

Curt Russell

Topock Onsite Project Manager Environmental Affairs

Topock Compressor Station 145453 National Trails Hwy Needles, CA 92363

Mailing Address P.O. Box 337 Needles, CA 92363

760.326.5582 Fax: 760.326.5542 Email: gcr4@pge.com

December 15, 2005

Robert Perdue
Executive Officer
California Regional Water Quality Control Board
Colorado River Basin Region
73-720 Fred Waring Drive, Suite 100
Palm Desert, CA 92260

Subject: Board Order R7-2004-0103 November 2005 Monthly Report

Interim Measure No. 3 Groundwater Treatment System at the PG&E Topock

Compressor Station, Needles, California

Dear Mr. Perdue:

Enclosed is the Board Order R7-2004-0103 November 2005 Monthly Report for the Pacific Gas and Electric Company (PG&E) Topock Compressor Station, Interim Measure (IM) No. 3 Groundwater Treatment System. This Report is submitted in compliance with the Waste Discharge Requirements (WDRs) issued by the Colorado River Basin Regional Water Quality Control Board (CRBRWQCB) under Board Order R7-2004-0103.

WDRs under Board Order R7-2004-0103 apply to IM No. 3 Treatment System discharge by subsurface injection wells only. In addition to Board Order No. R7-2004-0103, the CRBRWQCB issued WDRs for IM No. 3 Treatment System discharge to the Colorado River (Board Order R7-2004-0100) and IM No. 3 Treatment System discharge to the PG&E Compressor Station (Board Order R7-2004-0080).

To date, there has been no IM No. 3 Treatment System discharge to the Colorado River or the PG&E Compressor Station. PG&E has no plans to discharge IM No. 3 Treatment System effluent to the Colorado River or the PG&E Compressor Station at this time. Reporting of Board Order R7-2004-0080 and Board Order R7-2004-0100 activities will be submitted under separate cover.

If you have any questions regarding this report, please call me at (760) 326-5582.

Sincerely,

Curt Russell

Topock Onsite Project Manager

Enclosures:

Page 2 December 15, 2005

Board Order R7-2004-0103 November 2005 Monthly Report for the IM No. 3 Groundwater Treatment System

cc: José Cortez, RWQCB Liann Chavez, RWQCB Tom Vandenberg, RWQCB Norman Shopay, DTSC

November 2005 Monthly Report for Interim Measure No. 3 Groundwater Treatment System

Waste Discharge Requirements Order No. R7-2004-0103 PG&E Topock Compressor Station Needles, California

Prepared for

California Regional Water Quality Control Board Colorado River Basin Region

on behalf of

Pacific Gas and Electric Company

December 15, 2005

CH2MHILL 155 Grand Avenue, Suite 1000 Oakland, CA 94612

November 2005 Monthly Report Interim Measures No. 3 Groundwater Treatment System Waste Discharge Requirements Order No. R7-2004-0103 PG&E Topock Compressor Station Needles, California

Prepared for Pacific Gas and Electric Company

December 15, 2005

No. C68986

This report was prepared under the supervision of a

California Certified Professional Engine

Dennis Fink, PE No. 68986

Project Engineer

Contents

Acrony	yms and Abbreviationsiii
1.0	Introduction
2.0	Sampling Station Locations
3.0	Description of Activities
4.0	Groundwater Treatment System Flow Rates4
5.0	Sampling and Analytical Procedures5
6.0	Analytical Results6
7.0	Conclusions
8.0	Certification8
Tables	
1	Sampling Station Descriptions
2	Flow Monitoring Results
3	Board Order No. R7-2004-0103 Waste Discharge Requirements Influent Monitoring Results
4	Board Order No. R7-2004-0103 Waste Discharge Requirements Effluent Monitoring Results
5	Board Order No. R7-2004-0103 Waste Discharge Requirements Reverse Osmosis Concentrate Monitoring Results
6	Board Order No. R7-2004-0103 Waste Discharge Requirements Sludge Monitoring Results
7	Board Order No. R7-2004-0103 Waste Discharge Requirements Monitoring Information

Figures

1 IM No. 3 Project Area Site Features

Process and Instrumentation Diagrams

TP-PR-10-10-03 Effluent Metering Locations

TP-PR-10-10-11 Influent Metering Locations

BAO\053490003

TP-PR-10-10-04 Raw Water Storage and Treated Water Storage Tanks and Sampling Locations

TP-PR-10-10-08 Reverse Osmosis Storage Tank Sampling and Metering Locations TP-PR-10-10-06 Sludge Storage Tanks Sampling Locations

Appendix

A Laboratory Analytical Reports

BAO\053490003

Acronyms and Abbreviations

DTSC California Department of Toxic Substances Control

gpm gallons per minute

IM Interim Measure

mg/kg milligram per kilogram

mg/L milligram per liter

MBC MBC Applied Environmental Sciences Laboratories

MRP Monitoring and Reporting Program

PG&E Pacific Gas and Electric Company

STL Severn Trent Laboratories, Inc.

Truesdail Laboratories, Inc.

Water Board California Regional Water Quality Control Board, Colorado River Basin

Region

WDR Waste Discharge Requirements

BAO\053490003 iii

1.0 Introduction

Pacific Gas and Electric Company (PG&E) is implementing an Interim Measure (IM) to address chromium concentrations in groundwater at the Topock Compressor Station near Needles, California. The IM consists of groundwater extraction for hydraulic control of the plume boundaries in the Colorado River floodplain and management of extracted groundwater. The groundwater extraction, treatment, and injection systems collectively are referred to as IM No. 3. Figure 1 provides a map of the project area.

California Regional Water Quality Control Board, Colorado River Basin Region (Water Board) Board Order No. R7-2004-0103 authorizes PG&E to inject treated groundwater into injection wells located on San Bernardino County Assessor's Parcel No. 650-151-06. The Monitoring and Reporting Program (MRP) under the order requires monthly monitoring reports to be submitted by the 15th day of the following month. This report covers monitoring activities related to operation of the IM No. 3 groundwater treatment system for the month of November 2005.

In addition to Board Order No. R7-2004-0103, the Water Board issued WDRs for IM No. 3 Treatment System discharge to the Colorado River (Board Order R7-2004-0100) and IM No. 3 Treatment System discharge to the PG&E Compressor Station (Board Order R7-2004-0080). To date, there has been no IM No. 3 Treatment System discharge to the Colorado River or the PG&E Compressor Station. PG&E has no plans to discharge IM No. 3 Treatment System effluent to the Colorado River or the PG&E Compressor Station at this time. Reporting of Board Order R7-2004-0080 and Board Order R7-2004-0100 activities will be submitted under separate cover.

2.0 Sampling Station Locations

Table 1 lists the locations of sampling stations. The locations of the sampling stations are provided in process and instrumentation diagrams TP-PR-10-10-04, TP-PR-10-10-08, and TP-PR-10-10-06, which were previously provided in PG&E's Sampling Locations letter to the Water Board Executive Officer, dated June 29, 2005. These diagrams are provided again at the end of this report.

3.0 Description of Activities

The treatment system was initially operated between July 25 and July 28, 2005 for the WDR-mandated startup phase. Discharge to the injection wells was initiated July 31, 2005 after successfully completing the startup phase in accordance with the WDRs. Full-time operation of the treatment system commenced in August 2005.

During November 2005, groundwater was extracted from extraction well TW-2D and discharged to injection well IW-2 (Figure 1). The target pump rate was 90 gpm during November 2005 (excluding downtime, which is described in Section 4.0).

Approximately 10,000 gallons of well development and test water generated from the installation of extraction well TW-3D was treated at the IM-3 facility. This activity was authorized by the Water Board in a letter dated November 1, 2005. Approximately 20,000 gallons of additional groundwater from the installation of TW-3D will be treated at the IM-3 facility in December 2005 after separate authorization is obtained by the Water Board.

4.0 Groundwater Treatment System Flow Rates

The November 2005 treatment system monthly average flow rates are presented in Table 2. System influent flow rate was measured by flow meters at groundwater extraction wells TW-2D and TW-2S (Figure TP-RP-10-10-3). The treatment system effluent flow rate was measured by flow meters in the piping into injection well IW-2 and IW-3 (Figure TP-RP-10-10-11). The reverse osmosis concentrate flow rate was measured by a flow meter at the piping carrying water from reverse osmosis concentrate tank T-701 to the truck load-out station (Figure TP-RP-10-10-08).

Periods of extraction system downtime during November 2005 are summarized below. The majority of downtime was related to development and testing of newly installed extraction well TW-3D and chemical cleaning of the microfilter membranes. Multiple cleanings of the microfilter membranes were required to develop the appropriate site-specific procedure to effectively clean the membranes.

- **November 1, 2005:** Extraction well TW-2D was shut down to replace pump P-201. Extraction system downtime was 7 hours 5 minutes.
- November 2 to 4, 2005: Extraction well TW-2D was shut down to complete a chemical cleaning of the microfilter membranes and further development of extraction well TW-3D. Extraction system downtime was 48 hours 52 minutes.
- **November 5, 2005:** Extraction well TW-2D was shut down to conduct a pump test from extraction well TW-3D. Extraction system downtime was 8 hours 2 minutes.
- **November 9, 2005:** Extraction well TW-2D was shut-down to remove an in-line static mixer. Extraction system downtime was 52 minutes.
- **November 11, 2005:** Extraction well TW-2D was shut-down to switch to back-up generator power during a power failure and return to Needles Power after power was restored. Extraction system downtime was 29 minutes.
- **November 14 and 15, 2005:** Extraction well TW-2D was shut down to complete further development and testing of extraction well TW-3D. Extraction system downtime was 27 hours 1 minute.
- **November 22 to 24, 2005:** Extraction well TW-2D was shut down to complete a chemical cleaning of the microfilter membranes. Extraction system downtime was 32 hours.

BAO\053490003

5.0 Sampling and Analytical Procedures

All samples were collected at the designated sampling locations and placed directly into containers provided by Truesdail Laboratories, Inc. (Truesdail) or Severn Trent Laboratories, Inc. (STL). Sample containers were labeled and packaged according to standard sampling procedures.

The samples were stored in a cooler at 4° Celsius and transported to Truesdail or STL via courier service under chain-of-custody documentation. Truesdail transported a portion of the sludge sample to MBC Applied Environmental Sciences Laboratories (MBC) for the aquatic bioassay analysis.

Truesdail is certified by the California Department of Health Services (Certification #1237) under the State of California's Environmental Laboratory Accreditation Program. STL is certified by the California Department of Health Services (Certification #1118) under the Environmental Laboratory Accreditation Program. MBC is certified by the California Department of Health Services (Certification # 1788) under the State of California's Environmental Laboratory Accreditation Program.

All analyses were performed in accordance with the latest edition of the "Guidelines Establishing Test Procedures for Analysis of Pollutants" (40 CFR Part 136), promulgated by the United States Environmental Protection Agency.

As required by the MRP, the analytical method selected for total chromium has a method detection limit of 1 part per billion, and the analytical method selected for hexavalent chromium has a method detection limit of 0.2 part per billion.

Influent, effluent, reverse osmosis concentrate, and sludge sampling was conducted in accordance with the sampling frequency required by the MRP. The sampling analytical results are shown in Tables 3, 4, 5 and 6, respectively.

Groundwater quality is being monitored in observation and compliance wells according to procedures and schedules approved in the *Groundwater Compliance Monitoring Plan for Interim Measures No. 3 Injection Area* (CH2M HILL 2005). Reporting of quarterly groundwater monitoring analytical results will be in a separate document, in conjunction with groundwater level maps of the same monitoring wells. The next groundwater monitoring report (Fourth Quarter 2005) is scheduled for release in January 2006.

6.0 Analytical Results

Laboratory reports prepared by the certified analytical laboratory(ies) are presented in Appendix A. The analytical results from groundwater treatment system influent, effluent, reverse osmosis concentrate, and sludge samples are presented in Tables 3, 4, 5, and 6 respectively.

In accordance with the WDR reporting requirements for the fourth month of treatment system operation, the following sampling frequency schedule was followed:

- The influent was sampled monthly, date November 2, 2005.
- The effluent was sampled weekly, dates November 2, 9, 16, 21, and 30, 2005.
- The reverse osmosis concentrate was sampled monthly, date November 2, 2005.
- The sludge was sampled on November 16, 2005 (quarterly sample). WDR requirements state that sludge is scheduled to be sampled each time sludge is transported offsite unless sludge is transported offsite more frequently than quarterly, in which case the sampling frequency will be quarterly.

The sludge sample collected November 16, 2005 was sent for analysis, including an aquatic bioassay test in accordance with the WDRs reporting requirements. As stated above, the sludge analytical results are presented in Table 6. The aquatic bioassay results indicate 100 percent survivability at 500 milligram per liter (mg/L) concentration, and 100 percent survivability at 750 mg/L concentration.

Table 7 identifies the laboratory that performed each analysis and lists the following required information:

- Sample location
- Sample identification number
- Sampler name
- Sample date
- Sample time
- Laboratory performing analysis
- Analysis method
- Analysis date
- Laboratory technician

BAO\053490003

7.0 Conclusions

There were no exceedances of the effluent limitations during the reporting period.

8.0 Certification

PG&E submitted a signature delegation letter to the Water Board on August 12, 2005. The letter delegated PG&E signature authority to Mr. Curt Russell and Ms. Yvonne Meeks for correspondence regarding Board Order R7-2004-0103.

Certification Statement:

I declare under the penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Signature: _	behume
Name:	Curt Russell
Company: _	Pacific Gas and Electric Company
Title:	Topock Onsite Project Manager
Date:	12/15/2005

TABLE 1
Sampling Station Descriptions
November 2005 Report for IM No. 3 Groundwater Treatment System

Sample Station	Sample ID ^a	Location
Sampling Station A: Groundwater Treatment System Influent	SC-100B-WDR-###	Sample collected from tap on pipe into T-100 (see Figure TP-RP-10-10-04).
Sampling Station B: Groundwater Treatment System Effluent	SC-700B-WDR-###	Sample collected from tap on pipe downstream from T-700 (see Figure TP-RP-10-10-04).
Sampling Station D: Groundwater Treatment System Reverse Osmosis Concentrate	SC-701-WDR-###	Sample collected from tap on pipe into T-701 (see Figure TP-RP-10-10-08).
Sampling Station E: Groundwater Treatment System Sludge	SC-SLUDGE-WDR-###	Sample collected from sludge accumulated in the phase separator used this quarter (see Figure TP-RP-10-10-06).

^aThe sample event is included at the end of the sample ID (e.g. SC-100B-WDR-015).

TABLE 2 Flow Monitoring Results

November 2005 Report for IM No. 3 Groundwater Treatment System

Parameter	System Influent ^{a,d}	System Effluent ^{b,d}	Reverse Osmosis Concentrate ^{c,d}
Average Monthly Flowrate (gpm)	80.9	74.5	5.7

gpm: gallons per minute.

Only extraction well TW-2D was operated during November 2005.

^b System effluent flow meter readings taken from FIT-702 during November 2005. All effluent was discharged into injection well IW-2.

^c Reverse Osmosis flow meter reading from FIT-701.

^d The difference between influent flow rate and the sum of the effluent and reverse osmosis concentrate flow rates is approximately 0.9 percent, which is within the range of acceptable accuracy considering the margin of error for onsite instrumentation, the water contained within the sludge, and differences in the inventory of water in the treatment system between the beginning and end of the reporting period.

TABLE 3 Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Influent Monitoring Results ^a

November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Samplin	g Frequency	,										P	Monthly											
	Analytes Units b	TDS mg/L	Turbidity NTU	Specific / Conductanc	e pH pHunits		Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic μg/L	Barium µg/L	Boron mg/L	Copper µg/L	Fluoride mg/L	Lead µg/L	Manganese μg/L	Molybdenum μg/L	Nickel μg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	lron μg/L	Zinc µg/L
Sample ID	Date																							
SC-100B-WDR-019	11/2/2005	5950	0.101	10300	7.41	3630	3750	ND (52)	ND (0.5)	ND (3.0)	ND (5.0)	ND (300)	1.36	ND (10)	2.86	ND (2.0)	ND (500)	21.4	ND (20)	4.92	ND (0.005	5) 700	ND (300)	ND (20)

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program $\mu g/L$ = micrograms per liter

mg/L = milligrams per liter NTU = nephelometric turbidity units

μmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed reporting limit
J = concentration or reporting limits estimated by laboratory or validation

^a Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

b Units reported in this table are those units required in the WDRs

TABLE 4 Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs) Effluent Monitoring Results a November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

WDRs Effluent Limits ^b	Ave. Monthly Max Daily	NA NA	NA NA	NA NA	6.5-8.4 6.5-8.4	25 50	8 16	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Required Sampl	ling Frequency			W	eekly											Mont	hly							
Sample ID	Analytes Units ^c Date	TDS mg/L	Turbidity NTU	Specific Conductand µmhos/cm	ce pH pHunits	Chromium µg/L	Hexavalent Chromium µg/L	Aluminium μg/L	Ammonia (as N) mg/L	Antimony µg/L	Arsenic μg/L	Barium μg/L	Boron mg/L	Copper µg/L	Fluoride mg/L	Lead µg/L	Manganese μg/L	Molybdenum μg/L	Nickel μg/L	Nitrate (as N) mg/L	Nitrite (as N) mg/L	Sulfate mg/L	Iron μg/L	Zinc µg/L
SC-700B-WDR-019	11/2/2005	4610	ND (0.1)	8140	7.83	ND (1.0)	0.25 J	ND (52)	7.84	ND (3.0)	ND (5.0)	ND (300)	1.62	ND (10)	2.09	ND (2.0)	ND (500)	10.2	ND (20)	3.93	0.0065	518	ND (300)	ND (20)
SC-700B-WDR-020	11/9/2005	4510	0.122	7410	8.06	ND (1.0)	ND (1.0)																	
SC-700B-WDR-021	11/16/2005	4620	0.125	7390	7.57	ND (1.0)	ND (1.0)																	
SC-700B-WDR-022	11/21/2005	4250	ND (0.1)	6980	7.75	ND (1.0)	ND (1.0)																	
SC-700B-WDR-023	11/30/2005	4610	ND (0.1)	7280	7.79	ND (1.0)	ND (1.0)																	

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program NA = not applicable $\mu g/L$ = micrograms per liter mg/L = milligrams per liter

NTU = nephelometric turbidity units

µmhos/cm = micromhos per centimeter ND = parameter not detected at the listed reporting limit

J = concentration or reporting limits estimated by laboratory or validation

^a Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

b In addition to the listed effluent limits, the WDRs state that the effluent shall not contain heavy metals, chemicals, pesticides or other constituents in concentrations toxic to human health.

^c Units reported in this table are those units required in the WDRs

TABLE 5

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs)

Reverse Osmosis Concentrate Results ^a

November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling Frequency											Mont	hly										
Analytes Units ^b	TDS mg/L	Specific Conductance µmhos/cm	pH pHunits		Hexavalent Chromium mg/L	Antimony mg/L	Arsenic mg/L	Barium mg/L	Beryllium mg/L	Cadmium mg/L	Cobalt mg/L	Copper mg/L	Fluoride mg/L	Lead I	Molybdenum mg/L	Mercury mg/L	Nickel mg/L	Selenium mg/L	Silver mg/L	Thallium mg/L	Vanadium mg/L	Zinc mg/L
Sample ID Date																						
SC-701-WDR-019 11/2/2005	25800	42100	7.83	0.0015	ND (0.002)	ND (0.01)	ND (0.01)	ND (0.3)	ND (0.0052)	ND (0.0052)	ND (0.01)	ND (0.01)	12.3	ND (0.0052) 0.0695	ND (0.0002)	ND (0.02)	ND (0.021)	ND (0.01)	ND (0.005	2) 0.0332	ND (0.02)

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program μg/L = micrograms per liter mg/L = milligrams per liter μmhos/cm = micromhos per centimeter

ND = parameter not detected at the listed reporting limit
J = concentration or reporting limits estimated by laboratory or validation

^a Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

b Units reported in this table are those units required in the WDRs

TABLE 6

Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs)

Sludge Monitoring Results^a

November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Required Sampling Fr	requency										Each Ti	ime Sludg	e is Transpor	ted Offsite	С								
Sample ID Date	Units b		Hexavalent Chromium mg/kg	Antimony mg/kg	Arsenic mg/kg	Barium mg/kg	Beryllium mg/kg	Cadmium mg/kg	Cobalt mg/kg	Copper mg/kg	Fluoride mg/kg	Lead mg/kg	Molybdenum mg/kg	Mercury mg/kg	Nickel mg/kg	Selenium mg/kg	Silver mg/kg	Thallium mg/kg	Vanadium mg/kg		Bioassay % Survival at 750 mg/L d	Bioassay % Survival at 500 mg/L d	Bioassay % Survival at 250 mg/L ^d
SC-Sludge-WDR-021 11/16/20		38000	82.0	ND (67)J	37.0	93.0	ND (5.6)	ND (5.6)) ND (56)	84.0	13.4	ND (5.6)	100	1.60	46.0	ND (5.6)	ND (11)	14.0	120	ND (22)	100	100	95

NOTES:

(---) = not required by the WDR Monitoring and Reporting Program

ND = parameter not detected at the listed reporting limit

J = concentration or reporting limits estimated by laboratory or validation

mg/kg = milligrams per killogram

mg/L = milligrams per liter

- ^a Sampling Location for all Sludge Samples is the Sludge Collection Tanks (see attached P&ID TP-PR-10-10-06)
- **b** Units reported in this table are those units required in the WDR
- ^c Unless transport is more frequent than monthly, in which case the sampling frequency shall be monthly
- d Concentration of sludge per 1 Liter of water.

TABLE 7
Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs)
Monitoring Information
November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-100B	SC-100B-WDR-019	Bill Dehuff	11/2/2005	3:56:00 AM	TLI	EPA 120.1	SC	11/4/2005	Alex Hernandez
					TLI	EPA 150.1	PH	11/3/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	11/3/2005	Emilia Haley
					TLI	EPA 180.1	TRB	11/3/2005	Gautam Savani
					TLI	EPA 300.0	FL	11/3/2005	Jordan Stavrev
					TLI	EPA 300.0	NO3N	11/3/2005	Jordan Stavrev
					TLI	EPA 300.0	SO4	11/3/2005	Jordan Stavrev
					TLI	EPA 350.2	NH3N	11/3/2005	Alex Hernandez
					TLI	EPA 354.1	NO2N	11/3/2005	Hope Trinidad
					TLI	EPA 6010B	NI	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	MN	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	FE	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	CRT	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	BA	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	AL	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	ZN	11/8/2005	Riddhi Patel
					TLI	EPA 6010B	В	11/8/2005	Riddhi Patel
					TLI	SW 6020A	SB	11/7/2005	Victoria Than
					TLI	SW 6020A	PB	11/7/2005	Victoria Than
					TLI	SW 6020A	MO	11/7/2005	Victoria Than
					TLI	SW 6020A	AS	11/7/2005	Victoria Than
					TLI	SW 6020A	CU	11/7/2005	Victoria Than
					TLI	SW 7199	CR6	11/4/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-019	Bill Dehuff	11/2/2005	3:56:00 AM	TLI	EPA 120.1	SC	11/4/2005	Alex Hernandez
					TLI	EPA 150.1	PH	11/3/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	11/3/2005	Emilia Haley
					TLI	EPA 180.1	TRB	11/3/2005	Gautam Savani
					TLI	EPA 300.0	FL	11/3/2005	Jordan Stavrev
					TLI	EPA 300.0	NO3N	11/3/2005	Jordan Stavrev
					TLI	EPA 300.0	SO4	11/3/2005	Jordan Stavrev
					TLI	EPA 350.2	NH3N	11/3/2005	Alex Hernandez
					TLI	EPA 354.1	NO2N	11/3/2005	Hope Trinidad
					TLI	EPA 6010B	В	11/8/2005	Riddhi Patel
					TLI	EPA 6010B	NI	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	ZN	11/8/2005	Riddhi Patel
					TLI	EPA 6010B	AL	11/7/2005	Riddhi Patel

TABLE 7
Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs)
Monitoring Information
November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-700B	SC-700B-WDR-019	Bill Dehuff	11/2/2005	3:56:00 AM	TLI	EPA 6010B	BA	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	CRT	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	MN	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	FE	11/7/2005	Riddhi Patel
					TLI	SW 6020A	SB	11/7/2005	Victoria Than
					TLI	SW 6020A	PB	11/7/2005	Victoria Than
					TLI	SW 6020A	MO	11/7/2005	Victoria Than
					TLI	SW 6020A	CU	11/7/2005	Victoria Than
					TLI	SW 6020A	AS	11/7/2005	Victoria Than
					TLI	SW 7199	CR6	11/4/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-020	Bill Dehuff	11/9/2005	12:30:00 PM	TLI	EPA 120.1	SC	11/10/2005	Alex Hernandez
					TLI	EPA 150.1	PH	11/10/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	11/10/2005	Emilia Haley
					TLI	EPA 180.1	TRB	11/10/2005	Gautam Savani
					TLI	EPA 6010B	CRT	11/14/2005	Riddhi Patel
					TLI	SW 7199	CR6	11/10/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-021	Harley Booth	11/16/2005	8:30:00 AM	TLI	EPA 120.1	SC	11/18/2005	Alex Hernandez
		,			TLI	EPA 150.1	PH	11/17/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	11/17/2005	Emilia Haley
					TLI	EPA 180.1	TRB	11/17/2005	Gautam Savani
					TLI	EPA 6010B	CRT	11/18/2005	Riddhi Patel
					TLI	SW 7199	CR6	11/17/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-022	Brian Dobbs	11/21/2005	12:25:00 PM	TLI	EPA 120.1	SC	11/22/2005	Alex Hernandez
					TLI	EPA 150.1	PH	11/22/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	11/22/2005	Emilia Haley
					TLI	EPA 180.1	TRB	11/22/2005	Gautam Savani
					TLI	EPA 6010B	CRT	11/23/2005	Riddhi Patel
					TLI	SW 7199	CR6	11/22/2005	Jorge Arriaga
SC-700B	SC-700B-WDR-023	Gary Sibble	11/30/2005	7:30:00 AM	TLI	EPA 120.1	SC	12/1/2005	Alex Hernandez
		•			TLI	EPA 150.1	PH	12/1/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	12/1/2005	Emilia Haley
					TLI	EPA 180.1	TRB	12/1/2005	Gautam Savani
					TLI	SW 6020A	CRT	12/6/2005	Victoria Than
					TLI	SW 7199	CR6	12/1/2005	Jorge Arriaga
SC-701	SC-701-WDR-019	Chris Knight	11/2/2005	3:56:00 AM	TLI	EPA 120.1	SC	11/4/2005	Alex Hernandez

TABLE 7
Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs)
Monitoring Information
November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-701	SC-701-WDR-019	Chris Knight	11/2/2005	3:56:00 AM	TLI	EPA 150.1	PH	11/3/2005	Alex Hernandez
					TLI	EPA 160.1	TDS	11/3/2005	Emilia Haley
					TLI	EPA 300.0	FL	11/3/2005	Jordan Stavrev
					TLI	EPA 6010B	BA	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	CRT	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	NI	11/7/2005	Riddhi Patel
					TLI	EPA 6010B	ZN	11/8/2005	Riddhi Patel
					TLI	EPA 7470A	HG	11/9/2005	Victoria Than
					TLI	SW 6020A	TL	11/7/2005	Victoria Than
					TLI	SW 6020A	AG	11/7/2005	Victoria Than
					TLI	SW 6020A	AS	11/7/2005	Victoria Than
					TLI	SW 6020A	V	11/7/2005	Victoria Than
					TLI	SW 6020A	SE	11/7/2005	Victoria Than
					TLI	SW 6020A	SB	11/7/2005	Victoria Than
					TLI	SW 6020A	РВ	11/7/2005	Victoria Than
					TLI	SW 6020A	BE	11/8/2005	Victoria Than
					TLI	SW 6020A	CU	11/7/2005	Victoria Than
					TLI	SW 6020A	CO	11/7/2005	Victoria Than
					TLI	SW 6020A	CD	11/7/2005	Victoria Than
					TLI	SW 6020A	MO	11/7/2005	Victoria Than
					TLI	SW 7199	CR6	11/4/2005	Jorge Arriaga
SC-Sludge	SC-Sludge-WDR-021	Haley Booth	11/16/2005	5:50:00 PM	STL	EPA 160.3	MOIST	11/19/2005	Florian Zimmermann
-	•	·			TLI	EPA 300.0	FL	11/22/2005	Jordan Stavrev
					STL	EPA 6010B	РВ	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	SB	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	SE	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	TL	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	ZN	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	NI	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	AS	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	V	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	MO	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	CU	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	CRT	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	CO	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	CD	11/22/2005	Josephine Asuncion

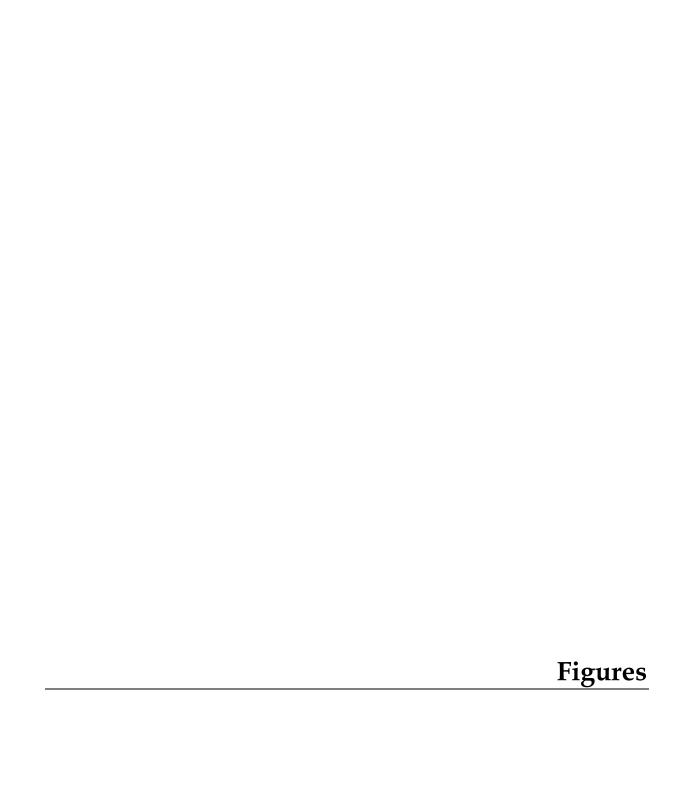
TABLE 7
Board Order No. R7-2004-0103 Waste Discharge Requirements (WDRs)
Monitoring Information
November 2005 Monthly Report for Interim Measures No.3 Groundwater Treatment System

Location	Sample ID	Sampler Name	Sample Date	Sample Time	Lab	Analysis Method	Parameter	Analysis Date	Lab Technician
SC-Sludge	SC-Sludge-WDR-021	Haley Booth	11/16/2005	5:50:00 PM	STL	EPA 6010B	ВА	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	AG	11/22/2005	Josephine Asuncion
					STL	EPA 6010B	BE	11/22/2005	Josephine Asuncion
					STL	EPA 7471A	HG	11/22/2005	Hao Ton
					STL	SW 7199	CR6	11/22/2005	Yuriy Zakhrabov
SC-Sludge	SC-Sludge-WDR-021	Haley Booth	11/16/2005	05:50:00 P.M	MBC	96-Hour Acute Aquatic Toxicity Screening Test	BIO	11/19/2005 - 11/20	3/2005 Sonia Beck

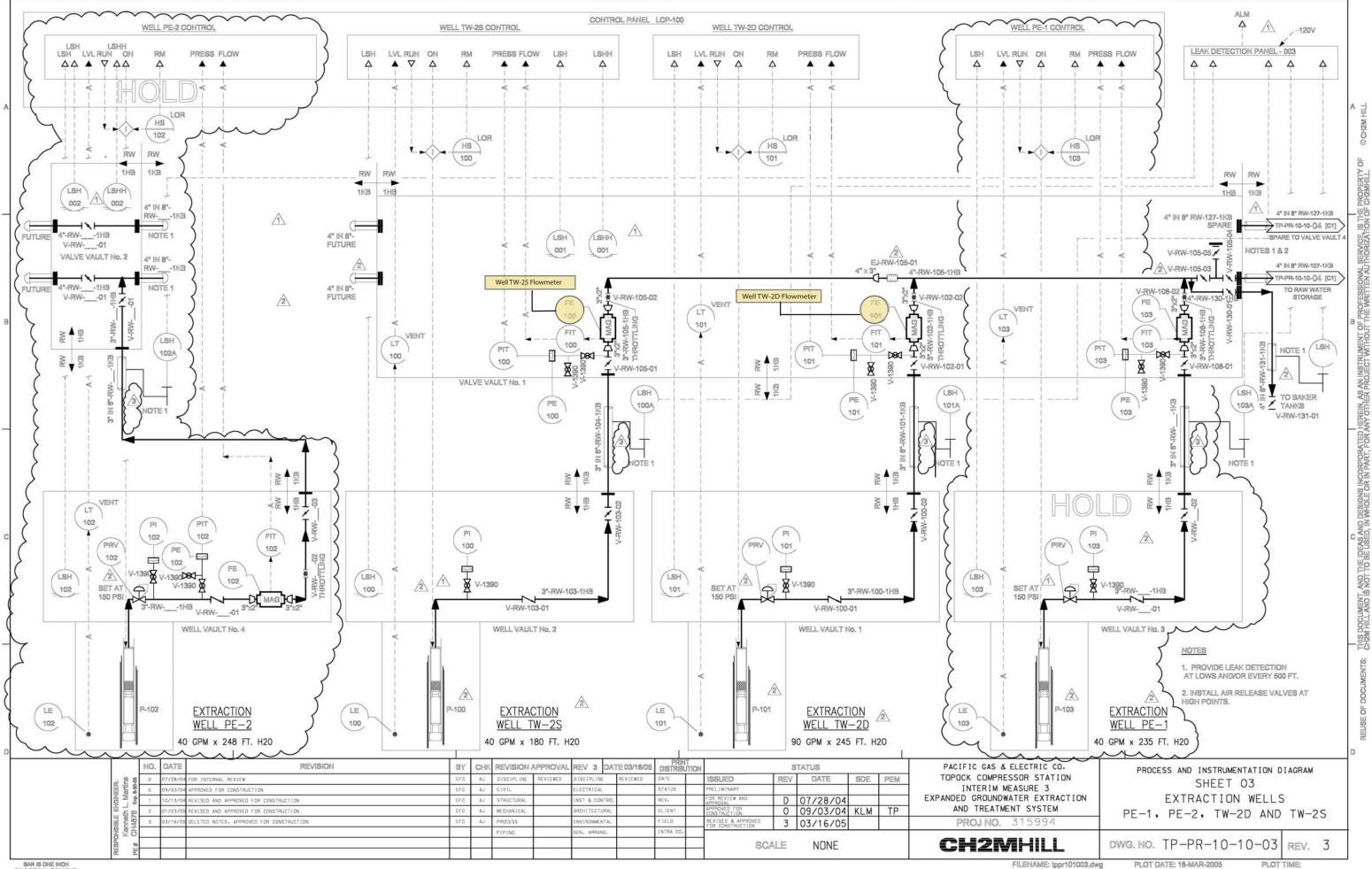
NOTES:

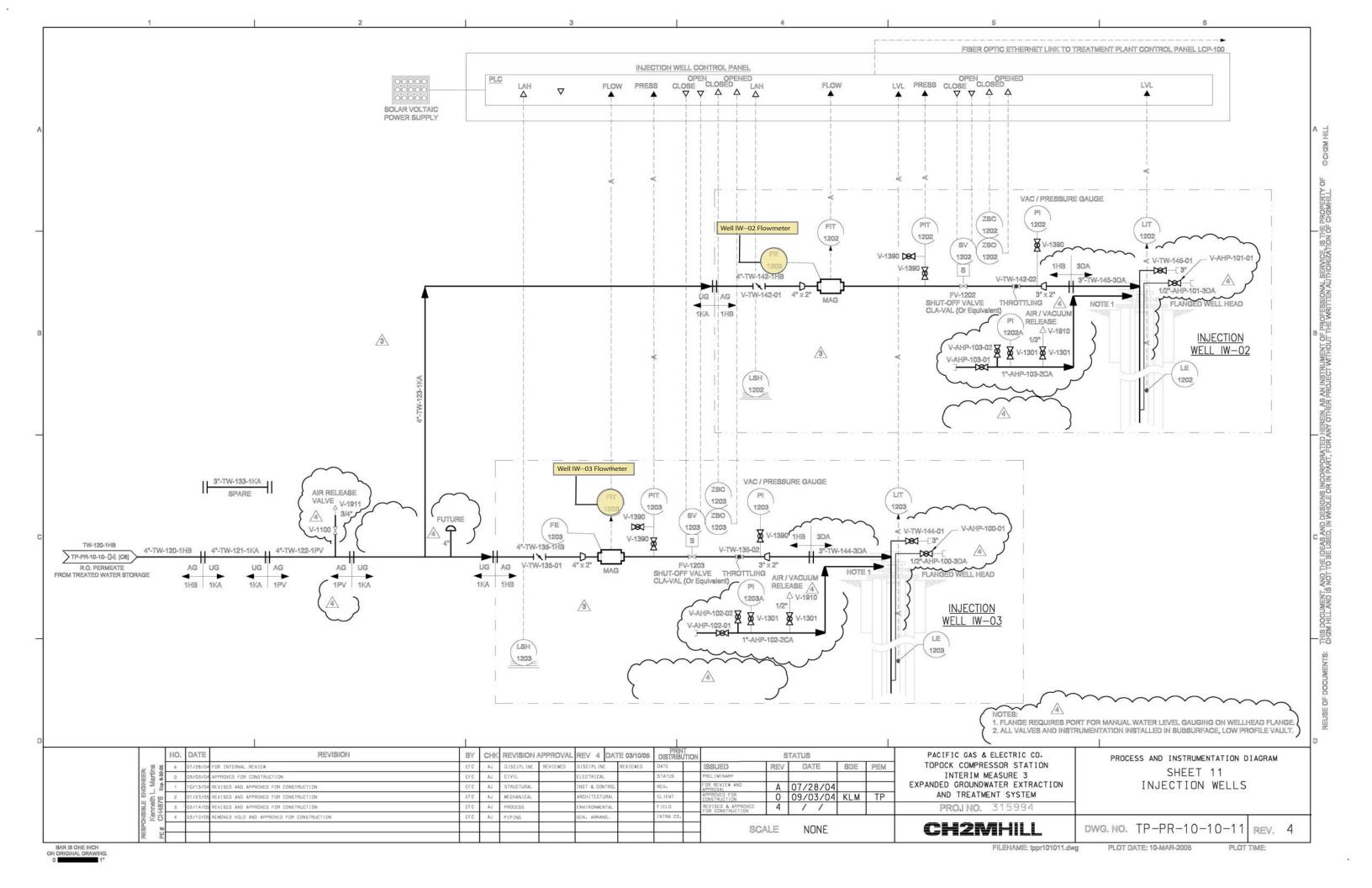
SC-700B = Sampling location for all Effluent Samples is tap on pipe downstream from tank T-700 to injection well IW-2 (see attached P&ID TP-PR-10-10-04)

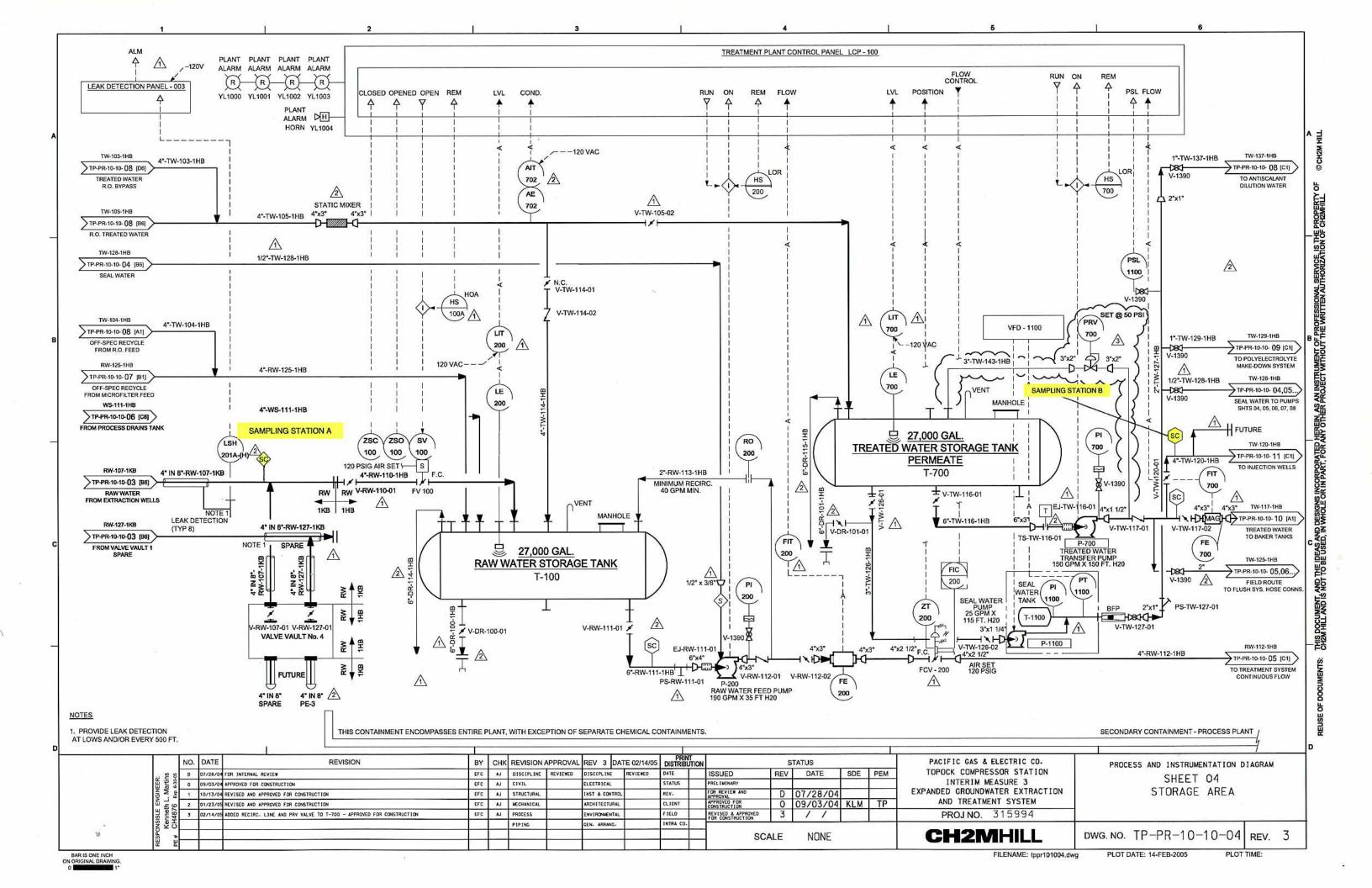
SC-100B = Sampling Location for all Influent Samples is tap on pipe from extraction wells into tank T-100 (see attached P&ID TP-PR-10-10-04)

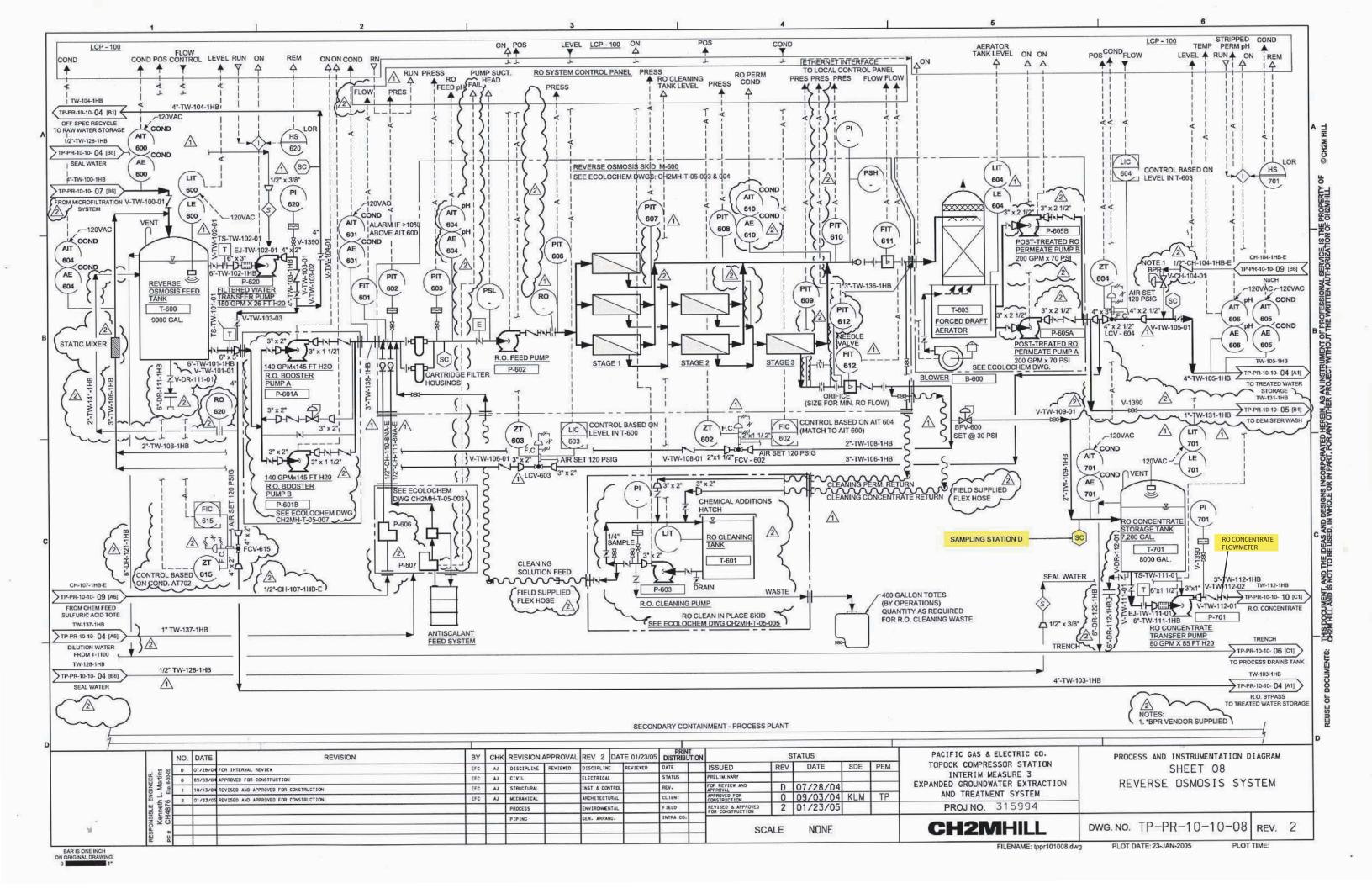

SC-701 = Sampling Location for all Reverse Osmosis Samples is tap on pipe T-701 (see attached P&ID TP-PR-10-10-08)

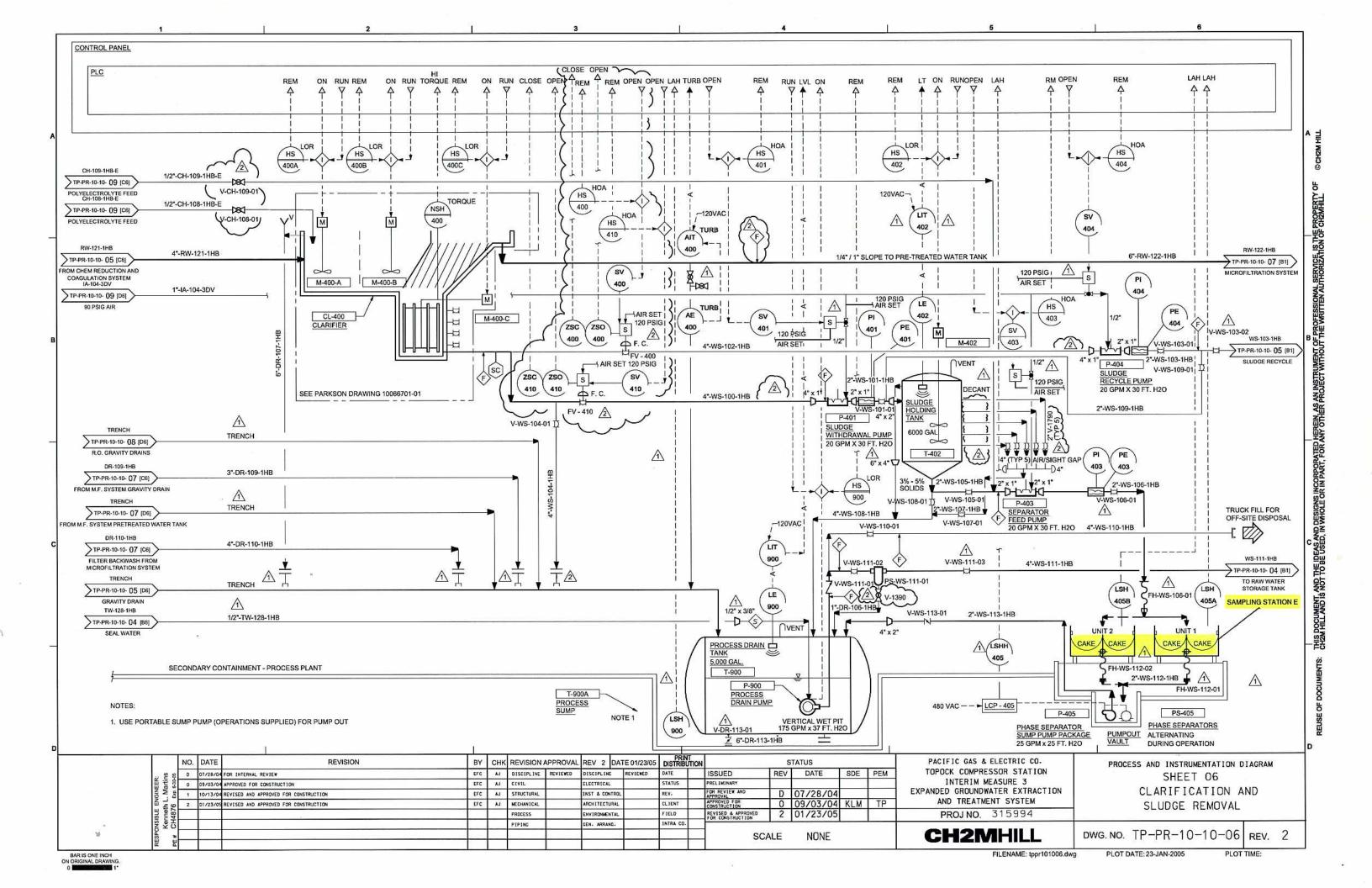
TLI = Truesdail Laboratories, Inc.

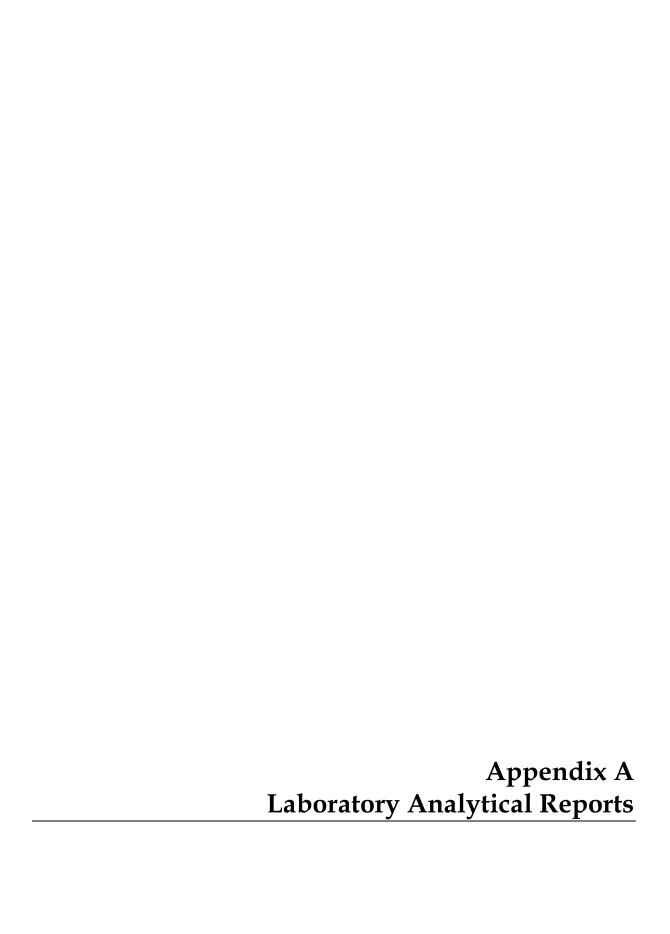

MBC = MBC Applied Environmental Sciences Laboratory


STL = Severn Trent Laboratories, Inc.


SC = specific conductance PH = pH TDS = total dissolved solids TRB = turbidity CRT = chromium CR6 = hexavalent chromium FL = fluoride AL = aluminum B = boron FE = iron MN = manganese ZN = zinc SB = antimony AS = arsenic BA = barium CU = copper	NH3N =	molybdenum nickel lead mercury selenium thallium cobalt cadmium beryllium silver vanadium nitrate (as N) ammonia (as N) nitrite (as N) sulfate
---	--------	--







14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

CH2M HILL

PG&E Topock Project

CHSW HILL

WOA 5 5 5002

Laboratory Number: 948462 Received: November 2, 2005

IM3 Plant-WDR-019 Project No.: 334168.IM.04.00

P.O. No.: 911248

Prepared for:

CH2M HILL Attn: Mark Cichy 2525 Airpark Dr. Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 948462

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

November 17, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT -WDR-019 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 948462

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-019 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, Anions, Ammonia, Total Dissolved Solids, Title 22 and metals according to the list provided. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 2, 2005, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

During the metals analysis by SW6020, for the sample identified as SC-701-WDR-019, due to very high salt content and possible matrix and transportation interference, 10X dilution needed to be applied in order to keep analysis in control.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg

Manager, Analytical Services

K. R. P. 9-Je

K.R.P. Iyer

Quality Assurance/Quality Control Officer

Section 2.0

Summary Table of Final Results

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

(714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Date Received: November 2, 2005

Laboratory No.: 948462

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008

155 Grand Ave. Suite 1000 Oakland, CA 94612 Attention: Shawn Duffy

Client: CH2M HILL

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Analytical Results Summary

SW 7199 Hexavalent Chromium mg/L	3.75 0.00025 ND		
EPA 300 Fluoride mg/L	2.86 2.09 12.3	EPA 354.1 Nitrite as N	mg/L ND 0.0065
EPA 150.1 <i>pH Units</i>	7.41 7.83 7.83	EPA 300.0 Nitrate as N	mg/L 4.92 3.93
EPA 160.1 7DS mg/L	5950 4610 25800		
EPA 350.2 Ammonia mg/L	ND 7.84	EPA 300.0 Sulfate	<i>mg/l.</i> 700 518
EPA 120.1 <i>EC u</i> mhos/cm	10300 8140 42100	EPA 180.1 Turbidity	<i>NTU</i> 0.101 ND
Sample Time	15:56 15:56 15:56	Sample Time	15.56 15.56
Sample I.D.	SC-100B-WDR-019 SC-700B-WDR-019 SC-701-WDR-019	Sample I.D.	SC-100B-WDR-019 SC-700B-WDR-019
<u>Lab I.D.</u>	948462-1 948462-2 948462-3	<u>Lab I.D.</u>	948462-1 948462-2

ND: Non Detected (below reporting limit) mg/L: Milligrams per liter.

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01ppm will have two (2) significant figures. Result above or equal to 0.01ppm will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00 **P.O. No.:** 911248

Laboratory No.: 948462

Date Received: November 2, 2005

Analytical Results Summary

METALS ANALYSIS

Lead EPA 6020 11/07/05	11911	ND	ND	ND
Copper EPA 6020 11/07/05	197	QN	ON	ND
Cobalt EPA 6020 11/07/05	119/1	1	1	ND
Chromium EPA 6010B 11/08/05	111g/L	3.63	QN	0.0015
Cadmium EPA 6020 11/07/05	IIIg/L		1	QN
Beryllium EPA 6020 11/08/05	mg/L		****	QN
Barium EPA 6010B 11/07/05	mg/L	QN	ΩN	ON
Arsenic EPA 6020 11/07/05	mg/L	ON	QN	ND
Antimony EPA 6020 11/07/05	mg/L	ND	Q.	ND
	mg/L	QN	QN	111
Date of Analysis:	Time Coll.	15:56	15:56	1 1
Date	ab I.D. Sample ID	/DR-019	SC-700B-WDR-019	948462-3 SC-701-WDR-019
	Lab I.D.	948462-1	948462-2	948462-3

		Date of Analysis:		Manganese EPA 6010B 11/07/05	Mercury EPA 7470A 11/09/05	Molybdenum EPA 6020 11/07/05	Nickel EPA 6010B 11/07/05	Selenium EPA 6020 11/07/05	Silver EPA 6020 11/07/05	Thallium EPA 6020 11/07/05	Vanadium EPA 6020 11/07/05	Zinc EPA 6010B 11/08/05	Iron EPA 6010B 11/07/05
Lab I.D.	Lab I.D. Sample ID	Time Coll.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	rig/L	Hg/L	IIIg/L
948462-1	SC-100B-WDR	-019 15:56	1.36	QN	1	0.0214	ON.	***	1		-	QN	ON.
948462-2	SC-700B-WDR	948462-2 SC-700R-WDR-019 15:56	1.62	QN		0.0102	ON	***	***	***	-	ON	ND
948462-3	348462-3 SC-701-WDR-019	019 15:56			QN	0.0695	ND	QN	ΩΩ	ND	0.0332	ND	***************************************

NOTES: ND: Not detected, or below limit of detection

Section 3.0

Final Reports

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: CH2M HILL REPORT

155 Grand Ave. Suite 1000 Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005 Received: November 2, 2005

Prep/ Analyzed: November 4, 2005

Analytical Batch: 11EC05A

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

<u>TLI I.D.</u>	<u>Field I.D.</u>	<u>Units</u>	<u>Method</u>	<u>MDL</u>	<u>RL</u>	<u>Results</u>
948462-1	SC-100B-WDR-019	μmhos/cm	EPA 120.1	0.143	20.0	10300
948462-2	SC-700B-WDR-019	μmhos/cm	EPA 120.1	0.143	20.0	8140
948462-3	SC-701-WDR-019	μmhos/cm	EPA 120.1	0.143	20.0	42100

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	948412	1710	1720	0.58%	≤ 10%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
ccs	712	706	101%	90% - 110%	Yes
CVS#1	925	996	92.9%	90% - 110%	Yes
CVS#2	918	996	92.2%	90% - 110%	Yes
LCS	720	706	102%	90% - 110%	Yes
LCSD	718	706	102%	90% - 110%	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005

Received: November 2, 2005

Prep/ Analyzed: November 3, 2005

Analytical Batch: 11NH305A

Investigation:

Ammonia as N by Method EPA 350.2

Analytical Results Ammonia as N

TLI I.D.	Field I.D.	Sample Time	<u>Method</u>	<u>Units</u>	<u>DF</u>	RL	Results
948462-1	SC-100B-WDR-019	15:56	EPA 350.2	mg/L	1.00	0.500	ND
948462-2	SC-700B-WDR-019	15:56	EPA 350.2	mg/L	1.00	0.500	7.84

QA/QC Summary

	QC ST	DI.D.		borate lumbe	-	Concentra	ition	l	plicate entration	F	Relative Percent Ifference		eptance mits	QC Within Control	
	Duplic	ate	94	48462	-2	7.84			7.56		3.6%	<u> </u>	20%	Yes	
QC Std I.D.	Lab Number	Conc unspi samı	ked		ıtion ctor	Added Spike Conc.	l	MS nount	Measured Conc. of spiked sample		Theoretical Conc. of spiked sample	1	MS% covery	Acceptance limits	QC Within Control
MS	948462-1	0.0	0	1.	.00	10.0		10.0	8.82		10.0	8	8.2%	75-125%	Yes
		QC	C Std	l.D.		easured centration	i	neoretica ncentrati			1		QC With Contro		

10.0

ND: Below the reporting limit (Not Detected).

LCS

9.61

DF: Dilution Factor.

Respectfully submitted,

90% - 110%

TRUESDAIL LABORATORIES, INC.

Yes

Julia Nayberg, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005 Received: November 2, 2005

Prep/ Analyzed: November 3, 2005

Analytical Batch: 11TDS05BB

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

TLI I.D.	Field I.D.	<u>Units</u>	<u>Method</u>	<u>RL</u>	Results
948462-1	SC-100B-WDR-019	mg/L	EPA 160.1	312	5950
948462-2	SC-700B-WDR-019	mg/L	EPA 160.1	250	4610
948462-3	SC-701-WDR-019	mg/L	EPA 160.1	1250	25800

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	948462-2	4610	4600	0.11%	≤ 5%	Yes

QC Std I.D.	Measured	Theoretical	Percent	Acceptance	QC Within
	Concentration	Concentration	Recovery	Limits	Control
LCS 1	494	500	98.8%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005 Received: November 2, 2005

Prep/ Analyzed: November 3, 2005

Analytical Batch: 11PH05C

Investigation:

pH by EPA 150.1

Analytical Results pH

TLI I.D.	Field I.D.	Run Time	<u>Units</u>	MDL	<u>RL</u>	Results
948462-1	SC-100B-WDR-019	07:10	pH Units	0.0140	0.100	7.41
948462-2	SC-700B-WDR-019	07:15	pH Units	0.0140	0.100	7.83
948462-3	SC-701-WDR-019	07:20	pH Units	0.0140	0.100	7.83

QA/QC Summary

 QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	948462-3	7.83	7.84	0.01	± 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control	
LCS	6.99	7.00	0.01	<u>+</u> 0.100 Units	- Yes	
LCS #1	7.01	7.00	0.01	<u>+</u> 0.100 Units	Yes	

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005

Received: November 2, 2005 Prep/ Analyzed: November 3, 2005

Analytical Batch: 11TUC05D

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

TLI I.D.	Field I.D.	Sample Time	<u>Units</u>	<u>DF</u>	RL	Results
948462-1	SC-100B-WDR-019	15:56	NTU	1.00	0.100	0.101
948462-2	SC-700B-WDR-005	15:56	NTU	1.00	0.100	ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	948457-68	0.313	0.315	0.6%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	8.00	8.00	100%	90% - 110%	Yes
LCS	8.20	8.00	103%	90% - 110%	Yes
LCS	8.10	8.00	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DE Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005

Received: November 2, 2005 Prepl Analyzed: November 3, 2005

Analytical Batch: 11AN05D

Investigation:

Sulfate by Method EPA 300.0

Analytical Results Sulfate

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	Results
948462-1	SC-100B-WDR-019	15:56	11:38	mg/L	25.0	12.5	700
948462-2	SC-700B-WDR-019	15:56	11:49	mg/L	25.0	12.5	518

QA/QC Summary

	QC STE	111) 1	Number	Concentrat	ion		entration	Percent Difference	Acceptance limits	Control	
	Duplic	ate !	948462-2	518			518	0.00%	≤ 20%	Yes	
QC Std I,D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.		IS ount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	948462-2	518	50.0	10.0	5	00	1010	1018	98.4%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	20.0	20.0	100%	90% - 110%	Yes
MRCVS#1	15.0	15.0	100%	90% - 110%	Yes
MRCVS#2	15.0	15.0	100%	90% - 110%	Yes
MRCVS#3	15.1	15.0	101%	90% - 110%	Yes
LCS	20.5	20.0	103%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

65-115

Relative

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948462

Date: November 14, 2005

Collected: November 2, 2005

Received: November 2, 2005

Prep/ Analyzed: November 3, 2005

Analytical Batch: 11AN05D

Investigation:

Fluoride by Ion Chromatography using EPA 300.0

Analytical Results Fluoride

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	RL	Results
948462-1	SC-100B-WDR-019	15:56	9:54	mg/L	1.00	0.200	2.86
948462-2	SC-700B-WDR-019	15:56	10:05	mg/L	1.00	0.200	2.09
948462-3	SC-701-WDR-019	15:56	11:59	mg/L	25.0	5.00	12.3

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	tration Duplicate Concentration		Acceptance limits	QC Within Control
Duplicate	948403-11	2.10	2.16	2.82%	≤ 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	948403-11	2.10	1.00	2.00	2.00	4.18	4.10	104%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	4.06	4.00	102%	90% - 110%	Yes
MRCVS#1	3.09	3.00	103%	90% - 110%	Yes
MRCVS#2	3.12	3.00	104%	90% - 110%	Yes
LCS	4.06	4.00	102%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948462

Date: November 14, 2005

Collected: November 2, 2005 Received: November 2, 2005

Prep/ Analyzed: November 3, 2005

Analytical Batch: 11AN05D

Investigation:

Nitrate as N by Ion Chromatography using EPA 300.0

Analytical Results Nitrate as N

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Units</u>	DF	<u>RL</u>	Results
948462-1	SC-100B-WDR-019	15:56	9:54	mg/L	1.00	0.200	4.92
948462-2	SC-700B-WDR-019	15:56	10:05	mg/L	1.00	0.200	3.93

QA/QC Summary

	QC STD		Numbe	r	Concentra	ition	Concen		Percent Difference		imits	Control	
	Duplica	ate S	48457 R	₹/D	0.342		0.3	59	4.85%	<	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilu	tion tor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample		MS% ecovery	Acceptance limits	QC Within Control
MS	948457 R/D	0.342	1.0	00	2.00	2	2.00	2.38	2.34		102%	75-125%	Yes
		QC St	d I.D.		easured centration		neoretical ncentration	Percer			QC With	1	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	3.95	4.00	98.8%	90% - 110%	Yes
MRCVS#1	2.98	3.00	99.3%	90% - 110%	Yes
MRCVS#2	2.98	3.00	99.3%	90% - 110%	Yes
MRCVS#3	3.00	3.00	100%	90% - 110%	Yes
LCS	3.95	4.00	98.8%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Laboratory

Number

Relative

Percent

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

QC STD I.D.

948462-3

0.00

P.O. No.: 911248

Prep. Batch: 11CrH05C

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005

QC Within

Yes

Received: November 2, 2005 Prep/ Analyzed: November 4, 2005

Analytical Batch: 11CrH05C

Acceptance

Hexavalent Chromium by IC Using Method SW 7199.

Investigation:

Analytical Results Hexavalent Chromium

<u>TLI I.D.</u>	<u>Field I.D.</u>	Sample Time	Run Time	<u>Units</u>	DF	RL	Results
948462-1	SC-100B-WDR-019	15:56	11:07	mg/L	200	0.0400	3.75
948462-2	SC-700B-WDR-019	15:56	11:26	mg/L	1.05	0.00020	0.00025
948462-3	SC-701-WDR-019	15:56	11:35	mg/L	10.0	0.0020	ND

QA/QC Summary

Concentration

0.00100

					Conc	entration	Difference	iimits	Control	
	Duplic	ate	948461-1	0.0210		0.0212	0.95%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	948462-1	3.75	200	0.0200	4.00	7.50	7.75	93.8%	75-125%	Yes
MS	948462-2	0.00025	1.06	0.00100	0.00106	0.00138	0.00131	107%	75-125%	Yes

0.0110

Duplicate

0.00	<u> </u>	10.0	0.00100	0.0100	0.0110	0.0100		110%		75-125%
QC Std	I.D.	1	sured Intration	Theoretica Concentration	Percent Recover	 Acceptar Limits		QC Wit		
MRCC	cs	0.0	0487	0.00500	97.4%	90% - 110	0%	Yes		
MRCV	S#1	0.0	0991	0.0100	99.1%	90% - 110	3%	Yes	;	
MRCV	S#2	0.0	0973	0.0100	 97.3%	90% - 11	0%	Yes	;	}
MRCV	S#3	0.0	0974	0.0100	 97.4%	90% - 11	0%	Yes	 3	
MRCV	S#4	0.0	0983	0.0100	98.3%	90% - 11	0%	Yes]
MRCV	S#5	0.0	0978	0.0100	97.8%	90% - 11	0%	Yes	 }	
LCS	3	0.0	0491	0.00500	98.2%	90% - 11	0%	Yes	 3	

0.0100

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager **Analytical Services**

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

Relative

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948462

Date: November 14, 2005

www.truesdail.com

Collected: November 2, 2005 Received: November 2, 2005

Prep/ Analyzed: November 3, 2005

Analytical Batch: 11NO205B

Investigation:

Nitrite as N by Method EPA 354.1

Analytical Results for Nitrite as N

TLI I.D. Field I.D. Sample Time Run Time Units DF RL Results 948462-1 SC-100B-WDR-019 15:56 10:44 mg/L 1.00 0.0050 ND 948462-2 SC-700B-WDR-019 15:56 10:45 mg/L 1.00 0.0050 0.0065

QA/QC Summary

	QC STD	I.D.	Number	Concentration	on I	centration	Percent Difference	limits	Control	
	Duplic	ate	948462-3	0.0222		0.0225	1.3%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	948462-2	0.0065	1.00	0.100	0.100	0.109	0.107	103%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.104	0.100	104%	90% - 110%	Yes
MRCVS#1	0.0957	0.100	95.7%	90% - 110%	Yes
LCS	0.218	0.200	109%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948462

Date: November 14, 2005 Collected: November 2, 2005 Received: November 2, 2005 Analyzed: November 7, 2005

REPORT

Client: CH2M HILL

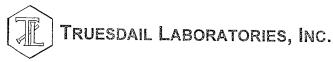
155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 334168.IM.04.00


P.O. No.: 911248

Investigation: California Title 22, Section 26 Metals

Analytical Results

S-AMPLE ID:	SC-100B-WDR-019	Time C	ollected:	15:56		LAB ID:	948462-1	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 6010B	ND	1.04	mg/L	0.0520	110705B	11/07/05	18:05
Antimony	EPA 6020	ND	2.08	mg/L	0.0030	110705B	11/07/05	16:20
Arsenic	EPA 6020	ND	2.08	mg/L	0.0050	110705B	11/07/05	16:20
Barium	EPA 6010B	ND	1.04	mg/L	0.300	110705B	11/07/05	18:05
Chromium	EPA 6010B	3.63	1.04	mg/L	0.0104	110705B	11/07/05	18:05
Copper	EPA 6020	ND	2.08	mg/L	0.0100	110705B	11/07/05	16:20
Lead	EPA 6020	ND	2.08	mg/L	0.0020	110705B	11/07/05	16:20
Manganese	EPA 6010B	ND	1.04	mg/L	0.500	110705B	11/07/05	18:05
Molybdenum	EPA 6020	0.0214	2.08	mg/L	0.0050	110705B	11/07/05	16:20
Nickel	EPA 6010B	ND	1.04	mg/L	0.0200	110705B	11/07/05	18:05
Zinc	EPA 6010B	ND	1.04	mg/L	0.0200	110805B	11/08/05	12:52
Boron	EPA 6010B	1.36	1.04	mg/L	0.200	110805B	11/08/05	12:52
Iron	EPA 6010B	ND	1.04	mg/L	0.300	110705B	11/07/05	18:05

SAMPLE ID:	SC-700B-WDR-019	Time Co	ollected:	15:56		LAB ID:	948462-2	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Aluminum	EPA 6010B	ND	1.04	mg/L	0.0520	110705B	11/07/05	18:17
Antimony	EPA 6020	ND	2.08	mg/L	0.0030	110705B	11/07/05	16:32
Arsenic	EPA 6020	ND	2.08	mg/L	0.0050	110705B	11/07/05	16:32
⊟arium	EPA 6010B	ND	1.04	mg/L	0.300	110705B	11/07/05	18:17
Chromium	EPA 6010B	ND	1.04	mg/L	0.0010	110705A	11/07/05	14:37
C₀pper	EPA 6020	ND	2.08	mg/L	0.0100	110705B	11/07/05	16:32
Lead	EPA 6020	ND	2.08	mg/L	0.0020	110705B	11/07/05	16:32
M anganese	EPA 6010B	ND	1.04	mg/L	0.500	110705B	11/07/05	18:17
M olybdenum	EPA 6020	0.0102	2.08	mg/L	0.0050	110705B	11/07/05	16:32
Nickel	EPA 6010B	ND	1.04	mg/L	0.0200	110705B	11/07/05	18:17
Zinc	EPA 6010B	ND	1.04	mg/L	0.0200	110805B	11/08/05	13:09
Biron	EPA 6010B	1.62	1.04	mg/L	0.200	110805B	11/08/05	13:09
Ira-en	EPA 6010B	ND	1.04	mg/L	0.300	110705B	11/07/05	18:17

Report Continued

S=AMPLE ID:	SC-701-WDR-019	Time C	ollected:	15:56		LAB ID:	948462-3	
		Reported					Date	Time
Parameter	Method	Value	DF	Units	RL	Batch	Analyzed	Analyzed
Autimony	EPA 6020	ND	10.4	mg/L	0.0104	110705B	11/07/05	17:55
Asenic	EPA 6020	ND	10.4	mg/L	0.0104	110705B	11/07/05	17:55
Barium	EPA 6010B	ND	1.04	mg/L	0.300	110705B	11/07/05	18:21
Beryllium	EPA 6020	ND	10.4	mg/L	0.0052	110805A	11/08/05	14:27
Cadmium	EPA 6020	ND	10.4	mg/L	0.0052	110705B	11/07/05	17:55
Chromium	EPA 6010B	0.0015	1.04	mg/L	0.0010	110705A	11/07/05	14:41
Cobalt	EPA 6020	ND	10.4	mg/L	0.0104	110705B	11/07/05	17:55
Copper	EPA 6020	ND	10.4	mg/L	0.0104	110705B	11/07/05	17:55
Lead	EPA 6020	ND	10.4	mg/L	0.0052	110705B	11/07/05	17:55
Mercury	EPA 7470A	ND	1.00	mg/L	0.00020	110905A	11/09/05	NA
Molybdenum	EPA 6020	0.0695	10.4	mg/L	0.0104	110705B	11/07/05	17:55
Nickel	EPA 6010B	ND	1.04	mg/L	0.0200	110705B	11/07/05	18:21
Selenium	EPA 6020	ND	10.4	mg/L	0.0208	110705B	11/07/05	17:55
Silver	EPA 6020	ND	10.4	mg/L	0.0104	110705B	11/07/05	17:55
Thallium	EPA 6020	ND	10.4	mg/L	0.0052	110705B	11/07/05	17:55
Vanadium	EPA 6020	0.0332	10.4	mg/L	0.0104	110705B	11/07/05	17:55
Zinc	EPA 6010B	ND	1.04	mg/L	0.0200	110805B	11/08/05	13:13

Mp: Not detected, or below limit of detection.

DF: Dilution factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Sample: Three (3) Groundwater Samples **Attention: Shawn Duffy**

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

California Title 22, Section 26 Metals Investigation:

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Established 1931

Laboratory No.: 948462

Date: November 14, 2005

Collected: November 2, 2005

Received: November 2, 2005

Quality Control/Quality Assurance Report

						0000				MRCVS			
				BLANK		SOCIA					TUIT	/0	Control
						Observed	TRUE	%	Control	Observed	I KUE	° í	l imite %
Darameter	Method	Batch	Units	Blank	RL	Value	Value	Rec	Limits	Value	value	Kec	LIIIII /8
	00000	44070ED	1/500	CN	0.0500	5,04	5.00	101%	90-110%	4.65	5.00	93.0%	90-110%
Aluminum	EFA 60105	4407065	111g/L	2 2	0.0030	0.0521	0.0500	104%	90-110%	0.0541	0.0500	108%	90-110%
Antimony	EPA 6020	1107035	IIIG/L	GN CN	0.0050	0.0514	0.0500	103%	90-110%	0.0502	0.0500	100%	90-110%
Arsenic	EPA 6020	907011	IIIG/L	2 5	00000	7 7 T	5.00	102%	90-110%	4.71	5.00	94.2%	90-110%
Barium	EPA 6010B	110/058	mg/L	2	0.000		0050	401%	90-110%	0.0466	0.0500	93.2%	90-110%
Beryllium	EPA 6020	110805A	mg/L	QN N	0.0010	0.0000	0.0000	0/101	201700	88700	0.0500	97.6%	90-110%
Cadmium	EPA 6020	110705B	mg/L	9	0.0020	0.0460	0.0500	92.0%	90-110%	0.0400	0.000	04 697	90-110%
Chromium	EPA 6010B	110705B	mg/L	QN O	0.0100	5.13	5.00	103%	90-110%	4.73	0.00	94.070	90-110 /8
Cobalt	FPA 6020	110705B	mg/L	Q.	0.0050	0.0494	0.0500	98.8%	90-110%	0.0470	0.000.0	94.0 %	30-1-0%
Condain	EDA 6020	110705B	l/bm	QN	0.0100	0.0492	0.0500	98.4%	90-110%	0.0476	0.0500	95.2%	90-110%
Copper	EFA 6020	140,1000	7/500	2	0.0000	0.0494	0.0500	98.8%	90-110%	0.0489	0.0500	97.8%	90-110%
Lead	EPA 6020	960/011	IIIG/L	5 5	0.500	5.05	5.00	105%	90-110%	4.70	5.00	94.0%	90-110%
Manganese	EPA 6010B	110/05B	mg/L	QV :	0.000	0.0000	0.00100	106%	90-110%	0.00102	0.00100	102%	80-120%
Mercury	EPA 7470A	110905A	mg/L	ON.	0.00020	0.000	00.00	4000/	00 110%	0.0498	0.0500	%9.66	90-110%
Molyhdanim	EPA 6020	110705B	mg/L	Q	0.0050	0.0510	0.0500	102%	80-1-0%	0000	0000	/60 00	00.440%
Molyboom	EDA GO10B	110705B	ma/L	S	0.0200	5.11	5.00	102%	90-110%	4.63	2.00	92.070	30-110/0
Nickei	2000 401	440705B]/pm	S	0,0050	0.0500	0.0500	100%	90-110%	0.0506	0.0500	101%	90-110%
Selenium	EFA 6020	1401050	1 10 00	CZ	0.0050	0.0500	0.0500	100%	90-110%	0.0485	0.0500	97.0%	90-110%
Silver	EPA 6020	9607011	11g/L	2 2	0.000	0.0842	0.0500	102%	90-110%	0.0506	0.0500	101%	90-110%
Thallium	EPA 6020	110705B	mg/L	ON.	0.0010	2100.0	0000	700 407	90-110%	0.0516	0.0500	103%	90-110%
Vanadium	EPA 6020	110705B	mg/L	Q	0.0050	0.0497	0.000	07 +100	2007	F 04	- L	101%	90-110%
	EDA GO10B	110805B	ma/L	QN.	0.0200	4.92	5.00	98.4%	80-110%	40.0	3.00	0/101	00 4408/
ZINC	20000	440805B	l/om	QN	0.200	4.97	5.00	99.4%	90-110%	4.95	5.00	88.0%	90-110%
Boron	EPA 00 10D	000011	1 5	2	0000	5 17	5.00	103%	90-110%	4.74	5.00	94.8%	90-110%
Iron	EPA 6010B	110705B	mg/L	מ	0.300	5							

Report Continued

			LABORATOR	LABORATORY CONTROL SAMPLES	SAMPLES		SAMPLE DUPLICATES	CATES			Precision
		11-160	00	83	%	Control	SAMPLE	SAMPLE	DUP	%	Control
Parameter	Method	S	5 4	The C	. AB	Limits	Ω	RESULT	RESULT	RPD	Limits %
			Ops.	TIEO.	4049/	90-110%	948462-1	SN	QN.	0.00%	<20
Aluminum	EPA 6010B	mg/L	5.07	9.00	10170	30-1-070	048462-3	CN	QN	0.00%	≥20
Antimony	EPA 6020	mg/L	0.0512	0.0500	102%	%01.1 - 08	0-704046		CIZ	%00.0	<20
Aronio	FPA 6020	ma/L	0.0515	0.0500	103%	90-110%	948462-3	ב ב	ON !	0,000	00/
Alseille.	EDA ANTOR	l/pm	5.14	5.00	103%	90-110%	948462-1	QN	ON	0.00%	075
Barium	CDA 6020		0.0479	0.0500	95.8%	90-110%	948462-3	2	QN	0.00%	075
Beryllium	EPA 6020	1/Su.	0.0455	0.0500	91.0%	90-110%	948462-3	S	QN	0.00%	270
Cadmium	EDA ANTOR	l/ou	5.22	5.00	104%	90-110%	948462-1	3.63	3.60	0.83%	075
Chromium	2000 401	1/50	0.0498	0.0500	%9.66	90-110%	948462-3	QN.	QN	0.00%	075
Cobalt	EFA 6020	1 2/2	0.0500	0.0500	100%	90-110%	948462-3	N	2	%0.0	075
Copper	EPA 6020	mg/L	0.000	0000	/80 00	00-110%	948462-3	S	2	%00.0	<20
Lead	EPA 6020	mg/L	0.0495	0.0500	98.0%	0/011-06	1-037870	CZ	Q	%00.0	<20
Mandanesse	EPA 6010B	mg/L	5.17	5.00	103%	80-110%	1-204040	67000	0.00030	9 76%	<20
Nangara a	EDA 74704	l/um	0.00112	0.00100	112%	80-120%	948550	0.00043	0.00039	2,0,0	000
Mercury	0000 401	1/6	0.0523	0.0500	105%	90-110%	948462-3	0.0695	0.0630	9.81%	075
Molybdenum	EPA 6020	riig/L	0.00	F 00	401%	90-110%	948462-1	ON	N O	0.00%	\$20
Nickel	EPA 6010B	mg/L	3.00	0050	104%	90-110%	948462-3	ON	ON	%00.0	<200
Selenium	EPA 6020	mg/L	0.00.0	00000	%U 00	90-110%	948462-3	QN.	ND	%00.0	<20
Silver	EPA 6020	mg/L	0.0495	0.0000	07.0.00	20 77 00	0.08462.2	CZ	QV	%0.0	<20
Thallium	EPA 6020	mg/L	0.0498	0.0500	88.6%	0/011-08	0.00000	0.0332	0.0314	5.57%	≥20
Voncettime.	FPA 6020	ma/L	0.0499	0.0500	100%	90-110%	848402-3	20000	20.2	%000	<20
Valiadiuli	20109 ACT	1/50	5.41	5.00	108%	90-110%	948462-1	2	ON .	0,00,0	
Zinc	EFA 0010D	1/8/1	80.2	5.00	102%	90-110%	948462-1	1.36	1.35	0.74%	075
Boron	EPA 6010B	mg/L	0.00	000	405%	90-110%	948462-1	Q	S	%00.0	075
Iron	EPA 6010B	mg/L	5.27	00.0	9/ 22						

Report Continued

Accuracy Control Limits % 75-125%
% 100% 110% 90.6% 90.6% 91.9% 81.0% 94.2% 92.3% 87.1% 90.2% 90.2% 90.2% 90.2% 90.2% 90.2% 90.2% 91.3% 91.2% 91.2%
MS Obs. 2.60 0.570 0.471 2.39 0.337 0.490 6.02 0.409 2.24 0.00102 0.600 2.24 0.543 0.468 0.648 0.543 0.468 0.468 2.24 0.543 0.468 2.24 0.543
Theo. Value 2.60 0.520 0
7.04al Amt. of Spike 2.60 0.520 0.520 0.520 2.60 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 0.520 2.60 0.520 0.520 0.520 0.520 0.520 2.60 0.520
Spike Level 2.50 0.0500
10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4
Sample Result 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Units mg/L
Method
Parameter Aluminum Antimony Arsenic Barium Barium Cadmium Chromium Copper Copper Lead Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc Boron Iron
Sample ID 948462-1 948462-3 948462-3 948462-3 948462-3 948462-3 948462-3 948462-1 948462-1 948462-1 948462-3 948462-3 948462-3 948462-3 948462-3 948462-3 948462-3 948462-3 948462-3 948462-3

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

ND: Not detected, or below limit of detection.

DF: Dilution Factor

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: Three (3) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00 P.O. No.: 911248 California Title 22, Section 26 Metals Investigation:

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Laboratory No.: 948462

Date: November 14, 2005

Collected: November 2, 2005

Received: November 2, 2005

Quality Control/Quality Assurance Report

r Method Batch Units Blank RL Value Value Rec Limits Value Value Rec L FPA 6010R 110705A mol. ND 0.0010 0.01010 0.0100 101% 90-110% 0.01100 0.0100 110%					BLANK		MRCCS				MRCVS			
r Method Batch Units Blank RL Value Value Rec Limits Value Rec L Rec L Limits Column Rec L Rec L FDA 6010 110705A mol/L ND 0.0010 0.01010 0.0100 110%							Observed	TRUE	%	Control	Observed	TRUE	%	Control
FPA 6010R 110705A ma/L ND 0.0010 0.01010 101% 90-110% 0.01100 0.0100 110%	Darameter	Mathod	Batch	Units	Blank	RL	Value	Value	Rec	Limits	Value	Value	Rec	Limits %
FPA 6010R 110705A mg/L ND 0.0010 0.01010 0.0100 101% 90-110% 0.01100 0.0100 110%	, araniecei	Method	Carrie							***************************************				
	Chromina	FPA 6010B	110705A	ma/L	9	0.0010	0.01010	0.0100	101%	90-110%	0.01100	0.0100	110%	90-110%

			I ABORATORY CONT	RY CONTROL	NTROL SAMPLES		SAMPLE DUPLICATES	ICATES			
											Precision
Darramofor	Method Units LCS	Units	rcs	rcs	%	Control	SAMPLE	SAMPLE	DUP	%	Control
raidilletei			340	Theo	Sec	Limits	₽	RESULT	RESULT	RPD	Limits %
			CDS.						01000	/807 0	957
Chromina	EPA 6010B mg/l	l/bm	0.00972	0.0100	97.2%	90-110%	948460-6	0.0047	0.0050	6.19%	520
CHORIS	20100										

YICO XICHE	ŗ										Accuracy
MAIRIX SPINE	ų,			Sample		Spike	Total Amt.	Theo.	MS	%	Control
CI CI	20,000	Method	Units	Result	DF	Level	of Spike	Value	Obs.	Rec.	Limits %
Salliple ID	rainte					0070	0.000	7440	0.0442	702 60	75_125%
948460-6	Chromium	EPA 6010B	mg/L	0.0047	1.04	0.0100	0.0104	0.0.0	0.0	34.376	0/071-07
0											

ND: Not detected, or below limit of detection.

DF: Dilution Factor

Julia Nayberg, Manager

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

Analytical Services

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-019]

FAX (510) 622-7086

155 Grand Ave Ste 1000

ADDRESS

(510) 251-2888

PHONE

PG&E Topock

PROJECT NAME

CH2M HILL

COMPANY

Oakland, CA 94612

334168.IM.04.00

P.O. NUMBER

SAMPLERS (SIGNATURE CAL CL

11/02/05

Rec'd

COC Number

9 5 Days PAGE TURNAROUND TIME DATE 11.2.03 COMMENTS

(100)			
2 (380.7) 1 Urbidily (180.7)	×	×	
17 (00x) FI) SOA, NO2, NO3 (300) FI, SOA, NO2, NO3 (5.080.2) SOA, NO3 (5.080.2)	×	×	
Anions (300) FI	×	×	
17 (00E) RIVIONS (300) FI			×
(1.091) SQ1	×	×	×
Specific Conductance (120.1)	×	×	×
Metals (7470A) Tille 22 Metals (7470A) Tille 22 Specific Cond	×	×	×
Melals (TATS OBITAL BAB).			×
10101 Met (60708) Tille 22 52 All (80708) Tille 22	×	×	
1061 Met (607) Lab Filtered			×
QXQ (7190)	×	×	×

NUMBER OF CONTAINERS

TOTAL CONTRACTOR OF THE PARTY O		A TACTOR	
Ą			ATTENDED TO THE PROPERTY OF TH

(I)

TOTAL NUMBER OF CONTAINERS

2

in S

m =2

Groundwater Groundwater

325 386

1(-705 11-205

Groundwater DESCRIPTION

326

11-200

SC-100B-WDR-019

SAMPLE I.D.

-2 SC-700B-WDR-019

SC-701-WDR-019

en

TIME

DATE

S1 = 2

				CHOIL GAS COL	
さ	CHAIN OF CUSTODY SIGNATU	ATURE RECORD		SAMPLE CONDITIONS	
Signature // //		Company/	Date/ 11-2-0 S Time ろって	RECEIVED COOL WARM	
Relinquished A. M. M. Signature	Printed (Compared Co	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Date/ 1/-2-05 Time 15.55	CUSTODY SEALED YES \(\Boxed{\omega}\) NO \(\Boxed{\omega}\)	
Received)	Name // 12% of r. a. C.	- 1	1/2 2/2		
Signature M/M/M/M	Printed Buskirk Compar	WEKCallan	Time 28-20	SPECIAL REQUIREMENTS:	
V. Car	Printed / Chilin Compar	171 /21	Date/ //2/03 20 25	2	
Received) A Communication of the Communication of t	Printed Co	/ʎt	Date/ /	,	
Relinquished)	Name	Agency	lime		
Signature Pecaived)	Printed Co Name Ag	Company/ Agency	Date/ Time		
J.GcGivad)					

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

CH2M HILL

PG&E Topock Project

Laboratory Number: 948737 Received: November 9, 2005

IM3Plant-WDR-020

Project No.: 334168.IM.04.00

P.O. No.: 911248

Prepared for:

CH2M HILL Attn: Mark Cichy 2525 Airpark Dr. Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 948737

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

November 16, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT –WDR-020 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 948737

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-020 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The sample was received and delivered with the chain of custody on November 9, 2005, intact and in chilled condition. The sample will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Julia Nayberg

Manager, Analytical Services

K.R.P. gyer

K.R.P. Iyer

Quality Assurance/Quality Control Officer

May

Section 2.0

Summary Table of Final Results

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com Date Received: November 9, 2005

Laboratory No.: 948737

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00 P.O. No.: 911248

Analytical Results Summary

EPA 160.1 <i>TDS</i>	;	T/bu	4510		
EPA 120.1 EC	,	μmhos/cm mg/L	7710	2	
EPA 150.1 pH		Unit µm	900	0.00	
EPA 180.1 Turbidity		NTU	007.0	0.122	
SW 7199 Chromium				2	and an execution of the second
SW 6010B Chromium	Total	l/bm	ı Â	S	
Sample Time				12.30	0.4-0.4
Sample I.D. Sc				12:30	00-1000-4017-050
Lab I.D.				7,0707	948/3/

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

Section 3.0

Final Reports

IN-JEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948737

Date: November 16, 2005

Collected: November 9, 2005 Received: November 9, 2005

Prep/ Analyzed: November 10, 2005

Analytical Batch: 11CrH05J

Investigation:

Hexavalent Chromium by SW 7199

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time Run Time Units DF <u>RL</u> Results SC-700B-WDR-020 12:30 09:50 mg/L 5.00 0.00100 ND 948737

QA/QC Summary

							<u>. </u>			<u> </u>						
	QC STE) I.D.	}	oratory umber	Concentrati	on	1	plica entr	ation	Pe	elative ercent ference		eptance imits		QC Within Control	
	Duplic	ate	9.	48737	ND			ND		0	0.00%	•	20%		Yes	
QC Std I.D.	Lab Number	uns	nc.of piked nple	Dilution Factor		l	MS Co		Conc. of Co		heoretical Conc. of spiked sample	MS% Recovery		I Acceptance lin		QC Within Control
MS	948737	0.	00	5.00	0.00100	0.0	00500	0	0.00504		0.00500		101%		75-125%	Yes
		Q	C Std	I.D.	Measured Concentration		eoretica centrati		Percer Recove		Acceptan Limits		QC With			
			MRC	cs	0.00482	,	0.00500		96.4%	5	90% - 110	0%	Yes			
		N	MRCV:	S#1	0.00974		0.0100		97.4%	5	90% - 110	0%	Yes			
		1	MRCV:	S#2	0.00989		0.0100		98.9%	5	90% - 110	0%	Yes			
		N	MRCV	S#3	0.00981		0.0100		98.1%	6	90% - 110	0%	Yes			

0.00500

97.4%

ND: Below the reporting limit (Not Detected).

LCS

0.00487

DF: Dilution Factor.

Respectfully submitted,

90% - 110%

TRUESDAIL LABORATORIES, INC.

Yes

Julia Nayberg, Manager/ Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

I INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Prep. Batch: 111405A

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948737

Date: November 16, 2005 Collected: November 9, 2005

Received: November 9, 2005 Prep/ Analyzed: November 14, 2005

Analytical Batch: 111405A

Total Chromium by Inductively Coupled Argon Plasma

Using Method SW 6010B

Analytical Results Total Chromium

TLI I.D. 948737

Investigation:

Field I.D. SC-700B-WDR-020 Units mg/L

Method SW 6010B Run Time 13:44

1.04

0.0010

Results ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	948685-1	ND	ND	0.00%	<u><</u> 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MC	048685-1	0.00	1.04	0.0100	0.0104	0.00949	0.0104	91.3%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00993	0.0100	99.3%	90% - 110%	Yes
MRCVS#1	0.0100	0.0100	100%	90% - 110%	Yes
MRCVS#2	0.00943	0.0100	94.3%	90% - 110%	Yes
ICS	0.00910	0.0100	91.0%	80% - 120%	Yes
LCS	0.00990	0.0100	99.0%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager 6

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

IN TEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948737

Date: November 16, 2005

Collected: November 9, 2005

Received: November 9, 2005 Prep/ Analyzed: November 10, 2005

Analytical Batch: 11TDS05D

RL

Inwestigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

TLII.D. 948737 Field I.D.

SC-700B-WDR-020

Units mg/L

Method EPA 160.1

Results

250 4510

QC STD I.D.	Laboratory Number	Concentration		Percent Difference	Acceptance limits	QC Within Control	
Duplicate	948737	4510	4440	0.78%	<u><</u> 5%	Yes	

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS 1	504	500	100.8%	90% - 110%	Yes

►0: Below the reporting limit (Not Detected).

FL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Managér

IMBEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948737

Date: November 16, 2005

Collected: November 9, 2005

Received: November 9, 2005

Prep/ Analyzed: November 10, 2005

Analytical Batch: 11TUC05J

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

TLI I.D.

Field I.D.

Sample Time

<u>Units</u>

<u>DF</u>

<u>RL</u>

Results

948737

SC-700B-WDR-020

12:30

NTU

1.00

0.100

0.122

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	948672-7	ND	ND	0.00%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	8.22	8.00	103%	90% - 110%	Yes
LCS	8.25	8.00	103%	90% - 110%	Yes
LCS	8.23	8.00	103%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

IN DEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

roject Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948737

Date: November 16, 2005

Collected: November 9, 2005

Received: November 9, 2005

Prep/ Analyzed: November 10, 2005

Analytical Batch: 11EC05E

nvestigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

[LI I.D.

Field I.D.

<u>Units</u>

<u>Method</u>

DF

<u>RL</u>

<u>Results</u>

948737

SC-700B-WDR-020

μmhos/cm

EPA 120.1

10.0

20.0

7410

QA/QC Summary

QC S		' I Concentra	tion	Duplicate Concentrat		Relative Percent A Difference			eptance imits	QC Within Control
Duplic	ate 948735-	1 372		379			1.86%		≤ 10%	Yes
	QC Std I.D.	Measured Concentration	1 '	Theoretical oncentration	Perce Recov		Acceptanc Limits	e	QC Withi Control	1
	ccs	723		706	102°	%	90% - 1109	%	Yes	
	CVS#1	925		996	92.9	%	90% - 1109	%	Yes	_
	CVS#2	914		996	91.8	%	90% - 1109	%	Yes	_
	LCS	705		706	99.9	%	90% - 110	%	Yes	_
	LCSD	703		706	99.6	%	90% - 110	%	Yes	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

INESEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

Established 1931 14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948737

Date: November 16, 2005 Collected: November 9, 2005 Received: November 9, 2005

Prep/ Analyzed: November 10, 2005

Analytical Batch: 11PH05K

Investigation:

pH by EPA 150.1

Analytical Results pH

Field I.D.

Sample Time

Run Time

Units

MDL

RL

Results

ゴレI.D. **≤**94 8737

SC-700B-WDR-020

12:30

07:10

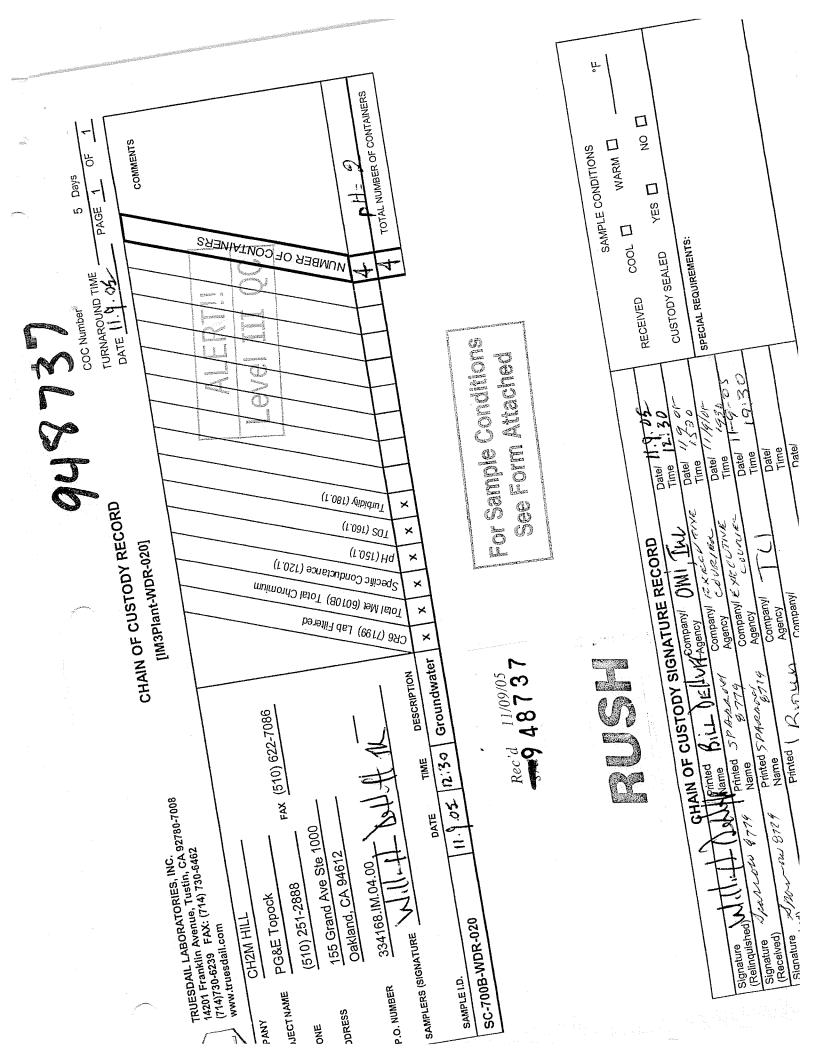
pH Units

0.0140

0.100

8.06

QA/QC Summary


QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	948737	8.06	8.06	0.0000	<u>+</u> 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.00	7.00	0.000	<u>+</u> 0.100 Units	Yes
LCS #1	7.00	7.00	0.000	<u>+</u> 0.100 Units	Yes
LCS #2	7.01	7.00	0.01	+ 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager∕

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

OF HON S & SOUR

CH2M HILL PG&E Topock Project

Laboratory Number: 948968 Received: November 16, 2005

IM3Plant-WDR-021 Project No.: 334168.IM.04.00

P.O. No.: 911248

Prepared for:

CH2M HILL Attn: Mark Cichy 2525 Airpark Dr. Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC.
TUSTIN, CALIFORNIA

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 948968

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

November 22, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT -WDR-021 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 948968

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-021 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 16, 2005, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg

Manager, Analytical Services

K.R. P. Gye

K.R.P. Iyer

Quality Assurance/Quality Control Officer

Section 2.0

Summary Table of Final Results

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com

Date Received: November 16, 2005

Laboratory No.: 948968

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00 **P.O. No.:** 911248

Analytical Results Summary

EPA 160.1 <i>TDS</i>		T/bw	DR-021 08:30 ND ND 0.125 7.57 7390 4620
EPA 120.1 <i>EC</i>		mhos/cm	7390
EPA 150.1 pH		Unit	0.125 7.57
EPA 180.1 Turbidity		UTN	0.125
SW 7199 Chromium	Hexavalent	ma/L	N
SW 6010B Chromium		ma/L	ND
Sample Time			08:30
Sample I.D.			948968 SC-700B-WDR-021 08:30
Lab I.D.			948968

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Section 3.0

Final Reports

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

www.truesdail.com

Laboratory No.: 948968

Date: November 21, 2005

Collected: November 16, 2005

Received: November 16, 2005

Prep/ Analyzed: November 17, 2005

Analytical Batch: 11CrH05M

Investigation:

Hexavalent Chromium by SW 7199

Analytical Results Hexavalent Chromium

Run Time TLI I.D. Field I.D. Sample Time **Units** DF RL Results SC-700B-WDR-021 mg/L 5.00 0.0010 ND 948968 08:30 06:52

QA/QC Summary

	QC STD I.D.			oratory ımber	Concentration	on		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	94	18969	19.4			19.1	1.56%	<u>≤</u> 20%	Yes	
QC Std I.D.	Lab Number	Conc unspil samp	ked	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	948968	0.00	0	5.00	0.00100	0.0	00500	0.00538	0.00500	108%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control	
MRCCS	0.00488	0.00500	97.6%	90% - 110%	Yes	
MRCVS#1	0.00981	0.0100	98.1%	90% - 110%	Yes	
MRCVS#2	0.00980	0.0100	98.0%	90% - 110%	Yes	
LCS	0.00540	0.00500	108%	90% - 110%	Yes	

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

∕Julia Nayberg, Manager∕ Analytical Services

The report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to where it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written au thorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Prep. Batch: 111805A

REPORT

Laboratory No.: 948968

Date: November 21, 2005

Collected: November 16, 2005

Received: November 16, 2005

Prep/ Analyzed: November 18, 2005

Analytical Batch: 111805A

Total Chromium by Inductively Coupled Argon Plasma

Using Method SW 6010B

Analytical Results Total Chromium

TLI I.D. 948968

Investigation:

Field I.D.

SC-700B-WDR-021

Units mq/L

Method SW 6010B Run Time 12:23

DF 1.04

RL0.0010 Results ND

Established 1931

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	948925-4	0.0388	0.0392	1.03%	≤20%	Yes

QC S	td Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery		QC Within Control
MS	948925-2	0.00	1.04	0.0100	0.0104	0.0153	0.0153	99.8%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0103	0.0100	103%	90% - 110%	Yes
MRCVS#1	0.0101	0.0100	101%	90% - 110%	Yes
MRCVS#2	0.0105	0.0100	105%	90% - 110%	Yes
ICS	0.0103	0.0100	103%	80% - 120%	Yes
LCS	0.0102	0.0100	102%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Managér

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 948968

Date: November 21, 2005

Collected: November 16, 2005 Received: November 16, 2005

Prep/ Analyzed: November 17, 2005

Analytical Batch: 11TUC05Q

Investigation:

948968

Turbidity by Method EPA 180.1

Analytical Results Turbidity

TLI I.D. Field I.D.

SC-700B-WDR-021

Sample Time 08:30

<u>Units</u> NTU <u>DF</u> 1.00

<u>RL</u> 0.100

Results

0.125

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	948964-62	ND	ND	0.00%	< 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.89	8.00	98.6%	90% - 110%	Yes
LCS	8.15	8.00	102%	90% - 110%	Yes
LCS	8.00	8.00	100%	90% - 110%	Yes

NaD: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written anthorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948968

Date: November 21, 2005

Collected: November 16, 2005

Received: November 16, 2005 Prep/ Analyzed: November 17, 2005

Analytical Batch: 11PH05Q

Investigation:

pH by EPA 150.1

Analytical Results pH

Sample Time Run Time Results Units MDL RL TLI I.D. Field I.D. 0.100 7.57 SC-700B-WDR-021 08:30 07:05 pH Units 0.0140 948968

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	948997	8.38	8.38	0.00	<u>+</u> 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.01	7.00	0.01	<u>+</u> 0.100 Units	Yes
LCS #1	7.00	7.00	0.00	+ 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

oject Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948968

Date: November 21, 2005

Collected: November 16, 2005

Received: November 16, 2005

Prep/ Analyzed: November 18, 2005

Analytical Batch: 11EC051

/estigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

TLI I.D.

Field I.D.

<u>Units</u>

<u>Method</u>

<u>DF</u>

RL

Results

948968

SC-700B-WDR-021

μmhos/cm

EPA 120.1

1.00

2.00

7390

QA/QC Summary

QC S		Laborato Number	- 1	Concentrat	ion	Duplica Concentra		Re	lative Percent Difference		eptance imits	QC Withi Control
Dupli	cate	949005-	7	457		462			1.09%	٧١	≤ 10%	Yes
	QC	Std I.D.		Measured oncentration		Theoretical oncentration	Perce Recov		Acceptanc Limits	е	QC Withi Control	į.
		ccs		721		706	1029	%	90% - 110%	%	Yes	
		CVS#1		923		996	92.7	%	90% - 110%	%	Yes	
		LCS		701		706	99.3	%	90% - 1109	%	Yes	
	L	LCSD		704	L	706	99.7	%	90% - 1109	%	Yes	

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Managér

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

roject Name: PG&E Topock Project **Project No.:** 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 948968

Date: November 21, 2005

Established 1931

Collected: November 16, 2005 Received: November 16, 2005

Prep/ Analyzed: November 17, 2005

Analytical Batch: 11TDS05FFF

ivestigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u> 948968

Field I.D.

<u>Units</u>

<u>Method</u>

<u>RL</u>

Results

SC-700B-WDR-021

mg/L EPA 160.1

250 4620

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	948968	4620	4670	0.54%	≤ 5%	Yes

QC Std I.D.	Measured	Theoretical	Percent	Acceptance	QC Within
	Concentration	Concentration	Recovery	Limits	Control
LCS 1	489	500	97.8%	90% - 110%	Yes

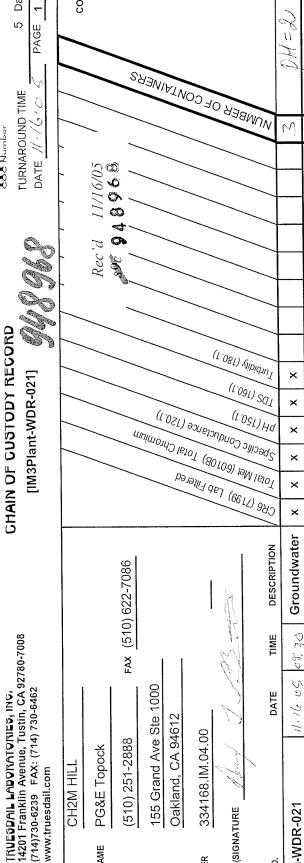
ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services


PROJECT NAME

COMPANY

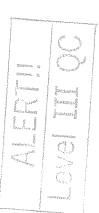
333 Number

COMMENTS

РО

SAMPLERS (SIGNATURE

P.O. NUMBER


ADDRESS

PHONE

SC-700B-WDR-021

SAMPLE I.D.

TOTAL NUMBER OF CONTAINERS

5	CHAIN OF CUSTODY SIGNATURE	GNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Comparame All Comparame Agency	Company/ Cm I Agency	Date/ 11-16-6-5 Time 147-3-6	RECEIVED COOL WARM F
Signature Judituri 877 (Received)	Printed SPARACON Name 8779	Companyl ご メたこシナバビ Agency <i>Covaler</i>	Date/ ///と/ひに Time /女子と	CUSTODY SEALED YES \(\Boxed{\omega}\) NO \(\Boxed{\omega}\)
Signature Apartura 8774 (Relinquished)	Printed Spharesour Name 8224	Companyl たメタロレ イインタ Agency こうシグイだん	Date 1/1/1/57 Time 7:20 894	SPECIAL REQUIREMENTS:
Signature (Received) (Meller in	Printed / Halellung-Agency	Company/ 77/ Agency	Date/ //////// 19:25	
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	
Signature (Received)	Printed Name	Company/ Agency	Date/ Time	

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

CH2M HILL PG&E Topock Project

Laboratory Number: 949109 Received: November 21, 2005

IM3Plant-WDR-022

Project No.: 334168.IM.04.00

P.O. No.: 911248

Prepared for:

CH2M HILL Attn: Mark Cichy 2525 Airpark Dr. Redding, CA 96001

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 949109

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

November 28, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT -WDR-022 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 949109

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-022 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The sample was received and delivered with the chain of custody on November 21, 2005, intact and in chilled condition. The sample will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg

Manager, Analytical Services

Al Kharraf

FOR K.R.P. Iyer

Quality Assurance/Quality Control Officer

May

Section 2.0

Summary Table of Final Results

INDEPENDENT TESTING. FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com

Date Received: November 21, 2005

Laboratory No.: 949109

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Analytical Results Summary

EPA 160.1 <i>TDS</i>	l/5 th	1/6:1	ND ND ND 7.75 6980 4250
EPA 120.1 EC	mo/soquii	minos/cm	6980
EPA 150.1 pH	7: "	155	7.75
EPA 180.1 Turbidity	1111	SIC	ND
SW 7199 Chromium	Hexavalent	⊐/bш	N
SW 6010B Chromium	Tota/	mg/L	ND
Sample Time			12:25
Sample I.D.			949109 SC-700B-WDR-022 12:25 ND ND ND 7.75 6980 4250
Lab I.D.			949109

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

This reportapplies only to the samples, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these iaboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Section 3.0

Final Reports

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project **Project No.:** 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

Laboratory No.: 949109

Date: November 28, 2005 Collected: November 21, 2005 Received: November 21, 2005

Established 1931

Prep/ Analyzed: November 22, 2005

Analytical Batch: 11PH05S

Investigation:

pH by EPA 150.1

Analytical Results pH

TLI I.D. Field I.D.

Sample Time

Run Time

<u>Units</u>

MDL

<u>RL</u>

Results

949109

SC-700B-WDR-022

12:25

07:05

pH Units

0.0140

0.100

7.75

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	949109	7.75	7.76	0.01	<u>+</u> 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.00	7.00	0.00	+ 0.100 Units	Yes
LCS #1	7.00	7.00	0.00	<u>+</u> 0.100 Units	Yes
LCS #2	7.01	7.00	0.01	+ 0.100 Units	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

Analytical Services

1 IDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

14004

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 949109

Date: November 28, 2005 Collected: November 21, 2005 Received: November 21, 2005

Prep/ Analyzed: November 22, 2005

Analytical Batch: 11EC05J

Inwestigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

 TLI I.D.
 Field I.D.
 Units
 Method
 DF
 RL
 Results

 949109
 SC-700B-WDR-022
 μmhos/cm
 EPA 120.1
 1.00
 2.00
 6980

QA/QC Summary

I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate 3	30'949174-19	808	810	0.25%	<u>≤</u> 10%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
ccs	722	706	102%	90% - 110%	Yes
CVS#1	924	996	92.8%	90% - 110%	Yes
CVS#2	920	996	92.4%	90% - 110%	Yes
LCS	702	706	99.4%	90% - 110%	Yes
LCSD	703	706	99.6%	90% - 110%	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

REPORT

www.truesdail.com
Laboratory No.: 949109

Date: November 28, 2005 Collected: November 21, 2005

Established 1931

Received: November 21, 2005 Prep/ Analyzed: November 22, 2005

Analytical Batch: 11TDS05G

Imvestigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

TLI I.D. 949109

Field I.D.

SC-700B-WDR-022

<u>Units</u>

<u>Method</u>

<u>RL</u> 250

Results 4250

mg/L EPA 160.1

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	949109	4250	4220	0.35%	≤ 5%	Yes

QC Std I.D.	Measured	Theoretical	Percent	Acceptance	QC Within
	Concentration	Concentration	Recovery	Limits	Control
LCS 1	481	500	96.2%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

Reporting Limit.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

Fais report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar poducts. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to from it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written asthorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 949109

Date: November 28, 2005

Collected: November 21, 2005 Received: November 21, 2005

Prep/ Analyzed: November 22, 2005

Analytical Batch: 11TUC05T

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

DF RL Results Sample Time Units TLI I.D. Field I.D. ND NTU 1.00 0.100 949109 SC-700B-WDR-022 12:25

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	949083-2	0.215	0.210	2.35%	≤ 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	7.30	8.00	91.3%	90% - 110%	Yes
LCS	7.35	8.00	91.9%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

Analytical Services

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE

TUSTIN, CALIFORNIA 92780-7008

(714) 730-6239 · FAX (714) 730-6462

REPORT

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Client: CH2M HILL

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

www.truesdail.com

Laboratory No.: 949109

Date: November 28, 2005 Collected: November 21, 2005

Received: November 21, 2005 Prep/ Analyzed: November 22, 2005

Analytical Batch: 11CrH05P

Investigation:

Hexavalent Chromium by SW 7199

Analytical Results Hexavalent Chromium

TLI I.D. Field I.D. Sample Time **Run Time Units** <u>DF</u> RL Results 949109 SC-700B-WDR-022 12:25 06:42 mg/L 5.00 0.0010 ND

QA/QC Summary

	QC STI	D I.D.		oratory umber	Concentrati	on	ł	plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	cate	9	49109	ND			ND	0.00%	≤ 20%	Yes	
QC Std I.D.	Lab Number	Con unsp sam	iked	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	949109	0.0	00	5.00	0.00100	0.0	00500	0.00546	0.00500	109%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00512	0.00500	102%	90% - 110%	Yes
MRCVS#1	0.00990	0.0100	99.0%	90% - 110%	Yes
LCS	0.00493	0.00500	98.6%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRÚESDÁIL LABORATORIES, INC.

Julia Nayberg, Manager Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Samples

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248 Prep. Batch: 112305A REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 949109

Date: November 28, 2005

Collected: November 21, 2005

Received: November 21, 2005 Prep/ Analyzed: November 23, 2005

Analytical Batch: 112305A

nvestigation:

Total Chromium by Inductively Coupled Argon Plasma
Using Method SW 6010B

Analytical Results Total Chromium

 TLI I.D.
 Field I.D.
 Units
 Method
 Run Time
 DF
 RL
 Results

 949109
 SC-700B-WDR-022
 mg/L
 SW 6010B
 13:20
 1.04
 0.0010
 ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	949109	ND	ND	0.00%	<u>≤</u> 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	949109	0.00	1.04	0.0100	0.0104	0.0104	0.0104	100%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0102	0.0100	102%	90% - 110%	Yes
MRCVS#1	0.00977	0.0100	97.7%	90% - 110%	Yes
ICS	0.00969	0.0100	96.9%	80% - 120%	Yes
LCS	0.0100	0.0100	100%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

Analytical Services

COC Number

CHAIN OF CUSTODY RECORD

[IM3Plant-WDR-022]

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

5 Days PAGE TURNAROUND TIME DATE

TOTAL NUMBER OF CONTAINERS COMMENTS NUMBER OF CONTAINERS (1.081) Vibidiby (180.1) (1.091) _{SQ1} Specific Conductance (120.1) 180109) JaW 16101 CR6 (7799) Lab Fillered × Groundwater DESCRIPTION FAX (510) 622-7086 12,29 TIME 11-2105 155 Grand Ave Ste 1000 DATE Oakland, CA 94612 334168.IM.04.00 (510) 251-2888 PG&E Topock CH2M HILL SAMPLERS (SIGNATURE SC-700B-WDR-022 PROJECT NAME P.O. NUMBER SAMPLE 1.D. COMPANY ADDRESS PHONE

0

S	CHAIN OF CUSTODY SIGNATURE RECORD	SNATURE RECORD	Ş.	SAMPLE CONDITIONS	
Signature Capital Company Capital Capita Capita Capita Capita Capita C	Printed Compar Name 1/2/1/1465 VO 465 Agency	Company/ O M.T.	Date/ Time -21-0 5 12:25	RECEIVED COOL WARM	
Signature April 6774 Received	Printed Sphazer	/Śc	Date/ 1/-21-45 12.25 Time	CUSTODY SEALED YES 🔲 NO 🔲	
Signature プルルゼン ピップタ Printed Relinquished) ロッカムノン・アンド	Printed	Company/ Agency	Date/ (1-24-0) Time (845	SPECIAL REQUIREMENTS:	
Signature Signature	Printed P C 1 D C 2	Company/ T. K. T.	Date/ //-2/-05		•
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ ' ' ' ' Time		
(iverridgestreat)	Printed Name	Company/ Agency	Date/ Time		
7					

CH2M HILL

PG&E Topock Project

Laboratory Number: 949382 Received: November 30, 2005

IM3Plant-WDR-023

Project No.: 334168.IM.04.00

P.O. No.: 911248

Prepared for:

CH2M HILL Attn:Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, CA 94612

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 949382

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Reports	3.0
Wet Chem Analysis/ Raw Data, Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

December 7, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT:

CASE NARRATIVE PG&E TOPOCK IM3PLANT-WDR-023 PROJECT, GROUNDWATER

MONITORING,

TLI No.: 949382

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-023 project groundwater monitoring for Hexavalent and Total Chromium, Turbidity, Specific Conductivity, pH, and Total Dissolved Solids. A summary table for this laboratory number is included in Section 2. Complete laboratory reports, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The samples were received and delivered with the chain of custody on November 30, 2005, intact and in chilled condition. The samples will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

Total Chromium, was analyzed by method SW6020 (ICPMS) instead of requested SW6010B due to our ICP instrument failure.

No other violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES

Julia Nayberg

Manager, Analytical Services

K. R. P. gal

K.R.P. Iyer

Quality Assurance/Quality Control Officer

Section 2.0

Summary Table of Final Results

Client: CH2M HILL 155 Grand Ave. Suite 1000

Oakland, CA 94612 Attention: Shawn Duffy

Date Received: November 30, 2005

Laboratory No.: 949382

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00 P.O. No.: 911248

Analytical Results Summary

EPA 160.1	1	mg/L	4610
EPA 120.1 FC) 	μmhos/cm	1 1
EPA 150.1	į	Unit	7.79
EPA 180.1		UTN	S
SW 7199 Chromium	Hexavalent	mg/L	ND ND ON
SW 6020	Total	mg/L	
Sample Time			07:30
Sample I.D. Sa			949382 SC-700B-WDR-023 07:30
Lab I.D.			949382

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results: Results below 0.01 will have two (2) significant figures. Result above or equal to 0.01 will have three (3) significant figures. Quality Control data will always have three (3) significant figures.

Section 3.0

Final Reports

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 911248

Prep. Batch: 120605A

Laboratory No.: 949382

Date: December 5, 2005

Collected: November 30, 2005

Received: November 30, 2005 Prep/ Analyzed: December 6, 2005

Analytical Batch: 120605A

Investigation:

Total Chromium by Inductively Coupled Argon Plasma Mass Spectrometer

Using Method SW 6020

Analytical Results Total Chromium

TLI I.D. Field I.D. **Units** Method **Run Time** DF RL Results SC-700B-WDR-023 949382 mg/L SW 6020 13:46 2.08 0.0010 ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	949504-5	0.0189	0.0195	3.13%	<u>≤</u> 20%	Yes

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilution Factor	Added Spike Conc.	MS Amount	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	949504-3	0.0184	2.08	0.0500	0.104	0.130	0.122	107%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.0475	0.0500	95.0%	90% - 110%	Yes
MRCVS#1	0.0466	0.0500	93.2%	90% - 110%	Yes
MRCVS#2	0.0481	0.0500	96.2%	90% - 110%	Yes
ICS	0.0413	0.0400	103%	80% - 120%	Yes
LCS	0.0485	0.0500	97.0%	90% - 110%	Yes

ND: Not detected at reporting limit

DF: Dilution Factor

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project **Project No.:** 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 949382

Date: December 5, 2005 Collected: November 30, 2005 Received: November 30, 2005

Prep/ Analyzed: December 1, 2005 **Analytical Batch:** 12CrH05A

Investigation:

Hexavalent Chromium by SW 7199

Analytical Results Hexavalent Chromium

TLI I.D.	Field I.D.	Sample Time	Run Time	<u>Units</u>	<u>DF</u>	<u>RL</u>	<u>Results</u>
949382	SC-700B-WDR-023	07:30	05:30	mg/L	5.00	0.0010	ND

QA/QC Summary

									<u> </u>			
	QC STE) I.D.		oratory umber	Concentrati	on		plicate entration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Duplic	ate	94	49384	0.0031		0	.0031	0.00%	≤ 20%	Yes	
QC Std I.D.	Lab Number	unsp	c.of liked aple	Dilution Factor	Added Spike Conc.		MS nount	Measured Conc. of spiked sample	Theoretica Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	949382	0.0	00	5.00	0.00100	0.0	0500	0.00549	0.00500	110%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	0.00514	0.00500	103%	90% - 110%	Yes
MRCVS#1	0.00999	0.0100	99.9%	90% - 110%	Yes
MRCVS#2	0.00994	0.0100	99.4%	90% - 110%	Yes
LCS	0.00488	0.00500	97.6%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 949382

Date: December 5, 2005

Collected: November 30, 2005

Received: November 30, 2005

Prep/ Analyzed: December 1, 2005

Analytical Batch: 12TUC05A

Investigation:

Turbidity by Method EPA 180.1

Analytical Results Turbidity

<u>TLI I.D.</u>

Field I.D.

Sample Time

<u>Units</u>

<u>DF</u>

<u>RL</u>

Results

949382

SC-700B-WDR-023

07:30

NTU

1.00

0.100

ND

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Relative Percent Difference	Acceptance limits	QC Within Control
Duplicate	949386-5	0.184	0.175	5.01%	<u><</u> 20%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS	8.70	8.00	109%	90% - 110%	Yes
LCS	8.75	8.00	109%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 949382

Date: December 5, 2005 Collected: November 30, 2005

Received: November 30, 2005 Prep/ Analyzed: December 1, 2005

Analytical Batch: 12PH05A

Investigation:

pH by EPA 150.1

Analytical Results pH

Field I.D. Sample Time TLI I.D. Run Time Units MDL RL Results 949382 SC-700B-WDR-023 07:30 07:05 pH Units 0.0140 0.100 7.79

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Difference (Units)	Acceptance limits	QC Within Control
Duplicate	949382	7.79	7.80	0.01	± 0.100 Units	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Difference (Units)	Acceptance Limits	QC Within Control
LCS	7.01	7.00	0.01	<u>+</u> 0.100 Units	Yes
LCS #1	7.01	7.00	0.01	<u>+</u> 0.100 Units	Yes

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 949382

Date: December 5, 2005

Collected: November 30, 2005 Received: November 30, 2005

Prep/ Analyzed: December 1, 2005

Analytical Batch: 12EC05A

Investigation:

Specific Conductivity by EPA 120.1

Analytical Results Specific Conductivity

TLI I.D.

Field I.D.

<u>Units</u>

<u>Method</u>

<u>DF</u>

<u>RL</u>

<u>Results</u>

949382

SC-700B-WDR-023

μmhos/cm

EPA 120.1

1.00

2.00

7280

QA/QC Summary

QC STD	Laboratory	Concentration	Duplicate	Relative Percent	Acceptance	QC Within
I.D.	Number		Concentration	Difference	limits	Control
Duplicate	949382	7280	7310	0.41%	<u><</u> 10%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
ccs	721	706	102%	90% - 110%	Yes
CVS#1	925	996	92.9%	90% - 110%	Yes
LCS	702	706	99.4%	90% - 110%	Yes
LCSD	703	706	99.6%	90% - 110%	Yes

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Groundwater Sample

Project Name: PG&E Topock Project

Project No.: 334168.IM.04.00

P.O. No.: 911248

Laboratory No.: 949382

Date: December 5, 2005

Collected: November 30, 2005

Received: November 30, 2005

Prep/ Analyzed: December 1, 2005

Analytical Batch: 12TDS05A

Investigation:

Total Dissolved Solids by EPA 160.1

Analytical Results Total Dissolved Solids

<u>TLI I.D.</u>

Field I.D.

<u>Units</u>

<u>Method</u>

<u>RL</u>

Results

949382

SC-700B-WDR-023

mg/L

EPA 160.1

250

4610

QA/QC Summary

QC STD I.D.	Laboratory Number	Concentration	Duplicate Concentration	Percent Difference	Acceptance limits	QC Within Control
Duplicate	949382	4610	4540	0.765%	<u>≤</u> 5%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
LCS 1	498	500	99.6%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

RL: Reporting Limit.

Respectfully submitted, TRUESDAIL LABORATORIES, INC.

STL Los Angeles 1721 South Grand Avenue Santa Ana, CA 92705

Tel: 714 258 8610 Fax: 714 258 0921 www.stl-inc.com

November 30, 2005

STL LOT NUMBER: **E5K180345** PO/CONTRACT: 334168.IM.04.00

Shawn Duffy CH2M Hill Inc 2525 Air Park Redding, CA 96001

Dear Mr. Duffy,

This report contains the analytical results for the sample received under chain of custody by STL Los Angeles on November 18, 2005. This sample is associated with your PG & E Topock GWM project.

STL Los Angeles certifies that the test results provided in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in the case narrative. The case narrative is an integral part of the report. NELAP Certification Number for STL Los Angeles is 01118CA.

Any matrix related anomaly is footnoted within the report. A cooler receipt temperature between 2-6 degrees Celsius is within EPA acceptance criteria. The temperature(s) of the cooler received for this project can be found on the Project Receipt Checklist. Historical control limits for the LCS are used to define the estimate of uncertainty for a method. All applicable quality control procedures met method-specified acceptance criteria.

Preliminary results were sent via facsimile on November 28, 2005.

This report shall not be reproduced except in full, without the written approval of the laboratory.

	000190	
This report contains		pages.

If you have any questions, please feel free to call me at (714) 258-8610.

Sincerely,

Marisol Tabirara Project Manager

Manuel Johnson

cc: Project File

1	'		B,
/	12		╝
ξ.	-		
À		4	7
•	سنند		

TRUESDAIL LABORATORIES, INC. 14201 Franklin Avenue, Tustin, CA 92780-7008 (714)730-6239 FAX: (714) 730-6462 www.truesdail.com

CHAIN OF CUSTODY RECORD

[Sludge Sample-2]

きんしょりりょう

5 Days PAGE TURNAROUND TIME DATE 1/17:05 COC Number

					-	-														ſ
COMPANY	CH2M HILL						/	_	_	<u></u>	\	\	_	_	\	_	<u> </u>		CHURINA	
PROJECT NAME	PG&E Topock								<u></u>			_			_		<u> </u>	\		
PHONE	(510) 251-2888		AX (510)	FAX (510) 622-7086		\		<u> </u>				<u></u>					S			
ADDRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	Ste 1000 4612	1 1													AZNIATV	AZNIATV			
P.O. NUMBER	334168.IM.04.00	00			73	, ANA 1	ə)r.	<u></u>		_	<u> </u>	\				OD AC	/0-			
SAMPLERS (SIGNATURE	TURE				(00E)	1496 'KE	<u></u>					_	<u> </u>			SEK C				
SAMPLE 1.D.		DATE	TIME	DESCRIPTION	znoinA zcoi8	Ss eoi8							\rightarrow			IWNN				Γ
SC-Sludge-WDR-	DR-	11.16:65 17:50	17:50	Soil	×	×									(- /	2				Т

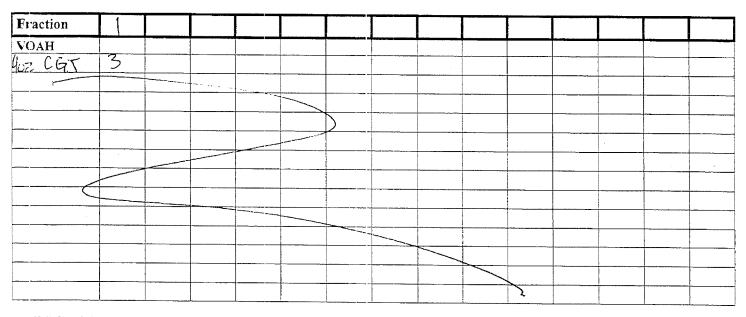
10/02/11 Pro 24 W X

000003

TOTAL NUMBER OF CONTAINERS

Total	CHAIN OF CUSTODY SIGNATURE	VATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished) Muse Mark	Printed Acyley Boath A	Company/ Agency のかユ	Date/ 77-70-6 Time	RECEIVED COOL WARM
Signature (Received)	Printed () A DICKNY A	Company/ STi_	Date/ ((18/65 1030	CUSTODY SEALED YES 🔲 NO 🔲
Signature (Relinquished)	Printed 'C	Company/ Agency	Date/ Time	SPECIAL REQUIREMENTS:
Signature (Received)	Printed C	Company/ Agency	Date/ Time	
Signature (Relinquished)	Printed C Name A	Company/ Agency	Date/ Time	
Signature (Received)	Printed C Name A	Company/ Agency	Date/ Time	

7.65=78-76


TOTAL NUMBER OF CONTAINERS COMMENTS Ŗ 5 Days PAGE: 1 NUMBER OF CONTAINERS TURNAROUND TIME (=6×190745 CHAIN OF CUSTODY RECORD [Sludge Sample-2] × DESCRIPTION Soil FAX (510) 622-7086 3EAM 뿔 Sovern Trent Laboratories 1721 Grand Ave, Santa Ana, CA 92705 (714)259-8610 20-41-75 155 Grand Ave Ste 1000 DATE PGSE Topock GWM Oakland, CA 94612 334168.IM.04.00 (510) 251-2888 टाम्हरू महर SC-Sludge-WDR-021 SAMPLERS (SIGNATURE PROJECTINAME P.O. NUMBER SAMPLE LD. ADDRESS COMPANY PHONE

SAMPLE CONDITIONS	RECEIVED COOL [] WARM []	CUSTODY SEALED YES [] NO []	SPECIAL REQUIREMENTS:	· ·			
	ш	OMA	Name Agency Agency Company!	Agency Name ed) Lamend Agency Agency	Name Agency Printed Company/	Signature Name Agency Date! (Relinquished) Printed Company! Time	

000004 +3018+7000

COC Number

STL LOS ANGELES - PROJECT RECEIPT CHECKLIST Date: 11/18/05
Single Cooler Only
LIMS Lot #:Quote #:
Client Name: CH2M [Fill Project: PGP TopocK
Received by: CA Date/Time Received: 1118/05 1030
Delivered by: Client STL DHL Fed Ex UPS Other

Custody Seal Status Cooler: Intact Broken None CA II 18/05
Custody Seal Status Samples: Intact Broken None
Custody Seal #(s):No Seal #
Sampler Signature on COC Yes No N/A
IR Gun # A Correction Factor8 °C IR passed daily verification V Ves No.
1 emperature - BLANK 6.1° C8 CF = 5.7° C
Temperature - COOLER (°C°C°C°C) =avg °C8CF =°C
Samples outside temperature criteria but received within 6 hours of final sampling Yes XN/A
MINA
Sample Container(s): STL-LA Client
1 72
Anomalies: Yes Anomaly (if checked, notify lab and file NCM) N/A Yes — complete CUR and Create NCM
11-13-05 BY
Complete shipment received in good condition with correct temperatures, containers, labels, volumes
preservatives and within method specified holding times.
Labeled by: CA
本者在政治者是刘爷者是大沙子童者和不要有关证法法的关系来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来来
Turn Around Time: RUSH-24HR RUSH-48HR RUSH-72HR NORMAL
= retrofe
********* LEAVE NO BLANK SPACES ; USE N/A *********
Headspace Anomaly TYES MN/A CA 14 11 16 C
Lab ID Container(s) # Headance Live The Lab ID
Container(s) # Headspace Lab ID Container(s) # Headspace > 6mm
> 6mm
> 6mm
> 6mm
□ > 6mm

H: HCL, S: H2SO4, N: HNO3, V: VOA, SL, Sleeve, E: Encore, PB: Poly Bottle, CGB: Clear Glass Bottle, AGJ: Amber Glass Jar, T: Terracore AGB: Amber Glass Bottle, n/f/l:HNO3-Lab filtered, n/f:HNO3-Field filtered, znna: Zinc Acetate/Sodium Hydroxide, Na2s2o3: sodium thiosulfate

Condition Upon Receipt Anoma	aly Form Anomalies VES XN/A CA 11/18/25					
- COOLERS	CUSTODY SEALS (COOLER(S) CONTAINER(S)					
□ Not Received (received COC only)	□ None □ None					
☐ Leaking	□ Not Intact □ Not Intact					
Other:	□ Other □ Other					
TEMPERATURE (SPECS 4 ± 2°C)	CHAIN OF CUSTODY (COC)					
□ Cooler Temp(s)	□ Not relinquished by Client; No date/time relinquished					
☐ Temperature Blank(s)	☐ Incomplete information provided					
• CONTAINERS	t Other □ COC not received – notify PM					
☐ Leaking ☐ Voa Vials with Bubbles > 6mm	• LABELS					
□ Broken	□ Not the same ID/info as in COC					
□ Extra	🛘 Incomplete Information					
□ Without Labels	□ Markings/Info illegible					
Other:	□ Torn					
• SAMPLES	[] Will be noted on COC-Client to send samples with new COC					
☐ Samples NOT RECEIVED but listed on COC	☐ Mislabeled as to tests, preservatives, etc.					
☐ Samples received but NOT LISTED on COC	☐ Holding time expired – list sample ID and test					
☐ Logged based on Label Information	□Improper container used					
☐ Logged based on info from other samples on COC	□ Not preserved/Improper preservative used					
□ Logged according to Work Plan	Improper pH Lab to preserve sample and document					
☐ Logged on HOLD UNTIL FURTHER NOTICE	☐ Insufficient quantities for analysis ☐ Other					
Comments: According to the Client they cent us the wrong Co.C. They have fuxed us The correct Coc.						
□ Corrective Action Implemented:						
□ Client Informed: verbally on By:	□ In writing on By:					
	ample(s) processed "as is."					
Logged by/Date: Logged in by other STL	PM Review/Date:					
Aller Jangan 11-	18-07 11 28 05					

Analytical Report

25 K 18 O345

ANALYTICAL REPORT

PG & E Topock GWM

Lot #: E5K180345

Shawn Duffy

CH2M Hill Inc

SEVERN TRENT LABORATORIES, INC.

Marisol Tabirara Project Manager

November 28, 2005

EXECUTIVE SUMMARY - Detection Highlights

B5K1.80345

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
SC-SLUDGE-WDR-021 11/16/05 17:50 001	-			
Mercury	1.6	0.56	mg/kg	SW846 7471A
Arsenic	37	11	mg/kg	SW846 6010B
Barium	93	22	mg/kg	SW846 6010B
Chromium	38000	11	mg/kg	SW846 6010B
Copper	84	28	mg/kg	SW846 6010B
Molybdenum	100	45	mg/kg	SW846 6010B
Nickel	46	45	mg/kg	SW846 6010B
Thallium	14	11	mg/kg	SW846 6010B
Vanadium	120	56	mg/kg	SW846 6010B
Percent Moisture	82	0.10	&	MCAWW 160.3 MOD
Hexavalent Chromium	82	2.2	mg/kg	SW846 7199

METHODS SUMMARY

E5K1.80345

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Hexavalent Chromium	SW846 7199	
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3050B
Mercury in Solid Waste (Manual Cold-Vapcr)	SW846 7471A	SW846 7471A
Percent Moisture	MCAWW 160.3 MOD	MCAWW 160.3 MOD

References:

MCAWW	"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
SW846	"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E5K180345

WO # SA	AMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
HQKME	001	SC-SLUDGE-WDR-021	11/16/05	17:50
Norma (a)	_			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot ests, solids, solubility, temperature, viscosity, and weight.

CH2M Bill Inc

Client Sample ID: SC-SLUDGE-WDR-021

TOTAL Metals

Matrix....: SO Lot-Sample #...: E5K180345-001 Date Sampled...: 11/16/05 17:50 Date Received..: 11/18/05 10:30 **% Moisture....:** 82 REPORTING PREPARATION-WORK ANALYSIS DATE ORDER # LIMIT UNITS METHOD PARAMETER RESULT Prep Batch #...: 5322197 11/21-11/22/05 HQKME1AW 1.6 0.56 mg/kg SW846 7471A Mercury Analyst ID....: 000023 Dilution Factor: 1 Analysis Time..: 14:33 Instrument ID..: MO4 MS Run #..... 5322121 Prep Batch #...: 5325213 11/21-11/22/05 HQKMELAD SW846 6010B Arsenic 37 mq/kq 11 Analyst ID....: 021088 Dilution Factor: 2 Analysis Time ..: 18:57 MS Run #..... 5325113 Instrument ID..: MOJ. SW846 6010B 11/21-11/22/05 HQKME1AE Antimony ND 67 ma/ka Analyst ID....: 021088 Dilution Factor: 2 Analysis Time..: 18:57 Instrument ID..: MOL MS Run #....: 5325113 SW846 6010B 11/21-11/22/05 HQKME1AF 22 mq/kq Barium 93 Analyst ID....: 021088 Dilution Factor: 2 Analysis Time..: 18:57 MS Run #....: 5325113 Instrument ID. .: MO1. 11/21-11/22/05 HQKME1AG Cadmium ND5.6 mq/kq SW846 6010B Dilution Factor: 2 Analysis Time..: 18:57 Analyst ID....: 021088 Instrument ID..: MOL MS Run #....: 5325113 11/21-11/22/05 HQKME1AH Chromium 38000 SW846 6010B mg/kg 11 Dilution Factor: 2 Analysis Time..: 18:57 Analyst ID....: 021088 Instrument ID..: MOL MS Run #....: 5325113 11/21-11/22/05 HQKME1AJ SW846 6010B Beryllium ND 5.6 mg/kg Analyst ID....: 021088 Dilution Factor: 2 Analysis Time..: 18:57 Instrument ID..: MOL MS Run #..... 5325113

(Continued on next page)

12

mq/kq

mg/kg

SW846 6010B

SW846 6010B

Analysis Time..: 18:57

Analysis Time..: 18:57

MS Run #....: 5325113

MS Run #....: 5325113

11/21-11/22/05 HQKME1AK

Analyst ID....: 021088

11/21-11/22/05 HQKME1AL

Analyst ID....: 021088

E51~(9O345

ND

ND

5.6

5.6

Dilution Factor: 2

Dilution Factor: 2
Instrument ID.:: MOL

Instrument ID..: MOT.

Lead

Selenium

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-021

TOTAL Metals

Lot-Sample #...: E5K180345-001 Matrix...... SO

		REPORTING	3		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Silver	ND	11	mg/kg	SW846 6010B	11/21-11/22/05 HQKME1AM
		Dilution Fact	or: 2	Analysis Time: 18:5	7 Analyst ID: 021088
		Instrument ID	: MOIL	MS Run #: 5325	113
Cobalt	ND	56	mg/kg	SW846 6010B	11/21-11/22/05 HQKME1AN
		Dilution Fact	or: 2	Analysis Time: 18:5	7 Analyst ID: 021088
		Instrument ID	: MOIL	MS Run #: 5325	113
Copper	84	28	mg/k:g	SW846 6010B	11/21-11/22/05 HQKME1AP
		Dilution Fact	or: 2	Analysis Time: 18:5	7 Analyst ID: 021088
		Instrument ID	: MOL	MS Run # 5325	113
Molybdenum	100	45	mg/kg	SW846 6010B	11/21-11/22/05 HQKME1AQ
		Dilution Fact	or: 2	Analysis Time: 18:5	
		Instrument ID	: MOL	MS Run #: 5325	113
Nickel	46	45	mg/kg	SW846 6010B	11/21-11/22/05 HQKME1AR
		Dilution Fact	or: 2	Analysis Time: 18:5	
		Instrument ID	: MO3.	MS Run #: 5325	113
Thallium	14	11	mg/kg	SW846 6010B	11/21-11/22/05 HQKME1AT
		Dilution Fact	or: 2	Analysis Time: 18:5	
		Instrument ID	: MO3.	MS Run #: 5325	113
Vanadium	120	56	mg/kg	SW846 6010B	11/21-11/22/05 HQKME1AU
		Dilution Fact	or: 2	Analysis Time: 18:5	
		Instrument ID	: MO1.	MS Run #: 5325	<u>-</u>
Zinc	ND	22	mg/kg	SW846 6010B	11/21-11/22/05 HQKME1AV
		Dilution Fact	or: 2	Analysis Time: 18:5	
		Instrument ID	: M01	MS Run #: 5325	-
NOTE(S):					

13

Results and reporting limits have been adjusted for dry weight.

E51:0 345

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-021

General Chemistry

Lot-Sample #...: E5K180345-001 Work Order #...: HQKME Matrix.....: SO

Date Sampled...: 11/16/05 17:50 Date Received..: 11/18/05 10:30

% Moisture....: 82

PARAMETER Hexavalent Chromium	RESULT 82	RL 2.2	UNITS mg/kg	METHOD SW846 7199	PREPARATION- ANALYSIS DATE 11/21-11/22/05	PREP BATCH # 5325067
		lution Fact strument ID	V~ · ·	Analysis Time: 09:22 MS Run #: 532504	Analyst ID	: 000022
Percent Moisture		0.10 lution Factorstrument ID		MCAWW 160.3 MOD Analysis Time: 15:00 MS Run #: 532526	11/18-11/19/05 Analyst ID	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

www.truesdail.com

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

CH2M HILL PG&E Topock Project

Laboratory Number: 949028 Received: November 17, 2005

WDR-021-Sludge Sumple-2 Project No.: 334168.IM.04.00 P.O. No.: 801799

Prepared for:

CH2M HILL Attn: Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, CA 94612

Prepared by:

TRUESDAIL LABORATORIES, INC. TUSTIN, CALIFORNIA

Table of Contents TLI Laboratory Data Package

For Laboratory Number: 949028

<u>ITEM</u>	Section
Case Narrative	1.0
Summary Table of Final Results	2.0
Final Report	3.0
Standard, Quality Control and Chain of Custody Records	4.0
Established Retention Time Window and Analytical Raw Data	5.0

Section 1.0

Case Narrative

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462

www.truesdail.com

November 23, 2005

CH2M HILL Mr. Shawn Duffy 155 Grand Ave., Suite 1000 Oakland, California 94612

Dear Mr. Duffy:

SUBJECT: CASE NA

CASE NARRATIVE PG&E TOPOCK IM3 PLANT-WDR-021 PROJECT, SLUDGE SAMPLE-2,

SOIL MONITORING,

TLI No.: 949028

Truesdail Laboratories, Inc. is pleased to submit this report summarizing the Topock IM3 Plant-WDR-021 project, Sludge Sample-2, soil monitoring. A summary table for this laboratory number is included in Section 2. Complete laboratory report, quality control data and chain of custody forms for sampling period are included in Sections 3 and 4. Analytical raw data have been included under Section 5.

The sample was received and delivered with the chain of custody on November 18, 2005, intact and in chilled condition. The sample will be kept in a locked refrigerator for 30 days; thereafter it will be kept in warm storage for an additional 2 months before disposal.

No violations or nonconformance actions occurred for this data package.

If you have any questions or require additional information, please contact me at (714) 730-6239 ext. 200.

Respectfully Submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg

Manager, Analytical Services

K. R. P. gyer

K.R.P. Iyer

Quality Assurance/Quality Control Officer

LABORATORY No. 949028	DATE	RECEIV	ED_	-16-0	1
CLIENT: CH2H HIII		REPOI			
SAMPLE Soil					HITH THE PARTY OF
2					
METHODS HEED					W. Carlotte
METHODS USED DATA & CALCULATIONS:					
SAMPLE WEIGHT	- 10.02 g / 29	30 n	1		
200, 1/10,02	- 19 90				
200 ml (10.02 g	211.10				
F= 0.658 × 19	.96 = 13.37				
					*
					en e
					1
	D-14 402 0				
*					
		1			
SUMMARY OF RESULTS:	DATE				Tota Tim
	HRS.				Hrs

Section 2.0

Summary Table of Final Results

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Laboratory No.: 949028

Date Received: November 17, 2005

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Brian House

Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 801799

Analytical Results Summary

Lab I.D.	Sample I.D.	EPA 300.0
		Fluoride
		mg/kg
949028	SC-Sludge-WDR-021	13.4

ND: Non Detected (below reporting limit)

Note: The following "Significant Figures" rule has been applied to all results:

Results below 0.01ppm will have two (2) significant figures.

Results above or equal to 0.01ppm will have three (3) significant figures.

Quality Control data will always have three (3) significant figures.

Section 3.0

Final Report

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

REPORT

Client: CH2M HILL

155 Grand Ave. Suite 1000

Oakland, CA 94612

Attention: Shawn Duffy

Sample: One (1) Soil Sample Project Name: PG&E Topock Project Project No.: 334168.IM.04.00

P.O. No.: 801799

Laboratory No.: 949028

Date: November 23, 2005 Collected: November 17, 2005

Received: November 17, 2005

Prep/ Analyzed: November 22, 2005

Analytical Batch: 11AN05P

Fluoride by Ion Chromatography using EPA 300.0

Investigation:

Analytical Results Fluoride

TLI I.D. 949028 Field I.D.

Units

Method

Run Time

DF

RL

Results

SC-Sludge-WDR-021

mg/kg

EPA 300.0

9:17

20.0

4.00

13.4

QA/QC Summary

	QC ST	D I.D.		Laboratory Number	Concentra	ation		uplicate centration	Relative Percent Difference	Acceptance limits	QC Within Control	
	Dupli	cate		948028	13.4			13.4	0.00%	≤20%	Yes	
QC Std I.D.	Lab Number	Cond unspi sam	ked	Dilution Factor	Added Spike Conc.	MS Amo	350000	Measured Conc. of spiked sample	Theoretical Conc. of spiked sample	MS% Recovery	Acceptance limits	QC Within Control
MS	948028	13.	4	20.0	2.00	40.	.0	56.5	53.4	108%	75-125%	Yes

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	4.05	4.00	101%	90% - 110%	Yes
MRCVS#1	3.12	3.00	104%	90% - 110%	Yes
MRCVS#2	3.12	3.00	104%	90% - 110%	Yes
MRCVS#3	3.13	3.00	104%	90% - 110%	Yes
LCS	4.04	4.00	101%	90% - 110%	Yes

ND: Below the reporting limit (Not Detected).

DF: Dilution Factor.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Julia Nayberg, Manager

Analytical Services

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from these laboratories.

Section 4.0

Standard, Quality Control and Chain of Custody Records

QC/QA SUMMARY REPORT

Batch:

11AN05 P

Date: 11/22/05

Fluoride by EPA 300.0

Blank Summary

All units are in ppm

Reporting
Limit (RL)
0,200

QC Std I.D.	Measured Concentration	Acceptance Limits	QC Within Control
Method Blk	0.000	< 0.2	Yes
Calib Blk. #1	0.000	< 0.2	Yes
Calib Blk. #2	0.000	< 0.2	Yes
Calib Blk. #3	0.000	< 0.2	Yes
Calib Blk. #4	0.000	<0.2	Yes

Mid Range Calibration Check Standard Verification Standard Summary

All units are in ppm

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control
MRCCS	4.047	4.000	101%	90% - 110%	Yes
MRCVS#1	3.118	3,000	104%	90% - 110%	Yes
MRCVS#2	3,119	3.000	104%	90% - 110%	Yes
MRCVS#3	3,129	3,000	104%	90% - 110%	Yes

Laboratory Control Sample (LCS/LCSD) Summary

All units are in ppm

QC Std I.D.	Measured Concentration	Theoretical Concentration	Percent Recovery	Acceptance Limits	QC Within Control	Relative Percent Difference	Acceptance Limits	QC Within Control
LCS	4.045	4.000	101.1%	90% - 110%	Yes		-2004	
LCS				90% - 110%			≤20%	

Duplicate Relative Percent Difference Summary

All units are in ppm

QC STD I.D.	Laboratory	Sample	Sample Duplicate	Relative Percent	Acceptance	QC Within
	Number	Conc.	Conc.	Difference	limits	Control
DUP	949028	0.658	0.672	2.1%	≤20%	Yes

Sample Matrix Spike (MS/MSD) Summary

All units are in ppm

QC Std I.D.	Lab Number	Conc.of unspiked sample	Dilutio n Factor	Added Spike Conc.	MS/MSD Amount	Measured Conc. of spiked sample	200000000000000000000000000000000000000	MS/MSD% Recovery	11.000000000000000000000000000000000000	QC in Control	Relative Percent Difference	Accept, Limits	QC Within Control
MS	949028	0.658	1	2.00	2.00	2.827	2.66	108.5%	75-125%	Yes	0.0%	<20%	
MSD									75-125%		0.076	_20%	

Calculation:

Relative Percent Difference

$$RPD = \left| \frac{\left(R_1 - R_2 \right)}{\left(\frac{\left(R_1 + R_2 \right)}{2} \right)} \right| \times 100$$

Spike Recovery

$$P = \left[\frac{S - R}{\left(\left(c \ x \frac{a}{b} \right) + R \right) - R} \right] x \ 100$$

LCS Recovery

$$P = \left(\frac{LC}{LT}\right) x \, 100$$

 R_I = First sample value.

 R_2 = Second sample value (duplicate).

P = Percent recovery.

S = Measured concentration of spike sample.

R = Measured concentration of un-spiked sample.

c = Concentration of standard used to spike sample,ppm

a = Amount of spike added to sample in mL.

b = Total volume of sample used in mL.

LC= Measured LCS concentration.

LT = Theoretical LCS concentration where:

Iordan Stavrev Analyst Printed Name

Ali Kharrazi Reviewer Printed Name

14201 Franklin Ave. Tustin, CA 92780 Ph: (714) 730-6239 Fax:(714) 730-6462

Method Detection Limit Summary

Page 1

General Chemistry

Dept. Name:

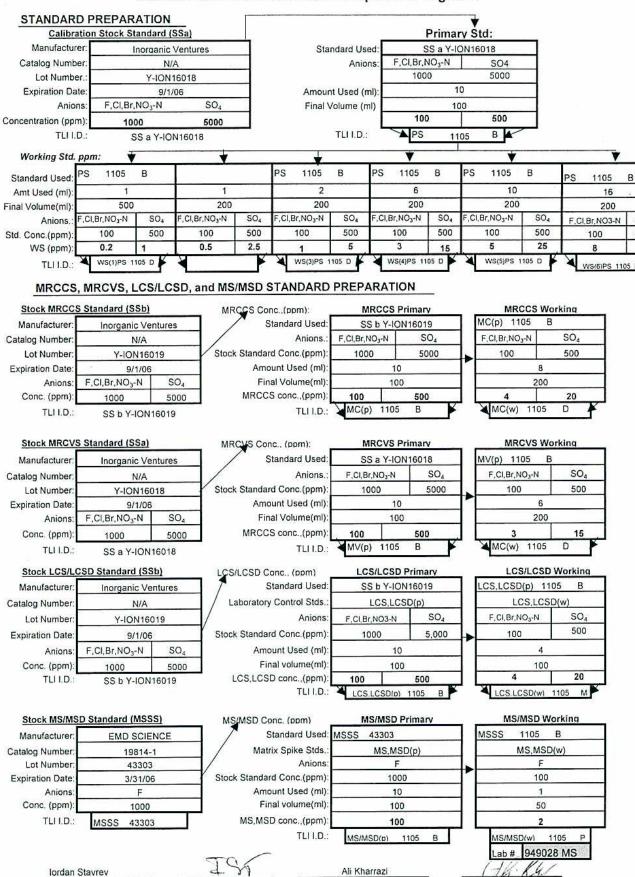
က

Department No.

Bromide ***			Spine	1		108	Date	avide	10	אמוויר	ך קר	חמוב	o chido	į	101	7 2
romide ***	Political	Analyzd	mg/L	mg/L	mg/L	mg/L	Analyzd	mg/L	mg/L	mg/L	mg/L	Analyzd	mg/L	mg/L	mg/L	mg/L
	EPA 300.0	3/20/03	0.6mg/L	0	0.04	0.5	3/1/04	0.6mg/L	0	0.018	0.5	2/23/05	0.2 mg/L	0	0.0423	0.2
Chloride ***	EPA 300.0	3/20/03	3/20/03 0.2 mg/L	0	0.022	0.2	3/1/04	0.2 mg/L	0	0.025	0.2	2/23/05	0.2 mg/L	0	0.0439	0.2
Fluoride ***	EPA 300.0	3/20/03	0.2 mg/L	0	0.025	0,2	3/1/04	0.2 mg/L	0	0.012	1:0	2/23/05	0.2 mg/L	0	0.0181	0.1
Nitrate-N ***	EPA 300.0	3/20/03	3/20/03 0.2 mg/L	0	0.012	0.2	3/1/04	0.2 mg/L	0	0.017	0.2	2/23/05	0.2 mg/L	0	0.0168	0.2
Sulphate ***	EPA 300.0	3/20/03	1 mg/L	0	0.057	0.5	3/1/04	1 mg/L	0	0.017	0.5	2/23/05	0.5 mg/L	0	0.0307	0.5
Chromium VI (ug/L) *	EPA 218.6	3/8/04	0.15	0	0.076	0.15	3/8/04	0.15	0	0.076	0.15	2/23/05	0.15 ppb	0	0.0356	0.15
Chromium VI (ug/L) **	EPA 218.6	3/8/04	0.15	0	0.038	0.15	3/8/04	0.15	0	0.038	0.15	2/23/05	0.20 ppb	0	0.0175	0.15
Perchlorate (ug/L)	EPA 314.0	11/25/03	1 ug/L	0	0.0073	1.0	11/25/03	1 ug/L	0	0.0073	1.0					
BOD	EPA 405.1	21/1/03	5 mg/L	0	1.2	5	10/26/04	5 mg/L	0	1.43	2.00	3/11/05	5 mg/L	0	1.85	5.00
UV254	SM 5910	2/11/04	2/11/04 0.5 mg/L	Ą	0.0024	0.008	2/11/04	0.5 mg/L	0	0.0024	0.008	4/5/05	0.65 mg/L	0	0.0042	0.0080
Bromide **	EPA 300.0											2/11/05	0.2 mg/L	0	0.0316	0.2000
Chloride **	EPA 300.0											2/11/05	0.2 mg/L	0	0.0729	0.2000
Fluoride **	EPA 300.0											2/11/05	0.2 mg/L	0	0.0256	0.1000
Nitrate-N **	EPA 300.0											2/11/05	0.2 mg/L	0	0.0097	0.2000
Nitrite-N **	EPA 300.0											8/22/05	0.1 mg/L	0	0.020	0.10
Sulphate **	EPA 300.0											2/11/05	1.00 mg/L	0	0.0134	0.5000
												10.000				
Inst. ID : * DX 100																
Inst. ID : ** DX 600												W. Carlo				
Inst. ID: *** Dionex 4000i												E. P.				
											in a					

Anions; EPA 300.0

Batch: Date:


11AN05 P 11/22/05

S04

500

40

Standard and Check Standards Preparation Logbook

Reviewer Printed Name

Analyst Signature

Analyst Printed Name

Reviewer Signature

TRUI	TRUESDAIL LABORATORIES, INC.	ORIES, INC.			CHAI	VOFC	CHAIN OF CUSTODY RECORD	REC	ORD				Š	COC Number	늄		39			
1420	14201 Franklin Avenue, Tustin, CA 92760-7008	, Tustin, CA 92	1780-7008			Colored	Clindae Sample-27		2	-	C		OTJR.	NAROU	MIT ON	ш	ເດ	Days	4	
None The Control of t	www.truesdail.com	· ·	·			ď	od camp	;;	5		C		6 DATE 11.17.65	Ψ.	12.0	N	PAGE	- -	유	1_[
COMPANY	CH2M HILL						/	-	_	1	_	_	1	-	-				, ,	Γ
PROJECT NAME	PG&E Topock	Ţ	83				//	_	_	_	_	_	_	_	_	_	_	COMMENIS	<u> </u>	
PHONE	(510) 251-2888		FAX (510)	FAX (510) 622-7086		_	/		_	_	_	_			_					
ADDRESS	155 Grand Ave Ste 1000 Oakland, CA 94612	e Ste 1000 94612	1 1					_		/	_					RAINER				
P.O. NUMBER	334168.IM.04.00	00			3	L ACURE			1		/	_	_	_	NE COV					
SAMPLERS (SIGNATURE	4TURE				(00)	496 %	_	1			U		-	_	ERC					
SAMPLE LO.		DATE	TIME	DESCRIPTION	anoin!	B/09.55	//	/ /	/ /					/	NUMB					
SC-Sludge-WDR- 021	'DR- 021	11/6.65/77.50	17:50	Soil	×	×								5	- ^	5				

Torel II

RUSHI

TOTAL NUMBER OF CONTAINERS

to ,	CHAIN OF CUSTODY SIGNATU	GNATURE RECORD		SAMPLE CONDITIONS
Signature (Relinquished)	Name Heller Boath	Company! Onn	Dafe/ 11-17・0ら Time	RECEIVED COOL [] WARM [] "F
Signature (Received) (22.22)	Printed Chric Abicaya	Company/ STL	Date' ((18/05 1030	CUSTODY SEALED YES [] NO []
Signature (Relinquished)	Printed Name	Company/ Agency	Date/ Time	SPECIAL REQUIREMENTS:
31	aby wine Name L. Mabury	Company 721	Date: 11/8/05 11:00	O.
Signature (Pollogildebod)	Printed	Company	Date/ Time	For Sample Conditions
Signature Received)	Printed	Company/	Date	See Form Attached

265-25-269

Internal Chain of Custody Logbook

Exhibit 4

949028 Lab Number: 400 Storage Temperature: CU2 MAill Client Name: Analysis. Date Amount Time Date Time Bottle I.D. Done Printed Name Taken Out Out Signature ln In (g or ml) 11:10 Fluoride 11-21-05 08100 10 9 11-21-05 16:00 Storage Shelf No. For **Printed Name** Initials Date Discharge Date Storage Printed Name Initials Analysis Amount Date Time Date Bottle I.D. Time Done Taken Out Printed Name Out Signature In · In (g or ml) Storage Shelf No. For Printed Name Initials Date Storage Discharge Date Printed Name Initials Date Analysis Amount Time Date Bottle I.D. Time Done Out **Printed Name** Taken Out Signature In In (g or ml) Storage Shelf No. For **Printed Name** Date Initials Storage Discharge Date **Printed Name** Initials Analysis Date Amount Time Bottle I.D. Date Time Done **Printed Name** Taken Out Signature Out In In (g or ml) Storage Shelf No. For Printed Name Initials Date Storage Discharge Date **Printed Name** Initials

Section 5.0

Established Retention Time Window and Analytical Raw Data

Sample Integrity & Analysis Discrepancy Form

Clien	t:	Lab #_949028
Date	Delivered: <u>// //8</u> / 05 Time: <u>//: 00</u> By: ☑Mail □Field	ld Service □Client
1.	Was a Chain of Custody received and signed?	Yes ONO ONA
2.	Does Customer require an acknowledgement of the COC?	□Yes □No □NA
·3.	Are there any special requirements or notes on the COC?	□Yes □No □NA
4.	If a letter was sent with the COC, does it match the COC?	□Yes □No ØN/A
5.	Were all requested analyses understood and acceptable?	Yes ONO ONA
6.	Were samples received in a chilled condition? Temperature (if yes)? <u>∫ ° C</u>	☑Yes □No □N/A
7.	Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc)?	Yes ONO ON/A
8.	Were sample custody seals intact?	□Yes □No dN/A
9.	Does the number of samples received agree with COC?	Yes ONO ONA
10.	Did sample labels correspond with the client ID's?	dYes □No □N/A
11.	Did sample labels indicate proper preservation? Preserved (if yes) by: □Truesdail □Client	□Yes □No ŒN/A
12.	Were samples pH checked? pH =	DYes DNO DNA
13.	Were all analyses within holding time at time of receipt?	Tives DNO DN/A
14.	Have Project due dates been/checked and School (Partied? Turn Around Time (TAT): RUSH	Tyes ONO ONA
15.	Sample Matrix: □Liquid □Drinking Water □Ground Wa	
16.	Comments: Received 2 jap	
17.	Sample Check-In completed by Truesdail Log-In/Receiving: Log-In/	Shapunina

Client: CH2MHILL - Topock

PO BOX 241329

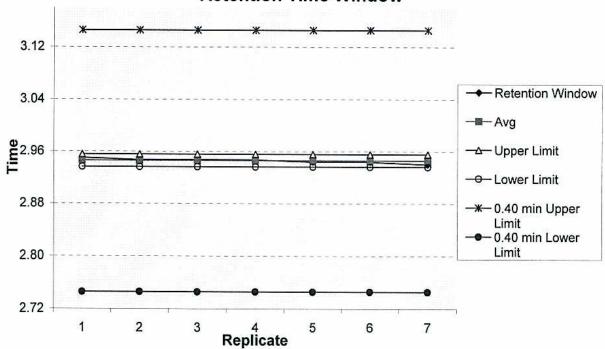
Denver, CO 80224

Attention: Priya Kumar Laboratory No.: 949028

Project Name: PG&E Topock 2005-GMP-083-M11a Date Received: November 18, 2005

Project No.: 328225.GM.02.00

P.O. No.: 908093 Instrument: Dionex 600


Flouride Established Retention Time Window

Replicate Number	Retention Time	Date/Time	Average: 2.946	
1	2.950	11/22/05:1306	σ: 0.0032	
2	2.947	11/22/05:0736		
3	2.947	11/22/05:0757	3σ: 0.0096	
4	2.947	11/22/05:0808		
5	2.944	11/22/05:0747		
6	2.944	11/22/05:0907		
7	2.940	11/22/05:1101	Upper Limit: 2.9552	
			Lower Limit: 2.9360	
		0.40 mi	n Unner Limit: 3 1456	

0.40 min Upper Limit: 3.1456 **0.40 min Lower Limit:** 2.7456

applied

Retention Time Window

ali

DEPARTMENT OF HEALTH SERVICES TITLE 22 96-HOUR ACUTE AQUATIC TOXICITY SCREEN TESTING

Prepared For:

Truesdail Laboratories, Inc.

Prepared By:

MBC Applied Environmental Sciences 3000 Redhill Avenue Costa Mesa, California 92626

November 2005

DEPARTMENT OF HEALTH SERVICES TITLE 22 96-HOUR ACUTE AQUATIC TOXICITY SCREEN TESTING

Prepared For:

Truesdail Laboratories, Inc.

Prepared By:

MBC Applied Environmental Sciences 3000 Redhill Avenue Costa Mesa, California 92626

November 2005

TABLE OF CONTENTS

	Pa	ge
INTRODUCTION		1
Facilities Test Containers	meters	1 1 2 2
Receiving and Acclimating Test Fish Dilution Water Preparation	ple	3 3 3
Dry Waste Material		4 4 4
Dosing Test AquariaInitial Water Quality Measurements Addition of Test FishObservations Alkalinity and Hardness Analysis	and Weights	4 4 4 5 5 5 5
	sting	
REFERENCES		6
APPENDICES		
A Daily Water Quality Parame B Fish Length and Weight Me C Sample Analysis Information		

INTRODUCTION

Title 22, Article 3, Section 66261.24 (6) of the California Code of Regulations (CCR) establishes the criteria for the identification of hazardous and extremely hazardous waste. The Department of Health Services (DOHS) compiles and evaluates analytical data for compliance with the toxicity criteria for potentially hazardous waste.

These analytical data have been derived from water and environmental samples submitted to laboratories certified by the DOHS for analysis. The California DOHS 96-Hour Acute Aquatic Toxicity testing assures CCR compliance and minimizes risk to the environment or threat to public health.

Laboratory certification by the DOHS standardized the toxicity testing program by requiring certification of testing laboratories and by utilizing the procedures set forth by Dr. James Polisini, Department of Fish and Game, Water Pollution Control Laboratory (Polisini 1988). Following this methodology, a waste can be evaluated for potential hazardous waste declassification.

Currently; CCR, Title 22, Section 66261.24, Article 6 requires wastes to pass the 96-hour aquatic toxicity screen testing with greater than 50% survival at the 500 mg/l concentration. In addition to this regulation, the DOHS protocol requires wastes to pass the 96-hour aquatic toxicity screen testing with greater than 50% survival at the 500 mg/l concentration and a minimum of 60% survival at the 750 mg/l concentration for compliance. When these screening criteria are not achieved, the DOHS test protocol requires additional definitive serial dilution toxicity testing with a minimum of five test concentrations prior to making a hazardous waste compliance determination.

Toxicity testing conducted by MBC for this report is a static non-renewal acute toxicity screen test following Standard Methods and the procedures of Dr. James Polisini. Death is the effect measured and toxicity is reported as percent survivorship at 250 mg/l, 500 mg/l and 750 mg/l concentrations and a LC_{50} calculated from these data. Original data worksheets will remain on file at MBC.

MATERIALS AND METHODS

Facilities

The toxicity tests are conducted in a laboratory located away from disturbances of non-laboratory personnel or other laboratory or heavy equipment. The laboratory, measuring approximately 20 x 20 ft, is insulated to protect it from rapid temperature changes. Shelves and water tables are provided which allow a capacity of 200 or more 5-gallon aquaria, as well as bench space for laboratory equipment and instruments.

Lighting is provided by five evenly spaced two lamp 4-foot cool white fluorescent fixtures that are regulated by a 24-hour timer. The lighting remains on for 16 hours and is off for 8 hours.

The temperature of the toxicity testing laboratory is maintained by a commercial climate controlled unit controlled by wall-mounted thermostat which provide accuracy to ± 2 $^{\circ}$ C.

A Rustrak Model 2066 continuous recording thermograph monitored the laboratory's temperature 24 hours per day. The Rustrak is calibrated annually by the manufacturer to insure accuracy. Maximum-minimum thermometers are maintained within the laboratory to provide "back-up" temperature variation information.

Low pressure air is supplied to the laboratory for the purpose of slowly bubbling air into the exposure tanks to maintain an acceptable dissolved oxygen concentration. Filtered air is supplied via a Sutor-bilt oilless blower that provides up to 340 l/min at 0.35 kg/cm². The blower is equipped with a pressure equalizing expansion chamber and an adjustable pressure relief valve to maintain a constant delivery pressure and volume. Air is delivered to the laboratory through PVC piping with numerous individual flow valves. Individual aquaria receive air through commercial plastic aquarium air tubing and a 3 mm inside diameter by 30 cm long soft glass tube which reaches the bottom of the test container. Air is bubbled into the aquaria at a rate of approximately 30 ml /min following the guidelines of Kopperdahl (1976) and Peltier and Weber (1985).

Test Containers

The toxicity tests are conducted in 5-gallon glass aquaria, approximately 26 cm high, 21 cm wide, and 41 cm long. For the definitive test, the aquaria contain a total of 10 liters of waste material and/or dilution softwater which provides a water depth within the test aquaria of approximately 14 cm.

Test containers are cleaned thoroughly with Liqui-Nox brand commercial glassware detergent and warm tap water, rinsed five times with warm tap water, rinsed with reagent grade acetone, rinsed five times with deionized water, rinsed with 5% HCl, and then rinsed three times with deionized water.

Determination of Water Quality Parameters

Water quality measurements are taken and recorded for pH, dissolved oxygen and temperature after dosage of the appropriate concentration of waste sample to the test aquaria, and at 24, 48, 72, and 96 hours subsequent to initiation of the toxicity test exposures. The following instrumentation and methods are utilized to determine water quality parameters for each of the test and control aquaria. Total alkalinity and hardness, both expressed as mg/l CaCO₃, are determined from sub-samples of dilution water and the 750 mg/l concentration obtained immediately prior to initiation and at the completion of toxicity testing.

A Horiba U-10 Water Quality Checker is utilized for determining the pH of the exposure solutions. After stabilization of the reading, the pH is recorded on the static toxicity test worksheet to the nearest 0.1 pH unit.

Dissolved oxygen concentrations (mg/l) are determined by gently swirling the Horiba U-10 Water Quality Checker in the aquarium to be monitored. Dissolved oxygen concentrations are recorded on the static toxicity test worksheet to the nearest 0.1 mg/l, only after stabilization of the reading.

Exposure temperature is determined by the Horiba U-10 Water Quality Checker calibrated by a mercury bulb thermometer graduated to 0.1°C with calibration traceable to the National Institute of Standards and Technology (NIST).

Alkalinity values are calculated by potentiometric titration to a pre-selected pH of 4.6 utilizing Method 2320B, *Standard Methods* (18th Edition).

Hardness values are calculated by EDTA titration utilizing Method 2340C, *Standard Methods* (18th Edition).

TOXICITY TEST PREPARATION

Receiving and Acclimating Fish

The fathead minnows, *Pimephales promelas*, are received from the supplier at least 10 days prior to initiation of toxicity testing. Shipment of the test fish in insulated containers with hard freshwater and an atmosphere of bottled oxygen from Aquatic Biosystems located in Fort Collins, Colorado is via Federal Express overnight to MBC. Upon receipt of the test fish, the plastic bags containing the fathead minnows are floated on the surface of an appropriately sized aquarium containing aged local (hard) drinking water in the temperature controlled toxicity test laboratory. When the temperature of the water in the shipping water is within 0.5°C of the holding tank, each plastic bag is opened and the fish are gently eased into the initial acclimation water containing penicillin. This antibiotic is effective against both gram-negative and gram-positive bacteria as well as fungus. The antibiotic is maintained in the acclimation water for 24 hours while the hardness is slowly decreased to that of the reconstituted moderately hardwater utilizing a reservoir and siphons to slowly change over the water following guidelines in *Standard Methods* (18th Edition). The test fish are subsequently gently transferred using a fine mesh dip net to the maintenance tank for further acclimation until initiation of the toxicity testing.

During the acclimation period, up until 48 hours prior to initiation of the toxicity testing, the fathead minnows are maintained on a diet of Tetramin brand flake food and San Francisco Bay Brand frozen brine shrimp. Tetramin flake food is fed in the morning and brine shrimp in the evening, while observing the behavior and monitoring the quality of the acclimating fish. The quantity of food delivered at each feeding is based upon the quantity that the tank population would completely consume within approximately five minutes of feeding. During these observations, any sick or dead fish are removed and the numbers of each, as well as any observations, are noted in the acclimation tank log book.

Dilution Water Preparation

Dilution water for the toxicity tests is prepared following the formulation of Kopperdahl (1976) and Horning and Weber (1985) for artificially reconstituted softwater. Table I indicates the quantities of reagent grade chemicals utilized in preparing the synthetic freshwater. Reconstituted softwater is prepared in 208 liter linear polyethylene barrels by addition of the salts to deionized (resin exchange column) water followed by thorough mechanical mixing at least 48 hours prior to initiation of the toxicity testing. The reconstituted softwater is maintained in a isolated area of the same temperature-controlled laboratory in which the test fish are acclimated and the toxicity tests are performed to ensure against any significant difference between acclimation and test water temperature that might induce additional stress in the test fish.

Table I. Quantities of reagent grade chemicals required to prepare reconstituted softwater and expected water qualities.

NaHCO₃:	48.0 mg/l
CaSO₄ 2H₂O:	30.0 mg/l
MgSO₄:	30.0 mg/l
KCI:	2.0 mg/l
pH:	7.2-7.8
Total Hardness:	40-48 mg/l CaCO₃
Total Alkalinity:	30-35 mg/l CaCO₃

Handling and Storage of the Waste Samples

Upon arrival at MBC, the samples are listed in the Toxicity Test Sample Log Book located in the toxicity testing laboratory by the Toxicity Laboratory Coordinator. The samples are stored at 4°C in a designated area of the cold storage locker labeled "SAMPLES FOR HAZARDOUS WASTE TESTING", until the initiation of toxicity testing. The remaining portion of each sample is returned to the cold storage locker.

WASTE SAMPLE PREPARATION

Dry Waste Material

Each sample is identified as a Type i, Type ii or Type iii material. The samples are weighed into pretared Erlenmeyer flasks to yield final replicate sample concentrations of 250 mg/l, 500 mg/l, and 750 mg/l. Approximately 200 ml of dilution water is added to each flask. The flasks are capped with parafilm, a neoprene stopper and aluminum foil and are mechanically shaken for six hours.

Liquid Waste of Low Viscosity

To determine the volume of a low viscosity liquid sample needed to dose the toxicity test, the specific gravity is measured.

The waste sample to be used in the toxicity test is first mechanically shaken or homogenized so as to evenly distribute any particulate matter in the sample. A known amount of sample, usually 20 ml, is drawn up through a volumetric pipette and dispensed into a 100 ml beaker that has previously been weighed on a Mettler balance to four decimal places. The beaker containing the known volume of sample is then reweighed on the Mettler balance. The difference in weight of the beaker with the sample and the weight of the beaker when it is empty is divided by the known volume of the sample (in milliliters) to determine the specific gravity. This process is repeated in triplicate and the mean specific gravity is used in subsequent dosage determinations.

The sample is measured by pipette into pre-tared Erlenmeyer flasks to yield final replicate sample concentrations of 250 mg/l, 500 mg/l, and 750 mg/l. Approximately 200 ml of dilution water is added to each flask. The flasks are capped with parafilm, a neoprene stopper and aluminum foil and mechanically shaken for six hours.

TOXICITY TESTING

Dosing Test Aquaria

After shaking, the samples are dosed into the appropriately marked aquaria containing approximately 9 liters of dilution water. Dilution water is then added to the 10 liter mark to yield a final volume of 10 liters for all test conditions.

Reconstituted softwater (dilution water only) controls are established as a quality assurance measure. All test conditions and controls are run concurrently.

Initial Water Quality Measurements

Prior to the addition of the test fish, preliminary water quality measurements are taken for dissolved oxygen and pH to determine if adjustment is necessary (Polisini 1988).

An initial hardness and alkalinity test analysis is performed on the control and the 750 mg/l concentrations.

Addition of Test Fish

The test fish (fathead minnows) are gently corralled and dip netted in small groups from the plexiglass maintenance tank into smaller aquaria to confirm species identity and the healthy condition of each individual fish to be utilized in the test. Fish exhibiting any abnormalities, disease, wounds, or unusual behavior or color patterns are removed and destroyed. Those fish that passed the individual screening inspection are randomly allocated to test aquaria and controls.

Ten fathead minnows are gently released into each of the test aquaria replicate and the control, taking care not to allow the dip nets to contact the exposure media.

Observations

Water quality parameters, enumeration of live organisms and any ancillary observations pertinent to the conduct of the toxicity tests are taken and recorded on the toxicity test worksheets at initiation and subsequently at 24, 48, 72, and 96 hours after initiation of the toxicity test exposures. Daily water quality parameters, live organism enumeration, and ancillary observations are recorded on individual toxicity testing worksheets. The worksheets are presented in Appendix A.

Alkalinity and Hardness Analysis

Total alkalinity and hardness, both expressed as mg/l CaCO₃, are determined by replicate samples utilizing the procedures in Method 2320B and 2340C, *Standard Methods* (18th Edition). Sub-samples of the dilution water control and the 750 mg/l concentration are obtained immediately prior to initiation and at the completion of toxicity testing and the results are presented on the toxicity test worksheets.

Determination of Test Fish Lengths and Weights

At the conclusion of testing, 20 of the surviving fish are wet weighed to the nearest 0.1 gram on an analytical balance and measured to the nearest millimeter. The data are recorded on a Fish Weight/Length Measurements form and presented in Appendix B. All surviving fish are then destroyed following the procedures in *Standard Methods* (18th Edition).

RESULTS

Standard DOHS Toxicity Screen Testing

Toxicity testing conducted by MBC for this report is a static non-renewal acute toxicity screen test following Standard Methods and the procedures of Dr. James Polisini. Death is the effect measured and toxicity is reported as percent survivorship at 250 mg/l, 500 mg/l and 750 mg/l concentrations and a LC_{50} calculated from these data. Original data worksheets will remain on file at MBC.

REFERENCES

- American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF). 1992. 18th Edition. Standard methods for examination of water and wastewater.
- American Society for Testing and Materials (ASTM). 1982. Parts 23 and 24.
- Environmental Protection Agency. 1979b. Methods for chemical analysis of water and wastes. EPA-600/4-79-020.
- Horning II, W. B., and C. I. Weber. 1985. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014. 162 pp.
- Kopperdahl, F. R. 1976. Guidelines for performing static acute toxicity fish bioassays in municipal and industrial wastewaters. Report to California State Water Resources Control Board by Department of Fish and Game. 65 pp.
- Peltier, W. H., and C. I. Weber. 1985. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms (Third Edition), EPA/600/4-85/013. 216 pp.
- Plumb, R. H., Jr. 1981. Procedure for handling and chemical analysis of sediment and water samples. Technical report EPA/CE-81-1 prepared by Great Lakes Laboratory, State University College at Buffalo, Buffalo, New York for the U.S. Environmental Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Fill Material. Published by the U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi.
- Polisini, J. M. 1988. Static acute bioassay procedures for hazardous waste samples. California Fish and Game, Water Pollution Control Laboratory.
- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW 846, 2nd edition, U.S. Environmental Protection Agency, 1982.

APPENDIX A
DAILY WATER QUALITY PARAMETERS AND LIVE ORGANISM
ENUMERATION DATA

DEPARTMENT OF HEALTH SERVICES ACUTE AQUATIC SCREENING TOXICITY TEST

Date/Time Sampled: 11/16/05, 1750 hours

Date/Time Started: 11/19/05, 1519 hours

Date/Time Terminated: 11/23/05, 1319 hours

Sample Identification: 949028

MBC Sample # 06-061

MBC Job # 06415X

Client: Truesdail Laboratories

Aquar.	Test		0 Hours	S			24 Hours	urs			48 Hours	ırs			72 Hours	urs			96 Hours	urs	
#	Conc.	Н	00	Temp Live	Live	Hd	DO	Temp	pH DO Temp Live	Hd	oa	DO Temp Live	Live	Н	00	pH DO Temp Live pH DO Temp Live	Live	рН	DO	Temp	Live
-	Control	7.1	6.4		10	7.0	.0 5.8	22.0	10	7.2	5.3	21.9	10	7.2	0.9	22.4	10	7.1	5.5	22.0	10
2	250 mg/l	7.5	7.2	20.5	10	7.4	5.9	5.9 21.8		10 7.4	6.2	21.6	6	7.4	7.1	22.3	6	7.4	9.8	21.9	6
	250 mg/l	9.7	7.1	20.5	10	7.4	6.3	21.9	10 7.4		6.8	21.7	10	7.4	7.2	22.3	10 7.4	7.4	6.7	21.9	10
4	500 mg/l	9.7	6.9	20.5	10	7.5	6.7	21.9	10	7.4	7.1	21.6	10	7.5	7.4	22.2	10 7.5		6.7	22.0	유
2	500 mg/l	7.6	6.1	20.5	10	7.2	5.6	21.9	10	7.3	2.9	21.7	10	7.4	6.9	22.3	10	7.4	6.5	22.0	9
9	750 mg/l	7.7	6.8	20.5	9	7.4	6.3	21.9	10	7.3	0.9	21.6	10	7.4	7.1	22.2	9	7.4	6.3	21.9	9
7	750 mg/l	7.6	6.2	20.5	10	7.2	5.8	5.8 22.0	10	7.2	6.4	21.8	10 7.3	7.3	6.7	22.3	10 7.3		5.8	22.1	위
Species	Species: Fathead Minnow	Minno	ΜC	(Pimeț	(Pimephales promelas)	orome	las)			Percei Type #	nt dêad ∖eratioı	Percent dead in acclimatization tank: <1% Type Aeration: as per Polisini (1988)	limatiz ır Polis	ation t	ank: < 88)	%					

Number of fish/replicate concentration: 10 Volume of test solution: 10L

Acclimatization: 16 days at 20°C

ZIN.

RANGE

% Survival Concentration Results:

Dilution Water Source: Reconstituted softwater

100% 95% 100% 250 mg/l 500 mg/l Control

100% 750 mg/l

LC50 > 750 mg/l

2 29 96 Hours HARDNESS (H) 4 33 48 09 ALKALINITY (A) 0 Hours ⋖ 33 Control 750 mg/l

22.4

20.3

DO Range: pH Range:

Temp Range:

51 NOTES: Normal.

Reviewed By

APPENDIX B FISH LENGTH AND WEIGHT MEASUREMENTS

Bioassay Fish Length/Weight Measurements

MBC JOB #: 06415X CLIENT: Truesdail Laboratories

MBC SAMPLE #: 06-061 DATE OF TEST: 11/19/05

SPECIES: Fathead minnow SAMPLE IDENTIFICATION: 949028

(Pimephales promelas)

	Standard Length mm	Weight g		Standard Length mm	Weight g
					·····································
1.	36	0.58	11.	35	0.51
2.	31	0.25	12.	30	0.32
3.	32	0.41	13.	35	0.45
4.	36	0.58	14.	36	0.48
5.	37	0.73	15.	35	0.47
6.	35	0.59	16.	36	0.64
7.	35	0.47	17.	39	0.75
8.	31	0.40	18.	37	0.68
9.	34	0.45	19.	36	0.61
10.	30	0.33	20.	37	0.62
			·		
		Length (mm)	Weight ((g)	
	Average: Maximum:	35 39	0.52 0.75		
	Minimum:	30	0.25		
	Technician:	CLG	Da	te: 11/23/05	

Reviewed By:

APPENDIX C SAMPLE ANALYSIS INFORMATION

SAMPLE ANALYSIS INFORMATION

CLIENT: Truesdail Laboratories

SAMPLE IDENTIFICATION: 949028

MBC JOB NUMBER: 06415X

MBC SAMPLE NUMBER: 06-061

SAMPLE DATE/TIME: 11/16/05, 1750 hours

DATE SAMPLE RECEIVED BY MBC: 11/18/05

ANALYSIS REQUIRED: Title 22 DOHS 96-hour Acute Aquatic Toxicity Test

DATE/TIME ANALYSIS INITIATED: 11/19/05, 1519 hours

DATE/TIME ANALYSIS TERMINATED: 11/23/05, 1319 hours

AMOUNT OF SAMPLE: 8 ounces

QUALITATIVE DESCRIPTION OF SAMPLE: A wet brown/rust colored mud,

very fine with a slight odor undefined.

SPECIAL SAMPLE PREPARATION: Shake for 6 hours.

SAMPLE ADJUSTMENTS DURING ANALYSIS: Air added at 0 hours.

RESULTS:	Concentration	% Survival
	Control	100%
	250mg/l	95%
	500 mg/l	100%
	750 mg/l	100%
	LC ₅₀	> 750 mg/l

NOTES: Normal.

ANALYTICAL REPORT

PG&E TOPOCK GWM

Lot #: E5K280186

Shawn Duffy

CH2M Hill Inc

SEVERN TRENT LABORATORIES, INC.

Marisol Tabirara Project Manager

December 6, 2005

EXECUTIVE SUMMARY - Detection Highlights

E5K280186

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
SC-SLUDGE-WDR-021 11/16/05 17:50 00	1			
Chromium Zinc	85 1.5	0.10 1.0	mg/L mg/L	SW846 6010B SW846 6010B

METHODS SUMMARY

E5K280186

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 CAM TITLE
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 1311/3010
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A	SW846 CAM TITLE
Mercury in Liquid Waste (Manual Cold-Vapor)	SW846 7470A	SW846 1311/7470

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E5K280186

WO # SAME	PLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
нQ14Q 00	01	SC-SLUDGE-WDR-021	11/16/05	17:50

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-021

TCLP Metals

Lot-Sample #...: E5K280186-001 **Matrix.....:** SO

Date Sampled...: 11/16/05 17:50 Date Received..: 11/18/05 10:00

Leach Date....: 11/28/05 **Leach Batch #..:** P533213

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 5333503			
Arsenic	ND	0.50 mg/L Dilution Factor: 1 Instrument ID: M01	SW846 6010B Analysis Time: 16:15 MS Run #: 533331	-
Barium	ND	10 mg/L Dilution Factor: 1 Instrument ID: M01	SW846 6010B Analysis Time: 16:15 MS Run #: 533333	11/29-11/30/05 HQ14Q1AW Analyst ID: 021088
Cadmium	ND	0.10 mg/L Dilution Factor: 1 Instrument ID: M01	SW846 6010B Analysis Time: 16:15 MS Run #: 533331	-
Chromium	ND	0.50 mg/L Dilution Factor: 1 Instrument ID: M01	SW846 6010B Analysis Time: 16:15 MS Run #: 533331	11/29-11/30/05 HQ14Q1A0 Analyst ID: 021088
Lead	ND	0.50 mg/L Dilution Factor: 1 Instrument ID: M01	SW846 6010B Analysis Time: 16:15 MS Run #: 533331	11/29-11/30/05 HQ14Q1A1 Analyst ID: 021088
Selenium	ND	0.25 mg/L Dilution Factor: 1 Instrument ID: M01	SW846 6010B Analysis Time: 16:15 MS Run #: 533331	11/29-11/30/05 HQ14Q1A2 Analyst ID: 021088
Silver	ND	0.50 mg/L Dilution Factor: 1 Instrument ID: M01	SW846 6010B Analysis Time: 16:15 MS Run #: 533331	11/29-11/30/05 HQ14Q1A3 Analyst ID: 021088
Prep Batch #	: 5334175			
Mercury	ND	0.0020 mg/L Dilution Factor: 1 Instrument ID: M04	SW846 7470A Analysis Time: 14:13 MS Run #: 533408	Analyst ID: 000023

NOTE(S):

Analysis performed in accordance with USEPA Toxicity Characteristic Leaching Procedure Method 1311

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-021

STLC Metals

Lot-Sample #...: E5K280186-001 **Matrix.....:** SO

Date Sampled...: 11/16/05 17:50 Date Received..: 11/18/05 10:00

Leach Date....: 11/28/05 Leach Batch #..: P533212

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 5334586			
Antimony	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AA
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run # 533434	42
Arsenic	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HO1401AC
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run # 533434	_
Barium	ND	10 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AD
Dallani	ND	Dilution Factor: 1	Analysis Time: 21:01	
		Instrument ID.: M01	MS Run #: 533434	-
Beryllium	ND	0.10 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AE
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run #: 533434	42
Cadmium	ND	0.10 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AF
		Dilution Factor: 1	Analysis Time: 21:01	
		Instrument ID: M01	MS Run # 533434	42
Chromium	85	0.10 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AG
CIII OIIII UIII	03	Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run #: 533434	-
a 1 1.		1 0 /-	G0.46 60105	11/20 10/00/051401
Cobalt	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AH
		Dilution Factor: 1	Analysis Time: 21:01	-
		Instrument ID: M01	MS Run #: 533434	±2
Copper	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AJ
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run #: 533434	12
Lead	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AK
	-12	Dilution Factor: 1	Analysis Time: 21:01	
		Instrument ID: M01	MS Run #: 533434	-

(Continued on next page)

CH2M Hill Inc

Client Sample ID: SC-SLUDGE-WDR-021

STLC Metals

Lot-Sample #...: E5K280186-001 **Matrix.....:** SO

		REPORTING		PREPARATION- WORK
PARAMETER	RESULT	LIMIT UNITS	METHOD	ANALYSIS DATE ORDER #
Molybdenum	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AL
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run #: 533434	12
Nickel	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AM
		Dilution Factor: 1	Analysis Time: 21:01	-
		Instrument ID: M01	MS Run #: 533434	12
Selenium	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HO1401AN
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run #: 533434	12
Silver	ND	0.10 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AP
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run #: 533434	12
Thallium	MD	1 0	GM046 6010D	11/20 12/02/05 #01/01/0
Thallium	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AQ
		Dilution Factor: 1	Analysis Time: 21:01	•
		Instrument ID: M01	MS Run #: 533434	±2
Vanadium	ND	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AR
		Dilution Factor: 1	Analysis Time: 21:01	Analyst ID: 021088
		Instrument ID: M01	MS Run #: 533434	12
Zinc	1.5	1.0 mg/L	SW846 6010B	11/30-12/02/05 HQ14Q1AT
ZIIIC	1.5	Dilution Factor: 1	Analysis Time: 21:01	
		Instrument ID: M01	MS Run #: 533434	-
		Instrument 15 Not	ms Run # 333434	12
Prep Batch #	: 5335437			
Mercury	ND	0.0020 mg/L	SW846 7470A	12/02/05 HQ14Q1AU
		Dilution Factor: 1	Analysis Time: 15:23	Analyst ID: 000023
		Instrument ID: M04	MS Run #: 533523	36

NOTE(S):

 $Soluable\ Threshold\ Limit\ Concentration\ (STLC)\ done\ in\ accordance\ with\ App\ II:\ Waste\ Extraction\ procedures.\ CCR\ Title\ 22.$

QC DATA ASSOCIATION SUMMARY

E5K280186

Sample Preparation and Analysis Control Numbers

SAMPLE#	<u>MATRIX</u>	ANALYTICAL METHOD	LEACH <u>BATCH</u> #	PREP BATCH #	MS RUN#
001	SO	SW846 7470A	P533212	5335437	5335236
	SO	SW846 7470A	P533213	5334175	5334087
	SO	SW846 6010B	P533212	5334586	5334342
	SO	SW846 6010B	P533213	5333503	5333315

METHOD BLANK REPORT

TCLP Metals

Client Lot #: E5K280186 Mat:	cix SOLID
------------------------------	-----------

PARAMETER	RESULT	REPORTING LIMIT UNITS METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #		
MD Iot Cample t	+• EEX300000	503 Prep Batch #: 5333503			
Arsenic	ND	0.50 mg/L SW846 6010	B 11/29-11/30/05 HQ4HG1AA		
		Analysis Time: 15:11 Analyst ID	.: 021088 Instrument ID: M01		
Barium	ND	10 mg/L SW846 6010	B 11/29-11/30/05 HQ4HG1AC		
		Analysis Time: 15:11 Analyst ID	.: 021088 Instrument ID: M01		
Cadmium	ND	0.10 mg/L SW846 6010	B 11/29-11/30/05 HQ4HG1AD		
		Analysis Time: 15:11 Analyst ID	.: 021088 Instrument ID: M01		
Chromium	ND	0.50 mg/L SW846 6010	B 11/29-11/30/05 HQ4HG1AE		
		Analysis Time: 15:11 Analyst ID	.: 021088 Instrument ID: M01		
Lead	ND	0.50 mg/L SW846 6010	B 11/29-11/30/05 HQ4HG1AF		
		Analysis Time: 15:11 Analyst ID	.: 021088 Instrument ID: M01		
Selenium	ND	0.25 mg/L SW846 6010	B 11/29-11/30/05 HQ4HG1AG		
		Analysis Time: 15:11 Analyst ID	.: 021088 Instrument ID: M01		
Silver	ND	0.50 mg/L SW846 6010	B 11/29-11/30/05 HQ4HG1AH		
		Analysis Time: 15:11 Analyst ID	.: 021088 Instrument ID: M01		
MB Lot-Sample #: E5K300000-175 Prep Batch #: 5334175					
Mercury	ND	0.0020 mg/L SW846 7470 Dilution Factor: 1	A 11/30/05 HQ4XK1AA		
		Analysis Time: 13:55 Analyst ID	.: 000023 Instrument ID: M04		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

STLC Metals

Client Lot #...: E5K280186 Matrix.....: SOLID

		REPORTING			PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
MB Lot-Sample	#: E5K300000	-586 Prep Ba	tch #:	5334586	
Antimony	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AA
		Dilution Facto			
		Analysis Time	: 19:58	Analyst ID: (21088 Instrument ID: M01
Arsenic	ND	1.0	mq/L	SW846 6010B	11/30-12/02/05 HQ6NG1AC
	112	Dilution Facto	_	54010 00105	11, 30 12, 02, 03 ingoineine
		Analysis Time	: 19:58	Analyst ID: (21088 Instrument ID: M01
Barium	ND	10	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AD
		Dilution Facto		_	
		Analysis Time	: 19:58	Analyst ID: (21088 Instrument ID: M01
Beryllium	ND	0.10	mg/L	SW846 6010B	11/30-12/02/05 HO6NG1AE
		Dilution Facto	_		,,,,,
		Analysis Time	: 19:58	Analyst ID: (21088 Instrument ID: M01
Cadmium	ND	0.10	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AF
		Dilution Facto		Amalaust ID . (21000 Thetaument ID : M01
		Analysis Time	19.58	Analyst ID: (21088 Instrument ID: M01
Chromium	ND	0.10	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AG
		Dilution Facto	or: 1		
		Analysis Time	: 19:58	Analyst ID: (21088 Instrument ID: M01
Q-11+	MD	1 0	/T	GH046 6010D	11 /20 10 /00 /05 110 (NG1 NI
Cobalt	ND	1.0 Dilution Factor	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AH
		Analysis Time		Analyst ID: (21088 Instrument ID: M01
		111017212 11110	1, 50	11101720 12	21000 1112014110110 1211 1101
Copper	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AJ
		Dilution Facto	or: 1		
		Analysis Time	: 19:58	Analyst ID: (21088 Instrument ID: M01
Lead	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AK
цеац	ND	Dilution Facto		5W040 0010B	11/30-12/02/03 HQ0NG1AK
		Analysis Time		Analyst ID: (21088 Instrument ID: M01
		_		_	
Molybdenum	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05 HQ6NG1AL
		Dilution Facto			
		Analysis Time	: 19:58	Analyst ID: (21088 Instrument ID: M01
Nickel	ND	1.0	mq/L	SW846 6010B	11/30-12/02/05 HQ6NG1AM
		Dilution Facto		2010 00101	
		Analysis Time		Analyst ID: (21088 Instrument ID: M01

(Continued on next page)

METHOD BLANK REPORT

STLC Metals

Client Lot #...: E5K280186 Matrix.....: SOLID

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Selenium	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05	HQ6NG1AN
		Dilution Fac	tor: 1			
		Analysis Tim	e: 19:58	Analyst ID: 02108	8 Instrument ID	: M01
Silver	ND	0.10	mg/L	SW846 6010B	11/30-12/02/05	HQ6NG1AP
		Dilution Fac	tor: 1			
		Analysis Tim	e: 19:58	Analyst ID: 02108	8 Instrument ID.	: M01
Thallium	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05	HQ6NG1AQ
		Dilution Fac	Dilution Factor: 1			
		Analysis Tim	e: 19:58	Analyst ID: 02108	8 Instrument ID	: M01
Vanadium	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05	HQ6NG1AR
		Dilution Fac	tor: 1			
		Analysis Tim	e: 19:58	Analyst ID: 02108	8 Instrument ID	: M01
Zinc	ND	1.0	mg/L	SW846 6010B	11/30-12/02/05	HQ6NG1AT
		Dilution Fac	tor: 1			
		Analysis Tim	e: 19:58	Analyst ID: 02108	8 Instrument ID.	: M01
MB Lot-Sample #: E5L010000-437 Prep Batch #: 5335437						
Mercury	ND	0.0020	mq/L	SW846 7470A	12/02/05	HO8T41AA
rereary	1,10	Dilution Fac	J .	5,1010 /1/011	12/02/03	11X01 111W
		Analysis Tim	e: 15:13	Analyst ID: 00002	3 Instrument ID.	: M04

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):