Diss	olved Metal	s	
Location	Sample Date	Solids	Oxygen-18	Deuterium	Chloride	Sulfate	Nitrate	Bromide			Magnesium	Potassium	Sodium	Boron
Surface Water	er Stations													
R-28	09-Apr-09	643	-12.4	-97.8	92.7	250	ND (1.0)	ND (0.5)	138	79.6	28.8	5.44	97.0	ND (0.2)
	08-Jul-09	632	-12.8	-98.6	84.5	239	ND (0.5)	ND (0.5)	131	79.6	27.3	6.17	86.9	ND (0.2)
	09-Sep-09	640	-12.5	-99.1	86.0	236	ND (1.0)	ND (1.0)	131	74.8	26.2	6.01	78.7	ND (0.2)
	14-Dec-09	612	-13	-98.3	89.7	244	ND (1.0)	ND (1.0)	131	73.5	26.7	4.98	88.2	ND (0.2)
	21-Dec-10	602	-12.1	-102.0	91.0	223	ND (0.5)	ND (0.5)	133	69.1	24.8	4.75	87.8	ND (0.2)

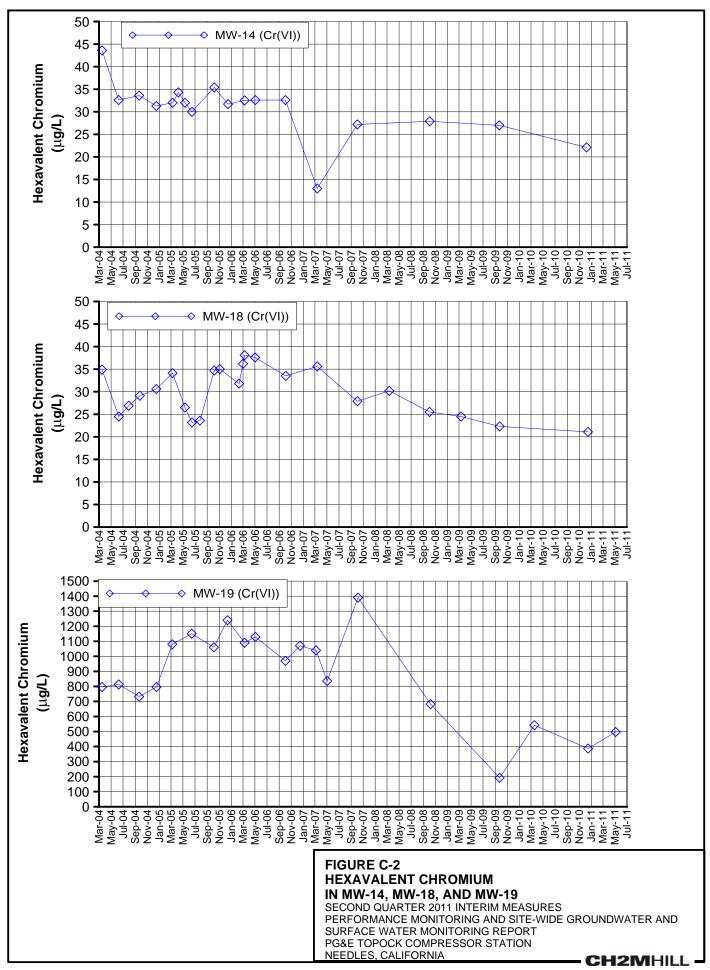
NOTES:

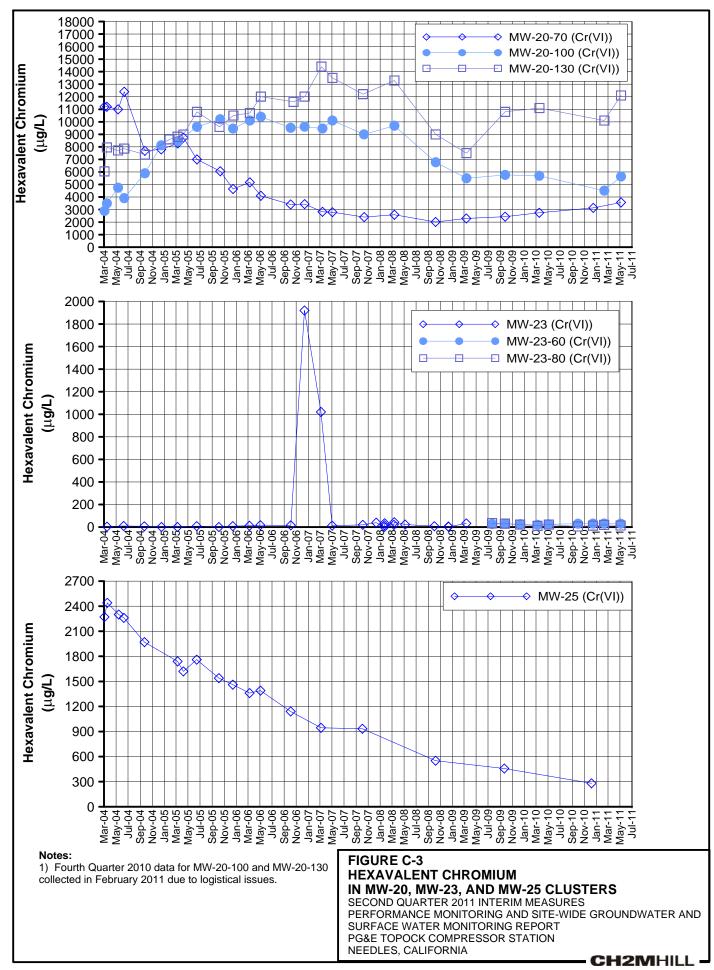
FD = field duplicate sample

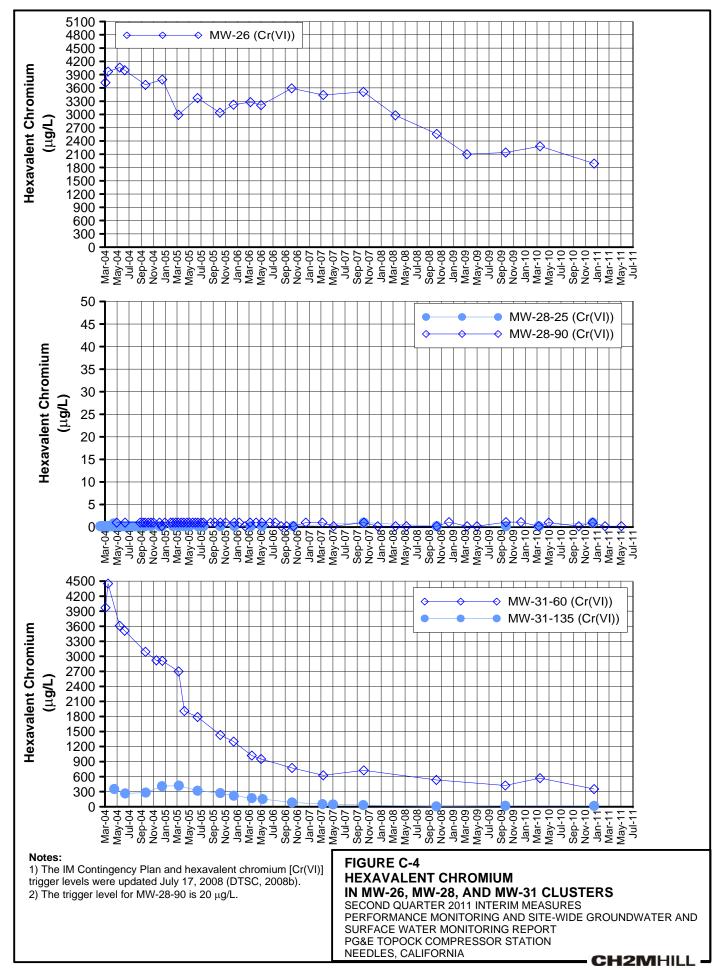
ND =parameter not detected at the listed reporting limit

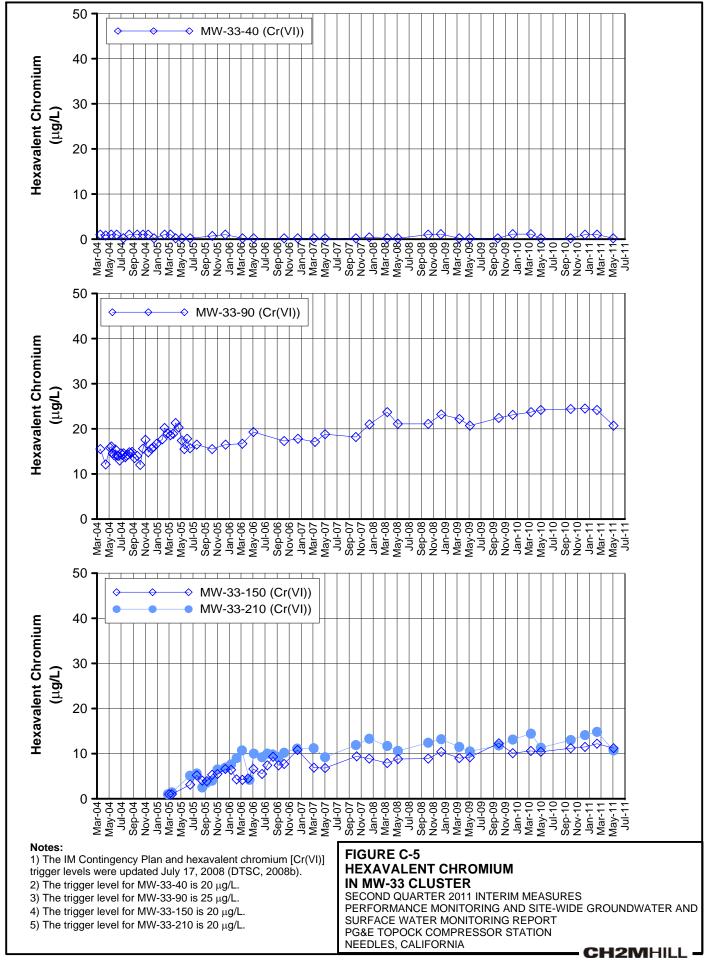
J = concentration or reporting limit estimated by laboratory or data validation

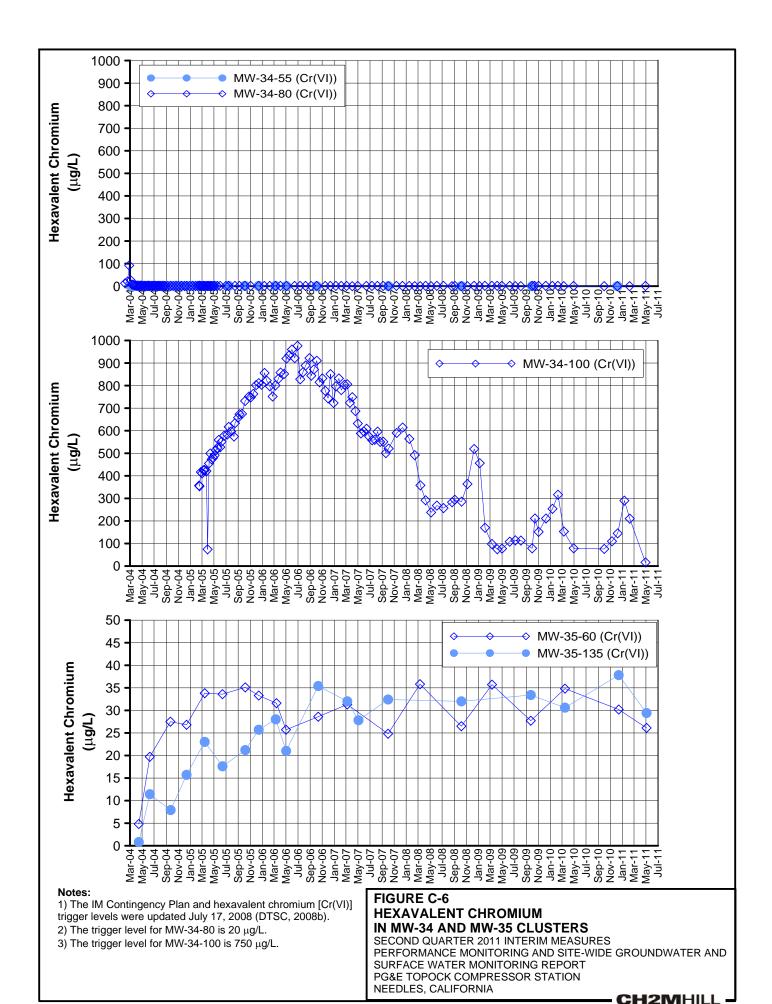

R = result exceeded analytical criteria for precision and accuracy; should not be used for project decisionmaking

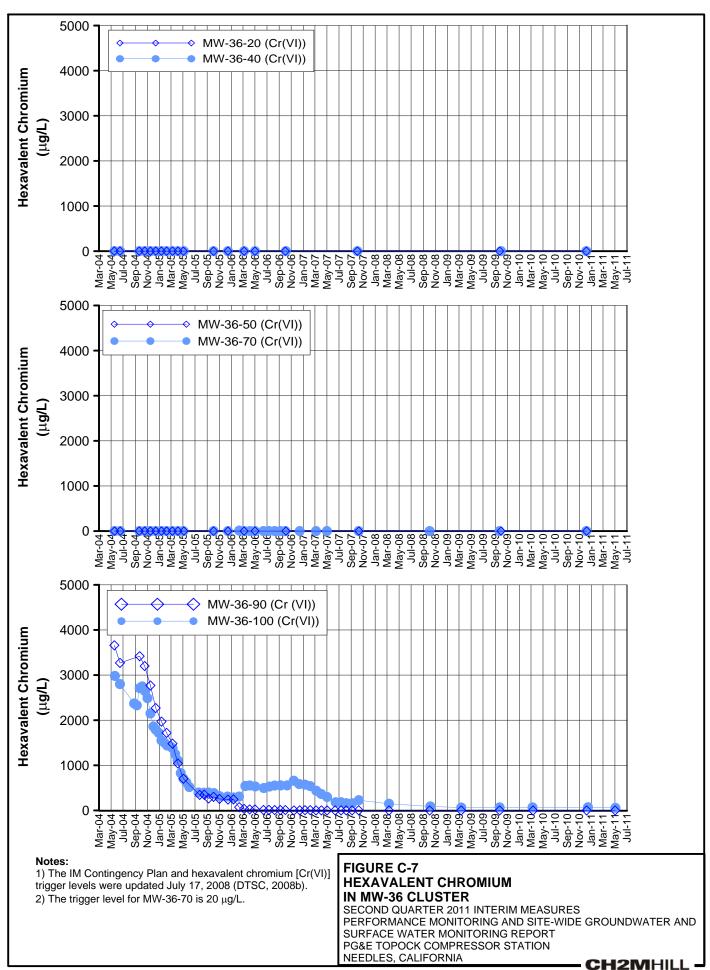

General chemistry results in milligrams per liter (mg/L), except Oxygen-18 and Deuterium, which are expressed as differences from global standards in parts per thousand.

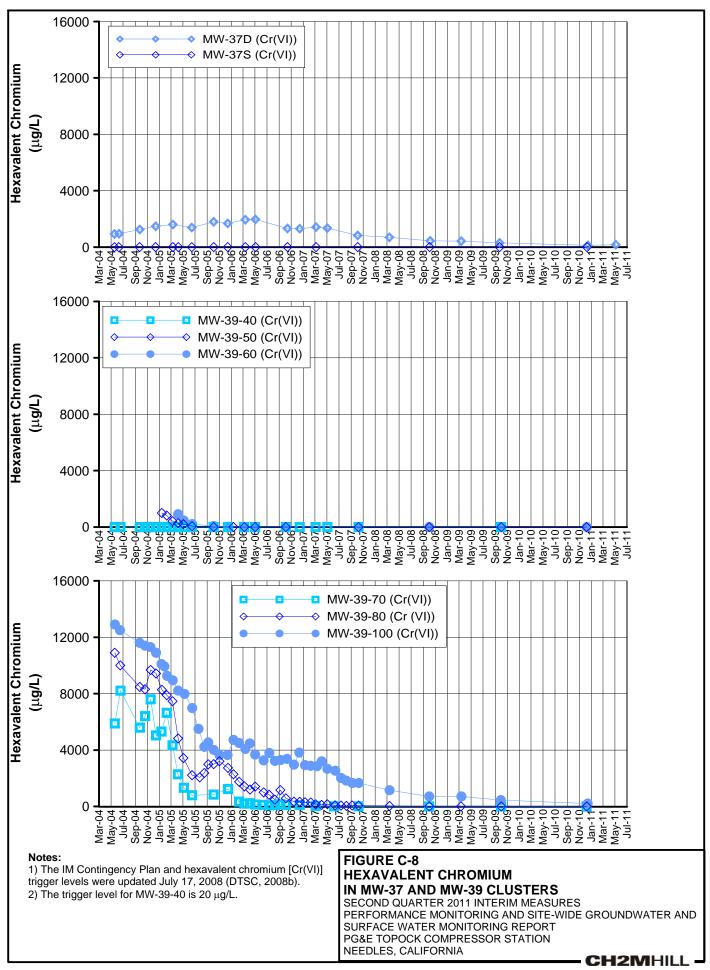

Alkalinity (total) reported as calcium carbonate. Nitrate reported as Nitrogen (N).

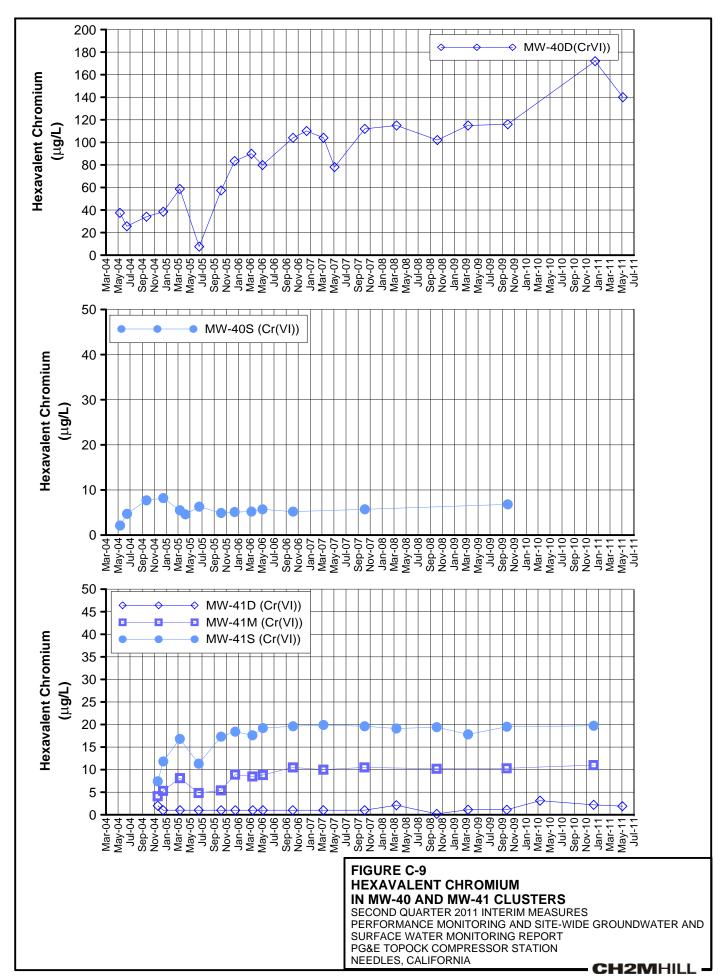

^{--- =} data not collected or available

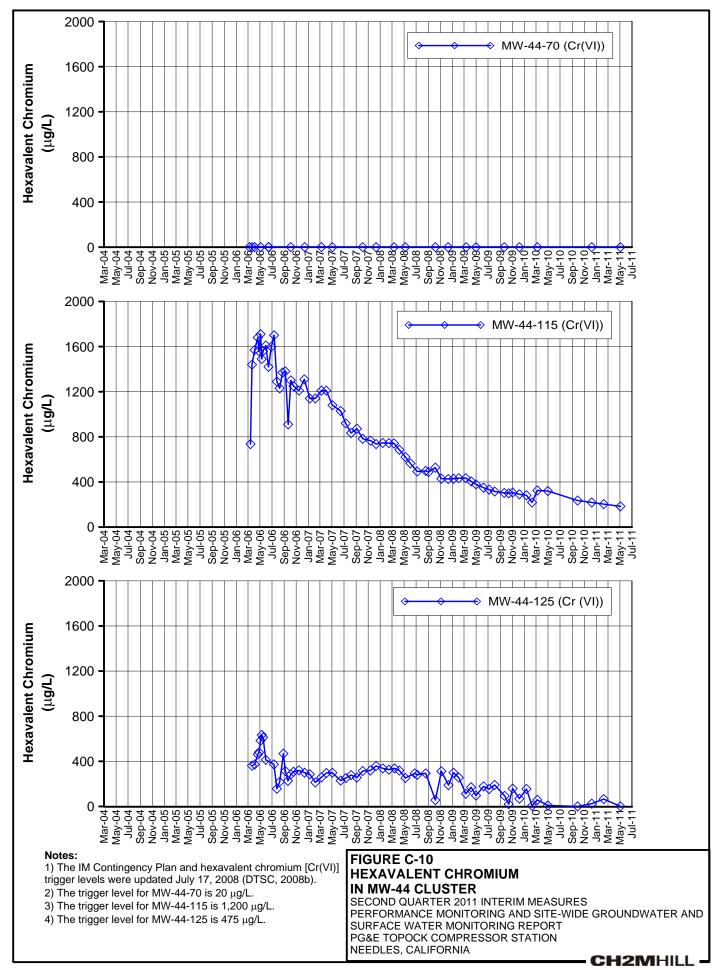

^a Data collected February 2011 due to field logistical issues.

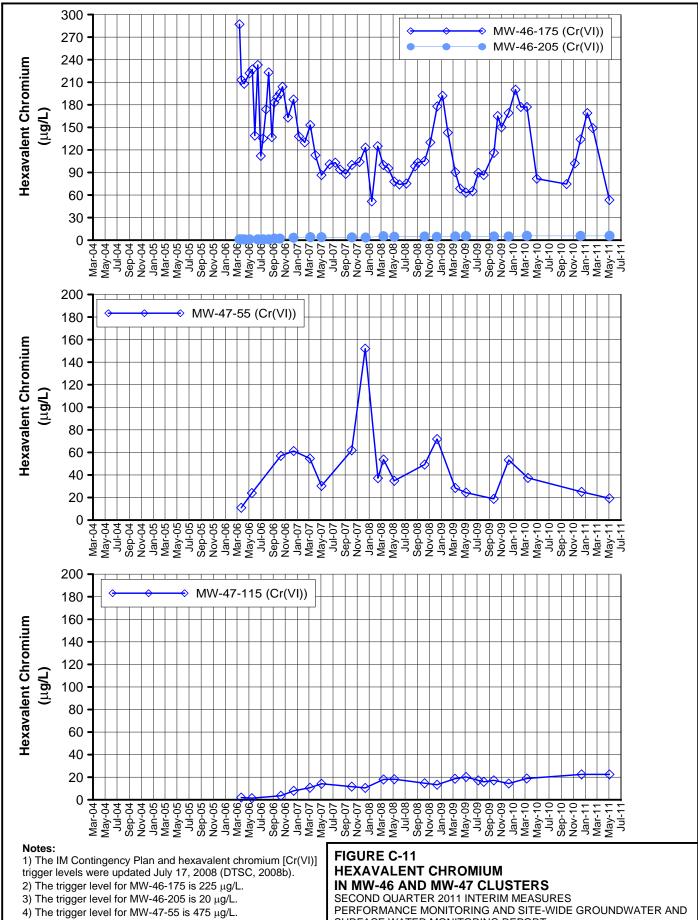


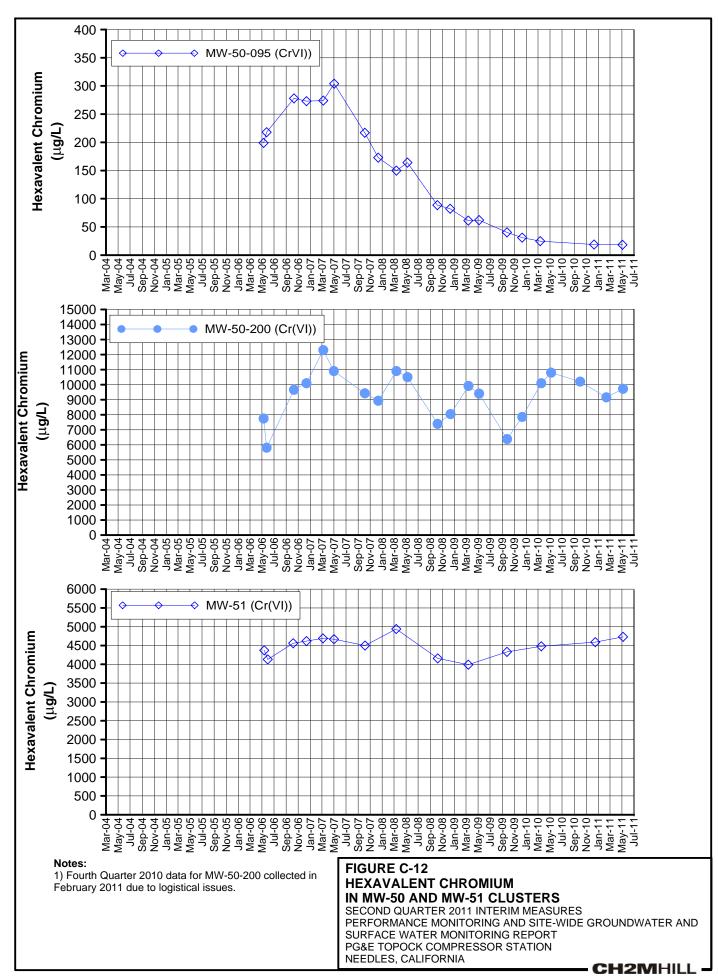


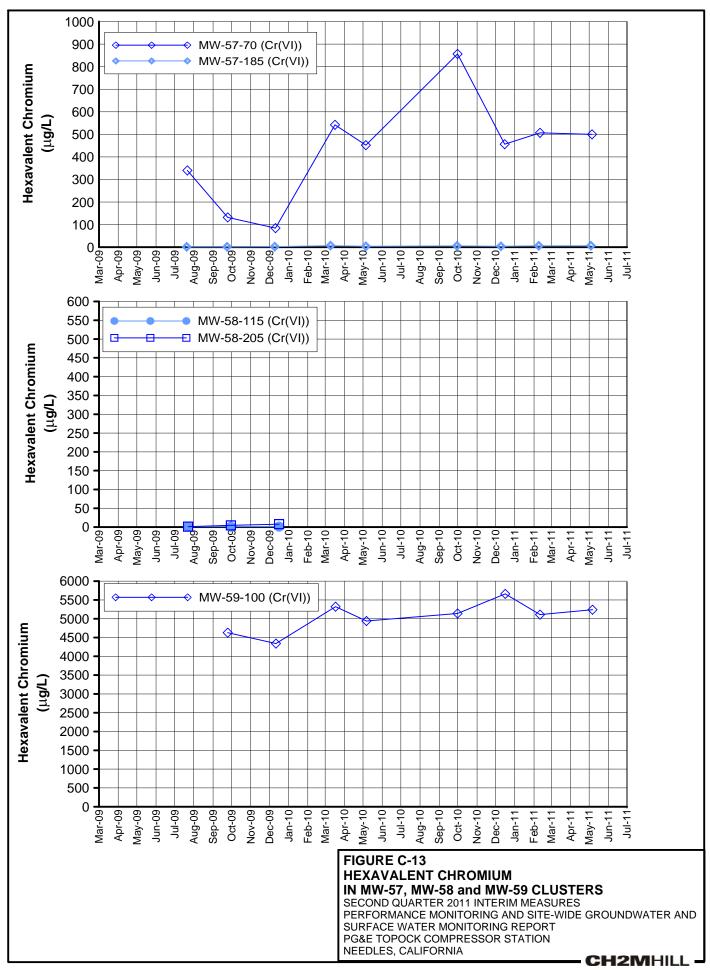


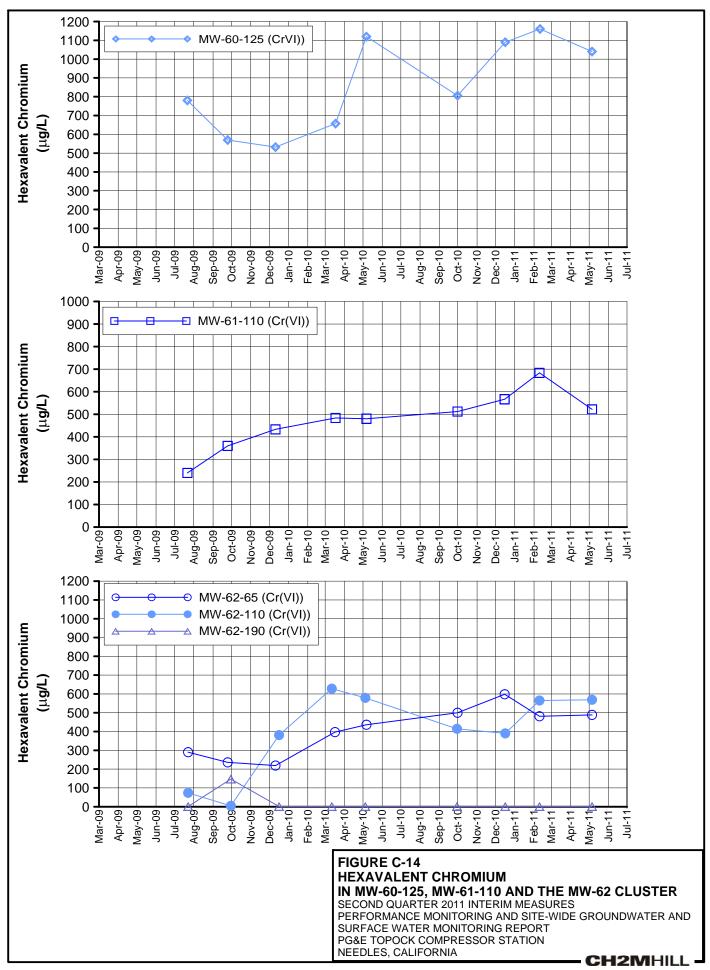


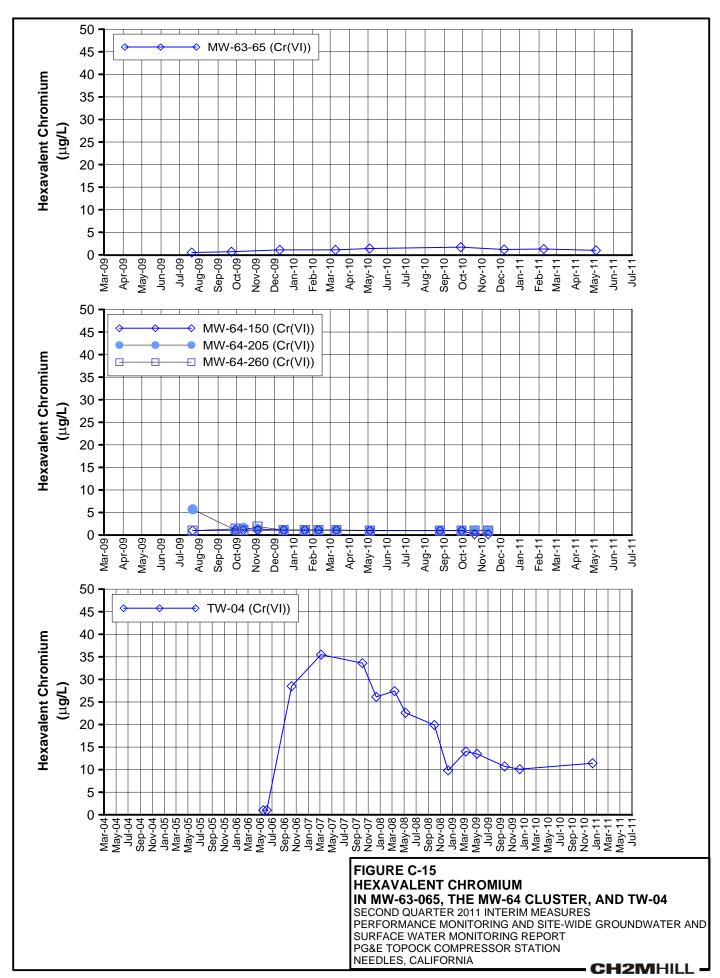







5) The trigger level for MW-47-115 is 31 $\mu g/L$.


PERFORMANCE MONITORING AND SITE-WIDE GROUNDWATER AND SURFACE WATER MONITORING REPORT


PG&E TOPOCK COMPRESSOR STATION NEEDLES, CALIFORNIA

CH2MHILL

Appendix D Interim Measure Extraction System Operations Log, Second Quarter 2011

APPENDIX D

Interim Measures Extraction System Operations Log, Second Quarter 2011, PG&E Topock Performance Monitoring Program

During the second quarter of 2011 (April through June), extraction wells TW-3D and PE-1 operated at a target pump rate of at 135 gallons per minute, excluding periods of planned and unplanned downtime. Extraction wells TW-2D and TW-2S were not operated during Second Quarter of 2011. The operational run time for the Interim Measure groundwater extraction system (combined or individual pumping) was approximately 92.8 percent during Second Quarter 2011.

The Interim Measure Number 3 (IM-3) facility treated approximately 16,334,980 gallons of extracted groundwater during Second Quarter 2011. The IM-3 facility also treated approximately 5,575 gallons of water generated from the groundwater monitoring program and 43,200 gallons of water from IM-3 injection well development. Six containers of solids from the IM-3 facility were transported offsite during the reporting period.

Periods of planned and unplanned extraction system downtime (that together resulted in approximately 7.2 percent of downtime during Second Quarter 2011) are summarized below. The times shown are in Pacific Standard Time to be consistent with other data collected (e.g., water level data) at the site.

D.1 April 2011

- **April 13, 2011 (planned):** The extraction well system was offline from 4:10 p.m. to 4:44 p.m. due to microfilter maintenance. Extraction system downtime was 34 minutes.
- April 25-29, 2011 (planned): The extraction well system was offline from 5:46 a.m. on April 25, 2011 to 12:54 p.m. on April 28, 2011, from 1:24 p.m. on April 28, 2011 to 5:30 a.m. on April 29, 2011, and from 6:04 a.m. to 8:36 a.m. on April 29, 2011 for the biannual plant maintenance outage. Extraction system downtime was 4 days, 1 hour and 46 minutes.

D.2 May 2011

- May 3, 2011 (planned): The extraction well system was offline from 1:44 p.m. to 3:10 p.m. due to microfilter maintenance. Extraction system downtime was 1 hour and 26 minutes.
- May 27, 2011 (planned): The extraction well system was offline from 9:06 a.m. to 9:16 a.m. due to City of Needles onsite to change taps on power system. Extraction system downtime was 10 minutes.

BAO\112270001 D-1

- May 28, 2011 (unplanned): The extraction well system was offline from 12:20 p.m. to 12:56 p.m. due to City of Needles power imbalance that shut down extraction wells. Extraction system downtime was 36 minutes.
- May 28, 2011 (planned): The extraction well system was offline from 4:54 p.m. to 5:14 p.m. due to generator refueling. Extraction system downtime was 20 minutes.
- May 29, 2011 (planned): The extraction well system was offline from 5:40 a.m. to 5:46 a.m. and 6:00 a.m. to 6:02 a.m. due to an unsuccessful attempt from City of Needles to switch to city power from generator power. Extraction system downtime was 8 minutes.
- May 30, 2011 (planned): The extraction well system was offline from 8:04 a.m. to 8:08 a.m. due to City of Needles onsite to switch to city power from generator power. Extraction system downtime was 4 minutes.

D.3 June 2011

- **June 2, 2011 (planned):** The extraction well system was offline from 10:04 a.m. to 10:06 a.m. due to permanent alarm and leak detection system testing. Extraction system downtime was 2 minutes.
- **June 4, 2011 (unplanned):** The extraction well system was offline from 12:40 p.m. to 12:46 p.m. due to City of Needles power imbalance that shut down extraction wells. Extraction system downtime was 6 minutes.
- **June 8, 2011 (planned):** The extraction well system was offline from 10:00 a.m. to 12:12 p.m. due to microfilter maintenance. Extraction system downtime was 2 hours and 12 minutes.
- June 22, 2011 (unplanned): The extraction well system was offline from 2:32 p.m. to 2:42 p.m. due to City of Needles power imbalance that shut down extraction wells. Extraction system downtime was 10 minutes.
- **June 23, 2011 (unplanned):** The extraction well system was offline from 8:54 p.m. to 8:56 a.m. The cause is unknown and may have occurred during data transmission. Extraction system downtime was 2 minutes.
- June 28-30, 2011 (planned): The extraction well system was offline from 8:42 a.m. on June 28, 2011 to 1:10 p.m. on June 30, 2011 due to monthly scheduled plant maintenance. Extraction system downtime was 2 days, 4 hours and 28 minutes.

D-2 BAO\112270001

Appendix E Hydraulic Data for Interim Measures Reporting Period

Table E-1Average Monthly and Quarterly Groundwater Elevations, Second Quarter 2011 Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide Groundwater and Surface Water Monitoring Report *PG&E Topock Compressor Station, Needles, California*

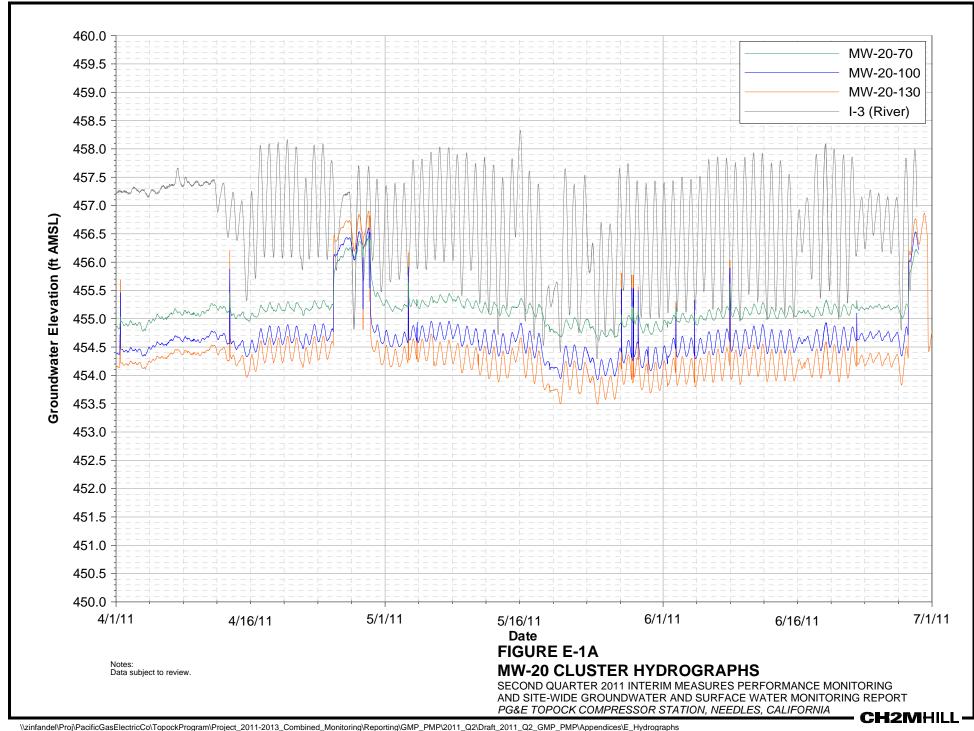
Well ID	Aquifer Zone	April 2011	May 2011	June 2011	Quarter Average	Days in Quarter Average
I-3	River Station	457.02	456.40	456.75	456.72	91
MW-20-070	Shallow Zone	455.26	455.07	455.17	455.17	90
MW-20-100	Middle Zone	454.85	454.49	454.71	454.68	90
MW-20-130	Deep Wells	454.66	454.15	454.38	454.39	91
MW-22	Shallow Zone	455.95	455.96	455.89	455.94	89
MW-25	Shallow Zone	456.17	456.40	456.51	456.36	90
MW-26	Shallow Zone	455.95	456.14	456.12	456.07	90
MW-27-020	Shallow Zone	456.86	456.28	456.39	456.49	82
MW-27-060	Middle Zone	456.75	456.17	456.30	456.41	88
MW-27-085	Deep Wells	456.87	456.25	456.38	456.50	91
MW-28-025	Shallow Zone	456.86	456.31	456.45	456.54	88
MW-28-090	Deep Wells	456.88	456.29	456.46	456.54	88
MW-30-050	Middle Zone	456.41	455.92	456.00	456.11	88
MW-31-060	Shallow Zone	456.11	455.97	456.02	456.03	90
MW-31-135	Deep Wells	455.62	455.29	455.41	455.44	91
MW-32-035	Shallow Zone	456.54	456.08	456.09	456.24	88
MW-33-040	Shallow Zone	456.51	456.25	456.37	456.37	88
MW-33-090	Middle Zone	456.76	456.38	456.48	456.54	88
MW-33-150	Deep Wells	456.56	456.27	456.45	456.43	91
	·				456.53	88
MW-34-055	Middle Zone	456.88	456.28	456.44		
MW-34-080	Deep Wells	456.92	456.33	456.48	456.58	88
MW-34-100	Deep Wells	456.72	456.15	456.26	456.37	91
MW-35-060	Shallow Zone	457.10	456.61	456.75	456.82	90
MW-35-135	Deep Wells	457.08	456.86	456.92	456.96	90
MW-36-020	Shallow Zone	456.60	456.13	456.19	456.31	89
MW-36-040	Shallow Zone	456.57	456.04	456.17	456.26	89
MW-36-050	Middle Zone	456.58	456.04	456.15	456.26	89
MW-36-070	Middle Zone	456.52	455.98	456.07	456.19	89
MW-36-090	Deep Wells	455.69	455.07	455.21	455.32	89
MW-36-100	Deep Wells	456.05	455.31	455.55	455.64	89
MW-39-040	Shallow Zone	456.34	455.86	455.95	456.05	88
MW-39-050	Middle Zone	456.16	455.68	455.77	455.87	88
MW-39-060	Middle Zone	455.96	455.49	455.56	455.67	88
MW-39-070	Middle Zone	455.53	455.06	455.13	455.24	88
MW-39-080	Deep Wells	455.71	455.27	455.33	455.44	88
MW-39-100	Deep Wells	456.14	455.71	455.79	455.88	88
MW-42-030	Shallow Zone	456.27	455.81	455.87	455.98	88
MW-42-065	Middle Zone	456.55	456.08	456.15	456.26	88
MW-43-025	Shallow Zone	456.87	456.30	456.43	456.53	89
MW-43-090	Deep Wells	457.28	456.66	456.83	456.92	89
MW-44-070	Middle Zone	456.74	456.22	456.36	456.44	89
MW-44-115	Deep Wells	456.20	455.75	455.85	455.93	89
MW-44-125	Deep Wells	456.79	456.13	456.31	456.41	89
MW-45-095a	Deep Wells	455.92	455.10	455.43	455.48	91
MW-46-175	Deep Wells	456.59	456.10	456.19	456.29	88
MW-47-055	Shallow Zone	456.77	456.55	456.60	456.64	88
MW-47-115	Deep Wells	456.67	456.48	456.53	456.56	88
MW-49-135	Deep Wells	456.95	456.58	456.68	456.73	88

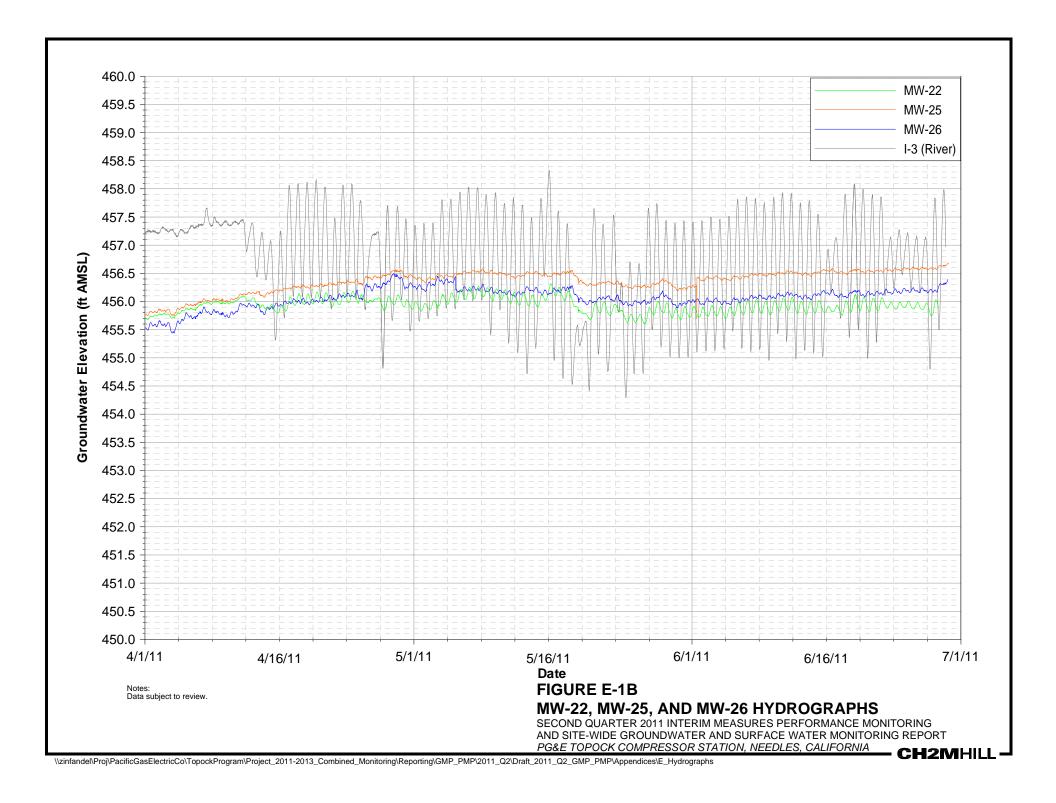
Date Printed: 8/10/2011

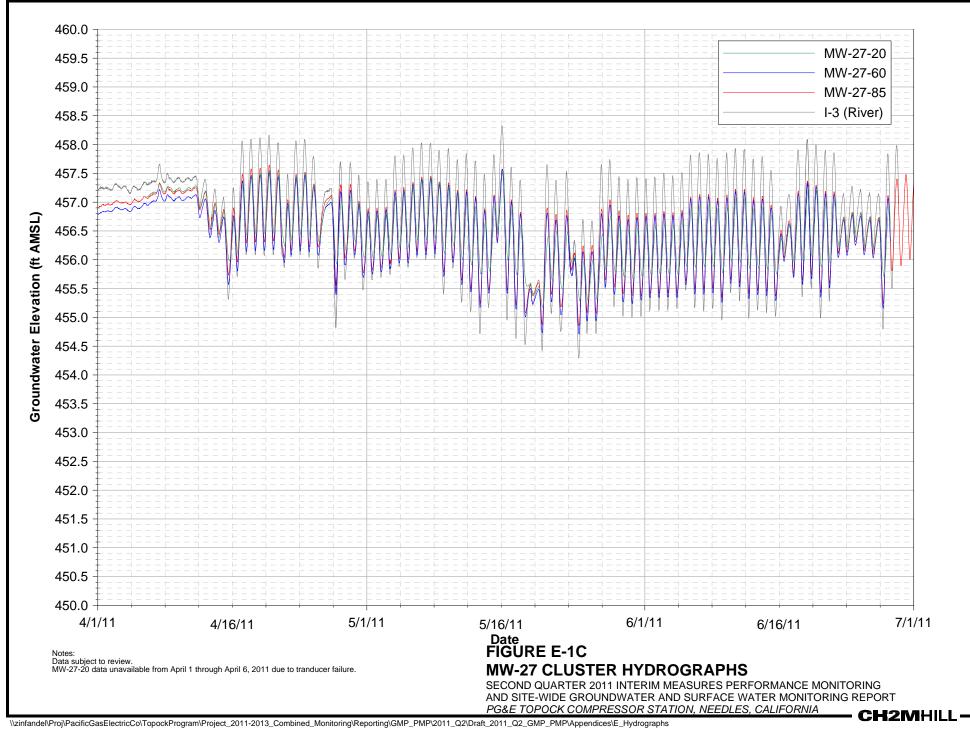
Table E-1

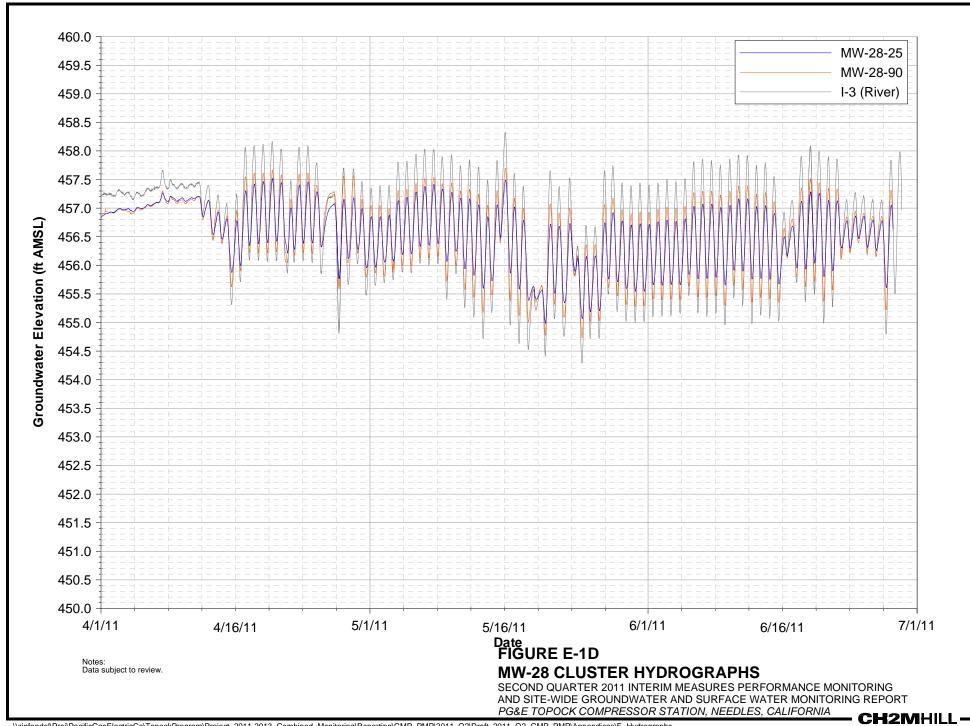
Average Monthly and Quarterly Groundwater Elevations, Second Quarter 2011
Second Quarter 2011 Interim Measure Performance Monitoring and Site-Wide
Groundwater and Surface Water Monitoring Report
PG&E Topock Compressor Station, Needles, California

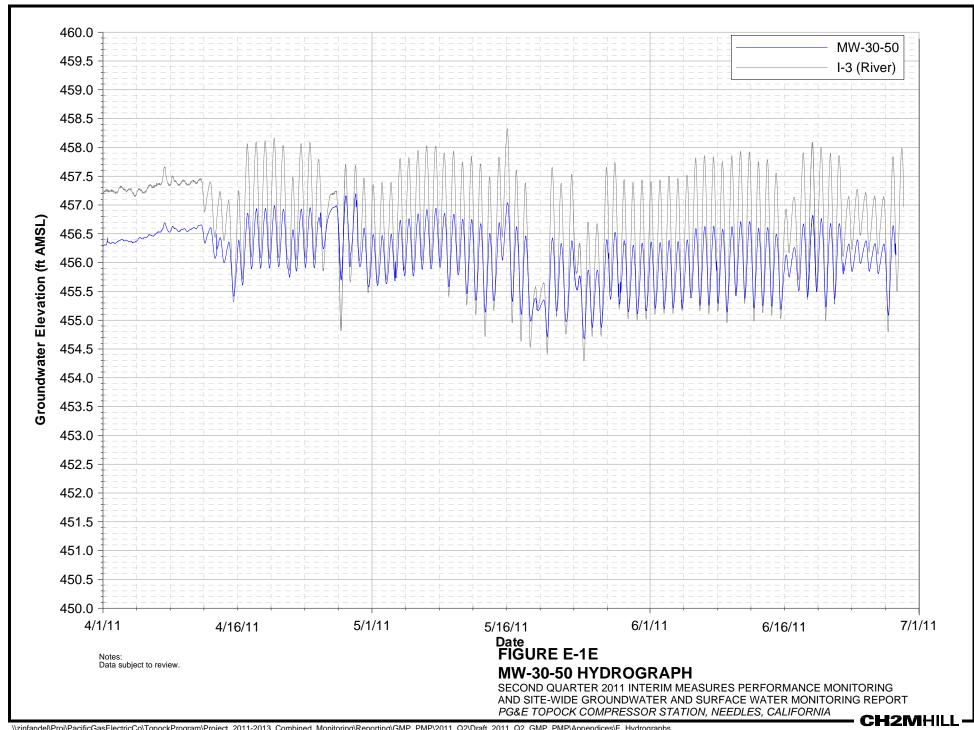
Well ID	Aquifer Zone	April 2011	May 2011	June 2011	Quarter Average	Days in Quarter Average
MW-50-095	Middle Zone	456.20	456.07	456.05	456.11	90
MW-51	Middle Zone	455.92	456.09	456.12	456.05	90
MW-54-085	Deep Wells	INC	456.55	456.79	INC	57
MW-54-140	Deep Wells	457.10	456.64	456.72	456.82	91
MW-54-195	Deep Wells	457.27	456.86	456.92	457.01	91
MW-55-045	Middle Zone	INC	INC	457.00	INC	50
MW-55-120	Deep Wells	INC	INC	457.02	INC	50
PT2D	Deep Wells	455.29	454.79	454.87	454.98	89
PT5D	Deep Wells	455.61	455.14	455.22	455.33	89
PT6D	Deep Wells	455.89	455.40	455.49	455.59	89
RRB	River Station	457.39	457.14	456.86	457.13	70


NOTES:


Averages reported in ft AMSL (feet above mean sea level).


Quarterly Average = average of daily averages over reporting period


INC = Data incomplete, less than 75% of data available over reporting period due to rejection or field equipment malfunction


Date Printed: 8/10/2011

